1 Note on exponential-affine stock prices

The idea is to specify the dividend yield δ and short rate r to be affine in X where X is an affine diffusion under the risk-neutral measure. Then the stock price is guessed to be exponential affine. To show that the guess works, I have to show that the guess satisfies

$$
\begin{equation*}
P(t)=E_{t}^{*}\left[\int_{t}^{\infty} e^{-\int_{t}^{s} r(u) d u} \delta(s) P(s) d s\right] \tag{1}
\end{equation*}
$$

where E^{*} denotes expectation under the risk-neutral measure. The following simple example with a normally distributed dividend yield, zero short rate and zero market prices of risk illustrates that the functional form result applies. Backshi and Chen (1997, JFE) compute exponential-affine stock prices for the case where X is a square-root process.

PROPOSITION: Assume that the short rate is zero, $r=0$ (in the notation of the paper $r_{0}=0$ and $r_{X}=0$). The dividend yield is $\delta=X$ (in the notation of the paper, $\delta_{0}=0$ and $\delta_{X}=1$) where X is an OU process which solves

$$
d X(t)=k(\theta-X(t)) d t+\sigma d W(t)
$$

Suppose P is of the form

$$
\begin{equation*}
P(t)=\exp \left(a t+\frac{X(t)}{k}\right) \tag{2}
\end{equation*}
$$

with

$$
\begin{equation*}
a=-\theta-\frac{1}{2} \frac{\sigma^{2}}{k}<0 \tag{3}
\end{equation*}
$$

then P satisfies the pricing equation (1).
PROOF OF PROPOSITION (the proof refers to a series of facts stated in section 2 of this note): Assume that the price satisfies the guess (2). We need to show that

$$
\begin{align*}
P(t) & =E_{t} \int_{t}^{\infty} \delta(s) P(s) d s \tag{4}\\
& =E_{t}\left[\lim _{T \rightarrow \infty} \int_{t}^{T} \delta(s) P(s) d s\right]
\end{align*}
$$

Define

$$
P^{T}(t)=E_{t} \int_{t}^{T} \delta(s) P(s) d s
$$

I will show (4) in two steps. Step (i) is

$$
\begin{equation*}
P(t)=\lim _{T \rightarrow \infty} P^{T}(t) \tag{5}
\end{equation*}
$$

Step (ii) is

$$
\begin{equation*}
\lim _{T \rightarrow \infty} P^{T}(t)=E_{t}\left[\lim _{T \rightarrow \infty} \int_{t}^{T} \delta(s) P(s) d s\right] \tag{6}
\end{equation*}
$$

Together, these two steps yield (4).
STEP (i) : I want to interchange expectation and integral,

$$
\begin{equation*}
P^{T}(t)=E_{t}\left[\int_{t}^{T} P(s) \delta(s) d s\right]=\int_{t}^{T} E_{t}[P(s) \delta(s)] d s \tag{7}
\end{equation*}
$$

For Fubini to apply, I need that

$$
\begin{equation*}
E_{t} \int_{t}^{T}|P(s) \delta(s)| d s<\infty \tag{8}
\end{equation*}
$$

Tonelli's theorem says

$$
\begin{equation*}
E_{t} \int_{t}^{T}|P(s) \delta(s)| d s=\int_{t}^{T} E_{t}|P(s) \delta(s)| d s \tag{9}
\end{equation*}
$$

The RHS is finite, because by FACT 3:

$$
\begin{align*}
E_{t}[|P(s) \delta(s)|] & =E_{t}[|\delta(s)| P(s)] \tag{10}\\
& =E_{t}[|Z(s)|] \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right)
\end{align*}
$$

where $Z(s) \sim N\left(m_{t}(s)+v_{t}(s) / k, v_{t}(s)\right)$. This expression is continuous in s.

The term beneath the integral in (7) is given by FACT 2:

$$
\begin{aligned}
E_{t}[\delta(s) P(s)] & =E_{t}[X(s) \exp (a s+X(s) / k)] \\
& =\left(m_{t}(s)+v_{t}(s) / k\right) \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right)
\end{aligned}
$$

Using FACT 4,

$$
\begin{gathered}
P^{T}(t)=\int_{t}^{T} E_{t}[P(s) \delta(s)] d s \\
=\int_{t}^{T}\left(m_{t}(s)+v_{t}(s) / k\right) \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right) d s \\
=-\exp \left(a T+m_{t}(T) / k+\frac{1}{2} v_{t}(T) / k^{2}\right)+\exp \left(a t+m_{t}(t) / k+\frac{1}{2} v_{t}(t) / k^{2}\right) .
\end{gathered}
$$

Since $\lim _{T \rightarrow \infty} m_{t}(T)=\theta$ and $\lim _{T \rightarrow \infty} v_{t}(T)=\frac{\sigma^{2}}{2 k}$, I have

$$
\lim _{T \rightarrow \infty} \exp \left(a T+m_{t}(T) / k+\frac{1}{2} v_{t}(T) / k^{2}\right)=0
$$

as long as $a<0$, which I assumed in (3). This leaves

$$
\lim _{T \rightarrow \infty} P^{T}(t)=\exp \left(a t+m_{t}(t) / k+\frac{1}{2} v_{t}(t) / k^{2}\right) .
$$

where I can note that $m_{t}(t) / k=X(t) / k$ ad $v_{t}(t) / k^{2}=0$, so that I indeed get equation (5) for our guess (2).

