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Abstract

In the study of random structures we often face a trade-off between realism
and tractability, the latter typically enabled by independence assumptions.
In this work we initiate an effort to bridge this gap by developing tools that
allow us to work with independence without assuming it. Let Gn be the set
of all graphs on n vertices and let S be an arbitrary subset of Gn, e.g., the
set of all graphs with m edges. The study of random networks can be seen
as the study of properties that are true for most elements of S, i.e., that
are true with high probability for a uniformly random element of S. With
this in mind, we pursue the following question: What are general sufficient
conditions for the uniform measure on a set of graphs S ⊆ Gn to be well-
approximable by a product measure on the set of all possible edges?
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1. Introduction

Since their introduction in 1959 by Erdős and Rényi [1] and Gilbert [2],
respectively, G(n,m) and G(n, p) random graphs have dominated the math-
ematical study of random networks [3, 4]. Given n vertices, G(n,m) selects
uniformly among all graphs with m edges, whereas G(n, p) includes each
edge independently with probability p. A refinement of G(n,m) are graphs
chosen uniformly among all graphs with a given degree sequence, a distribu-
tion made tractable by the configuration model of Bollobás [3]. Due to their
mathematical tractability these three models have become a cornerstone of
Probabilistic Combinatorics and have found application in the Analysis of Al-
gorithms, Coding Theory, Economics, Game Theory, and Statistical Physics.

At the foundation of this mathematical tractability lies symmetry: the
probability of all edge-sets of a given size is either the same, as in G(n, p)
and G(n,m), or merely a function of the potency of the vertices involved,
as in the configuration model. This extreme symmetry bestows numerous
otherworldly properties, including near-optimal expansion. Perhaps most
importantly, it amounts to a complete lack of geometry, as manifest by the
fact that the shortest path metric of such graphs suffers maximal distortion
when embedded in Euclidean space [5]. In contrast, vertices of real networks
are typically embedded in some low-dimensional geometry, either explicit
(physical networks), or implicit (social and other latent semantics networks),
with distance being a strong factor in determining the probability of edge
formation.

While the shortcomings of the classical models have long been recognized,
proposing more realistic models is not an easy task. The difficulty lies in
achieving a balance between realism and mathematical tractability: it is
only too easy to create network models that are both ad hoc and intractable.
By now there are thousands of papers proposing different ways to generate
graphs with desirable properties [6] the vast majority of which only provide
heuristic arguments to support their claims. For a gentle introduction the
reader is referred to the book of Newman [7] and for a more mathematical
treatment to the books of Chung and Lu [8] and of Durrett [9].

In trying to replicate real networks one approach is to keep adding fea-
tures, creating increasingly complicated models, in the hope of matching
observed properties. Ultimately, though, the purpose of any good model is
prediction. In that sense, the reason to study (random) graphs with cer-
tain properties is to understand what other graph properties are (typically)
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implied by the assumed properties. For instance, the reason we study the
uniform measure on graphs with m edges, i.e., G(n,m), is to understand
“what properties are typically implied by the property of having m edges”
(and we cast the answer as “properties that hold with high probability in
a ‘random’ graph with m edges”). Notably, analyzing the uniform measure
even for this simplest property is non-trivial. The reason is that it entails
the single massive choice of an m-subset of edges, rather than m indepen-
dent choices. In contrast, the independence of choices in G(n, p) makes that
distribution far more accessible, dramatically enabling analysis.

ConnectingG(n,m) andG(n, p) is a classic result of random graph theory.
The key observation is that to sample according to G(n, p), since edges are in-
dependent and equally likely, we can first sample an integer m ∼ Bin

((
n
2

)
, p
)

and then sample a uniformly random graph with m edges, i.e., G(n,m).
Thus, for p = p(m) = m/

(
n
2

)
, the random graph G ∼ G(n,m) and the two

random graphs G± ∼ G(n, (1 ± ε)p) can be coupled so that, viewing each
graph as a set of edges, with high probability,

G− ⊆ G ⊆ G+ . (1)

The significance of this relationship between what we wish to study (uniform
measure) and what we can study (product measure) can not be overesti-
mated. It manifests most dramatically in the study of monotone properties:
to study a monotone, say, increasing property in G ∼ G(n,m) it suffices to
bound from above its probability in G+ and from below in G−. This con-
nection has been thoroughly exploited to establish threshold functions for a
host of monotone graph properties such as Connectivity, Hamiltonicity, and
Subgraph Existence, making it the workhorse of random graph theory.

In this work we seek to extend the above relationship between the uni-
form measure and product measures to properties more delicate than having
a given number of edges. In doing so we (i) provide a tool that can be used to
revisit a number of questions in random graph theory from a more realistic
angle and (ii) lay the foundation for designing random graph models eschew-
ing independence assumptions. For example, our tool makes short work of
the following set of questions (which germinated our work):

Given an arbitrary collection of n points on the plane what can be said
about the set of all graphs that can be built on them using a given amount of
wire, i.e., when connecting two points consumes wire equal to their distance?
What does a uniformly random such graph look like? How does it change as
a function of the available wire?
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1.1. Our Contribution
A product measure on the set of all undirected simple graphs on n vertices,

Gn, is specified by a symmetric matrix Q ∈ [0, 1]n×n where Qii = 0 for i ∈ [n].
By analogy to G(n, p) we denote by G(n,Q) the measure in which every edge
{i, j} is included independently with probability Qij = Qji. Let S ⊆ Gn be
arbitrary. Our main result is a sufficient condition for the uniform measure
on S, denoted by U(S), to be approximable by a product measure in the
following sense.

Sandwichability. The measure U(S) is (ε, δ)-sandwichable if there exists
an n × n symmetric matrix Q such that the distributions G ∼ U(S) and
G± ∼ G(n, (1± ε)Q) can be coupled so that P[G− ⊆ G ⊆ G+] ≥ 1− δ.

Informally, the two conditions required for our theorem to hold are:

Partition Symmetry. The set S should be symmetric with respect to some
partition P = (P1, . . . , Pk) of the

(
n
2

)
possible edges. More specifically, for

a partition P define the edge profile of a graph G with respect to P to be
the k-dimensional vector m(G) := (m1(G), . . . ,mk(G)) where mi(G) counts
the number of edges in G from part Pi. Partition symmetry amounts to
the requirement that the characteristic function of S can depend on how
many edges are included from each part but not on which edges. That is,
if we let m(S) := {m(G) : G ∈ S}, then ∀G ∈ Gn, IS(G) = Im(S)(m(G)).
The G(n,m) model is recovered by considering the trivial partition with
k = 1 parts and m(S) = {m}. Far more interestingly, in our motivating
example edges are partitioned into equivalence classes according to their cost
c (distance of endpoints) and the characteristic function allows graphs whose
edge profile m(G) does not violate the total wire budget CB = {v ∈ INk :
cᵀv ≤ B}. We discuss the motivation for edge-partition symmetry at length
in Section 2.

Convexity. Since membership in S depends solely on a graph’s edge-profile,
it follows that a uniformly random element of S can be selected as follows:
(i) select an edge profile v = (v1, . . . , vk) ∈ Rk from the distribution on m(S)
induced by U(S), and then (ii) for each i ∈ [k] independently select a uni-
formly random vi-subset of Pi. In other words, the complexity of the uniform
measure on S manifests entirely in the induced distribution on m(S) ∈ Nk

whose structure we need to capture.
Without any assumptions the set m(S) can be arbitrary, e.g., S can be

the set of graphs having either n1/2 or n3/2 edges, rendering any approxima-
tion by a product measure hopeless. To impose some regularity we require
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the discrete set m(S) to be convex in the sense, that it equals the set of inte-
gral points in its convex hull. While convexity is not strictly necessary for our
proof method to work (see Section 4), we feel that it provides a clean concep-
tual framework while still allowing very general properties to be expressed.
These include all properties expressible as Linear Programs in the number
of edges from each part, but also properties involving non-linear constraints,
e.g., the absence of percolation. Our original example, of course, amounts to
a single linear inequality constraint. Most importantly, since convex sets are
closed under intersection, convex properties can be composed while remain-
ing amenable to approximability by a product measure.

We state our results formally in Section 3. The general idea is this.

Theorem 1 (Informal). If S is a convex symmetric set, then U(S) is sand-
wichable by a product measure G(n,Q∗).

The theorem is derived by following the Principle of Maximum Entropy,
i.e., by proving that the induced measure on the set of edge-profiles m(S)
concentrates around a unique vector m∗, obtained by solving an entropy
(concave function) maximization problem on the convex hull of m(S). The
maximizer m∗ can in many cases be computed explicitly, either analytically
or numerically, and the product measure Q∗ follows readily from it. Indeed,
the maximizer m∗ essentially characterizes the set S, as all quantitative re-
quirements of our theorem are expressed only in terms of the number of
vertices, n, the number of parts, k, and m∗.

