Discussion of "The Cross Section and Time Series of Stock and Bond Returns" by Koijen, Lustig & Van Nieuwerburgh

Monika Piazzesi Stanford University & NBER

AFA Atlanta 2010

Summary

- Affine model in which:
 - 3 priced factors explain the cross section of bond and stock returns:
 level, CP, DP
 - 2 factors explain the time variation in bond and stock returns:
 CP, DP
- Affine model outperforms Fama-French 3 Factor model (market, size, value) in explaining the cross section of bond and stock portfolios

Discussion

Brief review of the affine model

- Comments:
 - (i) contribution of the paper
 - (ii) outperformance relative to 3FF: stock portfolios versus bonds portfolios
 - (iii) other model comparisons that I would find more interesting, justification/motivation for parsimony
 - (iv) asset prices as factors, economic interpretation

Brief review of the affine model

state vector: $X_t = (CP, level, slope, curvature : DP)$

affine bond pricing model \(\sigma\)

Cochrane & Piazzesi 2008 additional state variable for stocks

homoskedastic VAR dynamics of the state vector:

$$\begin{bmatrix} \textit{CP} \\ \textit{level} \\ \textit{slope} \\ \textit{curva} \\ \dots \\ \textit{DP} \end{bmatrix}_t = \begin{bmatrix} \bigstar & \bigstar & \bigstar & \bigstar & 0 \\ \bigstar & \bigstar & \bigstar & \bigstar & 0 \\ \bigstar & \bigstar & \bigstar & \Delta & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ ? & ? & ? & ? & \bigstar \end{bmatrix} \begin{bmatrix} \textit{CP} \\ \textit{level} \\ \textit{slope} \\ \textit{curva} \\ \dots \\ \textit{DP} \end{bmatrix}_{t-1} + \begin{bmatrix} \bigstar & 0 & 0 & 0 & 0 \\ \bigstar & \bigstar & 0 & 0 & 0 \\ \bigstar & \bigstar & \bigstar & 0 & 0 \\ \bigstar & \bigstar & \bigstar & \Delta & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ ? & ? & ? & ? & \bigstar \end{bmatrix} \varepsilon_t$$

autonomous subblock for bond pricing

Brief review of the affine model

pricing kernel:
$$M_t = \exp\left(-r_t - \frac{1}{2}\lambda_t^{\top}\lambda_t - \frac{1}{2}\lambda_t^{\top}\varepsilon_t\right)$$

rows 1-4: bond pricing model (Cochrane & Piazzesi 2008)

only level shocks get priced

time variation only because of CP

row 5: additionally for stock pricing

also CP and DP shocks get priced

time variation because of CP and DP

Comments: (i) contribution of the paper

- Joint pricing of bonds and stocks: "festival" approach
 Fama and French 1993, Mamaysky 2001 with affine model:
 MKT, SMB, HML + two bond factors
- Bekaert and Grenadier 2001, Bekaert, Grenadier & coauthors,
 Brennan, Wang and Xia 2004, Lettau and Wachter 2008:
 more parsimonious: mix of macro variables and bond factors
- This paper adopts state of the art for bonds:
 level of interest rates determines bond returns, CP their predictability
 DP and CP determine stock returns, both their predictability

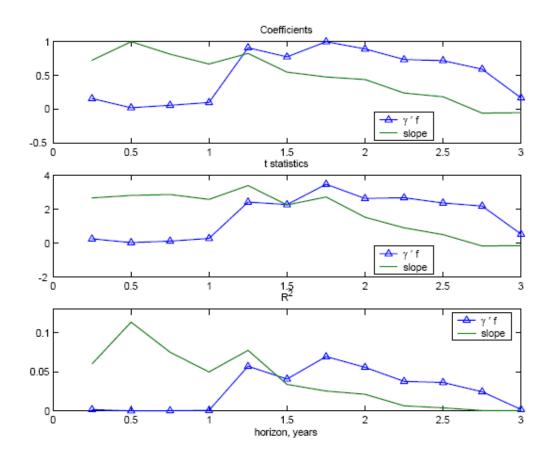
Comments: (ii) outperformance relative to 3 FF: bonds versus stocks

• 3 FF: market, size, value, designed for the cross section of stocks

	RN~SDF	Our Model	Level	Level-only bonds	DP	Level + DP	FF	
	Panel A: Pricing Errors (in % per year)							
1-yr	1.11	-0.43	-0.41	0.69	1.00	0.68	0.91	
2-yr	1.31	-0.55	-1.62	0.50	1.15	0.53	0.97	
5-yr	1.69	-0.19	-4.10	0.09	1.43	0.19	1.08	
7-yr	1.99	(0.38)	-4.82	0.11	1.61	0.15	1.22	
10-yr	1.62	0.17	-6.02	-0.49	1.09	-0.54	0.56	
Market	6.00	-0.74)	4.22	5.51	-1.55	-0.06	-0.06	
BM1	4.97	0.02	3.38	4.53	-3.28	-3.15	0.53	
BM2	5.86	-0.36	3.79	5.29	-1.85	-1.85	0.07	
BM3	6.65	0.04	4.52	6.06	-0.83	-0.86	0.03	
BM4	6.37	-0.06	4.39	5.82	-0.99	-0.99	-0.84	
BM5	7.30	0.79	5.39	6.77	0.55	0.52	-0.17	
BM6	7.35	0.25	5.08	6.72	0.40	0.31	-0.30	
BM7	7.32	-1.17	5.13	6.72	0.76	0.66	-1.01	
BM8	9.10	0.28	7.20	8.58	2.34	2.32	0.05	
BM9	9.69	0.70	7.94	9.20	2.76	2.78	0.95	
BM10	10.12	0.27	9.25	9.88	2.35	2.61	0.41	
MAPE	5.53	0.40	4.83	4.81	1.50	1.23	0.57	

Comments (iii) other model comparisons

Q: "Which 3 factor model does better on bonds, on stocks, on everything jointly?"
 3 FF use market, size, value designed for the cross section of stocks
 model here uses CP, level, DP


A: on bonds, model here wins; on stocks, 3FF wins; on everything jointly, model here wins

Q: "Which factor model does better on bonds, on stocks, on everything jointly?" add two bond factors for the cross section of bonds, 5 factor models
 Fama-French 1993: excess return on a long bond, default spread
 Mamaysky 2001: short bond yield, long bond yield
 A: ?

• if festival approach does better, give good justification/motivation for parsimony

Comments (iv) asset prices as factors, economic interpretation

• CP factor predicts real GDP growth one — three years ahead

paper here: Chicago Fed National Activity Index

Comments (iv) asset prices as factors, economic interpretation

• CP high in recessions:

CP predicts growth, activity with a positive sign

CP predicts excess returns on bonds with a positive sign

Comments (iv) asset prices as factors, economic interpretation

- CP high in recessions, forecasts better times
- estimated model here: shock that raises CP is interpreted as "good times"
 (e.g., market price of risk is positive, value stocks are risky because their returns covary with CP shocks)
- "good times" here: "good news about future consumption",
 not current consumption
- can't replace CP with macro variables
 - financial data is clean, macro variables are dirty
 - leading indicators (e.g., summer 2007: default spreads were high although GDP growth was still high)

Conclusion

• nice paper

• main insight:

CP is a factor that helps with the cross section of stock returns!

(it also predicts stock returns)

- more comparisons with "festival approach" that throws everything in
- economic interpretation:

CP itself is bad (high in recessions, looks like unemployment), but indicates better times to come