
1 Note on exponential-affine stock prices

The idea is to specify the dividend yield δ and short rate r to be affine in
X where X is an affine diffusion under the risk-neutral measure. Then the
stock price is guessed to be exponential affine. To show that the guess works,
I have to show that the guess satisfies

P (t) = E∗t

·Z ∞

t

e−
R s
t r(u)duδ (s)P (s) ds

¸
, (1)

where E∗ denotes expectation under the risk-neutral measure. The following
simple example with a normally distributed dividend yield, zero short rate
and zero market prices of risk illustrates that the functional form result
applies. Backshi and Chen (1997, JFE) compute exponential-affine stock
prices for the case where X is a square-root process.

PROPOSITION: Assume that the short rate is zero, r = 0 (in the notation of
the paper r0 = 0 and rX = 0). The dividend yield is δ = X (in the notation
of the paper, δ0 = 0 and δX = 1) where X is an OU process which solves

dX (t) = k(θ −X (t))dt+ σdW (t) .

Suppose P is of the form

P (t) = exp

µ
at+

X (t)

k

¶
(2)

with

a = −θ − 1
2

σ2

k
< 0. (3)

then P satisfies the pricing equation (1).

PROOF OF PROPOSITION (the proof refers to a series of facts stated in
section 2 of this note): Assume that the price satisfies the guess (2). We need
to show that

P (t) = Et

Z ∞

t

δ (s)P (s) ds (4)

= Et

·
lim
T→∞

Z T

t

δ (s)P (s) ds

¸
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Define

P T (t) = Et

Z T

t

δ (s)P (s) ds

I will show (4) in two steps. Step (i) is

P (t) = lim
T→∞

P T (t) (5)

Step (ii) is

lim
T→∞

P T (t) = Et

·
lim
T→∞

Z T

t

δ (s)P (s) ds

¸
(6)

Together, these two steps yield (4).

STEP (i) : I want to interchange expectation and integral,

P T (t) = Et

·Z T

t

P (s) δ (s) ds

¸
=

Z T

t

Et [P (s) δ (s)] ds (7)

For Fubini to apply, I need that

Et

Z T

t

|P (s) δ (s)| ds <∞. (8)

Tonelli’s theorem says

Et

Z T

t

|P (s) δ (s)| ds =
Z T

t

Et |P (s) δ (s)| ds (9)

The RHS is finite, because by FACT 3:

Et [|P (s) δ (s)|] = Et [|δ (s)|P (s)] (10)

= Et [|Z (s)|] exp
µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
where Z (s) ∼ N (mt (s) + vt (s) /k, vt (s)) . This expression is continuous in
s.
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The term beneath the integral in (7) is given by FACT 2:

Et [δ (s)P (s)] = Et [X (s) exp (as+X (s) /k)]

= (mt (s) + vt (s) /k) exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
Using FACT 4,

P T (t) =

Z T

t

Et [P (s) δ (s)] ds

=

Z T

t

(mt (s) + vt (s) /k) exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
ds

= − exp
µ
aT +mt (T ) /k +

1

2
vt (T ) /k

2

¶
+ exp

µ
at+mt (t) /k +

1

2
vt (t) /k

2

¶
.

Since limT→∞mt (T ) = θ and limT→∞ vt (T ) = σ2

2k
, I have

lim
T→∞

exp

µ
aT +mt (T ) /k +

1

2
vt (T ) /k

2

¶
= 0

as long as a < 0, which I assumed in (3). This leaves

lim
T→∞

P T (t) = exp

µ
at+mt (t) /k +

1

2
vt (t) /k

2

¶
.

where I can note that mt (t) /k = X (t) /k ad vt (t) /k2 = 0, so that I indeed
get equation (5) for our guess (2).

STEP (ii) : From step (i), I know that

lim
T→∞

P T (t) = lim
T→∞

Z T

t

Et [P (s) δ (s)] ds

I want to use Fubini to argue that the RHS of the last equation is equal to
the RHS of (6). For Fubini to apply, I need condition (8) for T = ∞. The
same arguments go through as before, and I know that mt (s) and vt (s) go
to constants for s → ∞, which means that the expression in (10) goes to
zero because a < 0. This completes the proof that (6) holds.
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2 Useful facts

FACT 1. Suppose X solves

dX (t) = k(θ −X (t))dt+ σdW (t) . (11)

starting at X (0) = x0 and for constants k, θ and σ. Then the solution to
(11) is

Xs = exp (−k (s− t))Xt + θ (1− exp (−k (s− t)))
+

Z s

t

exp (−k (s− u))σdW (u) .

which is normal with mean

mt(s) ≡ exp (−k (s− t))Xt + θ (1− exp (−k (s− t))) ,
and variance

vt(s) ≡ σ2

2k
(1− exp (−2k (s− t))) .

FACT 2: Suppose X ∼ N (m, v) . Then I have for any constant c

E
£
XecX

¤
= (m+ cv) exp

µ
cm+

1

2
c2v

¶
.

This can be verified by direct computation

E
£
XecX

¤
=

Z
X exp(cX) exp

Ã
− (X −m)2

0.5v

!
1√
2πv

dX

=

Z
X exp

µ−X2 −m2 + 2X (m+ cv)

2v

¶
1√
2πv

dX

=

Z
X exp

Ã
− (X − (m+ cv))2 + 2mcv + c2v2

2v

!
1√
2πv

dX

=

Z
X exp

µ
mc+

1

2
c2v

¶
exp

Ã
− (X − (m+ cv))2

2v

!
1√
2πv

dX
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FACT 3: Suppose X ∼ N (m, v) . Then we have for any constant c

E
£|X| ecX¤ = E [|Y |] expµcm+ 1

2
c2v

¶
.

where Y ∼ N (m+ cv, v)
FACT 4:

d

ds
exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
= − (mt (s) + vt (s) /k) exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
as long as

a = −θ − 1
2

σ2

k2

PROOF OF FACT 4: Taking derivatives:

d

ds
exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶
=

µ
a+

∂mt (s)

∂s

1

k
+

∂vt (s)

∂s

1

2k2

¶
exp

µ
as+mt (s) /k +

1

2
vt (s) /k

2

¶

∂mt (s)

∂s
= −k exp (−k (s− t)) (Xt − θ)

∂vt (s)

∂s
= σ2 exp (−2k (s− t))

a− exp (−k (s− t)) (Xt − θ) + σ2 exp (−2k (s− t)) 1
2k2

= −θ − 1
2

σ2

k2
− exp (−k (s− t)) (Xt − θ) + σ2 exp (−2k (s− t)) 1

2k2

= − (θ + exp (−k (s− t)) (Xt − θ))−
µ
1− exp (−2k (s− t))

2k2

¶
σ2

= − (mt (s) + vt (s) /k)
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3 Remarks

Theorem 1 of the paper states a solution of the form

P (t) = exp (A (t)−B (t)X (t))

with coefficients (10)-(12)

0 = A0 (t)− θkB (t) +
1

2
σ2B (t)2

0 = 1−B0 (t) + kB

for δ0 = 0 and δX = 1 in δ = δ0+ δXX and r0 = 0 (because r = 0). Now use
Restriction 2 from the paper, which sets B0 (t) = 0. This implies

B (t) = −1
k
.

and therefore

0 = A0 (t) + θ +
1

2

σ2

k2

This equation is solved for A (t) = at where

a = −θ − 1
2

σ2

k2
.
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