The proof relies on a new concentration inequality we develop for sym-
metric subsets of the binary cube which, as we shall see, is sharp. Besides
enabling the study of monotone properties, our results allow one to obtain
tight estimates of local graph features, such as the expectation and variance
of subgraph counts (Section 7). This is achieved by proving that for certain
sets S the probabilities of local events are close to the probabilities assigned
by the product measure within a vanishing multiplicative constant.

Outline. The paper is organized as follows. In the next section we provide
motivation about partition symmetry and its connections to contemporary
work on random graphs. In Section 3, we give formal definitions and state
our results. Section 4 is devoted to providing a high-level technical summary
of the proofs, which are provided in Sections 5 and 6. Section 7, provides
our result about probabilities of local events. Finally, in Section 8 we discuss
applications of our theorems.
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2. Motivation

As stated, our goal is to make the study of the uniform measure over sets
of graphs easier. The first step towards this goal is to identify a “language”
for specifying sets of graphs that is expressive enough to be interesting but
restricted enough to be tractable.

Arguably the most natural way to introduce structure on a set is to
impose symmetry. Formally this is expressed as the invariance of the set’s
characteristic function under the action of a group of transformations. In
this work, we explore the progress that can be made if we define an arbitrary
partition of the edges and take the set of transformations to be the the
Cartesian product of all possible permutations of the edges (indices) within
each part (symmetric group). While our work is only a first step towards a
theory of extracting independence from symmetry, we argue that symmetry
with respect to an edge partition is well-motivated for two reasons.

Existing Models. The first is that such symmetry, typically in a very rigid
form, is already implicit in several random graph models besides G(n,m).
Among them are Stochastic Block Models (SBM) which assume symmetry
with respect to a vertex partition, i.e., the very special case in which the edge
partition factorizes over the vertices, and Stochastic Kronecker Graphs [10].
The fact that our notion of symmetry encompasses SBMs is particularly
pertinent in light of the theory of Graph Limits [11], since inherent in the
construction of the limiting object is an intermediate approximation of the
sequence of graphs by a sequence of SBMs, via the (weak) Szemerédi Reg-
ularity Lemma [12, 13]. Thus, any property that is encoded in the limiting
object, typically subgraph densities, is expressible within our framework.

Enabling the Expression of Geometry. A strong driving force behind
the development of recent random graph models has been the incorporation
of geometry, an extremely natural backdrop for network formation. Typically
this is done by embedding the vertices in some (low-dimensional) metric space
and assigning probabilities to edges as a function of distance. Perhaps the
most significant feature of our work is that it fully supports the expression
of geometry but in a far more light-handed manner. This is achieved by (i)
using edge-partitions to abstract away geometry as a symmetry rendering
certain edges equivalent, while (ii) recognizing that there exist macroscopic
constraints on the set of feasible graphs, e.g., total edge length. Most obvi-
ously, in physical networks where edges consume a resource (copper, concrete)
there is a bound on how much can be invested to create the network while,
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more generally, cost may represent several different notions that distinguish
between edges.

3. Definitions and Results

Notation. We use lower case boldface letters to denote vectors and uppercase
boldface letters to denote matrices. We adopt the usual asymptotic notation
e.g. f(n) = O(g(n)) to denote that there is a n0 ∈ IN and a constant C > 0
such that f(n) ≤ Cg(n) for all n ≥ n0. Throughout the paper, we denote
with PS(A) the probability of the event A under the uniform measure on
the set S and more generally for a probability measure ν, we write Pν(A) to
denote the same probability under ν. Further, we say that an event A holds
with high probability (w.h.p.) when P(A) ≥ 1−o(1). Additionally, we fix an
arbitrary enumeration of the N =

(
n
2

)
edges and interchangeably represent

the set of all graphs on n vertices as HN = {0, 1}N and Gn. In the same spirit
will refer to an element of x ∈ HN interchangeably as a graph and a string.

Partition Symmetry. Given a partition P = (P1, . . . , Pk) of [N ], we de-
fine ΠN(P) to be the set of all permutations acting only within blocks of the
partition. A set S ⊆ HN is called P-symmetric if it is invariant under the
action of ΠN(P). Equivalently, if IS(x) is the indicator function of set S,
then IS(x) = IS(π(x)) for all x ∈ HN and π ∈ ΠN(P).

The number of parts k = |P| gives a rough indication of the amount of
symmetry present. For example, when k = 1 we have maximum symmetry
as all edges are equivalent. In a stochastic block model (SBM) with ` vertex
classes we have k =

(
`
2

)
. For a d-dimensional lattice, partitioning the

(
n
2

)
edges by distance results in roughly k = n1/d parts. Finally, if k = N there is
no symmetry whatsoever. Our results accommodate partitions with as many
as O(n1−ε) parts. This is way more than enough for most situations. For
example, as we just saw, in d-dimensional lattices there are O(n1/d) distances.
Generically, if we have n points such that the nearest pair have distance 1
and the farthest have distance D, fixing any δ > 0 and binning together all
edges of length [(1+δ)i, (1+δ)i+1) for i ≥ 0, yields only O(δ−1 logD) classes.

Recall that given a partition P = (P1, . . . , Pk) of HN and a graph x ∈ HN ,
the edge profile of x is m(x) := (m1(x), . . . ,mk(x)), where mi(x) is the
number of edges of x from Pi, and that the image of a P-symmetric set S
under m is denoted as m(S) ⊆ IRk. The edge-profile is crucial to the study
of P-symmetric sets due to the following intuitively obvious fact.
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Proposition 1. Any function f : HN → IR invariant under ΠN(P) depends
only on the edge-profile m(x).

Proof. Fix an x ∈ Hn and consider the set O(x) := {y ∈ Hn : ∃π ∈
Πn(P) such that y = π(x)} and call it the orbit of x under Πn(P)(note
that by group property orbits form a partition of Hn). The assumption of
symmetry, implies that f is constant for all y ∈ O(x):

f(y1) = f(y2) = f(x), ∀y1,y2 ∈ O(x)

By definition of Πn(P), for any x ∈ Hn there is a permutation πx ∈ Πn(P),
such that i) πx(x) = (πx,1(xP1), . . . , πx,k(xPk)) ∈ O(x), ii) for all i ∈ [k],
πx,i(xPi) is a bit-string where all 1’s appear consequently starting from the
first position. Let as identify with each orbit O ⊂ Hn such a distinct element
xo. As the function of f is constant along each orbit, its value depends only
through xo, which in turn depends only on the number of 1’s(edges) in each
part, encoded in the edge profile m = (m1, . . . ,mk).

Definition 1. Let pi = |Pi| denote the number of edges in part i of parti-
tion P.

Edge Profile Entropy. Given an edge profile v ∈m(S) define the entropy

of v as Ent(v) :=
k∑
i=1

log

(
pi
vi

)
.

Using the edge-profile entropy we can express the induced distribution on
m(S) as P(v) = 1

|S|e
Ent(v). The crux of our argument is now this: the

only genuine obstacle to S being approximable by a product measure is
degeneracy, i.e., the existence of multiple, well-separated edge-profiles that
maximize Ent(v). The reason we refer to this as degeneracy is that it
typically encodes a hidden symmetry of S with respect to P . For example,
imagine that P = (P1, P2), where |P1| = |P2| = p, and that S contains
all graphs with p/2 edges from P1 and p/3 edges from P2, or vice versa.
Then, the presence of a single edge e ∈ Pi in a uniformly random G ∈ S
boosts the probability of all other edges in Pi, rendering a product measure
approximation impossible.

Note that since m(S) is a discrete set, it is non-trivial to quantify what
it means for the maximizer of Ent to be “sufficiently unique”. For example,
what happens if there is a unique maximizer of Ent(v) strictly speaking,
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but sufficiently many near-maximizers to potentially receive, in aggregate, a
majority of the measure? To strike a balance between conceptual clarity and
generality we focus on the following.

Convexity. Let Conv(A) denote the convex hull of a set A. Say that a P-
symmetric set S ⊆ GN is convex iff the convex hull of m(S) contains no new
integer points, i.e., if Conv(m(S)) ∩ Nk = m(S).

Let HP(v) := −
∑k

i=1

[
vi log

(
vi
pi

)
+ (pi − vi) log

(
pi−vi
pi

)]
be the approxi-

mation to Ent(v) that results by replacing each binomial term with its first
order Stirling’s approximation.

Entropic Optimizer. Let m∗ = m∗(S) ∈ IRk be the solution to

max
v∈Conv(m(S))

HP(v) .

