Appendix

To derive the affine bond pricing formulas and yield curve equations, consider the case with prices of risk $\lambda_t = \begin{bmatrix} \lambda_t^1 & \lambda_t^2 \end{bmatrix}^\top$. (Note that equation (9) can be obtained from (10) by setting the prices of risk to zero.) There are two ways to derive thes formulas. First, we can construct a risk-neutral probability measure under which the risk-neutral pricing formula (7) holds. Second, we can start from the Euler equation $E[d(m_t F_t)] = 0$.

Risk-neutral probability

Under the risk-neutral probability measure, the process B^* which solves $dB_t^* = dB_t + \lambda_t dt$ is a Brownian motion. By solving for dB_t and inserting this expression into the AR(1) dynamics of the factors (6), we get

$$dx_t^i = \kappa_i \left(\theta_i - x_t^i\right) dt + \sigma_i (dB_t^{*i} - \lambda_t^i dt)$$
(11)

$$= \left(\kappa_i \theta_i - \kappa_i x_t^i - \sigma_i \lambda_0^i - \sigma_i \lambda_1^i x_t^i\right) dt + \sigma_i dB_t^{*i}$$
(12)

$$= \left(\kappa_i\theta_i - \sigma_i\lambda_0^i - (\kappa_i + \sigma_i\lambda_1^i)x_t^i\right)dt + \sigma_i dB_t^{*i}$$
(13)

$$= (\kappa_i + \sigma_i \lambda_1^i) \left(\frac{\kappa_i \theta_i - \sigma_i \lambda_0^i}{(\kappa_i + \sigma_i \lambda_1^i)} - x_t^i \right) dt + \sigma_i dB_t^{*i}$$
(14)

$$= \kappa_i^* \left(\theta_i^* - x_t^i\right) dt + \sigma_i dB_t^{*i}, \tag{15}$$

where

$$\kappa_i^* = \kappa_i + \sigma_i \lambda_1^i$$
$$\theta_i^* = \frac{\kappa_i \theta_i - \sigma_i \lambda_0^i}{\kappa_i + \sigma_i \lambda_1^i}$$

The price of the τ -period bond is equal to

$$P_t^{(\tau)} = E_t^* \left(\exp\left(-\int_t^{t+\tau} r_s ds \right) \right),$$

where the expectation operator E^* uses the risk-neutral probability measure. Since the vector $x = (x_1, x_2)^{\mathsf{T}}$ is Markov, this expectation is a function of the state today x_t . Thus, the bond price is a function

$$P_t^{(\tau)} = F\left(x_t, \tau\right)$$

of the state vector x_t and time-to-maturity τ . The Feynman-Kac formula says that F solves the partial differential equation

$$F_t r_t = -\frac{\partial F}{\partial \tau} + \sum_{i=1}^2 \left[\frac{\partial F}{\partial x^i} \kappa_i^* \left(\theta_i^* - x_t^i \right) + \frac{1}{2} \frac{\partial^2 F}{\partial x^{i2}} \sigma_i^2 \right]$$

with terminal condition F(x, 0) = 1.

We guess the solution

$$F(x_t, \tau) = \exp\left(A\left(\tau\right) + B\left(\tau\right) \cdot x_t\right) \tag{16}$$

which means that

$$\frac{\partial F}{\partial x^{i}} = B_{i}(\tau) F$$

$$\frac{\partial^{2} F}{\partial x^{i2}} = B_{i}(\tau)^{2} F$$

$$\frac{\partial F}{\partial \tau} = (A'(\tau) + B'(\tau) \cdot x_{t}) F$$

Insert these expressions into the partial differential equation and get

$$x_{t}^{1} + x_{t}^{2} = -A'(\tau) - B'_{1}(\tau) x_{t}^{1} - B'_{2}(\tau) x_{t}^{2} + \sum_{i=1}^{2} \left[B_{i}(\tau) \kappa_{i}^{*} \left(\theta_{i}^{*} - x_{t}^{i} \right) + \frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2} \right].$$

