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Abstract

Recent efforts to restructure electricity markets have renewed interest in
assessing how consumers respond to price changes. This paper develops a
model for evaluating the effects of alternative tariff designs on residential
electricity use. The model concurrently addresses several inter-related diffi-
culties posed by nonlinear pricing, heterogeneity in consumer price sensitiv-
ity, and consumption aggregation over time. We estimate the model using
extensive data for a representative sample of 1,300 California households.
The results imply a strikingly skewed distribution of household electricity
price elasticities in the population, with a small fraction of households ac-
counting for most aggregate demand response. We then estimate the aggre-
gate and distributional consequences of recent tariff structure changes in
California, the consumption effects of which have been the subject of consid-
erable debate.
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1 Introduction

Recent efforts to restructure electricity markets have renewed interest in electricity
demand and its relation to prices. This interest reflects a growing appreciation for the
role of demand in competitive power markets generally, and the specific concern that
retail electricity prices are now changing—for some consumers, quite substantially.
Because electricity is nearly universally sold using (nonlinear) tariffs and consumers
are a heterogeneous lot, the impact of these price changes can vary widely from one
household to another. This, in turn, affects the design of price schedules and other
price-based subsidy programs common to energy policy debates. Inasmuch as tariff
designs will continue to be revised as this industry evolves, it becomes desirable to
understand how they affect consumers’ behavior.

To appreciate why practitioners often possess an incomplete understanding of how
consumers would respond to a new tariff design, consider the problems involved. Diffi-
culties that researchers typically face in modeling electricity demand include the non-
linearities of tariff schedules, aggregation of consumption behavior over time and ap-
pliances, and the interdependence of energy use with longer-term household decisions
over appliance ownership and dwelling characteristics. The first two issues in tandem
pose complex simultaneity problems between marginal prices and observed consump-
tion outcomes. These must be disentangled to recover a household’s demand elasticity.
The third issue imposes high data requirements (information on household-specific
appliance holdings and residence features), and creates heterogeneity in consumption
responses related to the characteristics of these durable goods. When the researcher’s
objective is to develop a model for simulating the effects of prospective tariff changes,
ignoring such features will provide an incomplete assessment of demand responses
and potentially misleading predictions of a new design’s consumption and revenue
consequences.

In this paper, we develop and estimate a model of household electricity demand
that can be used to evaluate alternative tariff designs. This model focuses on the
heterogeneity in households’ demand elasticities, their relation to appliance holdings
and other household characteristics, and how they predict household consumption re-
sponses to (nonlinear) price schedule changes. Although these issues have received
varying levels of attention in this or related economic literatures, few if any studies of
electricity demand have addressed them in an integrated way.1 This shortcoming is

1Taylor (1975) contains an early treatment of nonlinear tariffs. More sophisticated analyses emerged
following Burtless and Hausman’s (1978) work on closely-related issues in the analysis of labor supply
under nonlinear income taxation. Surprisingly little of these econometric techniques have permeated
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notable in that theory suggests the effects of a new tariff design on a diverse population
will depend on the heterogeneity in consumers’ price elasticities as well as consump-
tion levels. We address these features using a standard model of endogenous sorting
along a nonlinear price schedule, and a groupwise specification of price-sensitivity het-
erogeneity based on household appliance ownership. This model permits the data to
reveal a much richer shape of the cross-sectional distribution of household price elas-
ticities than is evident in prior work.

We estimate the model using data for a representative probability sample of Cali-
fornia households, obtained initially from the Residential Energy Consumption Survey
of the U.S. Department of Energy. The rich detail on appliance holdings and dwelling
characteristics in these data allow us to model the considerable variation in house-
holds’ electricity use and price sensitivity. A unique feature of our data is that they
have been supplemented by matching each household with its complete, seasonally-
varying electric rate schedule for the purpose of this study. The use of precise rate
schedule information is a central feature of the analysis, both to minimize specifica-
tion error in estimation and to evaluate individual behavioral responses to alternative
rate structures.

The final portion of the paper examines the effects of a new tariff design in Califor-
nia, debates over which served as an the impetus for this study. Following an electric-
ity supply crisis in that state, regulatory authorities approved a novel, five-part tariff
structure for household electricity consumption. This design was intended to induce
energy conservation, raise additional revenue for utilities, and minimize expenditure
changes for lower-income households. Due to its unprecedented form, however, little
was known about how well the new system would achieve these three objectives prior
to its adoption. We use the estimated demand model to examine the effects of these
tariff changes along these dimensions, and contrast our results with initial official es-
timates of California’s Public Utilities Commission.

The paper proceeds in two distinct parts. The first addresses demand models with
nonlinear prices. Section 2 lays the economic groundwork for our empirical methods,
and highlights why our approach differs from earlier electricity demand studies. Sec-
tion 3 discusses stochastic specifications and the endogenous customer sorting problem
that occurs with nonlinear prices. Our treatment casts these inter-related issues in a
self-selection framework, along the lines of Heckman (1979). The analysis builds upon

the (considerable) literature on electricity demand; notable exceptions are Herriges and King (1994) and
Maddock, Castano, and Vella (1992). A greater degree of consensus has emerged on the importance of
incorporating household-level appliance stock information into electricity demand analyses, as well as
empirical methods for doing so; see Parti and Parti (1980), Dubin and McFadden (1984), Dubin (1985),
and EPRI (1989). We relate our analysis to these literatures further below.
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Hanemann’s (1984) and Hausman’s (1985) techniques for modeling choice with non-
linear budget constraints.

The balance of the paper centers on the application. Section 4 describes the empiri-
cal model of household electricity demand. Building on prior work, this model explains
heterogeneity in households’ electricity price elasticities in terms of appliance holdings
and use. In Section 5 we discuss estimation using an exact (non-linear) method of mo-
ments. This procedure allows us to avoid certain temporal aggregation biases common
to electricity demand research. Section 6 summarizes the data, and Section 7 presents
estimation results, elasticities, and an out-of-sample test of the model. In Section 8 we
then illustrate how the model and methods lend themselves to analyzing prospective
tariff changes, such as California’s complex new tariff design.

2 Modeling Demand with Nonlinear Prices

Most nonlinear price schedules take the form of multi-part tariffs. In a multi-part tar-
iff, the marginal price charged to a consumer changes in a step-wise fashion with the
quantity demanded. Depending on the context, these tariffs may exhibit increasing or
decreasing marginal prices. Figure 1 depicts a simple two-part increasing price sched-
ule, s(p), in which the consumer pays a low price pL for each unit up to the quantity x̄,
and a higher price pH thereafter. This type of increasing block (or “tiered”) price sched-
ule is used by most California electric utilities. In other regions, electricity tariffs are
commonly decreasing and thereby provide volume discounts. Empirical methods for
analyzing increasing and decreasing price schedules proceed along similar lines, al-
beit with some adjustments. For simplicity, we shall focus below on the increasing-tier
case shown in Figure 1.

Economic theory offers considerable guidance on how consumers will respond to
nonlinear prices. Since at least Gabor (1955), economists have realized that multi-part
prices imply that the consumer faces a nonlinear (i.e., a kinked) budget constraint. The
demand behavior of a utility-maximizing consumer thus depends not on the average
price, nor any single marginal price, but on the entire price schedule. The difficulty
that arises in empirical work is how to incorporate a complex price schedule into a
demand specification in a way that is consistent with economic theory yet tractable
empirically.

The standard econometric approach to this problem, which traces to Hall (1973),
is to ‘linearize’ the budget constraint. This amounts to using the plane tangent to
the consumer’s nonlinear budget constraint at the optimal consumption bundle as its
linear approximation. By doing so, one can express demand under nonlinear pricing
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in terms of the ordinary demand function of classical consumer theory, which assumes
a linear budget constraint.

To be specific, let x(p, y) be the ordinary demand function that indicates the con-
sumer’s desired quantity facing a constant (marginal and average) price p and income
y.2 Then the optimal consumption bundle x∗ for a consumer faced with an increasing
nonlinear price schedule satisfies

x∗ = x(p∗, y∗) (1)

where p∗ is the slope of the approximating linear budget constraint and y∗ = y+x̄·(p∗−
pL). In economic terms, p∗ is the consumer’s equilibrium marginal willingness-to-pay
and y∗ is the income level that would induce consumption x∗ at this (constant) price.3

With (1), the demand specification problem under nonlinear pricing can be recast in
terms of the ordinary demand function familiar to applied work. Note that both p∗ and
x∗ are endogenously determined, according to the three-equation system consisting of
(1), the expression for y∗, and the nonlinear price schedule s(p∗).4

Nearly all previous studies of household electricity demand have based estima-
tion—either implicitly or explicitly—on a single-equation analog of equation (1).5 Be-
cause the marginal price is simultaneously determined by a supply equation and a
demand equation, standard econometric arguments imply that ordinary least squares
estimation using p∗ will yield biased and inconsistent estimates of demand parameters.
Recognizing as much, most previous studies have used either an exogenous proxy for
the marginal price or instrumental variables procedures in estimation. While either
method can alleviate the endogeneity problem, both introduce biases of their own: the
former due to mis-specification of the appropriate marginal price, and the latter be-
cause of the difficulty in finding good instruments (that do not a priori belong in the
demand equation) in this setting. As neither of these problems are readily dismissed,

2To strip the analysis to its essentials, we implicitly assume a two-good setting with strictly convex
preferences and that the outside good serves as a numeraire.

3Note that p∗ is the consumer’s marginal willingness-to-pay, which is not necessarily the consumer’s
marginal price. The two will differ when demand crosses supply in the ‘gap’ between the two tiers in
the price schedule (see Fig. 1), in which case p∗ takes a value between pL and pH but the marginal price
remains pL.

4The case with decreasing block prices is slightly more complex, because of the possibility that demand
may have multiple crossings of the price (supply) schedule. In that event these three equations have
multiple solutions, and a fourth equation (involving the indirect utility function) is needed to determine
consumption. This is straightforward if the econometric demand specification admits a known indirect
utility function; see, e.g., Hausman (1985).

5One exception is Herriges and King (1994), who employ a microeconomic framework similar to ours
but a different stochastic specification and estimation procedure; they obtain anomalously small (in mag-
nitude) price elasticities, for reasons that are unclear.
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it becomes worthwhile to consider more sophisticated estimation methods.6

An alternative formulation of this problem lends itself to econometric procedures
that avoid these difficulties. The basic idea is to use the ‘supply equals demand’ rep-
resentation in Figure 1 to determine consumption. This amounts to solving the three-
equation system described above for x∗ as a function of the individual terms in the
price schedule. By reference to Figure 1, we can determine consumption by evaluating
demand at each marginal price to obtain

x∗ =


x(pL, y) if x(pL, y) < x̄
x(pH , yH) if x(pH , yH) > x̄
x̄ if otherwise,

(2)

where yH = y + x̄ · (pH − pL). Equation (2) indicates that consumption is given by
demand at the low price when the first tier is on the margin, by demand at the high
price plus an income effect when the second tier is on the margin, and by the quantity
x̄ when demand crosses supply in the ‘gap’ between the two tiers of the price schedule.
The term x̄ · (pH − pL) that is added to income in the second case is the rate structure
discount: it is the difference between the expenditure necessary to purchase the higher
quantities x∗ > x̄ under non-linear pricing, and that necessary to purchase x∗ at a con-
stant price of pH. In essence, when x∗ > x̄ the lower price for inframarginal quantities
produces an income effect.7

In principle, one could base an empirical model of demand under nonlinear pricing
on either (1) or (2). In practice, (2) offers some distinct advantages. The first is that (2)
expresses demand in terms of the exogenous price schedule facing the consumer, rather
than the endogenously-chosen marginal price. By ‘solving out’ the marginal price,
the simultaneity problems arising in econometric analyses using (1) can therefore be
avoided. No instrumental variables nor price schedule approximations are needed.

Second, (2) shows precisely how the individual terms of a nonlinear price sched-
ule enter the demand decision. If one proceeds from an empirical specification of the
ordinary demand function that is consistent with (or perhaps derived from) some prim-

6Work by Dubin (1985) that has directly examined this issue indicates that the bias from ignoring
such simultaneity in this context can be substantial. Maddock, Castano and Vella (1992) show that one
particularly common instrumental-variable approach in this setting fails to correct for the simultaneity
bias well, resulting in estimated price elasticities that are pulled upward toward the slope of the supply
curve.