Defining the optimization over the convex hull of m(S) will allow us
to study the set S by studying only the properties of the maximizer m∗.
Clearly, if a P-symmetric set S has entropic optimizer m∗ = (m∗1, . . . ,m

∗
k),

the natural candidate product measure for each i ∈ [k] assigns probability
m∗i /pi to all edges in part Pi. The challenge is to relate this product measure
to the uniform measure on S by proving concentration of the induced measure
on m(S) around a point near m∗. For that we need (i) the vector m∗ to be
“close” to a vector in m(S), and (ii) to control the decrease in entropy “away”
from m∗. To quantify this second notion we need the following parameters,
expressing the salient properties of the set of interest.

Definition 2. For a P-symmetric set S define

Thickness: µ := µ(S) = min
i∈[k]

min{m∗i , pi −m∗i } (2)

Condition number: λ = λ(S) :=
5k log n

µ(S)
(3)

Resolution: r = r(S) :=
λ+
√
λ2 + 4λ

2
> λ (4)

The most important of the above three parameters is thickness. Its role
is to quantify the minimum coordinate-wise distance of the optimizer m∗(S)
to the natural boundary {0, p1} × . . .× {0, pk}, where the entropy of a class
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becomes zero. As a result, thickness determines the coordinate-wise concen-
tration around the optimum.

The condition number λ(S), on the other hand, quantifies the robustness
of S. To provide intuition, in order for the product measure approximation
to be accurate for every class of edges (part of P), fluctuations in the number
of edges of order

√
m∗i need to be “absorbed” in the mean m∗i . For this to

happen with polynomially high probability for a single part, standard results
imply we must have m∗i = Ω(log(n)). We absorb the dependencies between
parts by taking a union bound, thus multiplying by the number of parts,
yielding the numerator in (3). Our results give strong probability bounds
when λ(S)� 1, i.e., when in a typical graph in S the number of edges from
each part Pi is Ω(k log n) edges away from triviality, i.e., both from 0 and
from |Pi| = pi, a condition we expect to hold in all natural applications. We
can now state our main result.

Theorem 2 (Main result). Let P be any edge-partition and let S be any
P-symmetric convex set. For every ε >

√
12λ(S), the uniform measure on

S is (ε, δ)-sandwichable, where δ = 2 exp
[
−µ(S)

(
ε2

12
− λ(S)

)]
.

Remark 1. As a sanity check we see that as soon as m � log n, Theo-
rem 2 recovers the sandwichability of G(n,m) by G(n, p(m)) as sharply as
the Chernoff bound, up to the constant factor 1

12
in the exponent.

Theorem 2 follows by analyzing the natural coupling between the uniform
measure on S and the product measure corresponding to the entropic opti-
mizer m∗. Our main technical contribution is Theorem 3 below, a concentra-
tion inequality for m(S) when S is a convex symmetric set. The resolution,
r(S), defined in (4) above, reflects the narrowest concentration interval that
can be proved by our theorem. When λ(S)� 1, as required for the theorem
to be meaningfully applied, it scales optimally as

√
λ(S).

Theorem 3. Let P be any edge-partition, S be any P-symmetric convex set,
let m∗ be the entropic optimizer of S. For all ε > r(S), if G ∼ U(S), then

PS (|m(G)−m∗| ≤ εm̃∗) ≥ 1− exp

(
−µ(S)

(
ε2

1 + ε
− λ(S)

))
, (5)

where x ≤ y means that xi ≤ yi for all i ∈ [k], and m̃i = min{m∗i , pi −m∗i }.
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The intuition driving concentration is that as thickness increases two
phenomena occur: (i) vectors close to m∗ capture a larger fraction of the
measure, and (ii) the decay in entropy away from m∗ becomes steeper. These
joint forces compete against the probability mass captured by vectors “away”
from the optimum. The point were they prevail corresponds to λ(S)� 1 or,
equivalently, µ(S)� 5k log(n). Assuming λ(S)� 1 the probability bounds
we give scale as n−Ω(kε2). Without assumptions on S, and up to the constant
5 in (3), this is sharp, per Proposition 2 below.

4. Technical Overview

In this section, we present an overview of the technical work involved in
proving Theorems 2 and 3. Most of the work lies in the concentration result,
Theorem 3.

Concentration. The general idea is to identify a “ball” B ⊆ m(S) around
the entropy-maximizing profile m∗ such that the remaining set Bc has negli-
gible probability. Since ultimately our goal is to couple the uniform measure
with a product measure, we need to establish concentration for the number
of edges from each and every part, i.e., in every coordinate. There are two
main issues: (i) we do not know |S|, and (ii) we must quantify the decrease
in entropy as a function of the L∞ distance from the maximizer m∗. Our
strategy to address these issues is:

Size of S. We bound log |S| from below by the contribution to log |S| of
the entropic optimal edge-profile m∗, thus upper-bounding the probability
of every v ∈m(S) as

logPS(v) = Ent(v)− log(|S|) ≤ HP(v)−HP(m∗) + err . (6)

This is the crucial step that opens up the opportunity of relating the prob-
ability of a vector v to the distance ‖v −m∗‖2 through analytic properties
of binary entropy HP . Key to this is the definition of m∗ as the maximizer
over Conv(m(S)) instead of over m(S). An error term appears at this point
due to Stirling approximation of binomial coefficients as well as due to the
fact that m∗ might not be in m(S) and thus we need to add an error term
caused by “rounding” m∗ to a point in m(S). We deal with the latter issue in
Proposition 3 and show that the error term can be bounded by a term of the
order O(k log(n)). The following proposition demonstrates that unless one
utilizes additional properties of the set S enabling integration around m∗,
instead of using a point-bound for log |S|, a loss of Ω(k log(n)) is unavoidable.
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Proposition 2. If S = Gn and P is any k-partition such that |Pi| =
(
n
2

)
/k

for all i, then log(|S|)−Ent(m∗) = Ω(k log(n)).

Proof. Consider P any balanced partition consisting of k-parts and let S =

Gn to be the space of all graphs. Then |S| = 2(n2) and m∗(S) is the all
(
n
2

)
/2k

vector (all blocks half full). Using Stirling’s approximation of the factorial
we have that:

log(|S|)−Ent(m∗) ≥
(
n

2

)
log 2− 2k log

( (n
2

)
/k

1
2

(
n
2

)
/k

)
(7)

≥ k log n− k

2
log k (8)

For k < n2 the last expression is always Ω(k log(n)).

Distance bounds. To bound the rate at which entropy decays as a function
of the component-wise distance from the maximizer m∗ from below, we first
approximate Ent(v) by HP(v) (the binary entropy introduced earlier) to
get a smooth function. Then, exploiting the separability, concavity and dif-
ferentiability of binary entropy, we obtain component-wise distance bounds
(Lemma 2) using a second-order Taylor approximation . At this step we also
lose a cumulative factor of order 3k log n stemming from Stirling approxi-
mations (Lemma 1) and the subtle point that the maximizer m∗ might not
be an integer point (Proposition 3). The constant 3 can be improved, but
in light of Proposition 2 this would be pointless and complicate the proof
unnecessarily.

Union bound. Finally, we integrate the obtained bounds outside the set
of interest by showing that even if all “bad” vectors where placed right at
the boundary of the set, where the lower bound on the decay of entropy is
smallest, the total probability mass would be exponentially small. The loss
incurred at this step is of order 2k log n, since there are at most n2k bad
vectors.

Relaxing Conclusions. Our theorem seeks to provide concentration simul-
taneously for all parts. That motivates the definition of thickness parameter
µ(S) as the minimum distance from the trivial boundary that any part has
at the optimum m∗. Quantifying everything in terms of µ(S) is a very con-
servative requirement. For instance, if we define the set S to have no edges in
a particular part of the partition, then µ(S) is 0 and our conclusions become
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vacuous. Our proofs in reality generalize, to the case where we confine our
attention only to a subset I ⊆ [k] of blocks in the partition. In particular,
if one defines I∗ as the set of parts whose individual thickness parameter
m̃i = min{mi, pi −mi} is greater than 5k log n, both theorems hold for the
subset of edges ∪i∈I∗Pi. In essence that means that for every part that is
“well-conditioned”, we can provide concentration of the number of edges and
approximate monotone properties of only those parts by coupling them with
product measures.

Relaxing Convexity. Besides partition symmetry, that comprises our main
premise and starting point, the second main assumption made about the
structure of S is convexity. In the proof convexity is used only to argue that:
(i) the maximizer m∗ will be close to some vector in m(S), and (ii) that
the first order term in the Taylor approximation of the entropy around m∗

is always negative. Since the optimization problem is defined on the convex
hull of m(S), the convexity of Conv(m(S)) implies (ii), independently of
whether m(S) is convex or not. We thus see that we can replace convexity
of P-symmetric sets with approximate unimodality.

