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Abstract

We describe the joint dynamics of bond yields and macroeconomic variables in a Vector

Autoregression, where identifying restrictions are based on the absence of arbitrage. Using a

term structure model with inflation and economic growth factors, together with latent

variables, we investigate how macro variables affect bond prices and the dynamics of the yield

curve. We find that the forecasting performance of a VAR improves when no-arbitrage

restrictions are imposed and that models with macro factors forecast better than models with

only unobservable factors. Variance decompositions show that macro factors explain up to

85% of the variation in bond yields. Macro factors primarily explain movements at the short
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end and middle of the yield curve while unobservable factors still account for most of the

movement at the long end of the yield curve.
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1. Introduction

Describing the joint behavior of the yield curve and macroeconomic variables is
important for bond pricing, investment decisions and public policy. Many term
structure models have used latent factor models to explain term structure
movements, and although there are some interpretations to what these factors
mean, the factors are not given direct comparisons with macroeconomic variables.
For example, Pearson and Sun (1994)’s factors are labeled ‘‘short rate’’ and
‘‘inflation’’, but their estimation does not use inflation data. The terms ‘‘short rate’’
and ‘‘inflation’’ are just convenient names for the unobserved factors. Another
example is Litterman and Scheinkman (1991), who call their factors ‘‘level,’’ ‘‘slope’’
and ‘‘curvature’’. Similarly, Dai and Singleton (2000) use the words ‘‘level,’’ ‘‘slope’’
and ‘‘butterfly’’ to describe their factors. These labels stand for the effect the factors
have on the yield curve rather than describing the economic sources of the shocks.

In the absence of a workhorse general equilibrium model for asset pricing (see
Hansen and Jagannathan, 1991), factor models have the advantage that they only
impose no-arbitrage conditions and not all other conditions that characterize the
equilibrium in the economy. Most existing factor models of term structure are
unsatisfactory, however, because they do not model how yields directly respond to
macroeconomic variables.1 In contrast, empirical studies try to directly model the
relationships between bond yields and macro variables by using vector autore-
gressive (VAR) models. Studies like Estrella and Mishkin (1997) and Evans and
Marshall (1998) use VARs with yields of various maturities together with macro
variables. These studies infer the relationships between yield movements and shocks
in macro variables using impulse responses (IRs) and variance decomposition
techniques implied from the VAR. For example, Evans and Marshall (2001)
associate shocks to economic activity and price levels with level effects across the
yield curve. Another type of shock, which can be identified with various schemes,
comes from monetary policy.2
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1The exception is Piazzesi (2001), who develops a term structure model with interest-rate targeting by

the central bank. In the model, the central bank reacts to macroeconomic variables such as nonfarm

payroll employment.
2See, for example, Gali (1992), Sims and Zha (1995), Bernanke and Mihov (1998), Christiano, et al.

(1996), and Uhlig (2001). For a survey, see Christiano, et al. (1999).
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Existing macro VAR studies are characterized by three features. First, only
maturities whose yields which have been included in the VAR may have their
behavior directly inferred by the dynamics of the VAR. As an unrestricted VAR is
generally not a complete theory of the term structure, it says little about how yields
of maturities not included in the VAR may move. Second, the implied movements of
yields in relation to each other may not rule out arbitrage opportunities when the
cross-equation restrictions implied by this assumption are not imposed in the
estimation. Finally, unobservable variables cannot be included as all variables in
the VAR must be observable. The VAR approach, however, is very flexible, and the
implied impulse response functions (IRs) and variance decompositions give insights
into the relationships between macro-shocks and movements in the yield curve.

A related asset-pricing literature beginning with Sargent (1979) has tried to
estimate VAR systems of yields under the null of the Expectations Hypothesis (see
Bekaert and Hodrick, 2001). These systems do not contain macro variables, which is
the focus of our paper. Moreover, expected excess returns on US bonds vary over
time (see, for example, Campbell and Shiller, 1991). The term structure dynamics in
this paper are therefore given by a Gaussian term structure model with time-varying
risk premia, consistent with deviations from the Expectations Hypothesis (see Fisher,
1998; Duffee, 2002; Dai and Singleton, 2002).

We incorporate macro variables as factors in a term structure model by using a
factor representation for the pricing kernel, which prices all bonds in the economy.
This is a direct and tractable way of modelling how macro factors affect bond prices.
The pricing kernel is driven by shocks to both observed macro factors and
unobserved factors. Since macro factors are correlated with yields, incorporating
these factors may lead to models whose forecasts are better than models which omit
these factors. We investigate whether the purely unobservable factors of multi-factor
term structure models can be explained by macro variables, and we examine how the
latent factors change when macro variables are incorporated into such models.

Our methodology gives us several advantages over existing empirical VAR
approaches. First, it allows us to characterize the behavior of the entire yield curve in
response to macro shocks rather than just the yields included in the VAR. Second, a
direct comparison of macro variables with latent yield factors can be made. Third,
variance decompositions and other methods can estimate the proportion of term
structure movements attributable to observable macro shocks, and other latent
variables. Finally, our approach retains the tractability of the VAR approaches
because we estimate a VAR subject to nonlinear no-arbitrage restrictions.

Our term structure model is Gaussian, so it is a VAR model, and IRs and variance
decompositions can be easily computed. Formally, our model is a special case of
discrete-time versions of the affine class introduced by Duffie and Kan (1996), where
bond prices are exponential affine functions of underlying state variables. In our
model, however, some of the state variables are observed macroeconomic aggregates.
With Gaussian processes, the affine model reduces to a VAR with cross-equation
restrictions. Our set-up accommodates lags in the driving factors and allows us to
compute variance decompositions where we can attribute the proportion of
movements in the yield curve to observable and unobservable factors. We can plot
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IRs of shocks to various factors on any yield, since the no-arbitrage model gives us
bond prices for all maturities.

We obtain our measures of inflation and real activity by extracting principal
components of two groups of variables that are selected to represent measures of
price changes and economic growth. These factors are then augmented by latent
variables. As term structure studies have suggested up to three latent factors as
appropriate to capture most salient features of the yield curve, we estimate models
with three latent factors in addition to the macro variables. Our main model has
three correlated unobservable factors, together with the two macro factors (inflation
and real economic activity).

Imposing no-arbitrage restrictions improves out-of-sample forecasts from a VAR.
Forecasts can be further improved by incorporating macro factors into models with
latent variables. We show that a significant part of the latent factors implied by
traditional models with only latent yield variables can be attributed to macro
variables. In particular, ‘‘slope’’ and ‘‘curvature’’ factors can be related to macro
factors, while the ‘‘level’’ factor survives largely intact when macro variables are
incorporated.

We find that macro factors explain a significant amount of the variation in bond
yields. Macro factors explain up to 85% of the forecast variance for long forecast
horizons at short and medium maturities of the yield curve. The proportion of the
forecast variance of yields attributable to macro factors decreases at longer yields. At
the long end of the yield curve, 60% of the forecast variance is attributable to macro
factors at a 1-month forecast horizon, while at very long forecast horizons, over 60%
of the variance is attributable to unobservable factors.

The paper is organized as follows. Section 2 summarizes the data. Section 3
motivates an affine equation for the short rate, which can be interpreted as a Taylor
(1993) regression of the short rate on macro factors and an ‘unexplained’ orthogonal
component. Section 4 presents the general model, describes the specific parameter-
ization of the model and discusses the estimation strategy. We present our estimation
results in Section 5, and discuss the implied IRs, variance decompositions and
forecasting results. Section 6 concludes.

2. Data

2.1. Yield data

We use data on zero coupon bond yields of maturities 1, 3, 12, 36 and 60 months
from June 1952 to December 2000. The bond yields (12, 36 and 60 months) are from
the Fama CRSP zero coupon files, while the shorter maturity rates (1 and 3 months)
are from the Fama CRSP Treasury Bill files. All bond yields are continuously
compounded. Fig. 1 plots some of these yields in the upper graph and Table 1
presents some sample statistics. The table shows that our data are characterized by
some standard stylized facts. The average postwar yield curve is upward sloping;
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standard deviations of yields generally decrease with maturity; and yields are highly
autocorrelated, with increasing autocorrelation at longer maturities.