7Technically speaking, the first two cases in equation (2) are mutually exclusive only if certain restric-
tions on preferences hold. For a normal good (one whose consumption rises with income), these amount
to assuming that the income effect is not ‘too large’; or, more specifically, that the income effect of the rate
structure discount does not dominate the substitution effect of the higher marginal price. If this fails, the
conditioning-event inequalities on the right-hand side of (2) are more complex.
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itive utility specification, then (2) indicates how a nonlinear price schedule should be
explicitly incorporated to maintain internal consistency. The discrete form in (2) is an
inherent consequence of optimizing behavior when consumers face multi-part tariffs.

In this section, we have indicated how the ordinary demand function of classi-
cal consumer theory relates to consumption decisions when consumers face nonlinear
prices. This is useful for two purposes—fitting demand models to existing consump-
tion data, and making predictions for new price schedules of a similar form. To be more
specific about how to do these tasks, it is necessary to consider stochastic specifications
for demand.

3 Stochastic Specifications and Expected Consumption

In empirical work, consumer demand functions typically take the form

x(p, y, z, ε)

where z represents observed consumer characteristics, and ε is a stochastic term. This
type of demand function implicitly assumes the consumer can purchase any quantity
desired at a constant price p. When this assumption is valid, the economic interpreta-
tion of the stochastic term is usually of little consequence for estimation.

When consumers face nonlinear prices, the interpretation given to the stochastic
term has economic ramifications. In a structural model, the usual interpretation of
the stochastic term is that it reflects (in whole or in part) unobservable heterogeneity
in consumers’ preferences. That is, the individual consumer is assumed to know his
or her particular value of ε, but the firm and the econometrician do not and so treat ε
as random. In this setting, the probability distribution of ε conveys information about
how willingness-to-pay varies in the population.

This latter feature poses some interesting complications for estimating consumer
demand functions and calculating expected demand. With a multi-part tariff schedule,
such as the one illustrated in Figure 1, consumers will sort themselves between tariff
segments according to willingness-to-pay. The marginal price is therefore self-selected
in a way that depends upon the observed as well as the unobserved characteristics of
the consumer. This selection induces correlation between the marginal price and the
stochastic term. For example, suppose that ε enters the demand function additively,
and the consumer faces an increasing two-tier price schedule. Then a consumer with
an unusually low value of ε—due to, say, idiosyncratic preferences for energy conser-
vation or extended travel away from home—will tend to have low total consumption
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and consequently a lower marginal price. Ceteris paribus, consumers on the lower
marginal price will tend to be drawn from the lower end of the distribution of ε, and
consumers on the higher marginal price will tend to be drawn from the upper end of
the distribution of ε. This sorting makes calculating expected demand difficult, be-
cause one must account for the consumer’s willingness to switch tariff segments (thus
marginal prices) when integrating out the unobservables.

Handling these complications requires explicitly modeling the selection behavior
of the consumer. We will do so assuming the consumer’s ordinary demand function
(demand at a constant price p) takes the econometric form

x(p, y, z;β) + ε (3)

where β is a set of parameters to be estimated. The additive separability of ε is not
strictly necessary for what follows, but will simplify the analysis and make certain
relations more transparent.

Consider first the consumption decision from the perspective of the consumer, who
knows his or her value of ε. From the analysis in Section 2, we can represent this
choice in a form analogous to equation (2). Specifically, if a consumer with the ordinary
demand function in (3) encounters a price schedule of the type in Figure 1, then her
optimal consumption level is

x∗ =


x(pL, y, z;β) + ε if ε < c1
x̄ if c1 < ε < c2
x(pH , yH , z;β) + ε if ε > c2

(4)

where c1 = x̄ − x(pL, y, z;β) and c2 = x̄ − x(pH , yH , z;β). The lower and upper cutoff
values c1 and c2 satisfy c1 < c2 for any downward-sloping demand function, provided
that income effects are not too large.8 They partition the range of ε into three regions:
if ε < c1, then consumption occurs on the low-price tier, if ε > c2 then consumption
occurs on the high-price tier, and if c1 < ε < c2 then demand crosses supply in the ‘gap’
between the two tiers of the price schedule.

From an econometric perspective, equation (4) is a censored regression model in
which the censoring occurs in the interior of the distribution of outcomes rather than
the tails. Such models are generally estimated by maximum likelihood methods, us-
ing the discrete structure in (4) to derive the change-of-variables from an (assumed)
marginal distribution of ε to the distribution of x∗. Burtless and Hausman (1978) de-

8Cf. ftn. 7.
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velop a maximum likelihood implementation for a general censoring model with this
structure. Their method, later extended by Hausman (1985) and others, has been
widely applied for modeling labor supply decisions subject to nonlinear income taxa-
tion.9

In the present analysis, we are interested in both estimating a model of demand
behavior and calculating expected consumption under observed and alternative tariff
schedules. We therefore eschew maximum likelihood in favor of an exact moment-
based estimation approach. This has the desirable feature that the analytic machinery
needed to perform expected demand calculations (for current and alternative tariff
schedules) is readily available from the model’s estimating conditions.10

To obtain an expression for expected consumption, we can integrate (4) piecewise.
Let w represent the set of observable characteristics affecting the household’s con-
sumption decision: w = {pL, pH , x̄, y, z}. To simplify notation, we will write xH(β) for
x(pH , yH , z;β) and xL(β) for x(pL, y, z;β). The expected value of x∗ given w is then

E(x∗|w) = [
xL(β) + E(ε|ε < c1(β), w)

] · P (ε < c1(β))
+ x̄ · P (c1(β) < ε < c2(β)) (5)

+
[
xH(β) + E(ε|ε > c2(β), w)

] · P (ε > c2(β))
where P is the (conditional) probability distribution of ε, given w. This is a simple
probability-weighted average of expected demand within each segment of the price
schedule. To apply (5) to data, we will assume a parametric specification for the dis-
tribution of the unobservables. Specifically, if P is the normal distribution with mean
zero and variance σ, then expected consumption becomes

E(x∗|w) = [xL(β)− σλ1]Φ1 + x̄ · (Φ2 − Φ1) + [xH(β) + σλ2] (1− Φ2) (6)

where λ1 = φ1/Φ1 and λ2 = φ2/(1 − Φ2) are the inverse Mills ratios, φ1 and φ2 are the
standard normal density evaluated at c1(β)/σ and c2(β)/σ, and Φ1 and Φ2 the standard
normal distribution function at c1(β)/σ and c2(β)/σ.

Several points are worth noting here. In statistical terms, equation (5) is integrat-
ing demand over the joint probability distribution of the consumer’s marginal price
and the unobservables. It recognizes the fact that the consumer’s marginal price is re-
lated to ε, and changes—in a discrete, endogenous way—as ε varies. What makes this

9See Moffitt (1986) for a survey.
10There are also computational reasons to prefer this approach to maximum likelihood, which we ad-

dress in Section 5.
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integration tractable is that price schedules are discrete, so that the marginal price
and ε are conditionally independent within each ‘step’ of the price schedule.

Second, there is a close parallel here to the sample-selection models in the econo-
metric literature. The terms in square brackets in (6) are essentially ‘Heckit’-style
conditional expectation functions. They correct for the fact that, given w, consumers
that sort onto the lower marginal price are different in their unobservable character-
istics than those who choose the higher-tier price. The parallel to sample-selectivity
problems arise because, in both that and the present analysis, consumers are sorting
along a budget constraint. In traditional models of labor supply decisions (for example,
Heckman (1974)), consumers with different reservation wages choose whether or not
to participate in a labor market, effectively sorting between interior and boundary so-
lutions on the labor-leisure budget set. In the present analysis, consumers are simply
sorting between different segments of a nonlinear (i.e., kinked) budget constraint. The
present situation generates greater information about the distribution of consumer
preferences, however, because consumers can equate price to marginal willingness-to-
pay at (two) different price levels. This makes (6) a more complex expression than the
expectation functions employed in traditional selection models.11

In the empirical analysis of demand behavior, the expected consumption equation
in (6) serves two roles. It can be used to estimate a model of demand when consumers
face nonlinear tariffs of the form in Figure 1; and, given the estimated demand model,
it can be used to calculate how expected consumption would differ under an alterna-
tive tariff of the same structure. Of course, this framework is easily generalized to
more complex tariff structures, which might include fixed charges or additional tariff
segments. We illustrate the latter in Section 8.

4 Household Electricity Demand

To obtain an estimable model, we now consider in detail the specification of a house-
hold electricity demand function x(p, y, z;β).

Like many household services, electricity is not consumed directly by individuals.
Rather, a demand for electricity is derived from the flow of services provided by a

11At the risk of confusing matters, there is one other difference between the present analysis and
traditional models of labor market supply. The analysis here is more complicated because the supply
and demand system is “nonrecursive.” That is, in traditional labor supply models, the individual’s labor
supply function depends on the market wage, but the market wage is constant irrespective of the labor
hours supplied. The slope of the budget constraint is therefore exogenous. In the present analysis, the
quantity demanded depends on the marginal price (through substitution behavior) and the marginal price
depends on the quantity consumed (through the price schedule). This leads to simultaneity problems (as
discussed in Section 2) in addition to the self-selection behavior above.
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household’s durable energy-using appliances. This characteristic of electricity use im-
plies a useful distinction between short-run and long-run demand elasticities. The
‘short-run’ refers to demand behavior taking a household’s existing appliance stock as
given. For example, in response to an increase in the price of electricity, a household
might tolerate a warmer air conditioner setting or reduce the number of hours a pool
filter operates. In contrast, long-run elasticities are meant to incorporate both changes
in utilization behavior and any adjustments to the stock of appliances owned by the
household.

This distinction is important for modeling demand behavior. The long-run effects
of electricity price changes are an equilibrium outcome of households’ appliance re-
placement decisions (on the demand side) and appliance manufacturers’ choices of
technological characteristics and prices for new appliances (on the supply side). Un-
fortunately, our present (cross-sectional survey) data does not contain the longitudinal
information necessary to estimate how these replacement decisions are prompted by
changing energy prices. Thus, we focus on analyzing short-run demand elasticities,
and leave appliance replacement decisions for subsequent research. Our results there-
fore inform changes in demand due to changes in appliance utilization behavior, rather
than through equilibrium appliance stock adjustments.12

This approach to modeling electricity demand amounts to conditioning econometric
analysis on households’ existing appliance stocks. In doing so, an important question
becomes how best to incorporate information on appliance holdings into demand spec-
ifications. Households vary markedly in the set of appliances they own, so it is natural
to expect the factors influencing electricity demand in one household will differ from
those in the next. For example, an elderly household that uses central air conditioning
much of the summer might be willing to alter its thermostat setting in response to a
small change in the price of electricity, which can yield a large change in its electricity
consumption. In contrast, a single-person household that uses electricity to operate
only a refrigerator and a few lights might exhibit little or no demand response even to
large price changes. This suggests that both a household’s electricity consumption and
its price sensitivity may depend delicately on the specific types of appliances it holds.13

12The element of technological change in appliance manufacturers’ choices makes estimating the long-
run effects of electricity price changes particularly complex. One effort to do so is the EPRI Residential
End-Use Energy Planning System (REEPS) micro-simulation models; see Goett and McFadden (1985).
These models build on Dubin and McFadden’s (1984) model of contemporaneous appliance choice and
utilization decisions.

13A separate issue not examined here is that the choice of major appliances in a residence is ultimately
endogenous, and may be statistically endogenous to a model of utilization behavior. Dubin and McFad-
den (1984) present some evidence on this issue for gas versus electric home heating systems. In earlier
work we attempted to account for this possible endogeneity in a homoscedastic error model; that is, a
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A useful way of modeling this heterogeneity is to specify electricity demand func-
tions at the level of the individual appliance. This allows different factors to affect
electricity demand for different appliances, and thus for different households. This
approach to modeling electricity demand is feasible with household-level data, pro-
vided both appliance ownership and energy consumption are observed. In our data,
however, electricity consumption is not recorded at the level of the individual appli-
ance; rather, we observe only total household electricity consumption (at the level of
the household’s electric meter). Consequently, we treat the electricity used by each
of a household’s individual appliances as a latent, or unobserved, outcome. We then
aggregate these appliance-level demand specifications to obtain a model of household
electricity demand.14

Specifically, we treat total household demand as the sum of electricity used by K
distinct appliance categories. These categories include space heating, water heating,
air conditioning, refrigeration, pools, and a residual category of other electrical ap-
pliances. If a household owns an appliance of type k = 1, 2, . . . ,K, we assume that
electricity consumption (per billing period) for the category, xk, takes the linear form

xk = αkp+ γky + z
′
kδk + εk (7)

where p is the price of electricity, y household income, zk a vector of observable house-
hold characteristics, and εk unobservable household characteristics. The unknown
demand parameters αk, γk, and δk are assumed constant across households and are to
be estimated. Depending on the appliance, the category-specific vector zk may include
household demographic information, dwelling structure characteristics, appliance at-
tributes, and (contemporaneous billing-period) weather data. We interpret equation
(7) as household demand when it faces a constant (marginal and average) price, p.

