Discussion of "The Banking View of Bond Risk Premia" by Haddad & Sraer

Monika Piazzesi Stanford & NBER

NBER Summer Institute 2015

3

short summary

- banks are marginal investors for interest rate risk
- Euler equation checks for banks
- measure of aggregate bank exposure predicts bond returns

comments

1. nice contribution to an important agenda

2. model:

- a. objective function of banks
- b. equilibrium interest rates
- 3. quantitative implementation
 - a. exposure through derivatives
 - b. predictability in samples with few recessions

1. important agenda

- Euler equations of households
 - with aggregate NIPA data (Hansen & Singleton 1982, etc or individual CEX, PSID data (Brav, Constantinides, Geczy 2002, etc)
- households do not participate in many markets
 - ▶ equities in 1980s/1990s, many fixed income instruments (MBS), etc
- banks participate, they are marginal investors
- Euler equations of banks
 - great position data from regulatory filings by banks
 - many different fixed income instruments, but factor structure helps! level of safe interest rates = 1st principal component in safe bonds other factors, for example: credit risk

• example: Bocola 2015 JPE, Italian banks hold Italian gov bonds

2.a objective function in the model

- banks maximize myopic mean-variance criterion
- motivated in the paper:

overlapping generations, live *dt* (Greenwood & Vayanos 2014) log utility

• may be a useful first step,

but are at the heart of Euler equation tests for banks

- bank shares are held by long-lived households
- other constraints: capital requirements, VaR etc.
- principal-agent conflicts

2.b equilibrium bond prices in the model

• equilibrium (log) price of au-year bond

$$-\log P_{t}^{\left(\tau\right)}=A_{r}\left(\tau\right)r_{t}+A_{g}\left(\tau\right)g_{t}+C\left(\tau\right)$$

affine model with 2 factors: interest rate r_t, average gap g_t
in particular, any 2 (log) bond prices

$$\begin{pmatrix} -\log P_t^{(1)} \\ -\log P_t^{(2)} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ A_r(2) & A_g(2) \end{pmatrix} \begin{pmatrix} r_t \\ g_t \end{pmatrix} + \begin{pmatrix} 0 \\ C_g(2) \end{pmatrix}$$

..... can be inverted to get the two factors

$$\begin{pmatrix} r_t \\ g_t \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ A_r(2) & A_g(2) \end{pmatrix}^{-1} \begin{pmatrix} -\log P_t^{(1)} - 0 \\ -\log P_t^{(2)} - C_g(2) \end{pmatrix}$$

factors are "spanned" by bond prices, equivalently interest rates

2.b equilibrium bond prices in the model ctd.

• in equilibrium, expected excess return on long bonds

$$A_{r}(\tau)\lambda_{r,t}+A_{g}(\tau)\lambda_{g,t}$$

where

$$\lambda_{i,t} = g_t \gamma \sigma_i^2 \int_0^\infty e^{-\theta \tau} A_i\left(\tau\right) d\tau$$

expected excess returns are linear in gap gt
 ⇒ run OLS of excess returns from t to t + 1 on time t gap

- interest rates should predict excess returns as well as gap!
- gap is better predictor than yields: may want to modify model so that gap is unspanned factor

3.a exposure data in quantitative implementation

• measurement of risk exposure by U.S. banks:

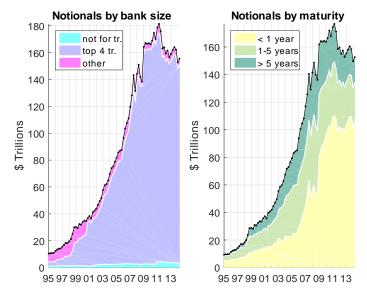
```
income gap = (short assets - short liabilities)/ total assets averaged across banks
```

- simple, easy to compute, textbooks
- exposure through derivatives?

HS: compute gap for banks who have zero notionals of derivatives, "nonuser" series has 93% correlation with average gap

should average gap be different?

3.a exposure data in quantitative implementation ctd.



