Appendix

To derive the affine bond pricing formulas and yield curve equations, consider the case with prices of risk $\lambda_{t}=\left[\begin{array}{ll}\lambda_{t}^{1} & \lambda_{t}^{2}\end{array}\right]^{\top}$. (Note that equation (9) can be obtained from (10) by setting the prices of risk to zero.) There are two ways to derive thes formulas. First, we can construct a risk-neutral probability measure under which the risk-neutral pricing formula (7) holds. Second, we can start from the Euler equation $E\left[d\left(m_{t} F_{t}\right)\right]=0$.

Risk-neutral probability

Under the risk-neutral probability measure, the process B^{*} which solves $d B_{t}^{*}=d B_{t}+\lambda_{t} d t$ is a Brownian motion. By solving for $d B_{t}$ and inserting this expression into the $\mathrm{AR}(1)$ dynamics of the factors (6), we get

$$
\begin{align*}
d x_{t}^{i} & =\kappa_{i}\left(\theta_{i}-x_{t}^{i}\right) d t+\sigma_{i}\left(d B_{t}^{* i}-\lambda_{t}^{i} d t\right) \tag{11}\\
& =\left(\kappa_{i} \theta_{i}-\kappa_{i} x_{t}^{i}-\sigma_{i} \lambda_{0}^{i}-\sigma_{i} \lambda_{1}^{i} x_{t}^{i}\right) d t+\sigma_{i} d B_{t}^{* i} \tag{12}\\
& =\left(\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i}-\left(\kappa_{i}+\sigma_{i} \lambda_{1}^{i}\right) x_{t}^{i}\right) d t+\sigma_{i} d B_{t}^{* i} \tag{13}\\
& =\left(\kappa_{i}+\sigma_{i} \lambda_{1}^{i}\right)\left(\frac{\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i}}{\left(\kappa_{i}+\sigma_{i} \lambda_{1}^{i}\right)}-x_{t}^{i}\right) d t+\sigma_{i} d B_{t}^{* i} \tag{14}\\
& =\kappa_{i}^{*}\left(\theta_{i}^{*}-x_{t}^{i}\right) d t+\sigma_{i} d B_{t}^{* i} \tag{15}
\end{align*}
$$

where

$$
\begin{aligned}
\kappa_{i}^{*} & =\kappa_{i}+\sigma_{i} \lambda_{1}^{i} \\
\theta_{i}^{*} & =\frac{\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i}}{\kappa_{i}+\sigma_{i} \lambda_{1}^{i}}
\end{aligned}
$$

The price of the τ-period bond is equal to

$$
P_{t}^{(\tau)}=E_{t}^{*}\left(\exp \left(-\int_{t}^{t+\tau} r_{s} d s\right)\right),
$$

where the expectation operator E^{*} uses the risk-neutral probability measure. Since the vector $x=\left(x_{1}, x_{2}\right)^{\top}$ is Markov, this expectation is a function of the state today x_{t}. Thus, the bond price is a function

$$
P_{t}^{(\tau)}=F\left(x_{t}, \tau\right)
$$

of the state vector x_{t} and time-to-maturity τ. The Feynman-Kac formula says that F solves the partial differential equation

$$
F_{t} r_{t}=-\frac{\partial F}{\partial \tau}+\sum_{i=1}^{2}\left[\frac{\partial F}{\partial x^{i}} \kappa_{i}^{*}\left(\theta_{i}^{*}-x_{t}^{i}\right)+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{i 2}} \sigma_{i}^{2}\right]
$$

with terminal condition $F(x, 0)=1$.
We guess the solution

$$
\begin{equation*}
F\left(x_{t}, \tau\right)=\exp \left(A(\tau)+B(\tau) \cdot x_{t}\right) \tag{16}
\end{equation*}
$$

which means that

$$
\begin{aligned}
\frac{\partial F}{\partial x^{i}} & =B_{i}(\tau) F \\
\frac{\partial^{2} F}{\partial x^{i 2}} & =B_{i}(\tau)^{2} F \\
\frac{\partial F}{\partial \tau} & =\left(A^{\prime}(\tau)+B^{\prime}(\tau) \cdot x_{t}\right) F
\end{aligned}
$$

Insert these expressions into the partial differential equation and get

$$
\begin{aligned}
x_{t}^{1}+x_{t}^{2}= & -A^{\prime}(\tau)-B_{1}^{\prime}(\tau) x_{t}^{1}-B_{2}^{\prime}(\tau) x_{t}^{2} \\
& +\sum_{i=1}^{2}\left[B_{i}(\tau) \kappa_{i}^{*}\left(\theta_{i}^{*}-x_{t}^{i}\right)+\frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2}\right] .
\end{aligned}
$$

Matching coefficients results in

$$
\begin{aligned}
A^{\prime}(\tau) & =\sum_{i=1}^{2} B_{i}(\tau) \kappa_{i}^{*} \theta_{i}^{*}+\frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2} \\
1 & =-B_{1}^{\prime}(\tau)-B_{1}(\tau) \kappa_{1}^{*} \\
1 & =-B_{2}^{\prime}(\tau)-B_{2}(\tau) \kappa_{2}^{*} .
\end{aligned}
$$