As noted above, we do not observe electricity consumption at the level of the in-

model in which the household-level error did not depend on the potentially endogenous appliance dummy
variables. For additional instruments we used 30-year averages of local weather data, thinking these
would be uncorrelated with the utilization error but related to longer-run appliance adoption decisions.
The results from this model did not differ noticeably from an un-instrumented homoscedastic model. The
problem we face with our heteroscedastic model (cf. equation (10) is that simple instrumenting methods
are no longer appropriate. We are unaware of any econometric treatments of problems posed by endoge-
nous variable/error interaction models. As such, this issue is beyond the scope of the current paper and
something we plan to explore in the future.

14This latent-variables approach to modeling electricity consumption is implicit in Fisher and Kaysen’s
(1962) pioneering work on aggregate electricity demand. Later studies using related approaches include
Parti and Parti (1980), Barnes, Gillingham, and Hagemann (1981), and Dubin (1985). The present ap-
proach is sometimes termed ‘conditional demand analysis’ in the literature (see esp. EPRI (1989) and
references therein); we avoid this usage because it conflicts with similar terminology in econometric
multi-level budgeting models.
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dividual appliance; rather, we observe total household electricity consumption. Total
and appliance-level electricity demand are related by

x =
K∑
k=1

dk xk , (8)

where x is total household electricity consumption and

dk =

{
1 if household owns appliance type k
0 if otherwise.

With household appliance ownership information, we can insert (7) into (8) to obtain
an estimable equation for household electricity demand,

x =
∑
k
dkαkp+

∑
k
dkγky +

∑
k
dkz

′
kδk +

∑
k
dkεk ,

which we will collapse to

x = αp+ γy + z′δ + ε (9)

by setting α =
∑
k dkαk, γ =

∑
k dkγk, and so on. Although equation (9) looks like a

conventional linear demand function, the price, income, and other slope coefficients
depend upon the household’s appliance portfolio. Notice that we are not estimat-
ing α directly, but rather the parameters α1, α2, . . . , αK that characterize the price-
sensitivity of each appliance category (and similarly for γ, δ). Thus, this specification
allows households with numerous electricity-intensive appliances, such as air condi-
tioners, swimming pools, or electric space heating systems, to exhibit different price
and income elasticities than households without such appliances.

In interpreting equation (9), it is important to note that it corresponds conceptually
to the conventional demand function x(p, y) of classical consumer theory, as discussed
earlier. That is, it specifies the amount of electricity the household would consume
if it faced income level y and a constant price p for electricity. This differs from the
situation in our data, where households face a nonlinear price schedule with marginal
prices pL and pH . In that case, the optimal consumption level is given by evaluating
demand using the schedule derived in equation (4). The expected value of demand is
similarly determined, by appropriately inserting the demand specification (9) into the
expected consumption equation (6).
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Variances

An important aspect of this model of electricity demand is that the household-level
demand error, ε, is heteroscedastic. This occurs because the stochastic term in the
household-level demand specification is the sum of the stochastic terms associated
with the K appliance utilization equations (7). The variance of the household-level
stochastic term therefore depends upon which appliances are held by the individual
household.

Specifically, from the expressions leading to (9), the variance of the household-level
stochastic term is a function of the appliances owned:

var(ε) =
K∑
j=1

K∑
k=1

djdk cov(εj , εk) (10)

≡ σ(d1, d2, . . . , dK)
2.

Thus, even if the stochastic term in a particular appliance utilization equation is as-
sumed to have constant variance across households, the household-level stochastic
term will not have constant variance. We tend to think of the appliance-level stochas-
tic terms as reflecting households’ idiosyncratic tastes for utilizing appliances. A vari-
ety of behavioral considerations then suggest that the covariance terms entering (10)
will tend to be positive, so that the variance of the household-level stochastic term will
increase with the number of appliances owned.

From an econometric perspective, equation (10) is a simple model of group-wise
heteroscedasticity in which the ‘group’ is a specific portfolio of household appliances.
Normally, this would not be a major concern for estimating the parameters of a linear
demand specification such as (9). When consumers face nonlinear prices, however, the
variance of the household-level stochastic term affects the likelihood that a consumer
will fall on one tariff segment or another. This can be seen immediately from equa-
tion (6), where (the root of) the variance term, σ, enters the conditional expectation
function and the tariff segment probabilities. The variance of unobserved tastes thus
affects expected consumption calculations, and consistent estimation of the demand
parameters.

5 Estimation

In theory, one can estimate the model given by (4) and (9) using several different meth-
ods. In practice, however, both data limitations and computational considerations limit
the appeal of likelihood-based estimators. Before turning to the specific estimation

13



technique we employ, we first describe two issues that affect estimation procedures.
These relate to aggregation of the household’s consumption decisions over time, and a
partial identification problem of the model with normally-distributed unobservables.

5.1 Aggregation over Time

Because electricity is sold using a nonlinear price schedule, there is an important tem-
poral aspect to electricity demand. In practice, the multi-part tariffs discussed in Sec-
tions 2 and 3 apply to households’ electricity consumption on a monthly basis. In
contrast, the data available to us provide only annual household electricity consump-
tion information. This temporal mismatch creates a potential source of aggregation
bias, since the household may choose to consume at different prices during different
times of the year.

There are both supply (price schedule) and demand-based reasons to expect the
household’s marginal price will vary over the course of the year. First, many household
electricity uses are seasonal and weather-sensitive (e.g., air conditioning and space
heating). These appliances are quite energy-intensive, and can easily push a house-
hold onto a higher segment of its tariff schedule during the months these appliances
are used. Second, even if a household’s electricity demand did not change from month
to month, electricity tariff schedules do—both because of seasonal tariff changes (rates
differ between summer and winter) and mid-year regulatory adjustments. No single
price schedule applies to all of a household’s annual consumption activity.

The problems this poses for estimation are considerable. When only annual con-
sumption data are available, the household’s monthly consumption and actual mar-
ginal prices are unobserved. Consequently, there is no way to know what sequence
of monthly marginal prices generated a household’s aggregate consumption outcome.
In a completely linear demand model, this is of no special concern because annual
demand depends on only the average annual price. When consumers face nonlinear
prices, however, no such simplifications are possible. The aggregation must be modeled
explicitly to avoid mis-specifying the effect of price on demand.

A second, and more subtle, issue is that the same applies to the effect of weather
and other time-varying covariates. Precisely because consumers face nonlinear tariffs,
the effects of other time-varying covariates will tend to be confounded in aggregate
data. For example, a decrease in demand over a period of several cooler-than-usual
summer months could be due solely to the effect of the weather, or due to an increase
in seasonal tariffs during the summer, or due to a composition of these two simultane-
ous effects. With only annual data, it becomes difficult to disentangle and separately
identify the direct effect of monthly marginal price changes. Yet this is precisely what

14



is required if we are to understand the effects of changing tariff schedules on consump-
tion behavior.

Addressing this problem constructively requires some information about the way
prices and other time-varying covariates change during the year. For the present anal-
ysis, we obtained location-specific monthly weather information and complete season-
ally-varying electric rate schedules for each household in the data. This allows us to
model the household’s monthly consumption decisions explicitly, treating the unob-
served monthly consumption outcomes as latent variables. We then aggregate these
latent variables to obtain a demand model that matches the annual consumption out-
comes available.

More precisely, let wt denote the set of observable variables affecting the house-
hold’s consumption decision in month t, including the applicable monthly price sched-
ule and that month’s weather conditions. Let x∗t denote the household’s electricity
consumption in month t, and xa =

∑12
t=1 x

∗
t the household’s annual electricity con-

sumption. The value of x∗t for month t is determined by (4), using the right-hand side
covariates for that month.

To estimate the model using a method of moments, we require an expression for
the expected value of annual demand, E[xa|w1, w2, . . . , w12]. Exploiting linearity of ex-
pectations, we will assume

E[xa|w1, w2, . . . , w12] =
12∑
t=1

E[x∗t |wt], (11)

where E[x∗t |wt] is as defined in (6). That is, we evaluate the (conditional) expectation
of annual demand by evaluating the monthly expected consumption equation twelve
times, using the appropriate covariates for each month. There is no simple form for
otherwise calculating the expected value of annual demand.15

Equation (11) makes an assumption regarding the additive separability of the con-
ditioning sets. This entails some restrictions on household substitution behavior over
time. If we assume that households consume electricity out of permanent rather than
contemporaneous (i.e., monthly) income, the only time-varying elements in wt are the

15In theory, one could estimate this model more efficiently using maximum likelihood, or possibly Heck-
man’s (1979) two-stage technique for censored regression models. Unfortunately, maximum-likelihood
methods quickly becomes computationally intractable when consumption decisions made at varying
prices are aggregated. To illustrate, the likelihood function for one monthly consumption outcome in
this model is a mixed continuous/discrete function, with three discrete segments (this follows from (4);
see Hausman (1985) for more details). In contrast, the likelihood function for the sum of twelve month’s
consumption outcomes involves 312, or approximately 531 thousand distinct segments. While there is
some redundancy involved, the task of evaluating such a likelihood function (for use in either direct or
simulated likelihood methods) appears quite burdensome.
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weather-related covariates (monthly heating and cooling degree-days) and the price
schedules (being seasonal). Equation (11) makes the implicit assumption that, con-
ditional on a household’s existing appliance stock, knowledge of the electricity price
schedules and weather patterns for past and future months this year has no effect on
the current month’s consumption. While untestable directly, this is a tenable assump-
tion given that electricity is a non-storable commodity: Households cannot stockpile it
in anticipation of higher demand or prices in other months.

5.2 Estimation Method

The foregoing discussion suggests a straightforward, albeit nonlinear, least-squares
procedure for estimation. This is to choose as estimates the values of the unknown
parameters that minimize the difference between the observed and expected annual
consumption outcomes. Unfortunately, with a finite sample of data the variance pa-
rameters in (10) tend to be poorly identified on the basis of the conditional expectation
of demand alone. This is because, for some realizations of the data, the conditional ex-
pectation function (6) may be nearly flat with respect to σ in a broad region containing
the true value of this parameter. In essence the first moments of the sample may con-
tain too little information to estimate the variance of the stochastic term accurately,
absent an impractically large sample.

To resolve this problem, it is necessary to incorporate information on the higher
moments of the model into estimation. We employ a generalized method of moments
(GMM) procedure based on the first and second moments of annual consumption, us-
ing the following technique. Let h r(W, θ) = E[(xa)r|W ] denote the r-th conditional
moment of annual consumption. Here θ denotes the set of unknown parameters to
be estimated, and W = {w1, w2, . . . , w12} is the set of all observable variables influ-
encing the household’s annual consumption. We base inference on a pair of first- and
second-moment differences between observed and expected annual consumption:

u1 = xa − h1(W, θ)
u2 = (xa)2 − h2(W, θ)− 2h1(W, θ) (xa − h1(W, θ)) .

By construction, both u1 and u2 have conditional mean zero givenW. The cross-product
term in the second equation, −2h1(xa − h1), is added to improve the sampling perfor-
mance of the estimator: if (xa)2 > h2 then the cross-product term tends to be negative,
and conversely if (xa)2 < h2, which reduces the sampling variance of u2. The second
equation amounts to basing inference on the centered, rather than uncentered, second
moment of annual consumption.
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The functional form of h1(W, θ) is given by (11) and (6). The functional form of
h2(W, θ) is derived similarly, and involves the second moment of the truncated normal
distribution. In doing so, an additional complication arises due to the temporal aggre-
gation of monthly consumption outcomes. While computing h1 involves only the mean
and variance of the stochastic term ε in the underlying monthly demand specification,
evaluating h2 requires an assumption about the correlation of ε over time. We assume
that the value of ε in the household’s demand specification (9) is independent from
month to month. This simplification is motivated by computational concerns, as an
autocorrelation structure for the unobservables is likely to be difficult to identify with
annual consumption data.