Definition 3. A P-symmetric set S is called ∆-unimodal if the solution m∗

to the entropy optimization problem defined in Section 2, satisfies:

d1(m∗, S) := min
v∈m(S)

‖m∗ − v‖1 ≤ ∆ (9)

Convexity of m(S) implies that the set S is k-unimodal (Proposition 3)
as we only need to round each of the k coordinates of the solution to the
optimization problem to an integer. Under this assumption, all our results
apply by only changing the condition number of the set to λ(S) = (2∆+3k) logn

µ(S)
.

Coupling. To prove Theorem 2 using our concentration result, we argue
as follows. Conditional on the edge-profile, we can couple the generation
of edges in different parts independently, in each part the coupling being
identical to that between G(n,m) and G(n, p). Then, using a union bound
we can bound the probability that all couplings succeed, given an appropri-
ate v. Finally, using the concentration theorem we show that sampling an
appropriate edge-profile v happens with high probability.

5. Proof of Theorem 3

In this section we prove Theorem 3. For the purposes of the proof we are
going to employ, instead of m(x), a different parametrization in terms of the
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probability-profile a(x) = (a1(x), . . . , ak(x)) ∈ [0, 1]k where ai(x) = mi(x)/pi.
This will be convenient both in calculations as well as conceptually as ai(x)
represents the effective edge density of a part Pi in the partition. We start
by approximating the entropy of an edge-profile via the P-entropy.

Definition 4. Given a partition P, the P-entropy of a ∈ [0, 1]k is

HP(a) := −
k∑
i=1

pi [ai log ai + (1− ai) log(1− ai)] (10)

The P-entropy is simply the entropy of the product measure defined over
edges through a. We slightly abuse the notation and also define the P-
entropy as before in terms of the edge-profile:

HP(v) := −
k∑
i=1

[
vi log

(
vi
pi

)
+ (pi − vi) log

(
pi − vi
pi

)]
(11)

LetMP := {0, . . . , p1}× . . .×{0, . . . , pk} be the space of all possible vectors
m. In what follows we sometimes suppress the dependence of the quantities
in m or a to ease the notation.

Lemma 1. Let m ∈MP be an edge-profile and a ∈ [0, 1]k be the correspond-
ing probability profile, then:

Ent(m) = HP(a)− γ(n)

where 0 ≤ γ(n) ≤ k log n tends to 0 as mi and pi −mi tend to infinity.

Proof. We begin by providing the first order Stirling approximation for a
single term of the form log

(
pi
mi

)
. Specifically, since mi = piai and by using

log n! = n log n− n+ 1
2

log n+ θn, where θn ∈ (0, 1], we get:

log

(
pi
mi

)
= log(pi!)− log(mi!)− log((pi −mi)!)

= −pi [ai log ai + (1− ai) log(1− ai)]− δn(ai, pi) ,

where 0 ≤ δn(ai, pi) ≤ log n. Summing the derived expression for all i ∈ [k]
gives:

Ent(m) = −
k∑
i=1

pi [ai log ai + (1− ai) log(1− ai)]−
k∑
i=1

δn(ai, pi)

= HP(a)− γ(n) ,

where 0 ≤ γ(n) ≤ k log n .
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Proposition 3. Let I := {i ∈ [k] : m∗i /∈ {0, pi}} denote the set of coordi-
nates of m∗ that are not on the trivial boundary. There exists an edfe profile
z∗ ∈m(S) such that HP(m∗)−HP(z∗) ≤ |I|(2 log(n)− log(1− θ)).

Proof. Since, m∗ is in the convex hull of m(S), convexity ensures that the vec-
tor z∗, defined by rounding coordinates of m∗ close to 0 to 1 and coordinates
close to pi to pi− 1, is itself in m(S). Further, letting mθ := θm∗+ (1− θ)z,
the Mean Value Theorem implies that there is θ ∈ (0, 1) such that

HP(m∗)−HP(z) = ∇HP(mθ)
ᵀ(m∗ − z) ≤ |I|max

i∈I

∣∣∣∣log

(
(mθ)i

pi − (mθ)i

)∣∣∣∣ .
In any case, maxi∈I

∣∣∣log
(

(mθ)i
pi−(mθ)i

)∣∣∣ ≤ maxi∈I log
(
pi−1+θ

1−θ

)
≤ maxi∈I log(pi)−

log(1−θ) ≤ 2 log(n)−log(1−θ), where we used the trivial bound pi ≤ n2.

Next, using the Taylor remainder theorem and the connection with P-
entropy, we obtain geometric estimates on the decay of entropy around m∗.

Theorem 4 (Taylor Remainder Theorem). Assume that f and all its partial
derivatives are differentiable at every point of an open set S ⊆ IRk. If a,b ∈ S
are such that the line segment L(a,b) ⊆ S, then there exists a point z ∈
L(a,b) such that:

f(b)− f(a) = ∇f(a)T (b− a) +
1

2
(b− a)T∇2f(z)(b− a) . (12)

Lemma 2 (L2 distance bounds). If m∗ is the unique maximizer and v ∈
Conv(m(S)), then

Ent(v)− log |S| ≤ −
k∑
i=1

(vi −m∗i )2

max{m̃∗i , ṽi}
+ 3k log n , (13)

where m∗i = min{m∗i , pi−m∗i }(respectively ṽi), is the thickness of part i ∈ [k].

Proof. We start by lower bounding log |S| by the entropy of the vector z∗

given by Proposition 3. Next, invoking Lemma 1, we rewrite the difference in
entropy as a difference in P-entropy, and finally use Proposition 3 to replace
z∗ with m∗:

Ent(v)− log |S| ≤ Ent(v)−Ent(z∗) (14)

≤ HP(v)−HP(z∗) + γ(n) (15)

≤ HP(v)−HP(m∗) + 3k log n (16)
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The “error” term 3k log n can be reduced using higher order Stirling approx-
imations but we avoid doing so since an error of order k log(n) is unavoidable
due to the approximation of log |S| by the entropy of the maximizer. Convex-
ity of the domain Conv(m(S)) and differentiability of the P-entropy provide
the necessary conditions to use the Taylor Remainder Theorem. To make
this derivation more natural, we are going to use the reparametrization in
terms of the probability profiles a∗ of m∗ and b of v.

Let h be a point in the linear segment L(a∗,b). We proceed with writing
the expressions for partial derivatives of HP .

∂iHP(a∗) = −pi log

(
a∗i

1− a∗i

)
(17)

∂2
iiHP(h) = −pi

(
1

1− hi
+

1

hi

)
, (18)

while ∂2
ijf = 0 for i 6= j due to separability of the function HP . The Taylor

Remainder formula, now reads:

HP(b)−HP(a∗) = ∇HP(a∗) ·(b−a∗)−
k∑
i=1

pi(bi−a∗i )2

(
1

1− hi
+

1

hi

)
(19)

Since, a∗ is the unique solution to the MaxEnt problem and the domain
is convex, the first term in the above formula is always bounded above by
zero. Otherwise, there would be a direction u and a small enough parameter
ε > 0 such that a∗ + εu has greater entropy, a contradiction. To bound
the second sum from above, let h̃i = min{hi, 1 − hi}(expressing the fact
that binary entropy is symmetric around 1/2) and use the trivial bound
h̃i ≤ max{ã∗i , b̃i}. Thus,

HP(b)−HP(a∗) ≤ −
k∑
i=1

pi(bi − a∗i )2 1

h̃i
≤ −

k∑
i=1

pi
(bi − a∗i )2

max{ã∗i , b̃i}
. (20)

Dividing and multiplying by pi, and writing ṽi = pib̃i, m̃
∗
i = piã

∗
i , gives:

HP(b)−HP(a∗) ≤ −
k∑
i=1

(vi −m∗i )2

max{m̃∗i , ṽi}
. (21)

where v and m∗ are the edge profiles.
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In preparation of performing the “union bound”, we prove that:

Proposition 4. The number of distinct edge-profiles |m(S)| is bounded by
|MP | ≤ e2k logn.

Proof. By definition, |m(S)| ≤ |MP | =
∏k

i=1(pi + 1) ≤ (n2)k.

We are now in a position to complete the proof of the theorem.