The yield levels show mild excess kurtosis at short maturities which decreases with
maturity, and positive skewness at all maturities. Excess kurtosis is, however, more
pronounced for first-differenced yields (for example, 19.44 for the 1-month yield).
Although the distribution of yields in the 1990s seems to exhibit Gaussian tails, the
evidence for the long series of monthly postwar yields rejects a normal distribution.
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Fig. 1. Bond yields and macro principal components. The top panel shows a plot of (annualized) monthly

ZCB yields of maturity 1 month, 12 months and 60 months. The bottom panel plots the two macro factors

representing inflation and real activity. The sample period is 1952:06 to 2000:12.
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For our purposes, the Gaussian assumption made in later sections is a sufficient first
approximation to the dynamics of the yield curve, as we are mainly interested in the
joint dynamics of yields and macroeconomic variables, rather than modeling yield
heteroskedasticity. The Gaussian model we present in Section 4 can be extended to
incorporate heteroskedastic dynamics parameterized by discretized square-root
processes.

An important stylized fact is that yields of near maturity are extremely
correlated—the correlation between the 36-month and 60-month yield is 99%. In
our estimations we use all five yields to estimate our models, but we specify that some
of the yields are measured with error. We choose the 1, 12 and 60-month yields to be
measured without error to represent the short, medium and long ends of the yield
curve in our models with 3 unknown factors. (The 3-month yield has a 99%
correlation with the 12-month yield, and the 36-month yield has a 99% correlation
with the 60-month yield.)

2.2. Macro variables

We use macro variables that can be sorted in two groups. The first group consists
of various inflation measures which are based on the CPI, the PPI of finished goods,
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Table 1

Summary statistics of data

Central moments Autocorrelations

Mean Stdev Skew Kurt Lag 1 Lag 2 Lag 3

1 mth 5.1316 2.7399 1.0756 4.6425 0.9716 0.9453 0.9323

3 mth 5.4815 2.8550 1.0704 4.5543 0.9815 0.9606 0.9419

12 mth 5.8849 2.8445 0.8523 3.8856 0.9824 0.9626 0.9457

36 mth 6.2241 2.7643 0.7424 3.5090 0.9875 0.9739 0.9620

60 mth 6.4015 2.7264 0.6838 3.2719 0.9892 0.9782 0.9687

CPI 3.8612 2.8733 1.2709 4.3655 0.9931 0.9847 0.9738

PCOM 0.9425 11.2974 1.0352 6.0273 0.9684 0.9162 0.8600

PPI 3.0590 3.6325 1.4436 4.9218 0.9863 0.9705 0.9521

HELP 66.7517 22.0257 �0.1490 1.8665 0.9944 0.9900 0.9830

EMPLOY 1.6594 1.5282 �0.4690 3.2534 0.9378 0.8954 0.8410

IP 3.4717 5.3697 �0.5578 3.6592 0.9599 0.8889 0.7972

UE 5.7344 1.5650 0.4924 3.2413 0.9906 0.9777 0.9595

The 1, 3, 12, 36 and 60 month yields are annual zero coupon bond yields from the Fama–Bliss CRSP bond

files. The inflation measures CPI, PCOM and PPI refer to CPI inflation, spot market commodity price

inflation, and PPI (Finished Goods) inflation respectively. We calculate the inflation measure at time t

using logðPt=Pt�12Þ where Pt is the inflation index. The real activity measures HELP, EMPLOY, IP and

UE refer to the Index of Help Wanted Advertising in Newspapers, the growth rate of employment, the

growth rate in industrial production and the unemployment rate respectively. The growth rate in

employment and industrial production are calculated using logðIt=It�12Þ where It is the employment or

industrial production index. For the macro variables, the sample period is 1952:01 to 2000:12. For the

bond yields, the sample period is 1952:06 to 2000:12.
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and spot market commodity prices (PCOM). The second group contains variables
that capture real activity: the index of Help Wanted Advertising in Newspapers
(HELP), unemployment (UE), the growth rate of employment (EMPLOY) and the
growth rate of industrial production (IP). This list of variables includes most
variables that have been used in monthly VARs in the macro literature. Among these
variables, PCOM and HELP are traditionally thought of as leading indicators of
inflation and real activity, respectively. All growth rates (including inflation) are
measured as the difference in logs of the index at time t and t � 12; t in months.

To reduce the dimensionality of the system, we extract the first principal
component of each group of variables separately. That is, we extract the first
principal component from the inflation measures group, and we extract the first
principal component from the real activity measures group. This leaves us with two
variables which we call ‘‘inflation’’ and ‘‘real activity’’. More precisely, we first
normalize each series separately to have zero mean and unit variance. We then stack
the three (four) variables related to inflation (real activity) into a vector Z1

t (Z2
t ). For

each group i; the vector Zi
t can be represented as

Zi
t ¼ Cf o;i

t þ ei
t; ð1Þ

where Z1
t ¼ ðCPIt PPIt PCOMtÞ for the inflation group or Z2

t ¼
ðHELPt UEt EMPLOYt IPtÞ for the real activity group. The error term ei

t satisfies
Eðei

tÞ ¼ 0 and varðei
tÞ ¼ G; where G is diagonal. The matrices C and G are either 3� 1

or 4� 1 for the inflation group and the real activity group respectively. The extracted
macro factor f o;i

t inherits the zero mean from Zi
t ðEðf o;i

t Þ ¼ 0Þ and like any principal
component has unit variance ðvarðf o;i

t Þ ¼ 1Þ:
Table 2 shows the loadings of the first three (four) principal components, and the

factor loadings for using only one principal component to explain the variation in
each group. Over 70% (50%) of the variance of nominal variables (real variables) is
explained by just the first principal component of the group. The first principal
component of the inflation measures loads negatively on CPI, PPI, and PCOM.
Since negative shocks to this variable represent positive shocks to inflation, we
multiply it by �1 so that we can interpret it as an ‘‘inflation’’ factor. The first
principal component of real activity measures loads negatively on HELP, EMPLOY,
and IP and positively on UE. Again, we multiply this variable by �1 to interpret
positive shocks to this factor as positive shocks to economic growth. We call this
factor ‘‘real activity’’. We plot these macro factors in the bottom plot in Fig. 1.

To obtain some intuition about these constructed measures of inflation and real
activity, Table 3 lists the correlation between the principal components and the
original macro series in each group. These correlations show that the inflation factor
is most closely correlated with PPI and CPI (97% and 93% respectively) and less
correlated with commodity prices (59%). The real activity factor is most closely
correlated with employment growth (91%) and industrial production (87%).

The unconditional correlation between the two macro factors is tiny, one tenth of
1%, as reported in Table 3. Although the unconditional correlation is weak, the
lower plot in Fig. 1 of the macro factors indicates that some conditional correlations
might be important. In fact, when we estimate a VAR for the macro factors, the

ARTICLE IN PRESS
A. Ang, M. Piazzesi / Journal of Monetary Economics 50 (2003) 745–787 751



conditional correlation is significant. Specifically, we estimate a bivariate process
with 12 lags for the macro factors f o

t ¼ ðf o;1
t f o;2

t Þ0:

f o
t ¼ r1f

o
t�1 þ?þ r12f o

t�12 þ Ouo
t ; ð2Þ

where r1 to r12 and O are 2� 2 matrices with uo
tB IID N(0,I). The estimation results

(not reported) show that the coefficient on the seventh lag of real activity in the
inflation equation is significant and the coefficient on the first two lags of inflation in
the equation for real activity are significant. This can also be seen from the IRs from
a VAR(12) fitted to the macro factors, plotted in Fig. 2.3 The response of inflation to
shocks in real activity is positive and hump-shaped, while the response of real
activity to inflation shocks is initially weakly positive, and then turns slightly
negative before dying out.
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Table 2

Principal component analysis

Principal components: inflation

1st 2nd 3rd

CPI �0.6343 �0.3674 0.6802

PCOM �0.4031 0.9080 0.1145

PPI �0.6597 �0.2015 �0.7240

% variance

explained 0.7143 0.9775 1.0000

Principal components: real activity

1st 2nd 3rd 4th

HELP �0.3204 �0.7365 �0.5300 0.2719

UE 0.3597 �0.6283 0.6871 0.0612

EMPLOY �0.6330 �0.1648 0.2444 �0.7158

IP �0.6060 0.1886 0.4327 0.6403

% variance

explained 0.5202 0.7946 0.9518 1.0000

We take the three (four) macro variables representing inflation (real activity) and normalize them to zero

mean and unit variance. For each group i; the normalized data Zi
t follows the 1 factor model:

Zi
t ¼ Cf o;i

t þ ei
t;

where C is the factor loading vector, Eðf o;i
t Þ ¼ 0; covðf o;i

t Þ ¼ I ; Eðei
tÞ ¼ 0; and covðei

tÞ ¼ G; where G is a

diagonal matrix. The columns titled ‘‘principal components’’ list the principal components corresponding

to the first to smallest eigenvalue. The % variance explained for the nth principal component gives the

cumulative proportion of the variance explained by the first up to the nth eigenvalue. IP refers to the

growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation and PPI to PPI

inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the unemployment

rate, EMPLOY to the growth in employment. The sample period is 1952:01 to 2000:12

3The IRs are computed using a Cholesky orthogonalization. It makes little difference reversing the

ordering of the variables.
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Table 3

Selected correlations

CPI PCOM PPI

Inflation 0.9286 0.5901 0.9657

HELP UE EMPLOY IP

Real activity 0.4622 �0.5188 0.9131 0.8742

Inflation Real activity 1 mth 12 mth

Real activity 0.0017

1 mth 0.6666 0.0627

12 mth 0.6484 0.0510 0.9771

60 mth 0.5614 �0.0270 0.9191 0.9639

The table reports selected correlations for the inflation factor extracted from the first principal component

of PCI, PCOM and PPI, the real activity factor extracted from the first principal component of HELP,

UE, EMPLOY and IP, and the 1, 12 and 60 month bond yields, which are used in the estimation. IP refers

to the growth in industrial production, CPI to CPI inflation, PCOM to commodity price inflation, PPI to

PPI inflation, HELP refers to the Index of Help Wanted Advertising in Newspapers, UE to the

unemployment rate, EMPLOY to the growth in employment. The sample period is 1952:06 to 2000:12.
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Fig. 2. Impulse responses from the VAR(12) on macro factors. We fit a VAR(12) to the inflation and real

activity macro factors, where inflation is ordered first. The plot shows the impulse responses to a Cholesky

one standard deviation innovation to each variable. Time is measured in months on the x-axis.
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Some preliminary information about the relationship between the macro factors
and the yield curve can be gained from the correlation matrix in Table 3. The
inflation factor is highly correlated with yields. This correlation is highest for short
yields (67% correlation between inflation and the 1-month yield), and somewhat
smaller for long yields (56% correlation between inflation and the 60-month yield).
Real activity is only weakly correlated with yields. This correlation does not exceed
6% for any maturity. This weak relationship is not representative for all measures of
real activity. For example, the correlation of HELP and 1-month yield is 63%, but
our real activity factor loads mostly on EMPLOY and IP. Hence, at least for
measures of economic activity, it may matter whether the particular variable in
question is a leading indicator of business cycles. This implies that in our analysis we
may potentially understate the impact of real activity on the yield curve by the
construction of our real activity factor.

3. A first look at short rate dynamics

3.1. Policy rules and short rate dynamics in affine models

According to the policy rule recommended by Taylor (1993), movements in the
short rate rt are traced to movements in contemporaneous macro variables f o

t and a
component which is not explained by macro variables, an orthogonal shock vt:

rt ¼ a0 þ a0
1f o

t þ vt: ð3Þ

The shock vt may be interpreted as a monetary policy shock following identifying
assumptions made in Christiano et al. (1996). Taylor’s original specification uses two
macro variables as factors in f o

t : The first variable is an annual inflation rate, similar
to our inflation factor, and the second variable is the output gap. GDP data are only
available at a quarterly frequency, while our real activity factor is constructed using
various monthly series such as EMPLOY and IP.

Another type of policy rule that has been proposed by Clarida et al. (2000) is a
forward-looking version of the Taylor rule. According to this rule, the central bank
reacts to expected inflation and the expected output gap. This implies that any
variable that forecasts inflation or output will enter the right-hand side of (3). In the
hope of capturing the information underlying macro forecasts, we add lagged macro
variables as arguments in Eq. (3).4 This is done by writing X o

t ¼ ðf o0

t f o0

t�1;y; f o0

t�p�1Þ
0

for some lag length p and including the lags as arguments in the policy rule:

rt ¼ b0 þ b0
1X o

t þ vt: ð4Þ
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4Clarida et al. (2000) implement their forward-looking rule by redefining the shock term vt to include

forecast errors f o
tþ1 � Etðf o

tþ1Þ: This allows them to use future values of macro variables f o
tþ1 as arguments

on the right-hand side of (3). We could in principle adopt the same approach by including these forecast

errors into some latent variables, but this would mean that we would have to drop the assumption that

latent and macro variables are orthogonal. Our focus is assigning as much explanatory power to macro

factors as possible, so we specify the latent variables as orthogonal.
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Affine term structure models (Duffie and Kan, 1996) are based on a short rate
equation just like Eq. (3) together with an assumption on risk premia. The difference
between the short rate dynamics in affine term structure models and the Taylor rule
is that in affine term structure models the short rate is specified to be an affine
(constant plus linear term) function of underlying latent factors X u

t :

rt ¼ c0 þ c01X u
t : ð5Þ

The unobserved factors themselves follow affine processes, of which a VAR is a
special Gaussian case. The prices of bonds of longer maturities are explicit
exponential affine functions (dependent upon parameters) of X u

t if pricing is risk
neutral. In the more general case that we consider, the risk adjustment needs to be
specified carefully to obtain similar closed-form solutions for bond yields (this is
explained in the next section).

Eqs. (3)–(5) are very similar: they all specify the short rate as affine functions of
factors. We can combine them by writing:

rt ¼ d0 þ d011X o
t þ d012X u

t : ð6Þ

The approach we take in this paper is to specify the latent factors X u
t as orthogonal

to the macro factors X o
t : In this case, the short rate dynamics of the term structure

model can be interpreted as a version of the Taylor rule with the errors vt ¼ d012X u
t

being unobserved factors. We use the restrictions from no-arbitrage to separately
identify the individual latent factors.

3.2. Estimating the short rate dynamics

The coefficients on inflation and real activity in the short rate equation (6) can be
estimated by ordinary least squares because of the independence assumption on X o

t

and X u
t : Table 4 reports the estimation results from two regressions: the original

Taylor rule (3) and the forward-looking version of the Taylor rule (4), which
incorporates lags of the macro variables. These regression results give a preliminary
view as to how much of the yield movements macro factors may explain with respect
to the unobservable variables. The R2 of the estimated Taylor rule is 45%, while the
estimated forward-looking version of the Taylor raises the R2 to 53%. These
numbers suggest that macro factors should have explanatory power for yield curve
movements.

The behavior of the residuals, however, provides some intuition about what to
expect from a model with unobservable factors. First, the residuals from both
versions of the Taylor rule are highly autocorrelated. The autocorrelation of
residuals from the short rate equation with only contemporaneous macro factors is
0.945, while the autocorrelation from the equation that includes lagged macro
factors is slightly lower, 0.937. The short rate itself has an autocorrelation of 0.972,
indicating that macro variables do explain some of the persistent shocks to the short
rate. Second, unless a variable which mimics the short rate itself is placed on the
RHS of Eq. (3), the residuals will follow the same broad pattern as the short rate.
This can be seen from Fig. 3, which plots the residuals together with the de-meaned
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short rate. This suggests that the ‘‘level’’ factor found by earliest term structure
studies (see Vasicek, 1977), may still reappear when macro variables are added in a
linear form to the short rate in a term structure model.

The coefficients on inflation and real activity in the simple Taylor rule are both
significant and positive. This is consistent with previous estimates of the Taylor rule
in the literature, and also the parameter values proposed by Taylor (1993)’s original
specification. However, these coefficients are highly sensitive to the sample period
selected, as structural changes (or regime shifts) cause the coefficients in (6) to be
time-varying (see Ang and Bekaert, 2002).