From the conditional moment differences u1 and u2, we construct orthogonality con-
ditions for GMM in a standard manner. By classical arguments, optimal instruments
in this setting involve (covariance-weighted) derivatives of the conditional moments h1
and h2. We use the gradients of the first and second conditional moments, setting

z1(W, θ)′ = ∇β h1(W, θ)

and

z2(W, θ)′ =
[∇β h2(W, θ)
∇ξ h2(W, θ)

]
.

Here β denotes the demand parameters from (9) and ξ a vector of the variance terms
from (10), with θ = (β, ξ). The unconditional orthogonality conditions are then E[z′rur] =
0, r = 1, 2. This instrument set yields m = 2 · dim(β) + dim(ξ) moment equations for
estimation and dim(β) over-identifying restrictions.16 Note that the gradient of h1 with
respect to the variance parameters is excluded from the instruments, for the sample
analog contains no useful information (it is essentially singular if incorporated into
estimation—this is the reason the variance parameters are poorly identified by non-
linear least squares estimation using the first moments alone).

Our estimator minimizes the usual GMM distance metric ||Au(θ)||2, where A is an
(m× 2n) weighting matrix held fixed during minimization, and

u(θ) =

[
u1(θ)

u2(θ)

]
is the 2n-vector of ‘stacked’ first and second conditional moment differences for all n

16It may be verified by direct analysis that these instruments preserve a unique solution for θ to the
m equations E[z′rur] = 0, r = 1, 2, provided that the household variance function σ(d1, d2, . . . , dK)2 is
bounded away from zero.
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households. The matrix A = R̃ Z̃ ′D, where D is a diagonal matrix containing the
appropriate survey sampling weight for each observation, Z̃ is the (2n × m) matrix
of instruments evaluated at an initial consistent estimate of θ, and R̃ is the (up-
per) Cholesky factor of an approximation to the inverse moment covariance matrix.
Specifically, R̃′R̃ = [DZ̃ ′Ω̃Z̃D]−1, where Ω̃ is an estimate of the covariance matrix
Ω = E[u(θ)u(θ)′|W ]. Under the model, the matrix Ω is known up to the parameters θ
and has a simple tri-diagonal form. In particular, the non-zero elements are the sec-
ond through fourth conditional moments of annual consumption. We calculate these
higher moments analytically (as a function of the parameters), and then evaluate Ω at
an initial consistent estimate of θ to obtain Ω̃.

To obtain final parameter estimates, we iterated minimization of the GMM dis-
tance metric five times using successive updates of the matrix A.17 Full optimization
required approximately six minutes on a 450 MHz computer, with m = 270 moment
equations and 212 estimated parameters. Numerical optimization was performed us-
ing a modified Gauss-Newton algorithm based on trust-region subspace minimization,
and implemented in Matlab.18

6 Data and Empirical Specifications

We estimate the model using data from the Residential Energy Consumption Survey
(RECS). The RECS is conducted every three to four years by the U.S. Department of
Energy to collect information on household appliances and energy use. The survey
is a nationally representative probability sample of households, with representative
subsamples for several large states. We use the California subsamples of the 1993
and 1997 survey waves, which are the most recent available. Together they provide
information on 1,307 California households.19

The survey is conducted by in-home interview. Interviewers inventory the house-
hold’s appliances, assess physical characteristics of the residence, and collect demo-
graphic information. The survey also includes weather data (heating and cooling
degree-days) for each household, which are obtained from the nearest National Weather
Service (NWS) station during the survey year. To minimize measurement error, each
household’s metered energy consumption data are collected directly from the house-
hold’s local electric utility. The household survey response rate is 81 percent, and the

17The first-round estimate of θ provides the initial consistent estimate.
18For discussion of recent trust-region optimization methods, see Nocedal and Wright (1999).
19The RECS sample design mirrors that of the U.S. Consumer Population Survey. There is no longitu-

dinal component to the 1993 and 1997 RECS.
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subsequent supplier survey response rate is over 90 percent.20

The appliance information, representativeness, and quality of the consumption
data make the RECS particularly valuable for analyzing household electricity demand.
There are, however, two noteworthy shortcomings of the RECS data. The first is that
the RECS public-use files only provide annual household electricity consumption and
expenditures. This poses problems for relating consumption to monthly prices, and
motivated our efforts to address temporal aggregation in Section 5.1.

The second shortcoming pertains to the limited electricity tariff information avail-
able in the survey. Inadequate pricing data are a first-order problem for many previous
studies of electricity demand and for other researchers using the RECS. Our consider-
able efforts to rectify this problem merit a brief digression here.

6.1 Prices

During the sample period most California households faced an increasing two-tier
electricity price schedule each month, such as the one depicted in Figure 1. These
schedules vary by service provider, climate zone, household heating system, household
income, and season. For example, the state’s largest utility, Pacific Gas and Electric
(PG&E), offers residential service rate schedules that differ in summer and winter
months, by whether the household has permanently-installed electric heat or not, by
whether the household is designated as low-income or not, and in which of nine climate
zones the household resides. Thus, PG&E had 72 (= 2×2×2×9) standard residential
rate schedules in effect during 1993, and again (with different tariffs) in 1997. A simi-
larly complex structure applies to other major utilities.21

The RECS data provide two summary price measures for each household. The first
is the household’s annual average electricity price, in cents per kilowatt-hour. The
second is the local electric utility’s annual average revenue per KWh sold to all its res-
idential customers. Either of these price measures unfortunately presents problems
for modeling electricity demand at a disaggregate (household) level. Since electric-
ity rates increase with monthly consumption, the first of these two price measures
is endogenous (it rises with consumption) and bears a complex relation to the house-
hold’s monthly use. The second, utility-level average price, while putatively exogenous,
will typically mis-measure the marginal price faced by a household. Thus, either sum-
mary price measure could be expected to provide poor information regarding the actual

20Detailed information about the RECS data and survey design is available in EIA (1994, 1996).
21There are also special rate schedules for households with medical equipment, utility employees, and

families living in trailer parks. There are sufficiently few households on these rates that we have ignored
these schedules on probabilistic grounds.
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(marginal) price facing the household each month.22

To address these shortcomings, we developed a procedure for matching each obser-
vation in the RECS with the complete rate schedule facing the household. The data
this requires that are not provided in the RECS are each household’s utility and its
utility-designated climate zone. To determine these, we exploit three types of informa-
tion in the RECS about the household: the local utility’s average electricity price, the
availability and price of natural gas, and the weather information. The weather data
provide considerable information regarding where in California’s diverse climate zones
each household is located. The electricity and natural gas price data help pinpoint the
household’s service provider.23

We use a discriminant procedure to match each RECS household to its utility ser-
vice provider and climate zone. First, we used maps of utility service areas to assign
each of the approximately 240 National Weather Service (NWS) stations in California
to one (or two adjacent) utility service territories. We also collected the local aver-
age electricity and gas prices for each service territory in the state. These weather
and price data are the same primary data series accessed by the RECS designers and
included with each household in the survey.24 Our algorithm then determines each
household’s utility and climate zone based on how well the household’s information in
the RECS matches the known average price and weather information for each utility
and NWS station in California.

With each RECS household matched to its utility and climate zone, the remaining
information necessary to determine a household’s applicable rate schedule (viz., the
household’s income and its home heating system) are directly available in the survey.25

To complete the procedure, we manually constructed the complete 1993 and 1997 elec-
tricity tariff books for each California utility, from filings archived at the California

22By standard econometric arguments, we expect estimated price elasticities based on such measures
to be biased downward in this setting. There is an additional problem with the RECS’ utility-level price
measure, in that the firm that conducts the survey introduces a small amount of measurement error into
this price for confidentiality reasons.

23An example may help. Palo Alto, a city on the San Francisco Bay, has its own municipal utility that
charged between 5 and 6 cents per KWh during our sample period. Palo Alto is surrounded by PG&E’s
service territory, which includes neighboring cities such as Mountain View that have similar weather.
What distinguishes a household served by the City of Palo Alto from one served by PG&E in Mountain
View in the data is that Mountain View residents’ electricity prices are more than twice as high.

24For example, the RECS assigns five heating and three cooling degree-day measures to each household,
by locating the nearest “representative” NWS station. We use the same eight degree-day series (for all
240 California NWS stations) to determine the household’s nearby NWS station. As with the price data,
the RECS introduces a small amount of noise into the weather data so that the match is not quite perfect.
The primary sources for local utility average electricity and gas prices are FERC Form 1, US Department
of Energy Form EIA-861 and Form EIA-412.

25We also used the RECS’ electricity expenditure data to determine which eligible low-income house-
holds are actually participating in their utilities’ low-income electricity tariff programs.
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Public Utilities Commission public records library and direct contact with municipal
utilities’ tariff departments. In the end, the 1,307 California households in the RECS
sample were matched to 189 distinct rate schedules.

To provide some information on how well this matching procedure performs, Table
1 lists the major electric service providers in California along with their average resi-
dential rate and number of residential customers in 1993. As the survey is a stratified
probability sample of California households, we expect (and find) reasonable agree-
ment between what the utilities report as their number of residential accounts and
the number of households implied by the survey.26 The top and bottom panels of Table
1 divide the state’s electric service providers into investor-owned utilities and munici-
pal (or other public) utilities. The table reveals that the implied distribution of RECS
households by electric service provider is quite close to that reported separately for
the larger utilities. The most notable deviations occur for the two smallest investor-
owned utilities, Sierra Pacific and PacifiCorp. Both of these utilities serve areas in the
mountainous northern and eastern (respectively) areas of the state, have relatively low
electricity prices, and minimal natural gas service. We believe that the stratification
design and a special segment of the RECS that oversamples low-income households
may account for their over-representation.27

6.2 Appliance Demand Specifications

Our monthly appliance demand specifications are based on prior empirical research
that has studied households’ appliance use decisions. Principal sources are the EPRI/-
REEPS model described in LBL (1995) and the EIA Residential End-Use Model, EIA
(1995). We model end-use electricity demand using eight distinct appliance categories:

1. Baseline electricity use;

2. Electric space heating;

3. Central air conditioning;

4. Room air conditioning;

5. Electric water heating;

6. Swimming pools;

26An unresolved issue is the RECS sampling weights imply 350,000 more California households with
electricity service than comparable figures in California utilities’ regulatory accounting data. This is
evident in the bottom line of Table 1.

27The survey’s cluster sampling procedure has a countervailing effect, which is to reduce the survey’s
coverage of smaller utility service areas. We are grateful to U.S. Energy Information Administration
analysts for discussions on these RECS sampling issues.
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7. Additional refrigerators and freezers; and

8. Other appliances.

The baseline category accounts for the electricity consumption of appliances that are
universally owned, such as the (first) refrigerator and lights.28 This category also
implicitly includes consumption attributable to any unspecified electrical appliances
below the resolution of the RECS survey (such as electric clocks, irons, hair dryers,
and the like). Appliance categories two through six are energy-intensive end uses that
previous research indicates exhibit some utilization price elasticity (EPRI (1989)). The
final category includes less-energy-intensive household appliances. A description of all
appliances entering the model is provided in Table 2A.

Different factors are assumed to influence appliance-level electricity demand in
each category. In particular, we estimate separate price and income effects for each
of the first six categories. The remaining appliances are assumed to exhibit a com-
mon price effect, as previous studies indicate most of these (refrigeration, cooking,
clothes dryers, etcetera) exhibit no significant electricity price elasticity. Demographic
and other explanatory variables entering the model are defined in Table 2B. Demo-
graphic characteristics of households are assumed constant during the survey year;
the monthly-varying covariates in our specifications are the price schedules and the
weather data.29 All monetary variables are normalized to real (June 1993) prices, us-
ing the CPI-U series for California’s three consolidated metropolitan statistical areas.