Proof of Theorem 3. Our goal is to use the developed machinery to control
the probability of deviations from the optimum at scale ε > r(S). Define
the set Bε(m∗) := {v ∈ S : |v −m∗| ≤ εm̃∗}. We are going to show that
PS(Bcε(m∗)) → 0 “exponentially” fast and thus provide localization of the
edge profile within a scale ε for each coordinate. To that end, we write:

PS(Bcε(m∗)) =
∑

v∈Bcε(m∗)

PS(v) =
∑

v∈Bcε(m∗)

exp [Ent(v)− log |S|] (22)

For any vector v ∈ Conv(m(S)), Lemma 2 provides an upper bound for each

term in the sum Ent(v)− log |S| ≤ −
∑k

i=1
(vi−m∗

i )2

max{m̃∗
i ,ṽi}

+3k log n. We proceed

by considering the least favorable vector v∗ ∈ Bcε(m∗) such that our lower
bond on the decay of entropy (upper bound on probability) becomes smallest.
Since, we are requiring coordinate-wise concentration, such point would differ
from the optimal vector only in one-coordinate, and in particular in the
coordinate that minimizes our lower bound. Any such vector v∗ ∈ Bε(m∗),
would have at least one coordinate i ∈ [k] such that |vi −m∗i | = εm∗i . Using
the facts that that max{m̃i, ṽi} ≤ m̃i + ṽi ≤ (1 + ε)m∗i , we get

Ent(v)− log |S| ≤ − ε2(m∗i )
2

(1 + ε)m∗i
+ 3k log n = − ε2

(1 + ε)
m∗i + 3k log n (23)

Now, by definition of the thickness µ(S) ≤ m̃∗i for all i ∈ [k], and so a
a vector v∗ that minimizes the bound is such that Ent(v∗) − log |S| ≤
− ε2

(1+ε)
µ(S)+3k log n. Performing the union bound over Bcε(m∗) and utilizing

Proposition 4, we get

PS(Bcε(m∗)) ≤ |Bcε(m∗)| · PS(v∗) (24)

≤ exp

[
− ε2

(1 + ε)
µ(S) + 5k log n

]
(25)

≤ exp

[
−µ(S)

(
ε2

1 + ε
− 5k log n

µ(S)

)]
(26)
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Finally, identifying λ(S) in the expression provides the statement. We note
here that the resolution r(S) is defined exactly so that the expression in the
exponent is negative. The condition λ(S) � 1 is a requirement that makes
concentration possible in a small scale, i.e ε� 1.

Tightness. The crucial steps in the proof are, firstly, the approximation of
the log-partition function and, secondly, the L2 distance bounds on the de-
cay of entropy away from the optimum. Both steps are essentially optimal
under general assumptions, as is shown in Proposition 2. Our proof can only
improved by using higher order Stirling approximations and a more compli-
cated integration process (incremental union bounds over L∞-shells) instead
of the simple union bound, to reduce the error at best from 5k log n down to
the minimum of 2k log n. Since, the above considerations would complicate
the proof significantly and the gain is a small improvement in the constant
we deem this unnecessary.

6. Proof of Theorem 2

We will now use our concentration theorem to prove that P-symmetric
sets are (ε, δ)-sandwichable. Before presenting the proof of the theorem we
state two preliminary lemmas.

6.1. Conditional Independence

The first lemma is a simple calculation showing that indeed conditional
on a specific edge-profile v ∈ m(S), the uniform measure decomposes in a
product of G(n,m)-like distributions, i.e., to sample a uniform element from
{G ∈ S|m(G) = v}, one can select for all i ∈ [k] a vi-uniform subset from
part Pi.

Proposition 5. Consider for all i ∈ [k] disjoint sets of edges Ii, Oi ⊂ Pi
and define the events Ai = {G ∈ Gn : Ii ⊂ E(G) and Oi ∩ E(G) = ∅}.
Conditional on the edge profile of G being v, the events are independent, i.e.
it holds that: PS (A1 ∩ . . . ∩ Ak|v) =

∏k
i=1 PS(Ai|v).

Proof of Proposition 5. Since G ∼ U(S) the distribution of G is by definition
uniform on S. This also means that it is uniform on the subset of graphs
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having edge profile m ∈ Nk.

PS (A1 ∩ . . . ∩ Ak|v) =
PS (A1 ∩ . . . ∩ Ak ∩m(G) = v)

PS(m(G) = v)

=
|A1 ∩ . . . ∩ Ak ∩m(G) = v|

|m(G) = v|
Im(S)(v)

where the first equality follows from Bayes rule and the second due to unifor-
mity and the fact that our symmetry assumption implies that membership
in S depends only on the edge-profile m. Recall that each set Ai imposes
the requirement that the edges in Ii are included in G and that the edges in
Oi are not included in G. Having conditioned on v, we know that exactly vi
edges from Pi are included in G and that we can satisfy event Ai by selecting
any subset of vi−|I|i edges out of Pi\(Ii ∪Oi). For convenience set |Pi| = pi,
|I|i = si, |Oi ∪ Ii| = ni, and let Cn

` denote the number of `-combinations out
of an n element set (binomial coefficient). The number of valid subsets of Pi
is then given by Cpi−ni

vi−si . As the constraints imposed are separable, we have:

|A1 ∩ . . . ∩ Ak ∩m(G) = v|
|m(G) = v|

=

∏k
i=1 C

pi−ri
vi−ni

|m(G) = v|
=

k∏
i=1

|Ai ∩m(G) = v|
|m(G) = v|

which gives the required identity by exploiting again uniformity of the prob-
ability measure.

6.2. Basic Coupling Lemma

Consider a set of random variables X1, . . . , Xk with laws ν1, . . . , νk. A
coupling between a set of random variables is a (joint) probability distribution
ν, such that Pν(Xi) = Pνi(Xi) for i ∈ [k], i.e. the marginals of the random
variables are consistent with their laws. Let A = {1, . . . , N} be a finite set
with N elements. Further let X be a uniform subset of m elements out of A,
denoted as X ∼ Samp(m,A), and Z a subset of A where each element of A
is included with the same probability p, denote as Z ∼ Flip(p,A).

Lemma 3. Given a set A with N elements and a number m, define p±(m) =
m

(1∓δ)N . There exists a coupling ν such that for the random variables X ∼
Samp(m,A) and Z± ∼ Flip(p±, A) it holds

Pν
(
Z− ⊆ X ⊆ Z+

)
≥ 1− 2 exp

(
δ2

3(1 + δ)m

)
. (27)
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Proof. Let ν be the joint distribution of U1, . . . , UN i.i.d uniform in [0, 1]
random variables, and U(m) denote the m-th smallest such random variable.
Define X(U) = {i ∈ A : Ui ≤ U(m)} and Z±(U) = {i ∈ A : Ui ≤ p±}
to be subsets of A that depend on the random variables U1, . . . , UN . By
construction it is easy to see that X(U) and Z±(U) have the correct marginal
distribution. Further, due to uniformity, the following equivalence holds:

Z− ⊆ X ⊆ Z+ ⇔ |Z−| ≤ |X| ≤ |Z+|

To analyze the second event define the “bad” events:

B− = {u ∈ [0, 1]N :
N∑
i=1

I(ui ≤ p−) > m}

B+ = {u ∈ [0, 1]N :
N∑
i=1

I(ui ≤ p+) < m}

Each event can be stated as the probability that the sum X± of n i.i.d
Bernoulli p± random variables exceeds (smaller than) the expectation np±.
By employing standard Chernoff bounds, we get:

Pν(B−) = Pν(X− > m) = Pν(X > (1 + δ)np−) ≤ exp(− δ2

3(1 + δ)
m)

Pν(B+) = Pν(X+ < m) = Pν(X < (1− δ)np+) ≤ exp(− δ2

2(1− δ)
m)

The proof is concluded through the use of union bound:

Pν(B− ∪B+) ≤ Pµ(B−) + Pν(B+) ≤ 2 exp

(
− δ2

3(1 + δ)
m

)
This concludes the lemma.

Using, this simple lemma and Theorem 3, we prove the sandwich theorem.

6.3. Main proof.

Recall, that our aim is to prove that the uniform measure over the set S
is (ε, δ)-sandwichable by some product measure G(n,Q).
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Proof of Theorem 2. Given a P-symmetric convex set S, consider m∗(S)
the optimal edge-profile and define the n × n matrix Q∗(S) as: Q∗u,v =
m∗
i

pi
,∀{u, v} ∈ Pi and i ∈ [k]. Further, define q∗i :=

m∗
i

pi
,∀ ∈ [k] to be used

later. In order to prove the required statement, we need to construct a cou-
pling between the random variables G ∼ U(S), G± ∼ G(n, (1 ± ε)Q∗). By
separating edges according to the partition, we express the edge set of the
graphs as E(G) = E1 ∪ . . . ∪ Ek and E(G±) = E±1 ∪ . . . ∪ E±k .

Let ν denote the joint probability distribution of N + 1 i.i.d. uniform
random variables U1, . . . , UN+1 on [0, 1]. As in the coupling lemma, we are
going to use these random variables to jointly generate the random edge-
sets of G−, G,G+. Using UN+1, we can first generate the edge profile v ∈
m(S) from its corresponding distribution. Then, conditional on the edge
profile v ∈ INk, the probability distribution of G factorizes in G(n,m)-like
distributions for each block (Proposition 5). Lastly, we associate with each
edge e a unique random variable Ue and construct a coupling for edges in
each block separately.