The boundary conditions are

$$
\begin{aligned}
& A(0)=0 \\
& B(0)=0_{2 \times 1} .
\end{aligned}
$$

The solution to these ODE's are

$$
\begin{align*}
B_{1}(\tau) & =\frac{\left(\exp \left(-\kappa_{1}^{*} \tau\right)-1\right)}{\kappa_{1}^{*}} \tag{17a}\\
B_{2}(\tau) & =\frac{\left(\exp \left(-\kappa_{2}^{*} \tau\right)-1\right)}{\kappa_{2}^{*}}
\end{align*}
$$

We can plug these solutions into the yield equation

$$
\begin{align*}
y_{t}^{(\tau)} & =-\frac{A(\tau)}{\tau}-\frac{B_{1}(\tau)}{\tau} x_{t}^{1}-\frac{B_{2}(\tau)}{\tau} x_{t}^{2} \tag{18}\\
& =a^{N A}(\tau)+b_{1}^{N A}(\tau) x_{t}^{1}+b_{2}^{N A}(\tau) x_{t}^{2}
\end{align*}
$$

and get equations (9).

Euler equation approach

The Euler equation is

$$
P_{t}^{(\tau)}=E_{t}\left[\frac{m_{t+\tau}}{m_{t}}\right]
$$

and the instantaneous equation is

$$
\begin{equation*}
E\left[d\left(m_{t} F_{t}\right)\right]=0 \tag{19}
\end{equation*}
$$

The bond price is a function $F(x, \tau)$ and we can apply Ito's Lemma

$$
d F=\mu_{F} d t+\sigma_{F} d B_{t}
$$

where the drift and volatility of F are given by

$$
\begin{aligned}
\mu_{F} & =-\frac{\partial F}{\partial \tau}+\sum_{i=1}^{2}\left[\frac{\partial F}{\partial x_{i}} \kappa_{i}\left(\theta_{i}-x^{i}\right)+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{i 2}} \sigma_{i}^{2}\right] \\
\sigma_{F} & =\sum_{i=1}^{2} \frac{\partial F}{\partial x^{i}} \sigma_{i}
\end{aligned}
$$

Both m_{t} and F_{t} are Ito processes, so their product solves

$$
\begin{aligned}
d\left(m_{t} F_{t}\right)= & -r_{t} m_{t} F_{t} d t+m_{t} \mu_{t}^{F} d t-m_{t} \lambda_{t} \sigma_{t}^{F} d t \\
& -F_{t} m_{t} \lambda_{t} d B_{t}+m_{t} \sigma_{t}^{F} d B_{t}
\end{aligned}
$$

We use the Euler equation (19) and get

$$
\begin{align*}
0 & =-r_{t} m_{t} F_{t}+m_{t} \mu_{t}^{F}-m_{t} \lambda_{t} \sigma_{t}^{F} \tag{20}\\
F_{t} r_{t} & =\left(-\frac{\partial F}{\partial \tau}+\sum_{i=1}^{2}\left[\frac{\partial F}{\partial x^{i}} \kappa_{i}\left(\theta_{i}-x_{t}^{i}\right)+\frac{1}{2} \frac{\partial^{2} F}{\partial x^{i 2}} \sigma_{i}^{2}\right]\right)-\sum_{i=1}^{2} \frac{\partial F}{\partial x^{i}} \sigma_{i} \lambda_{t}^{i}
\end{align*}
$$

Again, guess the exponential-affine solution (16) and insert the expressions into (20), we get

$$
\begin{aligned}
x_{t}^{1}+x_{t}^{2}= & -A^{\prime}(\tau)-B_{1}^{\prime}(\tau) x_{t}^{1}-B_{2}^{\prime}(\tau) x_{t}^{2} \\
& +\sum_{i=1}^{2}\left[B_{i}(\tau) \kappa_{i}\left(\theta_{i}-x_{t}^{i}\right)+\frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2}\right] \\
& -\sum_{i=1}^{2} B_{i}(\tau) \sigma_{i}\left(\lambda_{0}^{i}+\lambda_{1}^{i} x_{t}^{i}\right) .
\end{aligned}
$$

Matching coefficients, we get the ordinary differential equations:

$$
\begin{aligned}
A^{\prime}(\tau) & =\sum_{i=1}^{2} B_{i}(\tau)\left(\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i}\right)+\frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2} \\
1 & =-B_{1}^{\prime}(\tau)-B_{1}(\tau)\left(\kappa_{1}+\sigma_{1} \lambda_{1}^{1}\right) \\
1 & =-B_{2}^{\prime}(\tau)-B_{2}(\tau)\left(\kappa_{2}+\sigma_{2} \lambda_{1}^{2}\right)
\end{aligned}
$$

From this expression, we can see that we get the coefficients (17a) with risk neutral parameters

$$
\begin{aligned}
\kappa_{i}^{*} & =\kappa_{i}+\sigma_{i} \lambda_{1}^{i} \\
\kappa_{i}^{*} \theta_{i}^{*} & =\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i} \Longrightarrow \theta_{i}^{*}=\frac{\kappa_{i} \theta_{i}-\sigma_{i} \lambda_{0}^{i}}{\kappa_{i}+\sigma_{i} \lambda_{1}^{i}}
\end{aligned}
$$