7 Results and Implications

7.1 Estimates and Marginal Effects

The electricity demand coefficients estimated with the generalized method-of-moments
technique are shown in Table 3. The table is organized so that each column contains
the parameter estimates associated with an appliance category’s electricity demand.
The mean square error of the estimated model is 2,352 KWh/year2, which is approxi-
mately one-third of the sample variance in annual consumption. The chi-square statis-
tic for Hansen’s asymptotic test of the over-identifying restrictions is 76.9; a value this

28Because lights and a (first) refrigerator are owned by all households in our sample, their mean elec-
tricity consumption cannot be separately identified by the model.

29In addition to the specifications evident in Table 3 below, we imposed a constraint that electricity
consumption for space heating and cooling is zero during the summer and winter months, respectively.
To accommodate the varied heating and cooling season lengths for different regions and elevations in
California, this was implemented via a minimum (one per day) degree-day threshold for the use of these
appliances.
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large is unlikely under the model with simple random sampling (d.f.=58, p=0.05).30

Since the conditional expectation function estimated by the GMM procedure is non-
linear in the parameters, it is difficult to interpret the numerical estimates in Table 3
directly. Table 4 converts these estimates into marginal effects for the principal vari-
ables in the model. Table entries show the marginal effect of a one unit increase in
each explanatory factor on monthly kilowatt-hour consumption of each specified ap-
pliance. We compute marginal effects separately for each household (as the gradient
of the conditional expectation function (6) with respect to the explanatory variables),
and then average across households using the RECS sampling weights. The marginal
effects shown are interpretable as estimated population means for California house-
holds, conditional on ownership of the indicated appliance.

The signs and magnitudes of the estimates in Tables 3 and 4 generally agree with
prior studies, although there are a few exceptions.31 Since our primary interest lies
in assessing the effects of price changes on electricity consumption, our comments
below focus on the marginal price and income effects and their demand elasticities.
Both Tables 3 and 4 indicate that the estimated price effects vary substantially across
appliances. The smallest effect is associated with baseline use, and is effectively zero.
All other appliance price sensitivities are of considerable practical significance. For
example, the −27.5 estimate for price and swimming pools in Table 4 implies that a
one cent per KWh increase in the marginal price would reduce a household’s annual
utilization of pool pumps and motors by approximately 330 KWh per year, which is 15%
of a pool’s typical electricity use. The price effects for major appliances providing space
heating, cooling, and water heating services differ from one another considerably, both
in absolute terms and relative to typical consumption for each appliance (see Table 7).

By contrast, the income effects are mostly statistically insignificant and negligible
as a practical matter. This is not entirely surprising, given that our analysis is con-
ditional on households’ appliance stocks. To the extent that income affects electricity
consumption, it is evidently manifest through households’ choices of appliances rather
than through utilization behavior. These results are consistent with prior studies’ find-

30The multi-stage sampling design of the RECS implies the true critical values for this statistic should
be larger than their standard asymptotic approximations. As true critical values are difficult to ascertain
for this design, we employ a different approach to model validation below (in Section 7.4). The standard
errors shown in the following tables are adjusted to account for this sampling design, approximately,
using design efficiency ratios (see ftn. 39).

31Exceptions are the negative coefficients on income and on the number of rooms in the water heating
specification. We suspect this may be due to confounding from unobserved variation in water heater
energy efficiency, which is likely to be considerably higher in newer (larger) homes in California. The
negative coefficients on the number of household members and space cooling are also of unexpected sign,
and may be attributable to an omitted (positive) influence of householder age on space cooling demand.
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ings of low-to-negligible appliance utilization income elasticities at the household level
(e.g., Parti and Parti (1980) and Dubin and McFadden (1984)).

The estimated demand model also includes 154 variance and covariance param-
eters (from equation (10)) that we do not report here.32 Our estimates suggest that
the variance of household-level unobservable characteristics increases with appliance
holdings, although it depends (in a complicated fashion) on the types of appliances
owned by the household. For instance, the estimated standard deviation of the stochas-
tic term for baseline electricity consumption (i.e., electricity for the first refrigerator,
lights, etc.) is 387 KWh per month (SE=22 KWh/month). If the household’s dwelling
has electric space heating, the household-level stochastic term has a higher standard
deviation of 479 KWh per month (SE=92 KWh/month); if we further add central air
conditioning and an electric stove or oven to the household’s appliance portfolio, it
increases to 590 KWh per month (SE=103 KWh/month). Overall, the standard devi-
ations for the unobservable components of household electricity demand vary widely
across households with different appliance portfolios. This reflects—in large part—the
enormous differences in maximum potential energy consumption for households with
different types of appliances.

7.2 Price Elasticities

Table 5 presents estimated average annual household price and income elasticities.
These elasticity estimates correspond to the percent change in a household’s annual
electricity consumption resulting from a one percent increase in the marginal price
(or household income) in each month of the year, holding the appliance stock fixed.
We calculate demand elasticities separately for each of the 1,307 households in the
sample, and then average across households using the RECS sampling weights. The
elasticity estimates shown in Table 5 are thus interpretable as estimated population
means for California households.

Before interpreting these numbers, it is important to note that with non-linear tar-
iffs there is more than one “price” involved in measuring the elasticity of demand. For
example, one can calculate the elasticity of demand with respect to an increase in the
intercept of the price schedule, with respect to the price of a specific tariff tier, or with
respect to the consumer’s actual marginal price. We present elasticity estimates based
on the third of these interpretations, so as to reflect households’ demand sensitivity on

32In estimation we use a re-parameterization of the variance function (10) that facilitates estimation
but at the cost of increasing the number of parameters. Estimation is easier because the re-parameterized
GMM objective function is orthogonal in each of the 154 variance parameters. This re-parameterization
imposes positive definiteness but otherwise places no restrictions on the covariance matrix in (10).
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the margin. In doing so we recognize the fact that with multi-part tariffs, changing
a consumer’s marginal price may alter consumption within the current tariff segment
or induce a discrete jump to a different price tier. Our elasticity calculations explicitly
account for this possibility, using the method described in Appendix A.

We estimate the mean annual electricity price elasticity for California households
to be −0.39. Previous studies of residential electricity demand data have estimated
widely varying utilization price elasticities, ranging from nearly zero to about −0.6.
These estimates reflect differences in the geographic regions examined, as well as
considerable variation in data types and statistical techniques. Studies conducted by
electric utilities, which often have higher-quality data, tend to obtain price elastici-
ties within a narrower range of −0.15 to −0.35 (EPRI (1989)). Our results with the
California RECS data fall at this set’s upper end, but are close to the −0.35 estimate
contained in a much earlier Rand Corporation study of Los Angeles-area households
by Acton, Bridger and Howill (1976).

It is interesting to compare our estimates to those obtained for the same households
using more traditional estimation methods. If in place of the complete rate schedule
we instead use either of the two average price measures available in the RECS, we
obtain uniformly smaller (in magnitude) elasticities. Table 5 includes elasticity es-
timates obtained using OLS with the (statistically exogenous) utility-level average
price measure in the RECS; the OLS-based mean household price elasticity is −.28.
Similar regressions that incorporate alternative measures of households’ rate sched-
ules appearing in the literature (e.g., using the midpoint of the two tiers or the final
tier price) also yield smaller price elasticities. These results are consistent with the
downward biases one would expect due to the price mis-specification and self-selection
problems noted earlier. It also suggests an explanation for why our GMM estimates
imply somewhat more price-elastic behavior than many earlier studies’ (particularly
the utility-conducted studies noted above), in that most of the prior literature handles
these tariff schedule complexities in either an ad hoc manner or not at all.33

Heterogeneity in Price Sensitivity

While we report single overall price and income elasticities in Table 6, these population
means obscure considerable and meaningful heterogeneity in households’ price and in-

33It should be noted that seemingly small differences in electricity price elasticities are economically
quite significant (e.g., Table 5’s −0.28 using OLS versus −0.39 using the complete rate schedules). As-
suming a price elasticity that is too small by this difference of −0.1 when increasing rates by (say) three
cents per KWh would overestimate annual revenue for California’s larger utilities by approximately one
hundred million dollars.
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come elasticities. As noted previously, the model includes separate price and income
terms for major appliances. These terms permit households’ price and income elastici-
ties to vary across households not just with their consumption level, but also with their
appliance holdings. The remaining rows of Table 5 illustrate the marked differences in
estimated demand elasticities for households with different heating and cooling sys-
tems. Households with electric space heating or air conditioning exhibit a much higher
electricity price elasticity than households without such systems. Households that do
not use electricity for either of these purposes have an estimated mean price elasticity
very close to zero. This heterogeneity is consistent with the limited prior evidence on
electricity price elasticity variation across households (e.g., Dubin (1985)). As a practi-
cal matter, it suggests that there are effectively two ‘types’ of households with respect
to electricity demand behavior: those who use electricity for space heating or air con-
ditioning and exhibit some electricity price elasticity, and those who do not and are
evidently price insensitive.

Further information about the heterogeneity in households’ demand elasticities
is provided in Figure 2. This figure presents a histogram of the sample households’
price elasticities, weighted to estimate the distribution for the California population.
Each of the rectangles to the left of the origin represents three percent of California
households (e.g., three percent of households have a price elasticity between −0.82
and −0.91). The point-mass at zero indicates that 44 percent of California households
exhibit no short-run demand sensitivity to changes in the marginal price of electricity.
This segment of the population are households that own no major electric appliances
other than a refrigerator, and whose minor appliances fall within the inelastic ‘baseline
use’ category of the model.

Figure 2 brings into focus the substantial heterogeneity in households’ price sensi-
tivities. The striking feature of this distribution is its asymmetric, negatively skewed
form. This pattern indicates that most households will alter their electricity consump-
tion very little in response to a price change. A small fraction of households, however,
are actually elastic demanders (roughly 1 in every 8 families) and would react with
large changes in their electricity use. This has noteworthy implications for the welfare
effects of electricity price changes, inasmuch as most of the deadweight welfare losses
from a price increase would evidently be borne by a fairly small share of the consumer
population.

Where a household is located in the elasticity distribution is also related to house-
hold income and other demographic characteristics. To explore this, Table 6 sum-
marizes household electricity price elasticities by household income and consumption
levels. How price elasticities vary with household income (in the cross-section) is of in-
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terest because regulatory commissions provide subsidized tariffs to low-income house-
holds, and are at times concerned with the consumption incentives of these subsidies.
The conventional wisdom is that households with lower incomes are more sensitive to
energy prices than households with medium-to-high incomes. The results in the top
half of Table 6 are quite consistent with this view, although the magnitudes of the
differences across income quartiles are not dramatic.

The lower half of Table 6 indicates how household price elasticities vary with the
amount of electricity the household consumes. This relationship is of interest because
the aggregate consumption and revenue effects of a tariff change depend upon how
elasticities vary across the different tiers of the price schedule. Somewhat surprisingly,
we find that elasticities are lower for households that use high amounts of electricity,
despite the fact that households with energy-intensive electric space heating/cooling
systems have much greater electricity price sensitivity ceteris paribus. This inverse
relationship reflects both a weak correlation between household income and owner-
ship of electric space heating/cooling systems, and the fact that households apparently
substitute toward more price-inelastic electricity uses as income rises. Thus, from an
economic efficiency standpoint, the welfare cost of raising a given amount of revenue
will be minimized if the marginal price changes are disproportionately larger for the
highest-demand consumers.

7.3 Appliance Consumption Estimates

Recall that the estimated model treats total household electricity consumption as the
aggregation of individual appliance utilization decisions. A useful feature of this ap-
proach is that the fitted model provides estimates of the electricity consumed by each
appliance. These appliance-level consumption estimates are of direct interest to en-
ergy analysts, and provide a useful benchmark for the model since they can be com-
pared to independent estimates of typical appliance energy consumption.

Table 7 provides the model’s predictions about how annual electricity consumption
varies by appliance. The first numerical column in Table 7 reports the estimated pro-
portion of California households that own particular appliances, based on a weighted
average of 1993 and 1997 sample ownership frequencies in the RECS. The second col-
umn reports the model’s prediction for the average annual electricity consumption of
each appliance. These estimates are obtained as the predicted values from the fitted
appliance demand equations (7). The appliance consumption estimates are averaged
across households (using the RECS sampling weights) so as to reflect typical values in
the population of appliance owners.

