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Recent events have stimulated interest in 
the joint behavior of prices and quantities in 
credit markets. Data sources such as the Federal 
Reserve Board’s Flow of Funds Accounts (FFA) 
provide statistics on a rich set of credit market 
instruments. However, it is challenging to inter­
pret such data using economic models that speak 
to the allocation of risk across agents, such as 
households or intermediaries.

On the one hand, an instrument class such as 
“Treasury bonds” typically contains many dif­
ferent instruments that trade at different prices 
and have different exposure to interest rate 
shocks (for example, because of differences in 
duration). On the other hand, a lot of the price 
movements in instruments like Treasury bonds 
and mortgage backed securities are due to com­
mon interest rate shocks, making those instru­
ments close substitutes from a portfolio choice 
perspective.

For understanding how interest rate risk is 
allocated in the economy, one would thus like 
to use information on many positions at the 
same time, rather than, say, focus on one set of 
instruments only. At the same time, models with 
many closely substitutable assets are problem­
atic. Instead, it would be desirable to compress 
position data into simple sets of portfolios, like 
“long” and “short” bonds, but with some con­
fidence that the risk properties of the original 
instruments are not lost along the way.
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This paper proposes an approach to parsi­
moniously represent positions in many credit 
market instruments. We start from the fact, 
established in the literature on fixed income 
pricing models, that a small number of factors 
are sufficient to describe prices on a wide vari­
ety of these securities. In other words, a pricing 
model can be used to measure and to parsimoni­
ously represent interest rate risk. It then follows 
that a small number of bonds are sufficient to 
describe quantities movements on a wide variety 
of credit market instruments.

We illustrate our approach by applying it to 
positions of the US household sector. In par­
ticular, we use the model to replicate any fixed 
income security in the FFA with a simple port­
folio that contains only three “spanning bonds.” 
These bonds are selected to span various kinds 
of interest rate risk. While we use the approach 
to think about interest rate risk and US house­
holds’ positions, the approach could be useful to 
thinking about other sources of risk as well as the 
positions of other sectors (such as financial insti­
tutions or foreigners). We thus view the empiri­
cal implementation in this paper as a first step.

An important property of our approach is that 
it can deal with all relevant sources of interest 
rate risk that have been identified in the term 
structure literature. For example, at the quarterly 
frequency we study in this paper, prices are well 
represented by two factors. Roughly, one factor 
captures low frequency movements in the level 
of interest rates, and another factor captures 
business cycle frequency movements in the 
spread between long and short bonds. For quan­
tities, our approach uses three bonds so that two 
portfolio weights capture the exposure to those 
two factors.1

1 This is in contrast to other simple approaches of sum­
marizing bond positions, such as Macauley duration, which 
would capture risk exposure fully only if there is a single 
factor.
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I.  Basics

An affine model describes movements in 
interest rates using an N-dimensional vector of 
factors ft, where the first factor is the short term 
(one period) interest rate ​i​t​  (1)​, so ft = (​i​t​  (1)​, …)⊤. 
The dynamics of the factors are described by a 
vector-autoregression with Gaussian innovations

(1) 	 ft  =  μ + ϕ ft−1 + σεt,  εt ∼ N(0, IN×N).

The pricing kernel is

(2) 	 mt+1  =  exp Q−​i​t​  (1)​ − ​ 1 __ 
2
 ​ ​λ​t​ ⊤​λt − ​λ​t​ ⊤​ εt+1R,

	 λt  =  l0 + l1  ft

where λt is an N-dimensional process that 
depends on parameters contained in the N × 1 
vector l0 and the N × N matrix l1.

Under these assumptions, the time t price of 
an n-period bond is

​P​t​  (n)​  =  exp(An + ​B​n​ ⊤​ ft),

with coefficients An and Bn that start at A0 = 0 
and B0 = e1 and solve difference equations

	 An+1  =  An + ​B​n​ ⊤​(μ − σl0) + ​ 1 __ 
2
 ​ ​B​n​ ⊤​ σf ​σ​f​ 

⊤​Bn

	 ​B​n+1​ 
⊤  ​  = ​ B​n​ ⊤​ (ϕ − σl1) − ​e​1​ 

⊤​

We estimate the parameters (μ, ϕ, σ, l0, l1) with 
quarterly postwar data on nominal zero-cou­
pon bond yields. Monika Piazzesi and Martin 
Schneider (2009) describe in detail the dataset, 
estimation procedure, and parameter estimates 
of the two-factor affine model that we use below 
as an example. For quarterly data, two factors, 
N = 2, are enough; they explain much of the vari­
ation in the data. Here, we choose the short (one 
quarter) interest rate and the spread between the 
short rate and a long (five-year) rate.

