Discussion of QE Papers

Monika Piazzesi Stanford & NBER

Feb 25, 2011

• • = • •

Quantitative Easing

very interesting!

Quantitative Easing Explained

What the Federal Reserve is up to, and how we got here. Created by: Omid Maleka www.omidmalekan.com)

by malekanoms | 3 months ago | 4,265,221 views

- does it matter what the Fed buys/sells? Treasuries vs. Mortgage Backed Securities, Corporate Bonds etc.
- what is the effect on
 - the overall level of interest rates?
 - long vs. short
 - real vs. nominal
 - safe vs. risky
 - future interest rates, expected returns

QE papers

- mostly OLS regression evidence
- regress changes in interest rates on

 $contemporanous/lagged \ Fed \ purchases$

• empirical findings (AK, HW, KVJ):

negative regression coefficients!

regression coefficient larger (in absolute value) if interest rate

- longer (AK, HW)
- real, not nominal (KVJ)
- safer (KVJ as in previous KVJ)
- if purchase of risky (KVJ)

purchases predict excess returns, over 75% R2 (HW)

• findings complement/confirm existing evidence:

Kidwell 1983, Longstaff 2002, Bernanke, Reinhart & Sack 2004, Taylor & Williams 2009, KVJ 2010, Greenwood & Vayanos 2010, Adrian et al. 2010, Hancock & Passmore 2011, Swanson 2011 etc.

Theoretical motivation for QE papers

- Vayanos & Vila (2009), discrete time version in Hamilton & Wu
- myopic mean-variance investors ("arbitrageurs")
- other investors ("preferred habitat", but details not important)
- empirical work based on Euler equations of arbitrageurs

Basic portfolio choice

• myopic mean-variance investors

$$E_t\left(r_{t+1}^{w}
ight)-rac{\gamma}{2}$$
var $_t\left(r_{t+1}^{w}
ight)$

• γ is risk aversion

return on wealth

$$r_{t+1}^w = r_t^f + \alpha_t' r_{t+1}^e$$

- $r_{t+1}^{e} = ext{excess return on long bonds}$ with mean $E_t\left(r_{t+1}^{e}\right)$ and variance Σ_t
- optimal portfolio without constraints:

$$\alpha_t = \frac{1}{\gamma} \Sigma_t^{-1} E_t \left(r_{t+1}^e \right)$$

Euler equation for excess returns on long bonds

$$E_{t}\left(r_{t+1}^{e}\right) = \gamma \Sigma_{t} \alpha_{t} = \gamma \text{cov}\left(r_{t+1}^{e}, r_{t+1}^{w}\right)$$

Euler equation and "supply effects"

• Euler equation for excess returns on long bonds

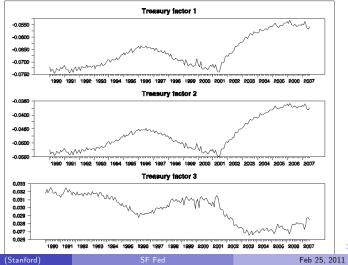
$$E_{t}\left[r_{t+1}^{e}\right] = \gamma \Sigma_{t} \alpha_{t} = \gamma \text{cov}\left(r_{t+1}^{e}, r_{t+1}^{w}\right)$$

• bonds with large wealth shares have high expected excess returns

- wealth shares forecast excess returns
 - \rightarrow regress excess returns on lagged bond positions find negative coefficient!
- For long/risky bonds, $E_t \left[r_{t+1}^e \right] pprox \, \log/\mathrm{risky}$ short spreads
- Drop in wealth share on long or risky bonds = lower spreads!
 - $\rightarrow~$ regress change in spreads on Fed purchases of long or risky bonds find negative coefficient

Euler equation and "supply effects"

• Euler equation for excess returns on long bonds


$$E_{t}\left[r_{t+1}^{e}\right] = \gamma \Sigma_{t} \alpha_{t} = \gamma \text{cov}\left(r_{t+1}^{e}, r_{t+1}^{w}\right)$$

- important:
 - Euler equation holds in equilibrium regardless of rest of economy
 - no assumptions on preferred habitat investors needed
 - ► only assumption: ∃ unconstrained mean-variance investors
- Roll critique of CAPM applies here: want comprehensive measure of wealth

- Piazzesi & Schneider 2008, "Bond Positions, Expectations & the Yield Curve", Federal Reserve Bank of Atlanta Working Paper
- comprehensive measure of wealth, forward-looking Epstein-Zin investors
- long bond shares don't move much
- effects tiny once comprehensive measure of wealth is used

Back to the regression evidence

- few observations: HW 1990-2007, KVJ, AW are event studies standard errors??
- right-hand side variables:

Conclusion

- very interesting agenda
- good first regression-based results with QE1, QE2 data
- want much stronger connection between a model with bond positions and data
 - need to get away from CAPM type specifications
 - who is trading? data on their exposures, motivate their objective function, test their Euler equations
 - helps with economic interpretation of results (endogeneity), small samples, etc.