The sign of the Taylor-rule coefficient on real activity crucially depends on the
inclusion of the two NBER recessions in 1954 and 1958. This is evident from the
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Table 4

The dependence of the short rate on macro variables

Coeff Constant Inflation Real activity Adj R2

Panel A: y1t on constant, inflation and real activity

t 0.4250 0.1535 0.0143 0.4523

(0.0070)nn (0.0070)nn (0.0070)n

Panel B: y1t on constant, 12 lags of inflation and real activity

t 0.4296 0.0037 0.0398 0.5337

(0.0065)nn (0.0534) (0.0306)

t � 1 0.0659 0.0150

(0.0828) (0.0452)

t � 2 �0.0435 0.0105

(0.0830) (0.0450)

t � 3 0.0062 �0.0054

(0.0833) (0.0444)

t � 4 0.0233 �0.0172

(0.0828) (0.0441)

t � 5 �0.0088 0.0145

(0.0825) (0.0442)

t � 6 �0.0245 �0.0213

(0.0825) (0.0438)

t � 7 0.0175 0.0062

(0.0821) (0.0435)

t � 8 0.0080 0.0196

(0.0825) (0.0438)

t � 9 �0.0049 0.0121

(0.0821) (0.0441)

t � 10 �0.0079 0.0005

(0.0820) (0.0439)

t � 11 0.1427 �0.0069

(0.0522)nn (0.0299)

In Panel A we regress the 1 month yield y1t on a constant, the inflation factor and the real activity factor. In

Panel B we regress y1t on a constant, inflation, real activity and 11 lags of inflation and real activity.

We report OLS standard errors in parenthesis. Standard errors significant at the 5% (1%) level are

denoted * ð* * Þ: Sample period is 1952:06 to 2000:12.
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plots of real activity and the 1-month yield in Fig. 1. Both these recessions go hand in
hand with decreases in the 1-month rate and make the Taylor rule coefficient on
output positive. If we start the estimation of the Taylor rule later, say in 1960 or
1970, the coefficient on real activity is negative. Only if we start the estimation after
the monetary experiment of 1982 is the coefficient positive. Interestingly enough, the
coefficient on output is not significant for the whole post-1982 period, but it is
significant for the Greenspan years (post-1987). The large and significantly positive
coefficient on inflation is much more robust across different sample periods.
However, we assume that during our sample period, the Taylor rule relationships are
stable, just as in Gali (1992), Christiano et al. (1996), and Cochrane (1998).

In contrast to the simple Taylor rule estimation, Table 4 reports that most
parameter estimates for the forward-looking version of the Taylor rule are not
significant, except for the 11th lag on inflation. This suggests that using many lags in
the Taylor rule may lead to an over-parameterized and potentially poorly behaved
system. However, a likelihood ratio tests rejects the null of the simple Taylor rule
(with only contemporaneous inflation and real activity) in favor of the alternative of
the Taylor rule with lags with a p-value less than 1%. On the other hand, the optimal
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Fig. 3. Residuals from the Taylor rule regressions. We show the residuals from the Taylor rule regressions,

together with the de-meaned short rate (1 month yield). We show the residuals from the Taylor rule with

no lags, which have 0.9458 autocorrelation, and the residuals from the Taylor rule with 11 lags, which have

0.9370 autocorrelation. For comparison, the autocorrelation of the short rate is 0.9716.
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Schwartz (BIC) choice is the simple Taylor rule. We present models with both
specifications.

4. A term structure model with macro factors

Based on the macro dynamics (2) and the short rate equation (6), we now develop
a discrete-time term structure model. The model combines observable macroeco-
nomic variables with unobservable or latent factors. Risk premia in our set-up are
time-varying, because they are taken to be affine in potentially all of the underlying
factors. Section 4.1 presents the general model and Section 4.2 parameterizes the
latent variables and risk premia. We outline our estimation procedure in Section 4.3.
Section 4.4 summarizes our parameterization.

4.1. General setup

4.1.1. State dynamics

Suppose there are K1 observable macro variables f o
t and K2 latent variables f u

t :
The vector Ft ¼ ðf o0

t ; f u0

t Þ0 follows a Gaussian VAR(p) process:

Ft ¼ F0 þ F1Ft�1 þ?þ FpFt�p þ yut ð7Þ

with utB IID Nð0; IÞ: The latent factors f u
t are AR(1) processes, so that we set the

coefficients F2yFp in Eq. (7) corresponding to X u
t ¼ f u

t equal to zero. The state of
the economy is then described by a K-dimensional vector of state variables Xt; where
K ¼ K1 � p þ K2: We partition the state vector Xt into K1 � p observable variables X o

t

and K2 unobservable variables X u
t : The observable vector contains current and past

levels of macroeconomic variables X o
t ¼ ðf o0

t ; f o0

t�1;y; f o0

t�p�1Þ
0; while X u

t ¼ f u
t only

contains contemporaneous latent yield factors. We take the bivariate VAR(12) in
Eq. (2) as the process for inflation and real activity so set p ¼ 12:

We write the dynamics of Xt ¼ ðX o0

t X u0

t Þ0 in compact form as a first order
Gaussian VAR:

Xt ¼ mþ FXt�1 þ Set ð8Þ

with et ¼ ðuo0

t ; 0;y; 0; uu0

t Þ
0; where uo

t (uu
t ) are the shocks to the observable

(unobservable) factors. In the first order companion form, there are blocks of zeros
in the K � K matrix S to accommodate higher order lags in Ft:

4.1.2. Short rate equation

The one-period short rate rt is assumed to be an affine function of all state
variables:

rt ¼ d0 þ d01Xt: ð9Þ

We work with monthly data, so we use the one-month yield y1
t as an observable short

rate rt: By constraining the coefficient d1 to depend only on contemporaneous factor
values, we obtain the Taylor rule (3). We call this the ‘‘Macro Model.’’ We also
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consider the case where d1 is unconstrained, which correspond to the forward-
looking Taylor rule incorporating lags. We refer to this formulation as the ‘‘Macro
Lag Model,’’ because it uses lags of macro variables in the short rate equation.

4.1.3. Pricing kernel

To develop the term structure model, we use the assumption of no-arbitrage
(Harrison and Kreps, 1979) to guarantee the existence of an equivalent martingale
measure (or risk-neutral measure) Q such that the price of any asset Vt that does not
pay any dividends at time t þ 1 satisfies Vt ¼ E

Q
t ðexpð�rtÞVtþ1Þ; where the

expectation is taken under the measure Q: The Radon–Nikodym derivative (which
converts the risk-neutral measure to the data-generating measure) is denoted by xtþ1:
Thus, for any t þ 1 random variable Ztþ1 we have that E

Q
t ðZtþ1Þ ¼ Etðxtþ1Ztþ1Þ=xt:

The assumption of no-arbitrage, or equivalently the assumption of the existence of
xtþ1; allows us to price any asset in the economy, in particular all nominal bond
prices.

Assume that xtþ1 follows the log-normal process:

xtþ1 ¼ xt exp �
1

2
l0tlt � l0tetþ1

� �
; ð10Þ

where lt are the time-varying the market prices of risk associated with the sources of
uncertainty et: We parameterize lt as an affine process:5

lt ¼ l0 þ l1Xt ð11Þ

for a K-dimensional vector l0 and a K � K matrix l1: Eqs. (10) and (11) relate
shocks in the underlying state variables (macro and latent factors) to xtþ1 and
therefore determine how factor shocks affect all yields. Parameters in l0 and l1 that
correspond to lagged macro variables are set to zero. We do this for parsimony while
ensuring that both the macro and unobservable factors are priced. This means that
the K-vector l0 contains a total of K1 þ K2 free parameters: the upper K1 � 1 row
and the bottom K2 � 1 row. The matrix l1 contains ðK1 þ K2Þ

2 free parameters: the
upper-left K1 � K1 corner together with the upper-right K1 � K2 corner, and the
lower-left K2 � K1 corner together with the lower-right K2 � K2 corner.