In our notation, Ei ∼ Samp(vi, Pi) while E±i ∼ Flip(q±i , Pi). Using
Lemma 3, we construct a coupling for each i ∈ [k] between the random vari-
ables Ei, E

+
i , E

−
i and bound the probability that the event E−i ⊆ Ei ⊆ E+

i

does not hold. Using the union bound over the k parts, we then obtain
an estimate of the probability that the property holds across blocks, always
conditional on the edge-profile v. The final step involves getting rid of the
conditioning by invoking the concentration theorem.

Concretely, define Bi the event that the i-th block does not satisfy the
property E−i ⊆ Ei ⊆ E+

i and Bε(m∗) the set appearing in Theorem 3. We
have that Pν(G− ⊆ G ⊆ G+) = 1 − Pν (∪Bi). Conditioning on the edge
profile gives:

Pν(∪Bi) ≤ Pν(Bcε(m∗)) +
∑

v∈Bε(m∗)

Pν(∪Bi|v)Pν(v)

≤ Pν(Bcε(m∗)) + max
v∈Bε(m∗)

Pν(∪Bi|v)

≤ Pν(Bcε(m∗)) + max
v∈Bε(m∗)

[
k∑
i=1

Pν(Bi|v)

]
The first inequality holds by conditioning on the edge profile and bounding
the probability of the bad events from above by 1 for all “bad” profiles
(outside of the concentration set). The second inequality, is derived by upper
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bounding the probability of the bad event by the most favorable such edge-
profile and the last inequality follows from an application of the union bound.
Applying Theorem 3 provides a bound on the first term and then invoking
Lemma 3 allows us to obtain the following upper bound for Pν(∪Bi)

exp

[
−µ(S)

(
ε2

1 + ε
− λ(S)

)]
+ 2 max

v∈Bε(m∗)

[
k∑
i=1

exp

(
− ε2

3(1 + ε)
vi

)]
Hence, we see that the upper bound is monotone in vi for all i ∈ [k]. Ad-
ditionally, we know that for all v ∈ Bε(m∗) it holds that v ≥ (1 − ε)m∗.
Further, by definition we have m∗ ≥ µ(S). The upper bound for Pν(∪Bi)
now becomes:

exp

[
−µ(S)

(
ε2

1 + ε
− λ(S)

)]
+ 2k exp

[
−ε

2(1− ε)
3(1 + ε)

µ(S)

]
≤ exp

[
−µ(S)

(
ε2

1 + ε
− λ(S)

)]
+ exp

[
−µ(S)

(
ε2(1− ε)
3(1 + ε)

− log(2k)

µ(S)

)]
Finally, using ε < 1/2 and log(2k)/µ(S) ≤ λ(S) we arrive at the required
conclusion.

7. Beyond Monotone Events: Probabilities of Local Events

Our concentration theorem, beyond monotone events, also allows the cal-
culation of the probabilities of local events, i.e., events that depend on a
small (but not necessarily bounded) number of edges. We achieve this by
relating the probability of an event under the uniform measure over the set
S to its product approximation G(n,Q∗). This will be useful in computing
expectations of functions that depend only on a few edges or are are sums of
such functions, e.g., counting the number of subgraphs of some kind.

The extent and accuracy of our estimation capacity depends on the con-
centration of the number of edges from each part around its expectation. A
global summary statistic for this is the thickness µ(S). For our purposes it
will be easier to work with a related quantity that we define next.

Definition 5. The nominal resolution of a P-symmetric convex set S is

ε̂ = ε̂(S) :=
√
c∗λ(S) =

√
c∗5k log n

µ(S)
,

where c∗ = c∗(λ(S)) := 2(1 +λ+
√
λ2 + 2λ) > 2 is such that ε̂2/(1 + ε̂) = 2λ.
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The nominal resolution is the value of ε for which the upper bound given
by Theorem 3 becomes independent of µ(S) and equal to exp(−5k log n). Our
goal is to provide conditions such that we can approximate the probability of
local events within a multiplicative error proportional to ε̂. Our conditions
on the set S ensure that this accuracy is non-trivial (Proposition 6).

Definition 6. Given γ > 0 and a function f(n) > 2, we call a P-symmetric
convex set S ⊆ Gn, (f(n), γ)-well conditioned if:

µ(S) ≥ c∗ (9 max{γ, 1}f(n))2 5k log n

q∗i ≤
γ

1 + γ
, ∀i ∈ [k] .

The upper bound on the q∗i in Definition 6 is needed because, as we will
see, we will derive tight multiplicative approximations to the probabilities
of local events, so if an edge has probability close to 1 then any event that
involves the non-presence of that edge would have probability close to 0 and
that might be smaller than the accuracy that the concentration theorem
provides, i.e., of the probability of the event that concentration around the
optimizer doesn’t happen. We next formalize the definition of local events.

For the rest of this section, as in Proposition 5, we consider for each i ∈ [k]
disjoint, potentially empty sets Ii, Oi ⊆ Pi and events of the form

Ai = Ai(G) := {G ∈ Gn : Ii ⊆ E(G) ∧Oi ∩ E(G) = ∅} ,

denoting ni := |Ii| + |Oi|. Clearly, any event can be written as ∩ki=1Ai, for
some events A1, . . . , Ak as above.

Definition 7 (Local Events). In a product measure Q∗, an event A = ∩ki=1Ai
is (f(n),M)-local if

ni ≤
4 log n

− log(q∗i (1− q∗i ))
∀i ∈ [k] and

k∑
i=1

ni ≤M < f(n) .

Both conditions in Definition 7 can be checked easily given Q∗ and A.
The upper bound on ni ensures that the probability of A is greater than the
probability that concentration fails. We stress once more that the need for
such a bound is due to our insistence on deriving multiplicative approxima-
tions of event probabilities. We are now ready to state our theorem.
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Theorem 5. Let S be any (f(n), γ)-well conditioned P-symmetric convex
set with entropy maximizer Q∗ = Q∗(S). For any (f(n),M)-local event A,∣∣∣∣ PS(A)

PQ∗(A)
− 1

∣∣∣∣ ≤ M

f(n)
.

Before proving Theorem 7 we state an immediate user-friendly corollary.

Corollary 1. A function h : Gn → IR is called (f(n),M)-local if the event
{h(G) = a} is an (f(n),M)-local event for all a ∈ IR. For any such function,

|ES[h(G)]− EQ∗ [h(G)]| ≤ M

f(n)
EQ∗ [|h(G)|] .

The corollary comes with an explicitly computable estimate about the
quality of the approximation and, by linearity of expectation, it can be used
to get bounds for arbitrary sums of local functions. Furthermore, applying
it to moments of (sums of) local functions yields estimates about the distri-
bution of random variables. For instance we can approximate the moment
generating function sufficiently close to 0.

A simple example is counting the number of triangles, T (G), of a random
graph G ∼ U(S). Given three distinct vertices i, j, k ∈ [n], we may define
the event Tijk := {G ∈ Gn|{i, j}, {j, k}, {i, k} ∈ E(G)}, containing all graphs
having a triangle on {i, j, k}. It is easy to see that this is a local event and
that the indicator of this event is a local random variable (function). Letting
T (G) = 1

3!

∑
i 6=j 6=k ITijk(G) be the number of triangles in G, using Corollary

1 and observing that all terms in the sum are non-negative, we get that

ES[T (G)] ∈
[
1− 3

f(n)
, 1 + 3

f(n)

]
EQ∗ [T (G)]. In fact, by observing that T (G)`

can be written as a sum of terms each of which is a product of at most `
different indicators, we see that we can also approximate the `-th moment
with a multiplicative accuracy of 3`/f(n). For instance, if we apply it on
the second moment we can then use these estimates along with Chebyshev’s
inequality to bound the probability PS(|T (G)− EQ∗ [T (G)]| > t).

Proof of Corollary 1. Let I+ = {x ∈ IR+ | ∃G ∈ Gn, f(G) = x}, and similarly
for Ii and IR−. Under any measure µ over Gn,

Eµ[h(G)] =
∑
x∈I+

xPµ(h(G) = x)−
∑
y∈I−

|y|Pµ(h(G) = y) . (28)
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Applying (28) with µ = U(S) and with µ = G(n,Q∗) we see that
|ES[h(G)]− EQ∗ [h(G)]| equals

=

∣∣∣∣∣∣
∑
x∈I+

x [PS(h(G) = x)− PQ∗(h(G) = x)]

−
∑
y∈I−

|y| [PS(h(G) = x)− PQ∗(h(G) = x)]

∣∣∣∣∣∣
≤ M

f(n)

∑
x∈I+

xPQ∗(h(G) = x) +
∑
y∈I−

|y|PQ∗(h(G) = y)


=

M

f(n)
E[|h(x)|] ,

where in the second step we used the triangle inequality and Theorem 5.