Comparable appliance-level consumption estimates from prior studies are also listed
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in Table 7. The third column contains appliance energy consumption predictions from
a model developed by the U.S. Energy Information Administration (EIA (1995)).34 The
final column is from a Lawrence Berkeley Laboratory (LBL (1997)) meta-analysis of
numerous residential appliance energy consumption estimates. These estimates are
derived from a wide range of direct metering, engineering, and statistical studies of
energy use in different areas of the U.S. Overall, there is general agreement between
these prior studies and the model’s results—perhaps surprisingly so, since the present
model is not fit to utilization data for individual appliances. The principal important
anomaly occurs with heating, where the LBL survey reports a significantly higher
number than we or the EIA do. This can in part be explained by the broader geo-
graphic coverage of the LBL analysis and the high sensitivity of heating energy use to
climate differences.

7.4 Household-level Consumption and Sampling Considerations

In the foregoing discussion, we have interpreted many of the econometric results (for a
sample of 1,307 households) as estimates of the corresponding values for a population
of approximately 11 million households. This interpretation rests on the fact that the
RECS sampling design is intended to produce a representative probability sample of
California households. As a caveat to the discussion (and for purposes of interpret-
ing an out-of-sample test, below) it is useful to examine the representativeness of the
RECS consumption data and model predictions directly.

Because electric utilities are subject to extensive regulatory reporting requirements,
there exist comprehensive aggregate data on utilities’ actual sales and number of cus-
tomers. In principle, averages from these data will differ from their counterparts for
the RECS households by amounts attributable to the survey’s sampling error. Some
evidence on this issue is provided in Table 8. The first numerical column in Table
8 presents a weighted average of 1993 and 1997 actual electricity consumption per
household for California’s four largest utilities and for the state as a whole.35 The
second column presents the corresponding mean electricity consumption for the RECS
sample households along with the standard error of the survey.

Comparing the averages for the state as a whole in the bottom row of Table 8, we
see that the RECS understates actual average consumption by slightly more than two

34This results published by EIA (1995) are based (indirectly) on the same survey data as the present
model, so that the EIA (1995) appliance-level consumption figures should not be considered wholly inde-
pendent estimates.

35Actual average consumption data were obtained from U.S. Department of Energy Form EIA-861 for
calendar years 1993 and 1997. These data include all 46 providers of retail electric service in California.
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standard errors. The 1993 and 1997 RECS samples thus appear to under-represent
California household electricity consumption. We also find that the RECS data un-
derstate average household consumption for each of the state’s four largest utilities,
although by sometimes less that two standard errors.36 Overall, there is some question
as to how representative the RECS is of average household consumption in California.

It is also interesting to compare the model’s predictions to the actual and sample
consumption averages. Since the model is fit to the RECS data, the difference between
the RECS and model averages represents within-sample error. Although the model is
nonlinear, the average within-sample error for the full sample is essentially zero. As
with the raw sample data, however, the estimated model displays a similar pattern
of under-predicting actual consumption for each utility and the state overall. This
is not entirely surprising, given that the model can at best capture the behavior of
the sample to which it is fit. We conclude that while the RECS sample appears to
understate actual household consumption in California, the model does reasonably
well (i.e., within a few percent) at fitting the sample data for each utility.

7.5 An Out-of-Sample Robustness Test

The validity of the empirical results rest, in part, on the appliance demand specifica-
tions and error distribution assumptions of the model. Because we must aggregate
over appliances and over time to match the consumption level of the data, these ap-
pliance demand specifications are not testable directly. We have already reported the
result of a general specification test based on the over-identifying restrictions of the
model. A more compelling test, however, is to compare the performance of the model
out-of-sample with actual consumption outcomes made at different prices.

In January 1998, shortly after the end of our sample data, California’s three largest
investor-owned utilities reduced the price of residential electric service by ten percent.
This price change, by virtue of its magnitude and exogeneity to the household, provides
a unique opportunity to evaluate the model’s out-of-sample accuracy. In addition, 1998
and 1999 were years of the El Niño weather disturbance, which led to substantial
changes in California’s weather conditions relative to prior years.37

36There are two additional reasons why the utility-specific averages might differ. First, while the RECS
is designed to generate a representative sample of households at the state level, the sampling scheme
is not designed to produce representative samples within each utility’s service territory. Second, the
household-utility matching procedure we use to obtain rate schedules (as described in Section 6.1) intro-
duces potential mis-classification error. The difference in state-level average consumption between the
RECS and the EIA-861 data is not subject to these caveats.

37This major weather phenomenon confounds direct causal interpretation of changes in aggregate Cal-
ifornia electricity consumption between 1997 and 1998–99.
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Ideally, we would prefer to evaluate the model using within-household differences
in predicted and actual consumption between 1997 and 1998 (i.e., a matched-pair test).
Unfortunately, due to the triennial (and non-longitudinal) nature of the RECS, we do
not have data on actual consumption after 1997 for the sample households. Instead,
we can base inference on comparisons to aggregate consumption data reported by Cal-
ifornia’s individual utilities for 1998 and 1999.

To implement a formal test we first extended the weather series used in the model
through 1999, for each RECS household. We also collected the exact form of the tariff
changes implemented in 1998 and 1999 for each RECS household.38 We then use
the model to predict what the RECS households would have done in 1998 and 1999,
given the price change and weather conditions that actually occurred. We aggregate
their responses and, relying on the representativeness of the RECS sample, obtain the
model’s predictions of what should have happened at the utility level.

Table 9 compares these out-of-sample predictions to actual residential electricity
consumption for California’s four largest utilities in 1998 and 1999. The second-to-
last column provides estimated standard errors for the difference between the actual
and predicted consumption averages. These standard errors account for both the non-
sampling variance in future consumption outcomes under the model, and the sampling
error associated with the RECS multi-stage design.39 The final column reports the
(two-sided) probability of observing a difference at least as large as that shown, under
the maintained assumptions of the model. Small p-values constitute evidence against
the validity of the model.

As the findings in Section 7.3 foreshadowed, the model continues to under-predict
average consumption in 1998 and 1999. For three of the four utilities in each panel,
however, the observed differences from the model’s predictions are within the bounds
of what may be ascribed to chance by conventional standards of statistical significance.
The smallest p-values, for Pacific Gas and Electric in 1998 and 1999, are attributable
to the particularly acute under-representativeness (relative to sampling error) of the
RECS households’ consumption data for this utility. Interestingly, for three of the four

38The January 1998 price decrease amounted to lowering each tier of the household’s price schedule by
ten percent. The actual marginal price change thus depends upon the household’s particular rate sched-
ule. There was also a separate price increase for households served by the Los Angeles Department of
Water and Power in 1999, which shows up as a notable decline in both actual and predicted consumption
for Los Angeles households between 1998 and 1999.

39Since we have a nonlinear model and the RECS uses a complex design, the standard errors for this
test are inexact. We use a linear approximation (delta) method to estimate the variance of average
predicted consumption under simple (1/n) random sampling, and then inflate the result by the design
efficiency ratio of the RECS consumption series (about 1.4) to get the standard errors in Table 9. This
method and related techniques are discussed in Skinner, Holt, and Smith (1989).
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utilities in each panel, the model’s average error (relative to actual) is smaller for the
out-of-sample years of 1998 and 1999 than it is for the within-sample years reported
in Table 8. On that basis, the model appears to deliver reasonable predictions for how
California households’ respond to electricity price changes. The under-prediction of
consumption remains a concern with these data, however.

8 Analyzing Tariff Structure Changes

We now turn from estimation of demand behavior to prediction. An important feature
of the model developed above is that it can be used to evaluate, on a prospective ba-
sis, the effects of complex rate schedule changes. For a variety of practical reasons,
regulatory agencies are often reluctant to authorize randomized-assignment pricing
experiments as a means to evaluate major tariff changes. Thus, counter-factual simu-
lations based on econometric models become the analytic method of choice.

In this section, we indicate how the analysis can be extended to evaluate the con-
sumption and expenditure effects of a more complex tariff design, and provide prospec-
tive estimates for a specific tariff structure being implemented in California. Following
a financial crisis facing that state’s utilities in the spring of 2001, the California Public
Utilities Commission approved new tariff structures for the state’s two largest utilities.
The new multi-part tariff structure for residential electric service is shown graphically
in Figure 3. Under this five-tier design, the household inherits from its prior (two-tier)
tariff a monthly reference quantity, x̄. The first x̄ kilowatt-hours of monthly electricity
consumption are then billed at one price per kilowatt-hour, the next 30%× x̄ are billed
at a higher price, and so forth as indicated in Figure 3. The reference quantity x̄ and
the specific tier prices vary based on the utility, the season, the household’s climate
zone and home heating system, and other factors.

This novel pricing system is intended to achieve several objectives. First and fore-
most is to raise additional revenue for the state’s utilities: As Figure 3 indicates, the
household’s new price schedule lies everywhere above the prior schedule it replaces.
Second, the new tariff is intended to promote energy conservation, particularly among
higher-demand consumers. Third, there is a distributive objective underlying this tar-
iff design. Electricity is a necessary good (in the sense that its budget share declines
as household income rises), so a uniform increase in price of electricity can be quite re-
gressive. By raising marginal prices more for higher levels of consumption, regulatory
authorities hope to attenuate this regressivity and minimize expenditure changes for
lower-income households.

Evaluating how well this new tariff system achieves these objectives is a difficult
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task. Because the five-part tariff is unprecedented in historical consumption data,
there is no way to extrapolate its effects using descriptive (i.e., reduced-form) econo-
metric methods. Rather, predicting aggregate demand requires explicitly modeling
consumer choice behavior under the new tariffs. The basic task is essentially to use
the disaggregate information on consumers’ price sensitivities from the econometric
model to predict each household’s consumption under it’s new price schedule.

There is a wrinkle in carrying out this type of micro-simulation analysis, however.
Empirical demand models based on economic consumer theory are initially specified
assuming the consumer faces a constant marginal price; the econometric model esti-
mated above is no exception to this (see again the discussion following (9)). Slightly
different equations are required to obtain an econometric model’s predictions under
alternative supply conditions—that is, under the new price schedule design.

The analysis in Sections 2 and 3 provides one way to do this. To be precise, suppose
j indexes the five tiers in Figure 3, pj is the marginal price on tier j, and x̄j is the
jth-tier upper boundary. For convenience, let yj denote the household’s income plus
the cumulative rate structure discount applicable in tier j, and set xj = x(pj , yj, z;β).
If we let w be the set of observable household characteristics entering the econometric
model, then the expected value of monthly household consumption is

E(x∗|w) =
5∑
j=1

P (x̄j−1 − xj < ε < x̄j − xj) · [xj + E(ε|x̄j−1 − xj < ε < x̄j − xj)]

+

4∑
j=1

P (x̄j − xj < ε < x̄j − xj+1) · x̄j (12)

using the conventions x̄0 = 0, x̄5 = ∞. Here P is the distribution of ε given w, and
all expectations are with respect to this distribution. The first sum on the right-hand
side is the contribution to expected consumption conditional on demand crossing the
price schedule on one the five steps, and the second sum is the contribution conditional
on demand crossing the price schedule in one of the ‘gaps’ between the steps. As be-
fore, this amounts to a probability-weighted average of expected demand within each
segment of the new tariff schedule.

Equation (12) is a generalization of the expected two-tier consumption equation (5)
derived in Section 3. As in that case, one can interpret (12) in terms of a supply and
demand equilibrium at the household level. Specifically, it gives the (expected) solution
to intersecting the consumer’s demand function (under a constant marginal price) and
the new multi-part price schedule in Figure 3. The prediction equation thus accounts
for the interdependence of the household’s marginal tariff segment and the expected
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consumption level within that segment.40

We use equation (12) and the estimated demand model to evaluate one five-tier
tariff system. The specific tariffs considered here were issued in a major regulatory
decision by the California Public Utilities Commission in May 2001. They were im-
plemented the following month for approximately 7.8 million households served by
the Pacific Gas and Electric Company and the Southern California Edison Company.
We should emphasize that California policymakers are pursuing additional initiatives
that may affect these households’ electricity prices in the future; we do not incorporate
adjustments after the May 2001 decision here.41

We use publicly available tariff books from the two affected utilities to identify the
terms of the new tariff applicable to each household in the RECS sample.42 We also
make some specific assumptions about the weather, which correspond to evaluating
these tariff changes under “normal” California weather conditions.43 The tier selection
probabilities in (12), which depend upon both the household and its particular tariff
schedule, and are evaluated using the normality assumption and household-specific
variance estimate from the econometric model. We evaluate the expected consumption
equation separately for each of the 1,307 households in the RECS sample, and average
these predictions using the survey sampling weights. A similar formula and procedure
is used to estimate each household’s (expected) expenditures under the new tariff.