We define the pricing kernel mtþ1 as

mtþ1 ¼ expð�rtÞxtþ1=xt: ð12Þ

Substituting rt ¼ d0 þ d01Xt we have

mtþ1 ¼ exp �
1

2
l0tlt � d0 � d01Xt � l0tetþ1

� �
: ð13Þ

4.1.4. Bond prices

We take Eq. (13) to be a nominal pricing kernel which prices all nominal assets in
the economy. This means that the total gross return process Rtþ1 of any nominal
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(1992), Fisher (1998), Liu (1999), Duffee (2002), and Dai and Singleton (2002), among many others.
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asset satisfies

Etðmtþ1Rtþ1Þ ¼ 1: ð14Þ

If pn
t represents the price of an n-period zero coupon bond, then Eq. (14) allows bond

prices to be computed recursively by

pnþ1
t ¼ Etðmtþ1p

n
tþ1Þ: ð15Þ

The state dynamics of Xt (Eq. (8)) together with the dynamics of the short rate rt

(Eq. (9)) and the Radon–Nikodym derivative (Eq. (10)) form a discrete-time
Gaussian K-factor model with K1 � p observable factors and K2 unobservable
factors, where p is the number of lags in the autoregressive representation of
the observable factors. It falls within the affine class of term structure models
because bond prices are exponential affine functions of the state variables. More
precisely, bond prices are given by

pn
t ¼ expð %An þ %B0

nXtÞ; ð16Þ

where the coefficients %An and %Bn follow the difference equations:

%Anþ1 ¼ %An þ %B0
nðm� Sl0Þ þ

1

2
%B0

nSS
0 %Bn � d0;

%B0
nþ1 ¼ %B0

nðf� Sl1Þ � d01 ð17Þ

with %A1 ¼ �d0 and %B1 ¼ �d1: These difference equations can be derived by
induction using Eq. (15), and details are provided in the appendices.6

The continuously compounded yield yn
t on an n-period zero coupon bond is

given by

yn
t ¼ �

log pn
t

n

¼An þ B0
nXt; ð18Þ

where An ¼ � %An=n and Bn ¼ � %Bn=n:Note that yields are affine functions of the state
Xt; so that Eq. (18) can be interpreted as being the observation equation of a state
space system. Additional observation equations come from the observable variables
X o

t : Most examples of discrete-time affine models have not incorporated lagged state
variables. However, by treating the lagged variables as state variables in Xt; the affine
form is still maintained. Despite time-varying risk premia, our system is still
Gaussian, and IRs, variance decompositions and other techniques can be handled as
easily as an unrestricted VAR.

4.2. Choice of parameterization

4.2.1. Latent variables

Empirical studies have concluded that three unobserved factors explain much of
yield dynamics (see Knez et al., 1994). To compare models with only latent variables
with models incorporating both latent and macro factors we use three unobservable
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factors. Hence our most comprehensive model consists of two macro ðK1 ¼ 2Þ and
three latent factors ðK2 ¼ 3Þ:

Since there are unobservable variables present, normalizations can be made that
give observationally equivalent systems. The idea behind these normalizations in a
VAR setting is that affine transformations and rotations of the unobservable factors
lead to observationally equivalent yields. These normalizations are discussed in Dai
and Singleton (2000). We estimate the most general parameterization for the
unobserved variables in this paper.

We estimate the following system for the unobservable factors:

f u
t ¼ rf u

t�1 þ uu
t ; ð19Þ

with 3-dimensional shock vector uu
tBIID Nð0; IÞ and a lower-triangular 3� 3

companion matrix r: This is the most general identified representation for a
Gaussian specification. The unit variance of uu

t implies that the lower-right corner
3� 3 matrix in y of Eq. (7) and in S of Eq. (8) is just equal to var½uu

t 
 ¼ I : A multi-
factor Vasicek (1977) model with correlated unobservable factors consists of (19), an
affine short rate equation (5), and the assumption that l1 ¼ 0: In a Vasicek model,
specifying the companion form and holding fixed the covariances is equivalent to
holding the companion form fixed and specifying the covariances. Numerous papers
in the term structure literature have used independent factors as a first-cut modeling
approach, including Longstaff and Schwartz (1992) and Chen and Scott (1993). At
the estimated parameters, however, the latent factors usually turn out to violate the
independence assumption. We therefore estimate a correlated latent factor model to
give the latent variables a fair chance to explain the yield curve by themselves,
without the inclusion of macro variables.

We impose independence between latent and macro factors, so that the upper-
right 24� 3 corner and the lower-left 3� 24 corner of F and S in the compact form
in (8) contain only zeros. This approach to including observed macro factors in a
pricing kernel specifies all uncertainties arising in the latent factors as orthogonal to
the macro variables. This independence assumption has two main drawbacks. First,
it contradicts empirical evidence that the term structure predicts movements in
macro economic activity (see Harvey, 1988; Estrella and Hardouvelis, 1991). Second,
monetary policy has no impact on future inflation or real activity. In other words,
the Fed is conducting monetary policy using the Taylor rule in an environment
where policy has no effects on the variables to which the Fed is responding.
Extensions of this model can be done by freeing up the companion matrix to allow
feedback (so F does not contain zero corner blocks), and looking at contempora-
neous correlations of macro and latent factors (y0 does not contain zero corner
blocks). We leave these extensions to future research.

4.2.2. Risk premia

The data-generating and the risk neutral measures coincide if lt ¼ 0 for all t: This
case is usually called the ‘‘Local Expectations Hypothesis,’’ which differs from the
traditional Expectations Hypothesis by Jensen inequality terms (see Cochrane, 2001,
Chapter 19). Macro models, such as Fuhrer and Moore (1995), usually impose the
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Expectations Hypothesis to infer long term yield dynamics from short rates. The
dynamics of the term structure under the data-generating measure depend on the risk
premia parameters l0 and l1 in Eq. (11). A non-zero vector l0 affects the long-run
mean of yields because this parameter affects the constant term in the yield equation
(18). A non-zero matrix l1 affects the time-variation of risk-premia, since it affects
the slope coefficients in the yield equation (18). In a Vasicek (1977) model l0 is non-
zero and l1 is zero, which allows the average yield curve to be upward sloping, but
does not allow risk premia to be time-varying.

The number of parameters in l to estimate is very large: l0 has K1 þ K2 ¼ 5 and l1
has ðK1 þ K2Þ

2 ¼ 25 parameters in the case of the models with macro variables. To
avoid over-fitting, we fix some of these parameters. In particular, we specify the l1
matrix to be block-diagonal, with zero restrictions on the upper-right 2� 3 and
lower-left 3� 2 corner blocks. Time variation in the compensation for shocks to
latent variables is thus only driven by the latent variables themselves. The analogous
argument holds for the compensation for macro shocks. This parameterization
assumption is in the spirit of the orthogonalization of macro and latent variables.

To summarize, we estimate 5 parameters in l0 and 4þ 9 parameters in l1: The
parameters in l0 correspond to the current macro variables and latent variables.
Similarly, the parameters in l1 are contained in two non-zero matrices on the
diagonal: an upper-left 2� 2 matrix for current macro variables and a lower-right
3� 3 matrix for the latent variables.

4.3. Estimation method

To estimate the model, we transform a system of yields and observables ðY 0
t ;X

o0

t Þ
into a system of observables and unobservables Xt ¼ ðX o0

t ;X u0

t Þ: The yields
themselves are analytical functions of the state variables Xt; which allow us to infer
the unobservable factors from the yields. We estimate using maximum likelihood,
and derive the likelihood function in the appendices. In traditional VAR approaches,
yields and macro variables are used directly as inputs into a VAR after specifying the
autoregressive lag length. The likelihood for the VAR is a function of ðY 0

t ;X
o0

t Þ; and
inferences about yield curve movements and macro shocks can be drawn from the
parameters in the companion form coefficients and covariance terms. Our approach
amounts to estimating a VAR of ðY 0

t ;X
o0

t Þ; with assumptions that identify an
unobservable component orthogonal to macro shocks and guarantee no arbitrage.

We use a two-step consistent estimation procedure. In the first step, we estimate
the macro dynamics (2) and the coefficients d0 and d11 of the macro factors in the
short rate dynamics equation (6). In a second step, we estimate the remaining
parameters of the term structure model holding all pre-estimated parameters fixed.
This two-step procedure avoids the difficulties associated with estimating a model
with many factors using maximum likelihood when yields are highly persistent.7 The
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procedure also avoids estimating a very large number of lag coefficients (r1;yr12) in
the bivariate VAR for the macro variables in the term structure model.

Both the macro dynamics (2) and the short rate coefficients of the macro variables
in Eq. (6) are estimated by ordinary least squares, as reported in Sections 2 and 3.
Since our constructed macro factors have zero mean, the constant d0 in the short rate
equation represents the unconditional mean of the 1 month yield, which equals
5.10% on an annualized basis. This number has to be divided by 12 to obtain an
estimate for d0 at a monthly frequency. The regression coefficients d11 of the short
rate equation give the maximal proportion of short rate movements explained by the
macro factors, with all remaining orthogonal factors being unobservable. No-
arbitrage assumptions identify the unexplained proportion.

In the second estimation procedure, we hold d0; d11; and the parameters entering
the macro subsystem (6) fixed, and estimate all other parameters of the term
structure model including the remaining coefficients in d12 corresponding to the
latent factors. We need to find good starting values to achieve convergence in this
highly non-linear system. In particular, since unconditional means of persistent series
are difficult to estimate, the likelihood surface is very flat in l0 which determines the
mean of long yields. We therefore estimate the model in several iterative rounds.