II.  Replicating Zero Coupon Bonds

We now select a number N of long bonds 
(where N is also the number of factors), zero-
coupon bonds with maturity greater than one 
period. Our goal is to construct a portfolio con­
taining the long bonds and the short bond, such 
that the return on these N + 1 bonds replicates 
closely the return on any other zero-coupon 

bond with maturity n. This replication argument 
is exact in continuous time. Below, we derive 
an approximate replicating portfolio in discrete 
time from a discrete approximation of the con­
tinuous time returns of the replicating portfolio.

We start from the approximate change in price 
of an n-period bond, which is given by

(3)  ​P​t+1 ​ 
(n−1) ​  −  ​P​t ​ 

 (n) ​ 

	 ≈  ​P​t ​ 
(n) ​QAn−1 − An 

	 + ​ B​n−1​ 
⊤  ​( ft+1 − ft)

	 +  (Bn−1 − Bn)⊤ ft 

	 + ​  1 __ 
2
 ​ ​B​n−1​ 

⊤  ​σσ⊤​B​n−1​ 
⊤  ​R

	 = ​ P​t ​ 
(n) ​QAn−1 − An + ​B​n−1​ 

⊤  ​ μ 

	 + ​ B​n−1​ 
⊤  ​(ϕ − I ) ft

	 +  (Bn−1 − Bn )⊤ft 

	 + ​  1 __ 
2
 ​ ​B​n−1​ 

⊤  ​σσ⊤​B​n−1​ 
⊤  ​R

	 + ​ P​t ​ 
(n) ​​B​n−1​ 

⊤  ​σεt+1

	 =  : ​ a​t ​ 
 (n) ​ + ​b​t ​ 

 (n) ​σεt+1.

Conditional on date t, we thus view the change 
in value of the bond as an affine function in the 
shocks to the factors σεt+1. Its distribution is 
described by N + 1 time dependent coefficients: 
the constant ​a​t ​ 

 (n) ​ and the loadings​ b​t ​ 
 (n) ​ on the 

N shocks. In particular, we can calculate coef­
ficients (​a​t ​ 

 (1) ​, ​b​t ​ 
 (1) ​) for the short bond, and we 

can arrange coefficients for the N long bonds in 
a vector ​      a​t and a matrix ​   

  
 b​t.

Now consider a replicating portfolio that con­
tains θ1 units of the short bond and ​   

  
 θ ​i units of 

the i  th long bond. The change in value of this 
portfolio is also an affine function in the factor 
shocks, and we can set it equal to the change in 
value of any n-period bond:

(4)  Aθ1 ​ ̂  
  
 θ ​′ B a​

​
 ​a​t ​ 

 (1) ​ ​ b​t ​ 
 (1) ​   

​      a​t  ​ ̂  
  
 b​t
 

​
​b a​

​
  1

   
σεt+1​

​b

	 =  a​a​t ​ 
 (n) ​ ​ b​t ​ 

 (n) ​b a​​ 
1
   σεt+1​

​b .
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Since the (N + 1) × (N + 1) matrix of coef­
ficients on the left-hand side is invertible for a 
nondegenerate term structure model, we can 
select the portfolio (θ1 ​   

  
 θ ​⊤ ) to make the condi­

tional distribution of the value change in the port­
folio equal to that of the bond. This approximate 
replication argument works as in the continuous 
time case, where we match the drift and diffusion 
of the n-period bond price with a replicating port­
folio. By solving for the portfolio (θ1, ​   

  
 θ ​) in equa­

tion (4), we are matching the conditional mean 
and volatility of the change in the n-period bond 
price.

Two-factor example.—When stated in terms 
of units of bonds (θ1, ​   

  
 θ ​), the replicating portfo­

lio for the n-period zero coupon bond answers 
the question: how many spanning bonds are 
equivalent to one n-period bond? Alternatively, 
we can define portfolio weights that answer the 
question: how many dollars’ worth of spanning 
bonds are equivalent to one dollar invested in 
the n-period bonds? The answer to this question 
can be computed using the units (θ1, ​   

  
 θ ​) and the 

prices of spanning bonds. Figure 1 provides the 
answer computed from the estimated two-factor 
term structure model. Since the term structure 
model is stationary, these weights do not depend 
on calendar time.

