1 Note on exponential-affine stock prices

The idea is to specify the dividend yield 6 and short rate r to be affine in
X where X is an affine diffusion under the risk-neutral measure. Then the
stock price is guessed to be exponential affine. To show that the guess works,
I have to show that the guess satisfies

P(t)=E; l/ e It 7"(“)dué(s) P(s)ds|, (1)
t
where E* denotes expectation under the risk-neutral measure. The following
simple example with a normally distributed dividend yield, zero short rate
and zero market prices of risk illustrates that the functional form result
applies. Backshi and Chen (1997, JFE) compute exponential-affine stock
prices for the case where X is a square-root process.

PROPOSITION: Assume that the short rate is zero, r = 0 (in the notation of
the paper o = 0 and rx = 0). The dividend yield is § = X (in the notation
of the paper, 6o = 0 and 6x = 1) where X is an OU process which solves

dX (t) = k(0 — X (£))dt + odW (t).

Suppose P is of the form

P (t) = exp (at + XT(t)) (2)
with
a:—e—%"%@. (3)

then P satisfies the pricing equation (1).

PROOF OF PROPOSITION (the proof refers to a series of facts stated in
section 2 of this note): Assume that the price satisfies the guess (2). We need
to show that

Pl) = Et[wé(s)P(s)ds (4)
= Et[lim /tTé(s)P(s)ds]
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I will show (4) in two steps. Step (7) is
P(t) = lim PT (1)

Step (i) is

lim P’ (1) = E, [Iim /t () P (s) ds]

T—o00 T—o00
Together, these two steps yield (4).

STEP (i) : I want to interchange expectation and integral,

PT (1) = B, {/tTP(s)é(s)ds} :/tTEt[P(s)é(s)]ds

For Fubini to apply, I need that

/ [P (s)6(s)|ds < oo.
Tonelli’s theorem says

B [ 1Pl = [ EIPE)56)as

The RHS is finite, because by FACT 3:

E [P (s)o(s)l] = Ei[l6(s)] P (s)]

= E/[|Z(s)|]exp (as +my (s) [k + %Ut (s) /k;z)

9)

(10)

where Z (s) ~ N (my (s) +v: (s) /k,v: (s)) . This expression is continuous in

S.



The term beneath the integral in (7) is given by FACT 2:
E [6(s)P(s)] = Ep[X(s)exp(as+ X (s)/k)]

= (my (s) + v (s) /k)exp (as +my (s) [k + %Ut (s) /kz)

Using FACT 4,

P (t) = /t E,[P(s)5(s)| ds
= /t (my (s) + v (s) /k) exp (as +my (s) [k + %Ut (s) /k2> ds

= —exp <aT +my (T) /k + %vt (T) /I<:2) + exp <at +my (t) [k + %vt () /k:2> :

o2

5% 1 have

Since limr o, my (T') = 6 and limp_, o v, (T) =

1
Tlim exp <aT—i—mt (T) /k+ U (T) /k:2> =0

as long as a < 0, which I assumed in (3). This leaves

1
zlim PT(t) = exp (at +my (t) [k + U (t) /k:2> :
where I can note that my (t) /k = X (t) /k ad v; (t) /k* = 0, so that I indeed
get equation (5) for our guess (2).

STEP (i7) : From step (i), I know that

I want to use Fubini to argue that the RHS of the last equation is equal to
the RHS of (6). For Fubini to apply, I need condition (8) for ' = oc. The
same arguments go through as before, and I know that m; (s) and v, (s) go
to constants for s — oo, which means that the expression in (10) goes to
zero because a < 0. This completes the proof that (6) holds.



2 Useful facts
FACT 1. Suppose X solves
dX (t) = k(0 — X (t))dt + odW (t). (11)

starting at X (0) = xy and for constants k, # and 0. Then the solution to
(11) is

X = exp(=k(s—t) Xi+0(1—exp(=k(s —1)))
+/t exp (—k (s — u)) cdW (u).
which is normal with mean
my(s) = exp (=k (s = 1)) Xy + 0 (1 —exp (—k (s = 1)),

and variance

[\

v (s) = ;—k (1 —exp(—2k(s—1))).

FACT 2: Suppose X ~ N (m,v). Then I have for any constant ¢

1
E[Xe™X] = (m+ cv)exp (cm + §c2v> :

This can be verified by direct computation

E[Xe™] = /Xexp(cX)exp<_(X_m)2> ! dX

0.5v 2TV
Y22
_ /Xexp< X% —m +2X(m+cv)> 1 iX
2v 2mv
— (X — 242 202\ 1
_ /Xexp( ( (m+cv))” + mcv+cv) IX
2v 2mv

1 —(X - 2\ 1
= /Xexp me + =c*v | exp ( (m + cv) dX
2 2v 2V

4



FACT 3: Suppose X ~ N (m,v). Then we have for any constant ¢

1
E[|X|e*] = E[|Y]]exp (cm + 5021)) :

where Y ~ N (m + cv,v)

FACT 4.
% exp (as +my (s) /k + %Ut (s) /k2>
1 2
= = mes) 4 (5) Ry esp (s (5) e o (9) /42
as long as
102
=" 5p

PROOF OF FACT 4: Taking derivatives:

4 exp (as o (s) [k + %Ut (s) /k:2>

ds
( amt l a“(;i )222> *xp (“5 +me(s) [k + %vt (s) /k;2>

angs(s) = —kexp(—k(s—1))(X;—0)
8@525) = oexp(—2k(s—t))
a—exp(—k (s —1) (X, —0) + 0® exp (=2k (s — 1)) 2/1<:2
_ _g_ %% —exp (= k(s_t))@(t_9)+02exp(—2k(s—t))%
= —(O+exp(=k(s—1) (X, —0)) - (1 — (2_k22k = t))) ”
= —(my(s)+ v (s)/k)



3 Remarks

Theorem 1 of the paper states a solution of the form
P(t) =exp(A(t) — B(t) X (1))
with coefficients (10)-(12)
1
0 = A'(t)—0kB(t)+ 5023 (t)?
0 = 1-B(t)+kB

for 6g =0and 6x =1in 6 = 6o+ 6xX and ro = 0 (because r = 0). Now use
Restriction 2 from the paper, which sets B’ (t) = 0. This implies

and therefore

102
— A _
O_A(t)+9+21€2

This equation is solved for A (t) = at where