We begin by obtaining starting values for r in Eq. (19) from estimating the model
under the Expectations Hypothesis (with l0 and l1 equal to zero.) We then compute
starting values for l1 holding l0 fixed at zero. Next, we estimate l0 setting any
insignificant parameters in l1 at the 5% level equal to zero. Then we set insignificant
l0 parameters to zero and re-estimate. This iterative procedure produces the zeros in
the F and l1 matrices in Tables 5–7, which report the results. Most of the non-zero
parameters in F and l1 are significant, and we expect these important effects to
remain in other iterative estimation schemes. While our particular procedure may be
path dependent, we could not find a feasible alternative which implies unconditional
means for long yields close to those in the data.

Finally, our likelihood construction solves for the unobservable factors from the
joint dynamics of the zero coupon bond yields and the macro factors. To do this, we
follow Chen and Scott (1993) and assume that as many yields as unobservable
factors are measured without error, and the remaining yields are measured with
error. In particular, for our models we assume the 3 and 36-month yields are
measured with error.

4.4. Summary of parameterization

To summarize, we estimate the following special case of the general model. The
bivariate system of macro factors f o

t follows the process:

f o
t ¼ r1f

o
t�1 þ?þ r12f o

t�12 þ Ouo
t ; ð20Þ
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dependence of the short rate on the observable factors in a (consistent) first-step estimation is a tractable

way to avoid the problem of nonstationary dynamics.
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with uo
t BIID Nð0; IÞ: The 2� 2 matrices r1;y; r12; are unconstrained and O is

lower-triangular.
The trivariate system of latent factors f u

t follows the process:

f u
t ¼ rf u

t�1 þ uu
t ð21Þ

with uu
t BIID Nð0; IÞ: The 3� 3 matrix r is lower triangular to ensure identification.

The shock processes uo
t and uu

t are independent.
The short rate equation is

rt ¼ d0 þ d011X o
t þ d012X u

t ; ð22Þ

where the parameters d0 and d11 are consistently estimated by least squares in a first-
step procedure prior to maximizing the likelihood (since X o

t and X u
t are orthogonal

ARTICLE IN PRESS

Table 5

Yields-only model estimates

Companion form F
0.9924 0.0000 0.0000

(0.0039)

0.0000 0.9548 0.0000

(0.0062)

0.0000 �0.0021 0.7646

(0.0001) (0.0210)

Short rate parameters d1 ð�100Þ
Unobs 1 Unobs 2 Unobs 3

0.0136 �0.0451 0.0237

(0.0020) (0.0005) (0.0015)

Prices of risk l0 and l1
l1 matrix

l0 Unobs 1 Unobs 2 Unobs 3

Unobs 1 �0.0033 �0.0069 0.0000 0.0000

(0.0004) (0.0040)

Unobs 2 0.0000 0.0445 0.0000 �0.2585

(0.0050) (0.0197)

Unobs 3 0.0000 �0.0490 0.0000 0.2412

(0.0090) (0.0256)

Measurement error ð�100Þ
3 month 36 month

0.0203 0.0090

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the 3-factor Yields-Only

Model Xt ¼ FXt�1 þ et; with etBNð0; IÞ; F lower triangular and the short rate equation given by rt ¼
d0 þ d01Xt: All factors Xt � f u

t are unobservable. The coefficient d0 is set to the sample unconditional mean

of the short rate, 0.0513/12. Market prices of risk lt ¼ l0 þ l1Xt are restricted to be block diagonal. The

sample period is 1952:06 to 2000:12.
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and X u
t has zero mean). The observable factors are X o

t ¼ ðf o0

t f o0

t�1;y; f o0

t�p�1Þ and the
latent factors are X u

t ¼ f u
t : The full set of state variables is Xt ¼ ðX o0

t ;X u0

t Þ0:
Market prices of risk are affine in the state vector:

lt ¼ l0 þ l1Xt: ð23Þ

The matrix l1 has an upper-left 2� 2 matrix and a lower-right 3� 3 matrix
corresponding to f o

t and f u
t ; while the remaining parameters are set to zero. The
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Table 6

Macro model estimates

Companion form F for latent factors

0.9915 0.0000 0.0000

(0.0042)

0.0000 0.9392 0.0000

(0.0122)

0.0000 0.0125 0.7728

(0.0146) (0.0217)

Short rate parameters d1 for latent factors ð�100Þ
Unobs 1 Unobs 2 Unobs 3

0.0138 �0.0487 0.0190

(0.0021) (0.0007) (0.0022)

Prices of risk l0 and l1
l0 l1 matrix

Inflation Real activity Unobs 1 Unobs 2 Unobs 3

Inflation 0.0000 �0.4263 0.1616 0.0000 0.0000 0.0000

(0.1331) (0.0146)

Real activity 0.0000 1.9322 �0.1015 0.0000 0.0000 0.0000

(0.3893) (0.0329)

Unobs 1 �0.0039 0.0000 0.0000 �0.0047 0.0000 0.0000

(0.0003) (0.0043)

Unobs 2 0.0000 0.0000 0.0000 0.0459 0.0000 �0.2921

(0.0055) (0.0205)

Unobs 3 0.0000 0.0000 0.0000 �0.0351 0.0000 0.1995

(0.0087) (0.0283)

Measurement error ð�100Þ
3 month 36 month

0.0207 0.0091

(0.0003) (0.0002)

The table reports parameter estimates and standard errors in parenthesis for the Macro Model with the

short rate equation specified with only current inflation and current real activity, as reported in Panel A of

Table 4. The short rate equation is given by rt ¼ d0 þ d01Xt; where d1 only picks up current inflation,

current real activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag

VAR (not reported). The model is Xt ¼ FXt�1 þ et; with etBNð0; IÞ: Xt contains 12 lags of inflation and

real activity and three latent variables, which are independent at all lags to the macro variables. In a pre-

estimation we find the inflation and real activity VAR(12), and the coefficients on inflation and real

activity in the short rate equation. The coefficient d0 is set to the sample unconditional mean of the short

rate, 0.0513/12. Market prices of risk lt ¼ l0 þ l1Xt are restricted to be block diagonal. The sample period

is 1952:06 to 2000:12.
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parameters in l0 corresponding to f o
t and f u

t are free, and all remaining parameters in
l0 are restricted to be zero.

We estimate two versions of our most comprehensive model with two macro
factors and three unobservable factors. The estimation of d11 that restricts the
parameters on lagged parameters to be zero as in Eq. (22) is denoted the
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Table 7

Macro lag model estimates

Companion form F for latent factors

0.9922 0.0000 0.0000

(0.0039)

0.0000 0.9431 0.0000

(0.0118)

0.0000 �0.0189 0.8210

(0.0135) (0.0216)

Short rate parameters d1 for latent factors ð�100Þ
Unobs 1 Unobs 2 Unobs 3

0.0130 �0.0438 0.0256

(0.0020) (0.0010) (0.0025)

Prices of risk l0 and l1
l0 l1 matrix

Inflation Real activity Unobs 1 Unobs 2 Unobs 3

Inflation 0.0000 0.8442 �0.0017 0.0000 0.0000 0.0000

(0.2397) (0.0582)

Real activity 0.0000 1.1209 0.2102 0.0000 0.0000 0.0000

(0.1375) (0.0275)

Unobs 1 �0.0050 0.0000 0.0000 �0.0048 0.0000 0.0000

(0.0003) (0.0040)

Unobs 2 0.0000 0.0000 0.0000 0.0483 0.0000 �0.2713

(0.0068) (0.0195)

Unobs 3 0.0000 0.0000 0.0000 �0.0248 0.0000 0.1624

(0.0078) (0.0292)

Measurement error ð�100Þ
3 month 36 month

0.0251 0.0107

(0.0005) (0.0003)

The table reports parameter estimates and standard errors in parenthesis for the Macro Lag Model with

the short rate equation specified with 12 lags of inflation and current real activity, as reported in Panel B of

Table 4. The short rate equation is given by rt ¼ d0 þ d01Xt; where d1 only picks up 12 lags of inflation and

real activity and the latent factors. The dynamics of inflation and real activity are given by a 12 lag VAR

(not reported). The model is Xt ¼ FXt�1 þ et; with etBNð0; IÞ: Xt contains 12 lags of inflation and real

activity and three latent variables, which are independent at all lags to the macro variables. In a pre-

estimation we find the inflation and real activity VAR(12), and the coefficients on inflation and real

activity in the short rate equation. The coefficient d0 is set to the sample unconditional mean of the short

rate, 0.0513/12. Market prices of risk lt ¼ l0 þ l1Xt are restricted to be block diagonal. The sample period

is 1952:06 to 2000:12.
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‘‘Macro Model.’’ The version with the full lagged Taylor rule is denoted the ‘‘Macro
Lag Model.’’ The estimation without any macro variables we call the ‘‘Yields-Only
Model.’’