STEP (ii) : From step (i), I know that

$$
\lim _{T \rightarrow \infty} P^{T}(t)=\lim _{T \rightarrow \infty} \int_{t}^{T} E_{t}[P(s) \delta(s)] d s
$$

I want to use Fubini to argue that the RHS of the last equation is equal to the RHS of (6). For Fubini to apply, I need condition (8) for $T=\infty$. The same arguments go through as before, and I know that $m_{t}(s)$ and $v_{t}(s)$ go to constants for $s \rightarrow \infty$, which means that the expression in (10) goes to zero because $a<0$. This completes the proof that (6) holds.

2 Useful facts

FACT 1. Suppose X solves

$$
\begin{equation*}
d X(t)=k(\theta-X(t)) d t+\sigma d W(t) . \tag{11}
\end{equation*}
$$

starting at $X(0)=x_{0}$ and for constants k, θ and σ. Then the solution to (11) is

$$
\begin{aligned}
X_{s}= & \exp (-k(s-t)) X_{t}+\theta(1-\exp (-k(s-t))) \\
& +\int_{t}^{s} \exp (-k(s-u)) \sigma d W(u)
\end{aligned}
$$

which is normal with mean

$$
m_{t}(s) \equiv \exp (-k(s-t)) X_{t}+\theta(1-\exp (-k(s-t)))
$$

and variance

$$
v_{t}(s) \equiv \frac{\sigma^{2}}{2 k}(1-\exp (-2 k(s-t)))
$$

FACT 2: Suppose $X \sim N(m, v)$. Then I have for any constant c

$$
E\left[X e^{c X}\right]=(m+c v) \exp \left(c m+\frac{1}{2} c^{2} v\right) .
$$

This can be verified by direct computation

$$
\begin{aligned}
E\left[X e^{c X}\right] & =\int X \exp (c X) \exp \left(\frac{-(X-m)^{2}}{0.5 v}\right) \frac{1}{\sqrt{2 \pi v}} d X \\
& =\int X \exp \left(\frac{-X^{2}-m^{2}+2 X(m+c v)}{2 v}\right) \frac{1}{\sqrt{2 \pi v}} d X \\
& =\int X \exp \left(\frac{-(X-(m+c v))^{2}+2 m c v+c^{2} v^{2}}{2 v}\right) \frac{1}{\sqrt{2 \pi v}} d X \\
& =\int X \exp \left(m c+\frac{1}{2} c^{2} v\right) \exp \left(\frac{-(X-(m+c v))^{2}}{2 v}\right) \frac{1}{\sqrt{2 \pi v}} d X
\end{aligned}
$$

FACT 3: Suppose $X \sim N(m, v)$. Then we have for any constant c

$$
E\left[|X| e^{c X}\right]=E[|Y|] \exp \left(c m+\frac{1}{2} c^{2} v\right)
$$

where $Y \sim N(m+c v, v)$
FACT 4:

$$
\begin{aligned}
& \frac{d}{d s} \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right) \\
= & -\left(m_{t}(s)+v_{t}(s) / k\right) \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right)
\end{aligned}
$$

as long as

$$
a=-\theta-\frac{1}{2} \frac{\sigma^{2}}{k^{2}}
$$

PROOF OF FACT 4: Taking derivatives:

$$
\begin{aligned}
& \frac{d}{d s} \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right) \\
&=\left(a+\frac{\partial m_{t}(s)}{\partial s} \frac{1}{k}+\frac{\partial v_{t}(s)}{\partial s} \frac{1}{2 k^{2}}\right) \exp \left(a s+m_{t}(s) / k+\frac{1}{2} v_{t}(s) / k^{2}\right) \\
& \frac{\partial m_{t}(s)}{\partial s}=-k \exp (-k(s-t))\left(X_{t}-\theta\right) \\
& \frac{\partial v_{t}(s)}{\partial s}=\sigma^{2} \exp (-2 k(s-t)) \\
&=-\theta-\frac{1}{2} \frac{\sigma^{2}}{k^{2}}-\exp (-k(s-t))\left(X_{t}-\theta\right)+\sigma^{2} \exp (-2 k(s-t)) \frac{1}{2 k^{2}} \\
&=-\left(\theta+\exp (-k(s-t))\left(X_{t}-\theta\right)\right)-\left(\frac{1-\exp (-2 k(s-t))}{2 k^{2}}\right) \sigma^{2} \\
&=-\left(m_{t}(s)+v_{t}(s) / k\right)
\end{aligned}
$$

3 Remarks

Theorem 1 of the paper states a solution of the form

$$
P(t)=\exp (A(t)-B(t) X(t))
$$

with coefficients (10)-(12)

$$
\begin{aligned}
& 0=A^{\prime}(t)-\theta k B(t)+\frac{1}{2} \sigma^{2} B(t)^{2} \\
& 0=1-B^{\prime}(t)+k B
\end{aligned}
$$

for $\delta_{0}=0$ and $\delta_{X}=1$ in $\delta=\delta_{0}+\delta_{X} X$ and $r_{0}=0$ (because $r=0$). Now use Restriction 2 from the paper, which sets $B^{\prime}(t)=0$. This implies

$$
B(t)=-\frac{1}{k} .
$$

and therefore

$$
0=A^{\prime}(t)+\theta+\frac{1}{2} \frac{\sigma^{2}}{k^{2}}
$$

This equation is solved for $A(t)=a t$ where

$$
a=-\theta-\frac{1}{2} \frac{\sigma^{2}}{k^{2}}
$$