In Figure 1, the maturity of the n-period bond 
to be replicated is measured along the horizon­
tal axis. The three lines are the portfolio weights 
θi ​P​t ​ 

(i) ​/​P​t ​ 
(n) ​ on the different spanning bonds i; 

they sum to one for every maturity n. In our 
two-factor example, N + 1 = 3, three bonds are 
enough to span interest rate risk. As spanning 
bonds i, we have selected the one-quarter, two-
year and ten-year bonds. For simplicity, we refer 
to these bonds as “short,” “middle,” and “long,” 
respectively. In this figure, as well as in the fig­
ures that follow, the shading of the lines indi­
cates the maturity of the spanning bond, where 
lighter grays indicate shorter maturities.

The figure shows that the spanning bonds are 
replicated exactly by portfolio weights of one on 
themselves. More generally, the replicating port­
folios of most other bonds average their neighbor­
ing bonds. For example, most of the bonds with 
maturities in between the one-quarter and two-
year bond are generated by simply mixing these 
two bonds (although there is also a small short 
position in the long bond). Similarly, most of 
the bonds with maturities in between the middle 

and long bond are generated by mixing those two 
bonds. For bonds with maturities that are longer 
than ten years, the replicating portfolio has a port­
folio weight larger than one on the long bond, 
which represents a leveraged position. The needed 
leverage is achieved by shorting the middle bond.

Quality of the Approximation.—We want 
the value of the approximating portfolio to be 
the same as the value of the zero-coupon bond. 
This approximation is essentially as good as 
the term structure model itself. For a replicat­
ing portfolio defined by (4), the portfolio value ​
e​ −​i​t​​ θ1 + ​∑ i​ 

 
 ​​​ ˆ 
   

 P​​t​ 
(i)​​​ ̂  

  
 θ ​ (i) differs from the bond value ​

P​t ​ 
(n) ​ only to the extent that the term structure 

model does not fit bonds of maturity n. The 
additional approximation error introduced by 
the matching procedure is less than 0.0001 basis 
points.

III.  Replicating Nominal Instruments in the US 
Economy

We now turn to more complicated fixed 
income instruments. The FFA provides data on 
book value for many different types of nominal 
instruments. Matthias Doepke and Schneider 
(2006; DS) sort these instruments into several 
broad classes, and then use data on interest rates, 
maturities, and contract structure to construct, 
for every asset class and every date t, a certain 

Figure 1. Weights for Portfolios Replicating Zero-
Coupon Bonds

Note: The maturity of the bond that is being replicated is 
measured along the x-axis.
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net payment stream that the holders of the asset 
expect to receive in the future. Their procedure 
makes adjustments for credit risk in instruments 
such as corporate bonds and mortgages. They 
use these payment streams to restate FFA posi­
tions at market value and assess the effect of 
changes in inflation expectations on wealth.

Here we determine, for every broad asset 
class, a replicating portfolio that consists of 
spanning bonds. For every asset class and every 
date t, DS provide a certain payment stream, 
which we can view as a portfolio of zero-coupon 
bonds. By applying equation (4) to every zero-
coupon bond, and then summing up the result­
ing replicating portfolios across maturities, we 
obtain a replicating portfolio for the asset class 
at date t. Figure 2 illustrates replicating portfo­
lios for Treasury bonds and mortgages. The top 
panel shows how the weights on the spanning 
bonds in the replicating portfolio for Treasury 
bonds have changed over the postwar period.

The reduction of government debt after the war 
went along with a shortening of maturities: the 
weight on the longest bond declined from over 60 
percent in the early 1950s to less than 20 percent 
in 1980. This development has been somewhat 
reversed since the early 1980s.2 The bottom panel 

2 The figure shows only the portfolios corresponding to 
outstanding Treasury bonds, not including bills. DS use data 
from the CRSP Treasury data base to construct a separate 
series for bills.

shows that the effective maturity composition of 
mortgages was very stable before the 1980s, with 
a high weight on long bonds. The changes that 
appear since the 1980s are driven by the increased 
use of adjustable rate mortgages.

We do not show replicating portfolios for 
Treasury bills, municipal bonds, and corporate 
bonds, since the portfolio weights exhibit few 
interesting changes over time. All three instru­
ments are represented by essentially constant 
portfolios of only two bonds: T-bills correspond 
to about 80 bonds and 20 percent middle bonds, 
that for corporate bonds corresponds to about 
60 percent middle bonds and 40 percent long 
bonds, and the replicating portfolio for munici­
pal bonds has 70 percent long bonds and 30 
percent middle bonds. The final asset class is a 
mop-up group of short instruments, which we 
replicate by a short bond.