Table 10 provides estimates of average household electricity consumption and ex-
penditures under the new five-tier tariffs. For comparison, we also show the values
obtained using the prior two-tier tariff schedules in effect from 1998 through 2000.
The first numerical column presents estimated population means for all 7.8 million
households served by Pacific Gas and Electric and Southern California Edison. The re-
sults indicate their average (and aggregate) annual electricity consumption would be

40For example, equation (12) differs from what one obtains by simply intersecting the household’s esti-
mated demand curve (that is, assuming ε to be zero) and the new price schedule. That technique implicitly
treats the tariff segment selection probabilities in (12) as either zero or one, and ignores the conditional
expectation term for ε on the predicted tariff segment. Unless the variance in the household’s future
consumption given the observables is in fact zero—in practice an unlikely circumstance—the technique
will systematically mis-estimate consumption under a new price schedule.

41Other changes to California households’ electricity prices include a three-month summer rebate pro-
gram for electricity conservation in 2001, indexed to the household’s prior summer energy consumption;
the expiration of a 1996 rate discount law in 2002; and a regulatory proceeding to revise the tariff-step
reference quantities, x̄. These actions will produce minor adjustments to the major tariff revision exam-
ined here.

42Note that approximately ten percent of households participate in a low-income tariff program that is
exempt from the new tariff designs. These households appear in our sample, and our predictions for them
use their (unchanged) tariffs. The predictions do not account for changes in an eligible non-participating
household’s incentive to apply for this program, however.

43This amounts to using 30-year average heating and cooling degree-days from the NWS station located
nearest each RECS household.
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approximately 10 percent lower under the new five-tier tariff system than under the
preceding tariffs over a normal weather year. The corresponding increase in annual
household electricity expenditures is approximately 25 percent, or $179 per household
(in 1998 dollars). To put this in some perspective, $179 is eight percent of the average
1998 state personal income tax liability per household in California.

It is interesting to note that our expenditure results are considerably lower than
the official estimates of the California Public Utilities Commission. That agency pre-
dicted the increase in the two affected utilities’ total residential electric revenues
would be approximately $1.8 billion annually, or $228 per household. The difference
between these two estimates can be explained largely by differences in the assumed
demand elasticities. In particular, the Commission uses a so-called ‘static scoring’
method for predicting the revenue change associated with a new rate schedule design.
This amounts to assuming that each consumer’s annual demand is completely price-
inelastic, so that expenditures changes can be predicted by applying the old and new
tariff schedules to the same consumption data. Inasmuch as consumers do exhibit
some demand elasticity, this method over-estimates the revenue increase associated
with the higher tariff structure.

Since the model we employ is estimated with survey data, we have information on
individual households’ income levels that can be used to examine the distributional
consequences of tariff changes. This issue has not been examined quantitatively in
the state regulatory agency’s tariff models, as their analyses rely upon utilities’ billing
data. The additional columns in Table 10 report the model’s predictions for average
consumption and expenditures by household income quartile. Not surprisingly, under
either tariff electricity consumption and electricity expenditures increase with house-
hold income. What is interesting to note, however, is that in percentage terms the
change in household electricity consumption between the new and old tariff systems is
nearly constant across income quartiles. That is, the larger marginal price increases
paid by households consuming higher quantities more or less exactly offsets the in-
creasingly inelastic demand behavior of households with higher incomes (see again
Table 6).

A similar phenomenon is evident in the estimated expenditures. In absolute terms,
however, the increase in expenditures across income quantiles does not rise nearly as
fast as income. This implies, and can be verified directly in the unsummarized data,
that the new tariff is (slightly) more regressive than the system it replaces. It is,
however, considerably less regressive than a revenue-equivalent traditional uniform
rate increase, whose distributional impacts California policy makers have sought to
avoid.
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9 Concluding Remarks

A principal motivation for this paper is to better predict how nonlinear price changes
affect consumer behavior. This subject has received little attention in the econometric
literature on electricity demand, despite its considerable practical significance. One
hopes (perhaps naively) that this analysis might help practitioners in California and
elsewhere reduce the uncertainty that pervades complex tariff changes.

More work is of course needed. We should be the first to acknowledge numerous
caveats to the foregoing empirical results—including the treatment of short-run versus
long-run effects, the evident under-sampling of consumption in the data, and the in-
herent uncertainty in extrapolating consumption behavior under marginal prices that
lie beyond the range of observed experience. All of these concerns suggest a degree of
caution is necessary in interpreting our numerical results.

It is worth noting that substantively similar methodological issues arise in a vari-
ety of other markets. Regulatory pricing of local telephone service (a perennially con-
troversial matter) and residential water use are leading examples. In those markets
nonlinear pricing is quite common, and formal demand analysis is a largely-accepted
part of the price-setting process. Some of the econometric issues addressed in this pa-
per would appear germane to those contexts. In a substantively different setting, there
are some interesting parallels between the analytical methods examined here and
micro-simulation procedures commonly used to evaluate marginal tax rate changes.
Specifically, the methodological aspects of implementing ‘dynamic’ versus ‘static’ scor-
ing techniques for tax revenues are precisely analogous to the treatment of consumers’
demand elasticities in the tariff simulation presented here.

Last, an interesting and useful extension of this research is the normative empir-
ical analysis of nonlinear tariff designs. The methods employed above would appear
to lend themselves readily to development of more economically efficient tariffs. For
example, if the new five-part tariffs in California are efficient (in almost any sense of
that term), it is surely by fortuity rather than by design. Despite a great deal of work
in the theoretical literature on efficient nonlinear pricing schemes, there are as yet few
(if any) detailed empirical studies. We leave this interesting issue a matter for future
research.
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Appendix A. Elasticity Calculations

This Appendix describes the method used to calculate the elasticity estimates reported
in Tables 5 and 6. In the present application, calculating elasticities is more compli-
cated than in conventional (uniform pricing) settings. Because of the discrete structure
of the price schedule, a change in the consumer’s marginal price can move consumption
smoothly within a single tariff segment, shift the consumer off or onto the discontinu-
ity between tariff segments, or yield no change in consumption at all. Moreover, the
seasonal nature of electricity demand and price schedules imply that a household may
face different marginal prices in different times of the year.

We interpret a household’s price elasticity of electricity demand to be the (percent-
age) change in consumption resulting from a (percentage) change in the consumer’s
marginal price. Since these marginal prices may differ from month to month, the
annual elasticity estimates shown in the tables are calculated as the total change in
annual consumption associated with an increase in the household’s marginal price for
each month of the year.

Handling Price Schedule Discontinuities

From equation (1), we can write the optimal consumption for household i in month t
using the equilibrium relation

x∗it = x(p
∗
it, y

∗
it, zit, εit)

where y∗it = yit + x̄it · (p∗it − pLit). In this equation, p∗it is the household’s marginal will-
ingness to pay for the last unit consumed. This marginal willingness to pay may differ
from the marginal price, if consumption occurs at the step-point x̄ where the price
rises from pL to pH . At that point, a small change in either price will have no effect on
consumption.

To account for this discontinuous feature of demand behavior in calculating elas-
ticities, we use the following decomposition. Consider an increase in the price of the
specific tariff segment in which the household initially consumes. Denoting this initial
marginal price as mp, and the consumer’s initial marginal willingness to pay asmwtp,
the total change in consumption can be written as

dx∗

d(mp)
=

[
∂x∗

∂(mwtp)︸ ︷︷ ︸
slope of
demand

+
∂x∗

∂y︸︷︷︸
marginal
income
effect

· d∆y

d(mwtp)︸ ︷︷ ︸
change in

inframarginal
expenditure

]
d(mwtp)

d(mp)︸ ︷︷ ︸
0 if at x̄,
1 if not
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where∆y = x̄it ·(p∗it−pLit) is the rate structure discount (cf. equation (2)). The first term
in the square brackets is standard. The remaining terms in the bracketed expression
yield the additional income effect due to non-linear pricing (i.e., the effect of changing
the rate structure discount). For an optimizing consumer, the last term on the right-
hand side will be zero if consumption occurs at the step-point, x̄, and one otherwise.

For the linear demand specification with the two-tier tariff examined in the paper,
this expression takes the simple form:

dx∗it
d(mp)

= α · 1(x∗it 6= x̄it) + β x̄it · 1(x∗it > x̄it) (13)

where 1(·) is the indicator function, and α, β are the price and income coefficients from
equation (9). We define a household’s monthly price elasticity, ηit, in terms of the effect
of price on the margin:

ηit =
(mp)it
x∗it

· dx
∗
it

d(mp)
.

Estimating ηit

A wrinkle arises in computing ηit: Since our consumption data are aggregated to an an-
nual level, we do not observe the household’s monthly consumption, x∗it, nor its monthly
marginal price. Instead, we estimate x∗it with the ‘plug-in’ estimator

x̂∗it ≡ E[x∗it|wit; θ̂]

using the conditional moment equation derived in (6) evaluated at the estimated pa-
rameter values. We then obtain the marginal price estimate, m̂pit, from the household’s
rate schedule in month t for the quantity x̂∗it. Finally, we can compute each household’s
monthly price elasticity using equation (13) as

η̂it =
m̂pit
x̂∗it
·
[
α̂i · 1(x̂∗it 6= x̄it) + β̂i x̄it · 1(x̂∗it > x̄it)

]
where the ‘hats’ indicate estimated quantities.

Annual Elasticities

To obtain the annual price elasticities reported in Tables 5 and 6, we calculate (point-
wise) the percentage change in annual electricity consumption for a percent change in
the household’s marginal price in each month of the year. That is, for each household
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in the sample we compute

η̂i =
1

xi

12∑
t=1

η̂it · x̂∗it

where xi is the household’s actual annual electricity consumption. Table 5 reports
estimated population means for all California households, obtained by averaging these
household-level annual elasticity estimates using the RECS survey weights.

The income elasticities in Table 5 are obtained similarly, after observing that

dx∗it
dy
= β · 1(x∗it 6= x̄it) .
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Table 1

Average Price and Number of Households for California Electric Utilities

Number of Households Percent of HouseholdsAverage Residential
Rate in 1993a

(cents per KWh) Actuala Estimateb Actuala Estimateb

Investor-Owned Utilities

Pacific Gas & Elec. 12.25 3, 748, 831 4, 069, 268 34.8 36.6
Southern Calif. Edison 12.10 3, 636, 295 3, 655, 184 33.8 32.9
San Diego Gas & Elec. 10.81 1, 005, 257 1, 020, 010 9.3 9.2
PacificCorp (Calif.) 6.94 31, 872 351, 053 0.3 3.2
Sierra Pacific Pwr. (Calif.) 8.79 36, 581 169, 317 0.3 1.5

Investor-Owned Subtotal 8, 458, 836 9, 264, 832 78.5 83.3

Municipal/Public Utilities

Los Angeles 9.85 1, 168, 229 1, 169, 431 10.8 10.5
Sacramento 7.65 416, 364 377, 054 3.9 3.4
Riverside 10.57 80, 828 35, 510 0.8 0.3
Imperial 8.36 67, 021 7, 592 0.6 0.1
Santa Clara 7.30 38, 129 126, 735 0.4 1.1
Lompoc 9.21 12, 729 61, 569 0.1 0.6
Plumas-Sierra 7.70 4, 674 82, 557 0.0 0.7

Subtotal 1, 787, 974 1, 860, 448 16.6 16.7

Other Municipal/Public Utilitiesc 526, 480 0 4.9 0.0

State Total 10, 773, 290 11, 125, 280 100.0 100.0

aSources: US Dept. of Energy Form EIA-861 (1993), FERC Form 1 (1993).
bEstimate based on the 1993 RECS survey data (see text).
cHouseholds served by other small municipalities, rural electric cooperatives, and public power districts.