5. Estimation results

Section 5.1 interprets the parameter estimates of the Macro and Yields-Only
Models. To determine the effect of the addition of macro factors into term structure
models, we look at the IRs of each factor in Section 5.2. The variance
decompositions in Section 5.3 allow us to attribute the forecast variance at a
particular horizon to shocks in macro and latent factors. In Section 5.4, we find that
imposing the cross-equation restrictions from no-arbitrage forecasts better than the
unrestricted VARs common in the macro literature. Moreover, incorporating macro
variables into a term structure model helps us obtain even better forecasts. We
compare the latent factors from the different models in Section 5.5 and find that
macro factors do account for some of the latent factors from the Yields-Only Model.
Derivations for the IRs and variance decompositions are presented in the
appendices.

5.1. Parameter estimates

5.1.1. Yields-only model

Table 5 presents the estimation results for the Yields-Only Model. The order of the
latent factors in Table 5 is unspecified, but we present the estimation results by
ordering the latent factors by decreasing autocorrelation. The model has one very
persistent factor, one less persistent but still strongly persistent factor, and the last
factor is strongly mean-reverting. This is consistent with previous multi-factor
estimates in the literature.

Litterman and Scheinkman (1991) label these unobservable factors ‘‘level,’’
‘‘slope,’’ and ‘‘curvature’’ respectively because of the effects of these factors on the
yield curve. To show these effects, the first latent variable, Unobs 1, closely
corresponds to a ‘‘level’’ transformation of the yield curve, which we define as
ðy1

t þ y12
t þ y60

t Þ=3: The correlation between Unobs 1 and the level transformation is
92%. The second latent variable, Unobs 2, has a 58% correlation with a ‘‘spread’’
transformation, defined as y60

t � y1
t : The third latent variable, Unobs 3, has a 77%

correlation with a ‘‘curvature’’ transformation (y1
t � 2y12

t þ y60
t ).

In Table 5, the estimated vector l0 has one significant parameter corresponding to
the most highly autocorrelated factor. The parameter is negative, so that the
unconditional mean of the short rate under the risk-neutral measure is higher than
under the data-generating measure. Since bond prices are computed under the risk-
neutral measure, negative parameters in l0 induce long yields to be on average higher
than short yields. Time-variation in risk premia is mainly driven by the first and third
unobservable factor. In other words, risk premia in bond yields mainly depend on
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the level and the curvature of the yield curve, and are not driven by the slope of the
yield curve.

5.1.2. Models with yields and macro variables

Tables 6 and 7 contain estimation results of the Macro Model and the Macro Lag
Model. The autocorrelation of the first latent factor is the same to three decimal
places across the Yields-Only, Macro and Macro Lag Models (0.992). Hence, we
would expect that this first factor has roughly similar very persistent effects in each
model. There is more variation in the autocorrelations of Unobs 2 and Unobs 3
across the models. The risk premia estimates in Tables 6 and 7 corresponding to the
latent factors have the same signs as in the Yields-Only Model in Table 5. Even
though their magnitude differs somewhat across the three models, we expect that the
latent factors behave in a similar fashion across the models.

The market price of risk coefficients corresponding to inflation and real activity
are highly significant. This implies that observable macro factors drive time-
variation in risk premia in both models! However, the estimates for l1 differ
enormously across the Macro and Macro Lag Model. First, the l1 element
corresponding to inflation (l1;11) is negative in the Macro Model ð�0:4263Þ but
positive in the Macro Lag Model (0.8442). Similarly, the real activity-term (l1;22) is
also negative in the Macro Model ð�0:1015Þ and positive in the Macro Model
(0.2102). Finally, the inflation-real activity cross-terms (l1;12 and l1;21), where the
additional two subscripts denote matrix elements, are much larger in absolute
magnitude in the Macro Model than in the Macro Lag Model. Hence, we can expect
inflation and real activity to play different roles in these two models. This also
implies that estimates of the market price of risk are sensitive to the details of the
model specification, particularly the parameterization chosen for the observable
macro variables. Below, we show this sensitivity is important for economic inference.

5.2. Impulse responses

5.2.1. Factor weights across the yield curve

From Eq. (18), the effect of each factor on the yield curve is determined by the
weights Bn that the term structure model assigns on each yield of maturity n: These
weights Bn also represent the initial response of yields to shocks from the various
factors. Fig. 4 plots these weights as a function of yield maturity for the Macro
Model in the upper graph, and the Macro Lag Model in the lower graph. For the
Macro Lag Model, we only plot the Bn coefficients corresponding to the
contemporaneous macro variables. The Bn coefficients have been scaled to
correspond to movements of one standard deviation of the factors, and have been
annualized by multiplying by 1200.

Fig. 4 shows that the latent factors act in almost the same way in both the Macro
and Macro Lag Models. The weight on the most persistent factor (Unobs 1) is
almost horizontal. This means that it affects yields of all maturities the same way,
hence the name ‘‘level’’ factor. The coefficient of the second factor (Unobs 2) is
upward sloping. It mainly moves the short end of the yield curve relative to the long

ARTICLE IN PRESS
A. Ang, M. Piazzesi / Journal of Monetary Economics 50 (2003) 745–787768



end, so Unobs 2 is therefore a ‘‘slope’’ factor. The coefficient on the least persistent
factor (Unobs 3) is hump-shaped. Movements in this factor affect yields at the short-
end of the yield curve and middle and long-end of the yield curve with different signs.
Hence, the Bn weights corresponding to Unobs 3 have a twisting effect, so Unobs 3 is
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Fig. 4. Bn yield weights for the macro and macro lag model. The figure displays Bn yield weights as a

function of maturity n for the Macro (Macro Lag) model in the top (bottom) plot. The plots show only the

Bn yield weights corresponding to contemporaneous state variables in each system. The weights are scaled

to correspond to one standard deviation movements in the factors and are annualized by multiplying

by 1200.
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thus a ‘‘curvature’’ factor. The inverse hump in the coefficient of this factor cannot
be accommodated in a model with independent factors and constant risk premia,
where yield coefficients are monotonic functions of maturity.

We now turn to the Bn coefficients corresponding to inflation and real activity.
These coefficients differ across the Macro and Macro Lag Models. In the top plot of
Fig. 4, the effect of inflation is hump-shaped but mostly affects short yields and less
so long yields. The magnitude of the inflation weights are higher than the level factor
weights at short maturities, and about half the magnitude of the slope factor weights.
Initial shocks to real activity have a much weaker effect across the yield curve. In
contrast, the bottom plot of Fig. 4 shows that the effects of shocks to inflation and
real activity in the Macro Lag Model are weaker than the Macro Model, and shocks
to real activity impact the yield more than shocks to inflation.

There are several reasons for the differences in the Bn coefficients for macro
factors across the Macro and Macro Lag Models. First, in the estimates of the
Taylor rules in Table 4, the Macro Model gives inflation a very strong effect on the
short rate ðcoefficient ¼ 0:1535Þ: In the Macro Lag Model, initial shocks to inflation
have little impact ðcoefficient ¼ 0:0037Þ; and it is only after 11 lags of inflation
where inflation begins to have a large impact (coefficient on the 11th lag of
inflation ¼ 0:1427). Given that both models estimate the same standard deviation
of inflation shocks (both rely on the same VAR(12) for inflation and real activity),
we get a much stronger initial effect of inflation on yields in the Macro Model.
Second, in the Macro Model, real activity has little initial impact ðcoefficient ¼
0:0143Þ while the effect in the Macro Lag Model is larger ðcoefficient ¼ 0:0398Þ:
Given that the standard deviation of real activity shocks is also the same across
models, the initial effect of real activity is stronger in the Macro Lag Model than in
the Macro Model.