7.1. Proof of Theorem 5

We first estimate the probability of A conditional on the edge profile
being a specific vector in the concentration region Bε̂(m∗) and then invoking
concentration to get rid of conditioning. For clarity of presentation we start
by stating some technical facts, which we prove in the next subsection.

Proposition 6. Under the conditions of Theorem 5, let ε̂ denote the nominal
resolution of S. Then

ε̂ ≤ 1

9 max{γ, 1}f(n)
(29)

PQ∗(A) ≥ ε̂−1 exp(−5k log n) (30)

ni ≤ ε̂m∗i . (31)

Moreover, for v ∈ Bε̂(m∗), i.e., in the concentration region, for all i ∈ [k]:

(1− 2ε̂max{γ, 1})ni ≤ PS(Ai|v)

PQ∗(Ai)
≤
(

1 + ε̂max{γ, 1}
1− ε̂min{γ, 1}

)ni
. (32)

We now combine the conditional estimates for all classes and use the
concentration theorem to get rid of conditioning.
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Proof of Theorem 5. To prove the lemma we use again the strategy of con-
ditioning on the edge-profile vector. Recall that Bε̂(m∗) denotes the “con-
centration set” and Bcε̂(m∗) its complement. Trivially,

PS (Bε̂(m∗)) min
v∈Bε̂(m∗)

PS(A|v) ≤ PS(A) ≤ PS (Bcε̂(m∗)) + max
v∈Bε̂(m∗)

PS(A|v) .

For our choice of ε̂, Theorem 3 implies that PS (Bcε̂(m∗)) ≤ exp(−5k log n).
Also, since A is (f(n),M)-local, by (30),

PQ∗(A) ≥ ε̂−1 exp(−5k log n) > 0 .

Thus, diving by PQ∗(A) yields(
1− n−5k

)
min

v∈Bε̂(m∗)

PS(A|v)

PQ∗(A)
≤ PS(A)

PQ∗(A)
≤ ε̂+ max

v∈Bε̂
(m∗)

PS(A|v)

PQ∗(A)
. (33)

Clearly, PQ∗(A) =
∏k

i=1 PQ∗(Ai), while PS(A|v) =
∏k

i=1 PS(Ai|v) by
Proposition 5. If the total number of edges specifying A is m =

∑
ni ≤ M ,

we therefore see that (32) implies

(1− 2ε̂max{γ, 1})m ≤ PS(A|v)

PQ∗(A)
≤
(

1 + ε̂max{γ, 1}
1− ε̂min{γ, 1}

)m
. (34)

To prove the theorem’s lower bound from (33), (34) we use the inequality
(1−x)y ≥ 1−xy, ∀x < 1 and the fact that n−5k ≤ ε̂ for any k ≥ 1 to obtain:

PS(A)

PQ∗(A)
≥
(
1− n−5k

)
(1− 2ε̂max{γ, 1}m) ≥ 1− 3ε̂max{γ, 1}m .

For the upper bound we first use the inequality (1−x)y ≥ 1−xy, ∀x < 1
to simplify the fraction in the denominator. Then, using the inequalities
(1 + x)m ≤ 1 + 2xm for xm < 1 for the numerator and 1/(1 − x) ≤ 1 + 2x
for x < 1/2 for the denominator, we get

PS(A)

PQ∗(A)
≤ ε̂+ (1 + 2mε̂max{γ, 1}) (1 + 2ε̂min{γ, 1}m)

≤ 1 + 9ε̂max{γ, 1}m .

Putting everything together, we obtain that
∣∣∣ PS(A)
PQ∗ (A)

− 1
∣∣∣ ≤ 9ε̂mmax{γ, 1}.

Finally, 9ε̂max{γ, 1} ≤ 1
f(n)

by Proposition 6 and m ≤M by locality.
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7.2. Proof of Proposition 6
Equation (29) follows readily from S being (f(n), γ)-well conditioned.
To prove (30) we note that PQ∗(A) ≥

∏k
i=1(qi(1−qi))ni , since 0 ≤ q∗i ≤ 1.

By the definition of locality, this product is, in turn, bounded from below by

k∏
i=1

exp

(
4 log n

− log(qi(1− qi))
log(qi(1− qi))

)
,≥ exp(−5k log n)

ε̂

since log(ε̂) ≥ − log n ≥ −k log n for all k ≥ 1.
To prove (31) we note that

ni ≤
4 log n

− log(qi(1− qi))
≤ 4 log n

log 4

while ε̂m∗i ≥
√
c∗λµ(S)2 ≥ c∗ 5k log n f(n) 9 max{γ, 1} ≥ 180 log n > 4 logn

log(4)
.

For our claim regarding the removal of conditioning, let |Ii| = si (so
|Oi| = ni − si). We start by writing an exact expression for PS(Ai|v), i.e.,

PS(Ai|v) =

(
pi−ni
vi−si

)(
pi
vi

) =
(vi)si(pi − vi)ni−si

(pi)ni
(35)

where (x)n denotes the descending factorial, for which we have the following
easy bounds (x− n)n ≤ x(x− 1) . . . (x− n+ 1) ≤ xn.

We now obtain a lower bound on PS(Ai|v) as follows. Recall that q∗i =
m∗i /pi. To get (37) we use that v ∈ Bε̂(m∗), i.e. |vi −mi| ≤ ε̂m̃i ≤ ε̂m∗i and
that si ≤ ni ≤ ε̂m∗i . Equation (38) follows trivially from (37), while for (39)
we use the assumption q∗i ≤ γ/(1 + γ).

PS(Ai|v) ≥ (vi − si)si(pi − vi − ni + si)
ni−si

pnii
(36)

≥
(

(1− 2ε̂)
m∗i
pi

)si (
1− (1 + 2ε̂)

m∗i
pi

)ni−si
(37)

≥ (1− 2ε̂)si(q∗i )
si(1− q∗i )ni−si

(
1− q∗i

1− q∗i
2ε̂

)ni−si
(38)

≥ (1− 2ε̂)siPQ∗(Ai) (1− 2ε̂γ)ni−si . (39)

Proceeding analogously yields the upper bound

PS(Ai|v) ≤ (1 + ε̂)siPQ∗(Ai)(1 + ε̂γ)ni−si
(

(1− ε̂) γ

1 + γ

)−ni
from which the claimed upper bound follows readily.
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8. Applications

A common assumption throughout the paper is the existence of a par-
tition of the edges. The partition expresses prior information that we have
about the setting at hand and should be considered given. Two prototypical
examples are: vertex-induced partitions, as in the SBM, and geometry in-
duced partitions, as in the d-dimensional lattice (torus). The applicability of
our framework depends crucially on the extent that the given partition is fine
enough to express the desired property S. The typical pipeline is: (i) trans-
late prior information in a partition of edges P , (ii) express the set of interest
S as a specification on the edge-profile m, (iii) solve the entropy-optimization
problem on Conv(m(S)) and obtain the matrix Q∗, and finally, (iv) perform
all analyses and computations using the product measure G(n,Q∗), typically
exploiting results from random graph theory and concentration of measure.
We proceed with some examples.

Linear Programs on Graphs. Consider that each possible edge has mul-
tiple attributes, that can be categorical (type of relation) or operational
(throughput, latency, cost, distance), compactly encoded as vector xe ∈ IRd.
We can form a partition P by grouping together edges that have identi-
cal attributes. Let XXX = [xxx1 . . .xxxk] ∈ IRd×k be the matrix where we have
stacked the attribute vectors from each group and b be a vector of bud-
gets. In this setting we might be interested in the affine set of graphs
S(XXX,bbb) = {G ∈ Gn|XXX · m(G) ≤ bbb}, which can express a wide range of
constraints. For such a set, besides generality of expression, the entropy op-
timization problem has a closed-form analytic solution in terms of the dual
variables λλλ ∈ IRd

+. The probability of an edge (u, v) in part ` is given by:

Q∗uv(S) = [1 + exp(xxxᵀ`λλλ)]−1. This is particularly useful as it opens the pos-
sibility of using Linear Programming to design networks with desired prop-
erties that are at the same time amenable to analysis through their product
measure approximation. A simple instance of which is the following example.

Navigability. A concrete example of the applicability of our framework is
found in the context of network navigability. Kleinberg [14, 15] gave suf-
ficient conditions for greedy routing to discover paths of poly-logarithmic
length between any two vertices in a graph. One of the most general settings
where such navigability is possible is set-systems, a mathematical abstrac-
tion of the relevant geometric properties of grids, regular-trees and graphs of
bounded doubling dimension. The essence of navigability lies in the require-
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ment that for any vertex in the graph, the probability of having an edge to
a vertex at distance in the range [2i−1, 2i) (scale i) is approximately uniform
for all i ∈ [log n]. In our setting, we can partition the

(
n
2

)
edges according

to distance scale so that part Pi includes all possible edges between vertices
at scale i. In [16], by considering a single linear constraint where the cost of
edges in scale i is proportional to i, we recover Kleinberg’s results on naviga-
bility in set-systems, but without any independence assumptions regarding
network formation, or coordination between the vertices (such as using the
same probability distribution). Besides establishing the robustness of navi-
gability, eschewing a specific mechanism for (navigable) network formation
allows us to recast navigability as a property of networks brought about by
economical (budget) and technological (cost) advancements.