Matching coefficients results in

$$A'(\tau) = \sum_{i=1}^{2} B_i(\tau) \kappa_i^* \theta_i^* + \frac{1}{2} B_i(\tau)^2 \sigma_i^2$$

$$1 = -B'_1(\tau) - B_1(\tau) \kappa_1^*$$

$$1 = -B'_2(\tau) - B_2(\tau) \kappa_2^*.$$

The boundary conditions are

$$A(0) = 0$$

 $B(0) = 0_{2 \times 1}.$

The solution to these ODE's are

$$B_{1}(\tau) = \frac{(\exp(-\kappa_{1}^{*}\tau) - 1)}{\kappa_{1}^{*}}$$

$$B_{2}(\tau) = \frac{(\exp(-\kappa_{2}^{*}\tau) - 1)}{\kappa_{2}^{*}}.$$
(17a)

We can plug these solutions into the yield equation

$$y_{t}^{(\tau)} = -\frac{A(\tau)}{\tau} - \frac{B_{1}(\tau)}{\tau} x_{t}^{1} - \frac{B_{2}(\tau)}{\tau} x_{t}^{2}$$

$$= a^{NA}(\tau) + b_{1}^{NA}(\tau) x_{t}^{1} + b_{2}^{NA}(\tau) x_{t}^{2}$$
(18)

and get equations (9).

Euler equation approach

The Euler equation is

$$P_t^{(\tau)} = E_t \left[\frac{m_{t+\tau}}{m_t} \right]$$

and the instantaneous equation is

$$E\left[d\left(m_t F_t\right)\right] = 0. \tag{19}$$

The bond price is a function $F(x, \tau)$ and we can apply Ito's Lemma

$$dF = \mu_F dt + \sigma_F dB_t,$$

where the drift and volatility of F are given by

$$\mu_F = -\frac{\partial F}{\partial \tau} + \sum_{i=1}^2 \left[\frac{\partial F}{\partial x_i} \kappa_i \left(\theta_i - x^i \right) + \frac{1}{2} \frac{\partial^2 F}{\partial x^{i2}} \sigma_i^2 \right]$$

$$\sigma_F = \sum_{i=1}^2 \frac{\partial F}{\partial x^i} \sigma_i$$

Both m_t and F_t are Ito processes, so their product solves

$$d(m_t F_t) = -r_t m_t F_t dt + m_t \mu_t^F dt - m_t \lambda_t \sigma_t^F dt$$
$$-F_t m_t \lambda_t dB_t + m_t \sigma_t^F dB_t$$

We use the Euler equation (19) and get

$$0 = -r_t m_t F_t + m_t \mu_t^F - m_t \lambda_t \sigma_t^F$$

$$F_t r_t = \left(-\frac{\partial F}{\partial \tau} + \sum_{i=1}^2 \left[\frac{\partial F}{\partial x^i} \kappa_i \left(\theta_i - x_t^i \right) + \frac{1}{2} \frac{\partial^2 F}{\partial x^{i2}} \sigma_i^2 \right] \right) - \sum_{i=1}^2 \frac{\partial F}{\partial x^i} \sigma_i \lambda_t^i$$
(20)

Again, guess the exponential-affine solution (16) and insert the expressions into (20), we get

$$x_{t}^{1} + x_{t}^{2} = -A'(\tau) - B'_{1}(\tau) x_{t}^{1} - B'_{2}(\tau) x_{t}^{2} + \sum_{i=1}^{2} \left[B_{i}(\tau) \kappa_{i} \left(\theta_{i} - x_{t}^{i} \right) + \frac{1}{2} B_{i}(\tau)^{2} \sigma_{i}^{2} \right] - \sum_{i=1}^{2} B_{i}(\tau) \sigma_{i} \left(\lambda_{0}^{i} + \lambda_{1}^{i} x_{t}^{i} \right).$$

Matching coefficients, we get the ordinary differential equations:

$$A'(\tau) = \sum_{i=1}^{2} B_i(\tau) (\kappa_i \theta_i - \sigma_i \lambda_0^i) + \frac{1}{2} B_i(\tau)^2 \sigma_i^2$$

$$1 = -B'_1(\tau) - B_1(\tau) (\kappa_1 + \sigma_1 \lambda_1^1)$$

$$1 = -B'_2(\tau) - B_2(\tau) (\kappa_2 + \sigma_2 \lambda_1^2).$$

From this expression, we can see that we get the coefficients (17a) with risk neutral parameters

$$\kappa_i^* = \kappa_i + \sigma_i \lambda_1^i$$

$$\kappa_i^* \theta_i^* = \kappa_i \theta_i - \sigma_i \lambda_0^i \Longrightarrow \theta_i^* = \frac{\kappa_i \theta_i - \sigma_i \lambda_0^i}{\kappa_i + \sigma_i \lambda_1^i}.$$