A. Replicating Households’ Nominal Asset and 
Liability Positions

We measure aggregate household holdings 
in the FFA at date t. To derive their positions in 
spanning bonds, we compute replicating portfo­
lios for households’ nominal asset and liability 
positions in the FFA. One important issue is 
how to deal with indirect bond positions, such 
as bonds held in a defined contribution pension 
plan or bonds held by a mutual fund, the shares 
in which are owned by the household sector. 
Here we make use of the calculations in DS, 
who consolidate investment intermediaries in 
the FFA to arrive at effective bond positions. The 
positions of spanning bonds below thus include 
these households’ indirect holdings.

By applying the replicating portfolios for 
the broad asset classes to FFA household sec­
tor positions, we obtain dollar holdings in 
spanning bonds as percent of GDP. The hold­
ings of short, middle, and long bonds in US 
households’ asset positions over time series 
are plotted in Figure 3. It is apparent that the 
early 1980s brought about dramatic changes 
in US bond portfolios. Until then, the posi­
tions in short bonds had been trending slightly 
upwards, whereas the positions in long and 
middle bonds had been declining. This pattern 
was reversed during the 1980s and early 1990s. 
The bottom right panel in Figure 3 shows total 
nominal assets. Their time series behavior is 
dominated by the positions in longer bonds.

Figure 2. (top) Replicating weights for Treasury bonds; 
(bottom) Replicating weights for mortgages

Note: The shading of each line indicates the maturity of the 
bond; lighter grays denote shorter maturities.
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Figure 4 shows nominal liability positions. 
The bottom right panel shows a dramatic 
increase in US household debt as a fraction of 
GDP over time. During the postwar period, the 
ratio of household debt to GDP has more than 
tripled. The top and lower left panels indicate 
that the increase in household debt happened in 
both short and long term debt instruments. The 
increase in short term debt reflects a heavier use 
of consumer loans and adjustable rate mort­
gages, while the increase in long term debt 
reflects fixed rate mortgages.

Figure 5 shows the portfolio weights behind 
the nominal asset and liability positions. The top 
panel illustrates that the nominal assets increased 
their weight on short bonds and lowered their 
weights on middle and long bonds until the 
1980s, and then reversed this pattern. The bottom 
panel for nominal liabilities is dominated by the 
portfolio weights behind mortgages in Figure 5. 
Compared to mortgages, the weight on short term 
bonds is larger because of consumer loans.

IV.  Conclusion

The US household sector holds a portfolio 
consisting of many different fixed income secu­
rities. In this paper, we advance an approach to 
represent this complex portfolio as a much sim­
pler portfolio consisting of a few zero-coupon 

bonds. To illustrate how the approach works, 
we use a simple two-factor affine model of the 
term structure. The approach can also be imple­
mented with more sophisticated models of risk 
in fixed income security markets. These models 
may accommodate liquidity risk, special credit 
risk factors, or changing dynamics.

The approach can also be implemented with 
models that feature learning about interest rate 

Figure 3. US Household Nominal Assets  
(as a percent of GDP)

Notes: Each panel indicates nominal asset positions in the 
maturity indicated. The panel on the bottom right shows 
total nominal asset positions.
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Figure 4. US Household Nominal Liabilities  
(as a percent of GDP)

Notes: Each panel indicates nominal liability positions in 
the maturity indicated. The panel on the bottom right shows 
total nominal liability positions.
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Figure 5. (top) Portfolio weights of nominal assets. 
(bottom) Portfolio weights of nominal liabilities

Note: The shading of each line indicates the maturity of the 
bond; lighter grays denote shorter maturities.
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risk or, more generally, models that capture 
subjective beliefs by households (like the ones 
estimated in Piazzesi and Schneider 2009 based 
on data on interest rate survey forecasts). The 
replicating portfolios computed with such mod­
els answer how households perceive to be bear­
ing interest rate risk. This is an important aspect 
of understanding households’ portfolio choice 
more generally.

Since factor models work particularly well 
for fixed income securities, we have focused 
our attention on nominal positions in this paper. 
However, our approach also applies to other 
household positions, such as equity, housing, or 
claims to labor income (human wealth), which 
also depend on interest rate risk. To implement 
the approach with other assets, we need to take 
a stance on how interest risk affects the prices of 
these assets. For equity, this can be done using 
the factor models in the papers by Geert Bekaert 
and Steven Grenadier (1999), and Martin Lettau 
and Jessica Wachter (2009), and for human 

wealth, the model in Hanno Lustig, Stijn Van 
Nieuwerburgh, and Adrian Verdelhan (2009).
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