Comments on "The Mortgage Credit Channel of Monetary Transmission" by Daniel Greenwald

Monika Piazzesi Stanford & NBER

MFM Meeting on March 9+10, 2017

Summary

- What is the effect of monetary policy on heterogeneous households who buy houses with mortgages and save in short bonds?
- Mortgages are long-term nominal debt contracts
 - expansive monetary policy lowers mortgage rates
 - 2 key frictions: LTV constraint

downpayment at $t \geq 15\%$ of house value at t

PTI constraint

mortgage payment at $t \le 36\%$ of income at t

- Literature on borrower-saver models has focused on <u>LTV constraints</u>
 - ► lacoviello & Neri 2010: short-term mortgages
 - Garriga, Kydland, and Sustek 2015: long-term mortgages

How do results change when we also impose PTI constraint?

Nice paper

- many imperfections in housing markets
 - high transaction costs, search frictions, incomplete markets, unsophisticated traders, indivisibilities, supply adjusts slowly, market segmentation, government intervention (e.g., affordable housing)
- mortgage markets
 - some households have high costs to refinance, imperfect bank competition, mortgage subsidies...
- what matters? much more research on quantitative models is needed
- here: study PTI constraints

How do mortgage rates respond to monetary policy?

- 3 goods: (numeraire) consumption c, housing h and labor n
- utility function

$$E\left[\sum \beta^{t} u\left(c_{t}, h_{t}, n_{t}\right)\right]$$

where u is separable

$$u\left(c_{t},h_{t},n_{t}\right)=\log c_{t}+\xi\log h-\pi\frac{n^{1+\varphi}}{1+\varphi}$$

pricing kernel with log utility

$$\Lambda_{t+1} = eta rac{c_t}{c_{t+1}}$$

- (unconstr) savers have high β , (constr) borrowers have low β
- ullet interest rate is determined by high eta unconstrained Euler equation

How do mortgage rates respond? ctd.

- log utility + no funky consumption dynamics
 - ⇒ expectations hypothesis holds
- monetary policy changes inflation target
 Rudebusch & Svensson 1999, Gurkaynak, Sack and Swanson 2005
 other changes in short rates don't affect long rates much
- <u>future research</u>: how does monetary policy affect long rates?
 Nakamura & Steinsson 2016 inflation expectations not affected,
 Fed information effect
 - Hanson and Stein 2014 through risk premia

How do price-rent ratios respond?

marginal rate of substitution between consumption and housing

$$MRS_{h,c} = \xi c_t/h_t$$

• Euler equations for savers and borrowers

$$p_t^h = MRS_{h,c}^S + (1 - \delta) E_t \left[\Lambda_{t+1}^S p_{t+1}^h \right]$$

$$p_t^h = MRS_{ extsf{h,c}}^B + (1-\delta) E_t \left[\Lambda_{t+1}^B p_{t+1}^h \right] + ext{collateral value}$$

- only Euler equations of borrowers are evaluated
- → markets for borrower and saver houses are segmented

How do price-rent ratios respond? ctd.

 monetary policy affects the collateral value of housing: expansionary monetary policy lowers mortgage rates fewer borrowers are constrained by PTI, more borrowers are constrained by LTV

⇒ higher collateral values

- how to think about about overall magnitudes?
 data should appreciate less than borrower houses in model, because saver houses do not appreciate as much
- relaxation of PTI, LTV constraints
 ⇒ higher house prices
- consistent with cross sectional patterns in Landvoigt, Piazzesi & Schneider 2015 AER

How do price-rent ratios respond ctd.

- borrowers are poor households, savers are rich households
- houses of poor households appreciated more in the data, as predicted by the model
- market segmention is important
- no rental market, replace price/rent ratio with price/MRS ratio

More comparisons of model with data

- impulse reponse to 1% reduction in inflation target in various specifications of the model, how does it look like in data?
- response to change in LTV from 85% to 99%, PTI from 36% to 54% compared with boom data: 1997 to 2006
 other shocks during this time? e.g., lower rates?
- borrowing constraints generate excessive volatility in rates
 Alvarez & Jerman 2001, Chien & Lustig 2009,
 Lustig & Van Nieuwerburgh 2005
 what happens to rates in this model?