Percolation Avoidance. To show that interesting non-linear constraints
can be accommodated we focus on the Stochastic Block Model. Consider a
social network consisting of q groups of sizes (ρ1, . . . , ρq)n, where ρi > 0 for
i ∈ [q]. As the partition of edges is naturally induced by the vertex partition,
for simplicity we adopt a double indexing scheme: instead of the edge-profile

vector m ∈ IR(q+1
2 ) we use a symmetric edge-profile matrix M ∈ IRq×q.

Imagine that we already have a graph property S that is symmetric with
respect to this partition, e.g., any linear or convex constraint in terms of
the elements of the matrix M, and we would like to enforce the additional
property that a specific group of vertices g ∈ [q] acts as the “connector”, i.e.,
that the graph induced by the remaining groups should have no component
of size greater than εn for some arbitrarily small ε > 0. Denoting by Sε this
restriction of S it is easy to see that Sε is not symmetric with respect to
the partition. Nevertheless, our results are still useful. Using a well known
connection to Multitype Branching Process [17], the non-existence of a giant
component in SBMs can be recast as a condition on the number of edges
between each block. Concretely, given the edge-profile matrix M and for a
given group g ∈ [q], define the (q−1)×(q−1) matrix: T (M)ij :=

mij
n2ρi

,∀i, j ∈
[q] \ {c} that encapsulates the dynamics of a multi-type branching process.
Let ‖·‖2 denote the operator norm (maximum singular value). A classic
result of branching processes asserts that if ‖T (M)‖2 < 1, then with high
probability no giant component exists.

Based on our results, the original property S will be well-approximated
by the product measure corresponding to some set of parameters of the SBM.
If these parameters are such that ‖T (M)‖2 < 1 holds, then a typical element
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of S will have the desired property. Note that since Sε is not symmetric, a
typical case result is the best we can hope for. If, on the other hand, this is
not the case, we can exploit that the set Q = {M : ‖T (M)‖2 < 1} is convex
to determine which the constraints defining S to change so that the entropic
maximizer enters the set Q. Notably there may be multiple ways to achieve
this, and convexity is key to being able to find a good modification of S to,
probabilistically, achieve Sε.

8.1. A concrete example: the 2D Torus.

Below is one of the simplest settings our machinery can handle. We
consider n = (2L+ 1)2 vertices embedded on a two dimensional torus, where
each node i ∈ [n] is associated with a vector v(i) ∈ {0,±1, . . . ,±L}2, and
where the distance dij between two vertices is defined as the `∞ toroidal
distance

dij := max
`∈{1,2}

min
{∣∣∣v(i)

` − v
(j)
`

∣∣∣ , ∣∣∣v(i)
` − v

(j)
` + L

∣∣∣mod (L+ 1)
}

. (40)

Partition. By definition there are precisely L possible values for the distance
between two distinct vertices. This naturally leads us to define a partition
of edges P = (P1, . . . , Pk) into k = L parts where an edge {i, j} ∈ P` iff
dij = `. This a natural example where the partition is defined organically
by our prior information about the geometry of the vertices. The number of
edges in each part is p` := |P`| = 4`n.

Symmetric property. What are interesting properties that are invariant un-
der the partition induced by the metric? In the spirit of Erdős and Rényi,
where the number of edges is specified, we can specify an upper bound
on the total length of the edges of the graph and seek the properties of
a uniformly random graph from that set. Concretely, we define the set

S(B) :=
{
G ∈ Gn

∣∣∣∑e∈E(G) de ≤ B
}

.

Edge profile. For a graph G ∈ Gn we define its edge profile m ∈ INL as the
vector with coordinates m`(G) := |{e ∈ E(G)|de = `}| for ` ∈ [L]. Thus, in

terms of the edge profile S(B) =
{
G ∈ Gn

∣∣∣∑l
`=1 `m`(G) ≤ B

}
, i.e., S(B)

contains the graphs whose edge profile satisfies
∑L

`=1 `m` ≤ B.
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Entropy Optimization. For convenience we convert edge profiles to probabil-
ity vectors a` = m`/p` so that the entropy optimization problem reads:

max
a∈[0,1]L

−
L∑
`=1

p` [a` log a` + (1− a`) log(1− a`)]

subject to
L∑
`=1

p`a`` ≤ B

Define the point B1/2 := 2n
∑L

`=1 `
2 = Θ(L

3

3
n) above which the constraint

becomes inactive. The solution to the optimization problem is

a∗`(β) =
1

1 + exp(β`)
,

where β is the unique solution to
∑

` p` [1 + exp(β`)]−1 = min{B,B1/2}.
In fact, since the function f(β) :=

∑
` p`a

∗
`(β) is strictly monotone for all

B < B1/2, we can equivalently specify S(B) as Sβ := S(f−1(β)). For any
β ∈ IR+ we define the product measure Q∗(β) as:

Q∗ij =
1

1 + exp(βdij)
. (41)

Sandwichability. To analyze Sβ using the product measure, we need to ver-
ify the quantitative requirements of Theorem 2, which mainly involve the
thichkness parameter µ(β) := µ(Sβ). For any β ≥ 0 we have that µ̃∗` = µ∗` =
p`a
∗
` = 4`n

1+exp(β`)
. Further, µ(β) = m̃∗L = 4Ln

1+exp(βL)
. If we want a condition

number λ(Sβ) of the order of 1/ log n this requires µ(β) ≥ 5L log2 n and,
therefore,

β ≤ β0 :=
log(4n)− log(5 log2 n)

L
. (42)

For all such β ∈ [0, β0], Theorem 2 implies that the uniform measure on Sβ

is
(√

24
logn

, 2n−5L
)

-sandwichable.

We can now answer any question we would like using the product measure
Q∗ rather than resorting to working with the rather inaccessible uniform
measure on S(B). To illustrate how our tools apply, we will show that
with high probability the degree of every vertex is close to its expectation
d̄(β) :=

∑L
`=1

8`
1+exp(β`)

.
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Lemma 4. For G picked uniformly at random from Sβ with β ≤ logn
2L

,

PSβ

⋃
i∈[n]

(
|di(G)− d̄(β)| > 2εd̄

) ≤ 4 exp

(
− 16

log n

√
n+ log n

)
,

where ε =
√

24/ log n.

Proof. Let A =
⋃
i∈[n](di− d̄ > 2εd̄) (respectively B =

⋃
i∈[n](di− d̄ < −2εd̄))

be the event (set) that there is at least one vertex with degree a multiplicative
constant larger (respectively smaller) than d̄. To bound PSβ(A ∪ B) we will
exploit the sandwich theorem and standard Chernoff and union bounds.

Set β0 = logn
2L

. For 0 ≤ β ≤ β0 we see that d̄(β) ≥ d̄(β0) =
∑L

`=1
8`

1+n
`
2L
≥

4
√
n, since 2L = (

√
n − 1) by definition. By the Chernoff bound, for any

vertex i ∈ [n], PQ∗
[
di − d̄ > εd̄

]
≤ exp

(
− ε2

3
d̄
)

. The union bound over all n

vertices gives PQ∗

[⋃
i∈[n](di − d̄ > εd̄)

]
≤ exp

(
− ε2

3
d̄+ log n

)
.

Since the set A is monotone increasing, the sandwich theorem yields

PSβ(A) ≤ P(1+ε)Q∗(A) + 2n−5L .

Observing that di − d̄ > 2εd̄ ⇔ di − (1 + ε)d̄ > ε
1+ε

(1 + ε)d̄ and applying
Chernoff bounds for the product measure (1 + ε)Q∗ gives

PSβ(A) ≤ exp

(
− ε2

3(1 + ε)
d̄+ log n

)
+ 2n−5L

≤ 2 exp

(
− 16

log n

√
n+ log n

)
.

Similarly, di − d̄ < −2εd̄⇔ di − (1− ε)d̄ < − ε
1−ε(1− ε)d̄, yielding

PSβ(B) ≤ P(1−ε)Q∗(B) + 2n−5L

≤ exp

(
− ε2

2(1− ε)
d̄+ log n

)
+ 2n−5L

≤ exp

(
− 48

log n

√
n+ log n

)
+ 2n−5L

≤ 2 exp

(
− 48

log n

√
n+ log n

)
Finally we have PSβ(A∪B) ≤ PSβ(A)+PSβ(B) ≤ 4 exp(− 16

logn

√
n+log n).
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