Discussion of "An Extrapolative Model of House Price Dynamics" by Edward Glaeser & Charles Nathanson

> Monika Piazzesi Stanford & NBER

NBER Summer Institute 2015

Summary

- continuous time model with risk-neutral agents
- fixed supply of houses
- 1 house 1 agent, exogenous moving shocks
- buyer *i* at time *t* needs to forecast future dividends & resale value

observe dividend
$$D_t^i = D_t + a^i$$
, $a^i \sim \text{iid } N\left(0, \sigma_a^2\right)$

do no observe common component
$$dD_t = g_t dt + \sigma_D dW_t^D$$

 $dg_t = -\gamma g_t dt + \sigma_g dW_t^g$

signals (from comparables)

$$D_t^s = D_t + s_t$$
, $s_t \sim \text{ iid } N\left(0, \sigma_s^2
ight)$

 equilibrium prices are linear in average Dⁱ_t among time t buyers, perceived common component & its growth

Piazzesi (Stanford)

Summary ctd.

- two assumptions on how buyers interpret past prices: rational or naive learning
- both cases generate short run momentum, long-term reversal (predictability), excess volatility
- naive learning model is important to match empirical moments on house prices

Comments

- well done, rigorous treatment of housing as cons good & asset
- endogenous beliefs = nice!
- survey evidence on house price expectations
- small vs large errors
- few vs many irrational investors
- cross sectional implications

Endogenous beliefs

nice!

- intuitive mechanism: iid dividends
- with perfect information: prices = PV of expected future dividends returns are iid, prices are not more volatile than fundamentals
- with Bayesian learning about the mean: prices = posterior means after high initial dividend realizations, posterior mean > true mean current high prices are followed by lower future prices

econometrician finds predictability, high volatility

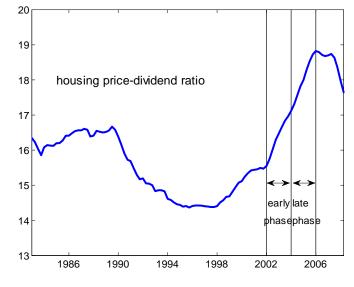
• prevent learning from settling down:

(log) dividends are random walk with stochastic growth Lewellen & Shanken 2002, JF

Piazzesi (Stanford)

EFBEM Discussion

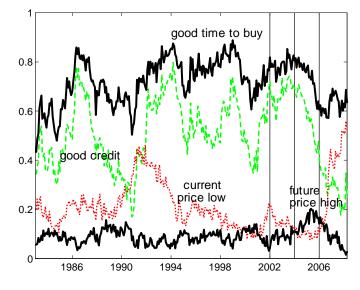
Michigan survey (all households)


Q: "Generally speaking, do you think now is a good time or a bad time to buy a house?"

A: "good", "pro-con", "bad, "don't know"

Q: "Why do you say so?"

A: respondents give up to two reasons, group these.


Michigan survey (all households) ctd

Piazzesi & Schneider 2009, Figure 1

6 / 13

Michigan survey (all households) ctd

Piazzesi & Schneider 2009, Figure 2

Michigan survey (all households) ctd

Early phase (2002 & 2003): enthusiam about housing & credit

85% most say "good time to buy a house" peaks earlier than house prices, enthusiasm not particularly high why? 73% say "good credit" which is always main reason for overall view of housing

Late phase (2004 & 2005): disagreement & momentum

fewer say "good time to buy a house", 60% in 2006

20% say "house prices are going up" peaks with house prices, momentum at an all time high

Case-Shiller surveys of homebuyers in 1988, 2003

Table 9. Survey Responses on Price Expectations, Sense of Excitement, and Talk, 1988 and 2003

Percent of responses except where stated otherwise

Question	Los Angeles		San Francisco		Boston		Milwaukee	
	1988	2003	1988	2003	1988	2003	1988	2003
Do you think that housi	ing prices i	in the [ci	ity] area					
will increase or decreas	e over the	next sev	eral yea	rs?				
Increase	98.3	89.7	99.0	90.5	90.2	83.1	87.1	95.2
Decrease	1.7	10.3	1.0	9.5	9.8	16.9	12.9	4.8
No. of responses	240	145	199	158	194	201	233	187
How much of a change	do you ex	pect the	re to be i	n				
the value of your home	over the n	ext 12 п	onths?					
Mean response (percent)	15.3	10.5	13.5	9.8	7.4	7.2	6.1	8.9
Standard error	0.8	0.6	0.6	0.6	0.6	0.4	0.5	1.0
No. of responses	217	139	185	147	176	1 79	217	160
On average over the ne	xt 10 years	s, how m	uch do y	you expe	ct			
the value of your prope	rty to chan	ge each	year?					
Mean response (percent)	14.3	13.1	14.8	15.7	8.7	14.6	7.3	11.7
Standard error	1.2	1.2	1.4	1.8	0.6	1.8	0.5	1.3
No. of responses	208	137	181	152	177	186	211	169

(日) (同) (三) (三)

3

small versus large errors

- paper argues small, page 39: "[naive] homebuyers make a small error in filtering information out of past prices"
- initial dividends = \$10,000, expected growth rate is zero
- std price changes in data = \$16,000 in Table 4
- small? std dev of forecast error = \$22,000 in Table 6
- why care whether error is small or large?

survey evidence suggests huge errors

many versus few

- paper argues many, page 4: "It seems incorrect to view housing markets in 2004-2006 as being dominated by a small number of highly irrational investors. Millions of Americans bought homes during that time period."
- housing markets have low turnover less than 10% of houses transact per year (for example, more than 100% of stocks transact per year)
- in the model, a small subset of all agents (= buyers) is marginal.
 1,130 buyers per period, 100,000 population
- Euler equations of marginal investors determine equilibrium prices
- \Rightarrow model is consistent with few irrational investors

cross sectional implications

- 2000-2006 boom-bust episode in low quality homes: higher capital gains/losses on homes that were cheap in 2000 Landvoigt, Piazzesi & Schneider 2015 AER
- learning in different segments: observe signals/comparables in segment

$$D_t^s = D_t + s_t$$
, $s_t \sim \text{ iid } N(0, \sigma_s^2)$

- suppose low quality homes more standardized than high quality homes more precise signals/comparables, less volatility in low quality homes.
- more generally, cross sectional implications are interesting: segments can differ in many ways (e.g., sets of comparables, number of homes overall), also over time

summary of comments

endogenous beliefs

nice feature, generates momentum, predictability & volatility

• survey evidence on house price expectations

in the hot phase of the boom (2004 & 2005), fraction of momentum households doubled ($10\% \rightarrow 20\%$ of all households, all time high) homebuyer surveys find exhuberant expectations

- small vs large errors, few vs many irrational investors model is consistent with few buyers who make large errors
- cross sectional implications interesting avenue!