Begenau, Piazzesi & Schneider 2015, Figure 4

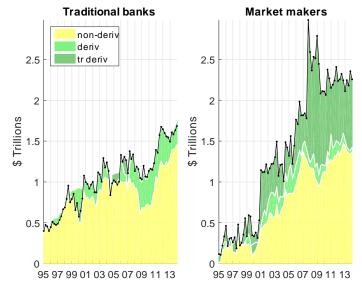
Piazzesi (S

itanford)	Discussion	NBE
-----------	------------	-----

3.a exposure data in quantitative implementation ctd.

- banks have many different fixed income instruments (e.g., various loans, MBS, ABS, Treasuries, etc.)
- strong factor structure
- represent bank positions as simple factor portfolios
- figure plots \$ portfolio holdings of 5-year swap bond that represent the interest-rate risk in overall positions for trading derivatives not-for-trading derivatives other positions (loans & securities etc)

3.a exposure data in quantitative implementation ctd.



Begenau, Piazzesi & Schneider 2015, Figure 10

Piazzesi (Stanfo	- 1
FIAZZESI (Stanio	ru,

3.b predictability in samples with few recessions

gap data 1986:Q3 - 2013:Q3

• predict excess returns over next year on au-maturity bond

$$rx_{t+1}^{(au)} = a + brhv_t$$

FB $f_t^{(\tau)} - r_t$				$CP:\gamma^{\top}\mathit{f}_t$					
τ	b	t(<i>b</i>)	R^2	τ	Ь	t(b)	R^2		
			0.01						
3	0.50	0.9	0.03	3	0.87	3.8	0.11		
4	0.64	1.2	0.04	4	1.24	4.1	0.11		
5	0.66	1.3	0.04	5	1.43	4.1	0.08		

3

3.b predictability in samples with few recessions

• gap data 1986:Q3 - 2013:Q3

• predict excess returns over next year on au-maturity bond

$$rx_{t+1}^{(au)} = a + brhv_t$$

			$CP: \ \gamma^\top \mathit{f}_t$				HS: gap _t				
τ	b	t(<i>b</i>)	R^2	τ	Ь	t(b)	R^2	τ	Ь	t(<i>b</i>)	R^2
2	0.23	0.5	0.01	2	0.46	3.7	0.12	2	-13.5	-3.0	0.18
3	0.50	0.9	0.03	3	0.87	3.8	0.11	3	-28.9	-3.6	0.23
4	0.64	1.2	0.04	4	1.24	4.1	0.11	4	-40.5	-4.0	0.22
5	0.66	1.3	0.04	5	1.43	4.1	0.08	5	-50.4	-4.4	0.22

nice: large int rate exposure = small gap = high exp excess returns

3.b predictability in samples with few recessions

• gap data 1986:Q3 - 2013:Q3

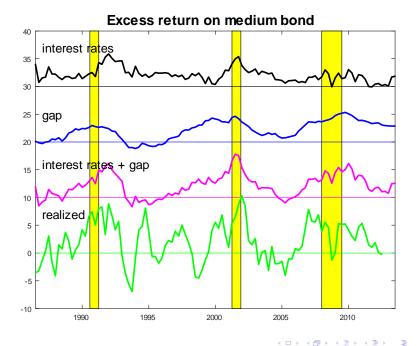
• predict excess returns over next year on au-maturity bond

both:
$$rx_{t+1}^{(\tau)} = a + b(\gamma^{\top}f_t) + c \text{ gap}_t$$

 τ b t(b) c t(c) R^2 unr. R^2
2 0.47 5.3 -14.4 -3.5 0.33 0.50
3 0.90 6.0 -30.5 -4.2 0.37 0.49
4 1.27 6.6 -42.8 -4.6 0.36 0.47
5 1.48 6.9 -53.0 -4.9 0.33 0.43

• higher R^2 in unrestricted regressions on interest rates, gap

according to model, gap should be driven out by interest rates



summary of comments

- 1. nice contribution to an important agenda
- 2. model:
 - a. objective function of banks myopic?
 - b. equilibrium interest rates affine model without unspanned factors
- 3. quantitative implementation
 - a. exposure through derivatives
 - b. predictability in samples with few recessions

more on cross sectional implications ("risk aversion parameters" of banks, etc)