Table 2a

Appliances Entering Electricity Demand Model

Mnemonic Appliance Description

Primary electric 1 if household has permanently-installed electric space heating
space heating (electric furnace, heat pump(s), or wall resistance units)

Central air cond. 1 if household has a central air conditioning unit
Room air cond. 1 if household has room window/wall air conditioning units
Electric water heat 1 if household has an electric water heater

ELECCOOK Electric cooking 1 if household has an electric oven and/or stove
ELECDRYR Electric dryer 1 if household has an electric clothes dryer
FREEZER1 Separate freezer 1 if household has a separate (stand-alone) freezer
FREEZER2 Second freezer 1 if household has two (stand-alone) freezers
FRIDGE2 Second refrigerator 1 if household has a second refrigerator
CLTHWASH Clothes washer 1 if household has an automatic clothes washer
DISHWASH Dish washer 1 if household has an automatic dish washer
PORTHEAT Portable space heat 1 if household has one or more portable electric space heaters
HOTTUB Hot tub 1 if household has a hot tub with electric heating
POOL Swimming pool 1 if household has a swimming pool
H2OBEDHT Waterbed heating 1 if household has a water bed with electric heating
MICROWV Microwave 1 if household has a microwave oven
NTV Number of TVs Number of televisions in household

Table 2b

Additional Explanatory Variables Entering Demand Model

Mnemonic Variable Description

PRICE Electricity price Monthly electricity price, in 1993 cents per kilowatt-hour
INCOME Household income Average monthly household income, in thousand 1993 dollars
HDD Heating degree days Monthly heating degree days base 60◦F, in hundreds
CDD Cooling degree days Monthly cooling degree days base 70◦F, in hundreds
NROOMS Number of rooms Number of rooms in home (excluding bathrooms)
NBATHRMS Number of bathrooms Number of bathrooms in home
NMEMBERS Number of members Number of people in household
FRSIZE Fridge/freezer size Size of appliance, in cubic feet
ATHOME At home 1 if someone is normally at home during the day
HUPROJ Housing project 1 if household resides in a public housing project
APTBLDG Apartment building 1 if household resides in an apartment building
RURAL Rural location 1 if household resides in a rural location
URBAN Urban location 1 if household resides in an urban location
YEAR97 Survey year 1997 1 if household data from 1997 survey wave



Table 3

Electricity Demand Model Coefficient Estimates — GMM Method

(Asymptotic standard errors in parentheses)

Explanatory Baseline Elec. Space Central Room Elec. Water Swimming Second Separate
Variablea Useb Heating Air Cond. Air Cond. Heating Pool Refrig. Freezer

CONST −24.6 379. 312. 814. 467. 514. −23.5 −108.
(49.9) (216.) (276.) (369.) (107.) (229.) (61.6) (57.9)

PRICE 0.4 −38.2 −23.2 −65.3 −35.3 −28.2
(3.8) (15.0) (22.1) (32.5) (9.6) (19.3)

INCOME 0.4 16.3 9.3 22.3 −34.0 6.4
(2.4) (13.1) (11.0) (21.5) (7.7) (10.1)

NMEMBERS 18.1 −8.0 −39.8 −53.7 49.3
(3.4) (20.5) (16.8) (20.5) (11.1)

NROOMS 13.0 20.6 10.1 30.1 −36.6
(4.5) (22.3) (17.9) (24.1) (15.8)

NBATHRMS 27.3 123.
(9.9) (41.8)

HDD −10.7 43.8
(6.3) (22.1)

CDD −60.0 240. 46.5
(22.7) (58.8) (128.)

FRSIZE 6.5 7.8 9.3
(1.7) (3.7) (3.3)

DISHWASH 20.4 11.3
(11.5) (37.3)

CLTHWASH 18.8 71.3
(14.0) (40.9)

ELECDRYR 66.2
(13.1)

FREEZER2 178.
(55.7)

Table continues next page



Table 3, Continued

Explanatory Baseline Elec. Space Central Room Elec. Water Swimming Second Separate
Variablea Useb Heating Air Cond. Air Cond. Heating Pool Refrig. Freezer

ELECCOOK 21.5
(11.7)

MICROWV 32.8
(12.1)

HOTTUB 109.
(32.2)

PORTHEAT 108.
(21.1)

H20BEDHT 51.2
(23.7)

NTVS 40.7
(5.8)

ATHOME 16.0
(10.1)

APTBLDG −48.8
(14.2)

HUPROJ −79.6
(24.8)

RURAL 31.7
(25.3)

URBAN −35.8
(12.0)

YEAR97 2.0
(10.3)

Model RMSE 2352.0
(KWh/year)

aEstimated on 1307 California households in the 1993 and 1997 Residential Energy Consumption Surveys. The dependent variable is electricity
consumption, in KWh; parameter estimates are monthly demand coefficients from equation (7).
bThis category includes all miscellaneous electrical appliances not explicitly modeled such as lights, household electronics, fans, and so forth. The

first refrigerator is included in this category because ownership is nearly universal and its effect not separately identifiable from other universally-
owned appliances such as lights.



Table 4

Estimated Marginal Effects

(Asymptotic standard errors in parentheses)

Effect on KWh consumed per month for: a

Explanatory Baseline Elec. Space Central Room Elec. Water Swimming
Variable Use Heating b Air Cond.c Air Cond.c Heating Pool

Price (cents/kwh) 0.4 −37.8 −22.5 −63.4 −34.0 −27.5
(3.7) (14.8) (21.3) (31.1) (9.5) (18.4)

Income (’000 $) 0.4 16.2 9.1 21.6 −32.8 6.3
(2.3) (13.0) (10.6) (20.8) (7.5) (9.8)

N. Members 18.0 −7.9 −38.6 −52.1 47.5
(3.3) (20.3) (16.3) (19.9) (10.6)

N. Rooms 12.9 20.4 9.8 29.2 −35.3
(4.5) (22.0) (17.4) (23.4) (15.2)

N. Bathrooms 27.0 119.
(9.8) (40.1)

Heating Deg. Days −10.6 43.3
(’00 ◦F, base 60) (6.3) (21.9)

Cooling Deg. Days −59.5 233. 45.1
(’00 ◦F, base 70) (22.5) (57.0) (123.)

Dummy Variables

Apt. building −48.4
(14.1)

Housing project −78.9
(24.6)

At home during day 15.8
(10.0)

Urban location −35.5
(11.9)

Rural location 31.4
(25.1)

(Effects of additional appliances are shown in Table 7)

aEstimated change in monthly appliance electricity consumption associated with a unit increase in the ex-
planatory variable, ceteris paribus. The marginal effects shown are estimated population means, conditional on
appliance ownership.
bHeating-season months only.
cCooling-season months only.



Table 5

Price and Income Elasticities For California Households

Price Income
Mean Elasticities of
Electricity Demanda GMM Method OLS Method GMM Method OLS Method

All households −0.39 −0.28 −0.00 −0.00

Households with:

Electric space heating −1.02 −0.85 +0.00 +0.01

No electric space heating −0.20 −0.11 −0.00 −0.01

Central or room −0.64 −0.56 +0.02 +0.02
air conditioning

No air conditioning −0.20 −0.08 −0.01 −0.01
No electric space heating

nor air conditioning −0.08 +0.03 −0.01 −0.02

aAnnual elasticites (see text and Appendix A).



Table 6

Price Elasticities by

Household Income and Electricity Consumption

Price Elasticity a

Quartile Quartile Range GMM Method OLS Method

By household annual income level:b

1st Less than $18,000 −0.49 −0.36
2nd $18,000 to $37,000 −0.34 −0.24
3rd $37,000 to $60,000 −0.37 −0.27
4th More than $60,000 −0.29 −0.19

By household annual electricity consumption:

1st Less than 4,450 KWh −0.46 −0.31
2nd 4,450 to 6,580 KWh −0.35 −0.28
3rd 6,580 to 9,700 KWh −0.32 −0.26
4th More than 9,700 KWh −0.33 −0.26

aMean annual electricity price elasticity for households within each quartile.
bApproximate California household income quartiles, in 1998 dollars.



Table 7

Estimated Electricity Consumption by Household Appliance

Present Study Prior Estimates a

Average annual use, in KWh:Households Avg. annual
with appliance, electricity use,

Appliance Type in percent b in KWh b EIA (1995)c LBL (1997)c

Elec. space heating 23.2 1, 131 1, 185b 2, 609–3, 481d

Central air cond. 30.3 1, 270 1, 283b 1, 306–1, 446d

Room air cond.e 13.7 619 n.a. 476d

Elec. water heating 15.6 2, 389 2, 835 3, 658

Refrigerator 99.8 1, 231f 1, 141 1, 144

Electric cooking 46.0 258 451 822

Separate freezer 16.7 582 1, 013 1, 026

Elec. clothes dryer 32.2 795 1, 090 1, 000

Clothes washer g 64.1 223 n.a. 100

Dishwasher g 48.3 241 n.a. 250

Swimming pool 5.6 2, 227 n.a. 1, 500h

Hot tub 3.5 1, 288 n.a. 2, 300

Water bed heater 5.1 606 n.a. 900

Microwave 83.4 388 n.a. 132

Televisions e 98.3 482 n.a. 513

Notes:
aSources: US Energy Information Adminstration (1995), Table 3.1, and public-use micro files;
Lawrence Berkeley Laboratory (1997), Tables A6 and A7.
bEstimates for California households.
cEstimates for all U.S. households, except as indicated.
dRange of estimates for households in southwestern U.S. states (Calif., Nev., and Ariz.).
eEstimates are for all units in household combined.
fEstimate based on second refrigerator only.
gExcludes energy used to heat water entering washer.
hEstimate for pool pump motor only.

n.a. indicates an estimate is not available.



Table 8

Within-Sample Predicted and Actual Consumption

Sample Data Estimated Model

Electricity Consumption Sample Standard Actual Predicted Average Within-
per Household, in KWh Actuala Mean Errorb Error Mean Sample Error

Pacific Gas & Elec. 6,531 5,796 258 + 735 5,899 +103

Southern Calif. Edison 6,238 6,063 291 + 175 5,961 −102
San Diego Gas & Elec. 5,706 4,627 514 +1079 4,775 +148

Los Angeles Wtr. & Power 5,261 5,113 454 + 148 4,867 −246
All California 6,355 6,007 157 + 348 6,010 + 3

aWeighted average of the total residential sales (in KWh) divided by the number of residential accounts in
each of 1993 and 1997, as reported by each utility. Source: US Dept. of Energy Form EIA-861 (1993, 1997).
bStandards errors shown account for the multistage sample design of the RECS (see EIA (1994)).



Table 9

Out-of-Sample Prediction Tests for 1998 and 1999

Utility Electricity Sales

per Household, in KWh Actuala Predicted Difference Std. Error Prob.b

Panel A: 1998

Pacific Gas & Elec. 6,775 6,198 +578 252 0.02

Southern Calif. Edison 6,455 6,233 +223 280 0.43

San Diego Gas & Elec. 5,935 5,005 +930 580 0.11

Los Angeles Wtr. & Power 5,438 4,885 +554 498 0.27

Panel B: 1999

Pacific Gas & Elec. 6,905 6,187 +718 267 0.01

Southern Calif. Edison 6,423 6,257 +136 292 0.64

San Diego Gas & Elec. 5,964 5,078 +886 647 0.17

Los Angeles Wtr. & Power 4,866 4,826 + 40 496 0.94

aTotal residential sales (in KWh) divided by the number of residential accounts, as
reported by each utility. Source: US Dept. of Energy Form EIA-861 (1998, 1999).
bApproximate probability of a difference between actual and predicted at least as large

(in magnitude) as observed, under the model.



Table 10

Household Consumption and Expenditure Changes

with Five-Tier Tariff Schedules

(All monetary amounts in constant 1998 dollars)

By Income Quartile b
All

Means per householda Households 1st 2nd 3rd 4th

Consumption (KWh/year)

With 2 tiers (1998) 6,196 5,524 6,299 6,330 7,455

With 5 tiers 5,578 4,987 5,677 5,519 6,637

Change (%) −10.0 −9.7 −9.9 −9.7 −11.0
Expenditures ($/year)

With 2 tiers (1998) 718 633 734 734 873

With 5 tiers 897 770 921 925 1,120

Change (%) 24.8 21.6 25.4 25.9 28.3

aEstimated population means for the 7.8 million California households served by the
Pacific Gas and Electric Corporation or the Southern California Edison Company. For
calculation methods, see text.
bFor income quartile breakpoints, see Table 6.
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Figure 3.  A Five−Tier Electricity Price Schedule
Illustration for Southern California Edison, Residential Service
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