The time-varying prices of risk for inflation and real activity vary across the
Macro and the Macro Lag Models in Tables 6 and 7. The prices of risk control how
the variation of longer yields respond relative to the short rate. In the Macro Model,
the l1 time-varying prices of risk for inflation and real activity are both negative
(l1;11 ¼ �0:4263 and l1;22 ¼ �0:1015) , while in the Macro Lag Model these are both
positive (l1;11 ¼ 0:8442 and l1;22 ¼ 0:2102). The more negative the terms on the l1
diagonal, the more positively longer yields react to positive factor shocks. Since the
time-varying prices of risk for inflation and real activity are more negative for the
Macro Model, the initial shocks are larger across the yield curve in this model.

While Fig. 4 shows only the initial effect of shocks as a function of yield maturity,
we are also interested in how the initial shocks propagate through time. To trace out
the long-term responses of the yield curve from shocks to the macro variables after
the yield curve’s initial response, we now compute IRs.

5.2.2. Impulse responses from macro shocks

We look at IRs to yields of maturities 1, 12 and 60 months. Our term structure
model allows us to obtain the movements of the yield curve in response to driving
shocks at all horizons, including maturities omitted in estimation. The IRs for all

maturities are known analytical functions of the parameters. This is in contrast to
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estimations with VARs where IRs can only be calculated for yields included in the
VAR. Our estimation also guarantees that the movements of yields are arbitrage-
free.

Fig. 5 shows IRs of 1, 12 and 60 month yields from the Macro Model and the
Macro Lag Model. The initial IR (corresponding to 1 month on the x-axis) for each
factor correspond to the 1, 12 and 60 month maturity in Fig. 4. In addition, we
compute the IRs from a simple unrestricted VAR(12), with macro factors and 5
yields similar to Campbell and Ammer (1993). We order the variables with macro
factors first, and then yields with increasing maturities, but the effect is robust to the
ordering of variables in the VAR. The x-axis on each plot is in months and the IRs
are given in terms of annualized percentages for a shock of one standard deviation.

Fig. 5 shows that the IRs for the Macro and the Macro Lag Models are much
larger than the IRs from the unrestricted VAR(12) (except for the 60 month yield for
the Macro Lag Model). The maximum magnitude of the responses for the 1 month
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Fig. 5. Impulse response functions. Impulse Responses (IR’s) for 1 month (top row), 12 month (middle

row) and 60 month (bottom row) yields. The first column presents IR’s from an unrestricted VAR(12)

fitted to macro variables and yields ; the middle column presents IR’s from the Macro model; and the last

column presents IR’s from the Macro Lag model. The IR’s from the latent factors are drawn as lines, while

the IR’s from inflation (real activity) are drawn as stars (circles). All IR’s are from a one standard

deviation shock.
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and 60 month yields is up to five times larger than the VAR(12). Turning first
to the IRs of the unrestricted VAR in the first column of Fig. 5, a one-standard
deviation shock to inflation initially raises the 1-month yield about 10 basis
points. The response peaks after about two years at 30 basis points and then
slowly levels off. The response of longer yields has the same overall shape.
The initial response of the 1-year yield (5-year yield) is only 8 basis points (5
basis points). The response increases to around 25 basis points (22 basis points) after
2 years, and then dies off slowly. The response of yields to real activity shocks
in the unrestricted VAR is slightly smaller than the response to inflation shocks.
The real activity response is also hump-shaped with the hump occurring after
one year.

The second column of Fig. 5 plots IRs for the Macro Model. The hump-shape of
the IRs are similar to the shape of the IRs from the unrestricted VAR, but the IRs
are much larger. For example, the initial response of the 1-month yield to a 1
standard deviation inflation shock is around 60 basis points, peaking after 12 months
to slightly under 1%. This is over six times the effect as the unrestricted VAR(12).
For the 5 year yield, the initial response to inflation is around 50 basis points,
compared to a less than 5 basis point move for the VAR(12). However, the effect of
real activity is about the same order of magnitude as the VAR(12) and is much
smaller than the IRs from inflation shocks. This is due primarily to the small loading
on real activity (0.0143) in the Taylor rule, compared to the much larger loading on
inflation (0.1535).

We plot IRs for the Macro Lag Model in the final column of Fig. 5. For inflation,
there are much longer lagged effects, after 12 months, than in the Macro Model. This
is because the Taylor rule with lags has a significant weight on the 11th lag of
inflation, which has its highest impact after 12 months (see Table 4). In contrast, the
weights in the Taylor rule for real activity are largely flat, so there is little hump-
shape and also less impact from shocks to real activity. The Macro Lag Model IRs
for inflation reach almost the same magnitude as the IRs for the Macro Model for
the 1 and 12-month yields, but are much smaller for the 60-month yield. This is in
contrast to the Macro Model, where inflation shocks have much bigger impacts
across the yield curve.

The reason for the different effects across the Macro and Macro Lag Model at
longer maturities is due to the estimates of the time-varying price of risk l1 for each
model in Tables 6 and 7. The diagonal elements of l1 in the Macro Lag Model are
negative, while they are positive in the Macro Model. Lower (more negative) prices
of risk have higher positive impacts from the macro factors to long yields. Fig. 6
focuses on IRs for the 60-month yield in the Macro Lag Model. The top (bottom)
plot traces IRs for three different values of l1;11 ðl1;22Þ; starting from the parameter
estimates 0.84 (0.21). The negative parameter choice for l1;11 ðl1;22Þ is the
corresponding parameter estimate for the Macro Model, �0:42 ð�0:10Þ: In each
case, decreasing the diagonal prices of risk increases the magnitude of the IRs. Note
that for IRs from real activity shocks, as l1;22 decreases, there is higher exposure to
the oscillatory effects from the lagged Taylor rule combined with the VAR(12) fitted
to inflation and real activity.
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5.3. Variance decompositions

To gauge the relative contributions of the macro and latent factors to forecast
variances we construct variance decompositions. These show the proportion of the
forecast variance attributable to each factor, and are closely related to the IRs of the
previous section. Table 8 summarizes our results for the Macro and Macro Lag
Models.
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The proportion of unconditional variance accounted for by macro factors is
decreasing with the maturity of yields: highest at the short and middle-ends of the
yield curve, and smallest for the long-end. The largest effect is for the 1-month yield
where macro factors account for 83% (85%) of the unconditional variance (where
the forecasting horizon is infinite) for the Macro (Macro Lag) Model. The
proportion of the unconditional variance for the 60-month yield is much smaller for
the Macro Lag Model (only 7%) versus the Macro Model (38%). This is because of
the more negative prices of risk for the Macro Model compared to the Macro Lag
Model, allowing the response of the longer yields to be more larger to real activity
shocks in the Macro Model.

That the macro factors explain so much of the variance decomposition for the
1-month yield at a 1-month forecasting horizon is no surprise, since this result is by
construction. The latent factors in the Macro and Macro Lag Models now explain
the residuals after taking out the effects of inflation and real activity in the Taylor
rule (see Table 4). In contrast, the latent factors in the Yields-Only Model account
for interest rates themselves, and are merely transformations of yields. What is more
interesting is the behavior of the longer yields compared to the short rate, since these
are driven by the no-arbitrage restrictions on the VAR.

The proportion of forecast variance explained by macro factors has an interesting
hump-shaped pattern for short and intermediate maturities. For example for the
Macro Model, macro factors account for 50% of the 1-step ahead forecast variance
of the 1-month yield. This percentage rises to 85% at a 60-month horizon, but then
converges to 83% for extremely long forecast horizons. Generally, as the yield
maturity increases, the proportion of the forecast variance attributable to the latent
factors increases. For the 60-month yield, the latent factors account for 62% and
93% of the unconditional variance in the Macro and Macro Lag Models,
respectively. The low variance decomposition of long yields is due to the dominance
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Table 8

Proportion of variance explained by macro factors

Forecast horizon h

1 mth 12 mth 60 mth N

Macro model

Short end 50% 78% 85% 83%

Middle 67% 79% 78% 73%

Long end 61% 63% 48% 38%

Macro lag model

Short end 11% 57% 87% 85%

Middle 23% 52% 71% 64%

Long end 2% 8% 11% 7%

We list the contribution of the macro factors to the h-step ahead forecast variance of the 1 month yield

(short end), 12 month yield (middle) and 60 month yield (long end) for the Macro and Macro Lag Models.

These are the sum of the variance decompositions from the macro factors in Table 9.
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of persistent unobserved factors (the near unit-root factor). As the level latent factor
has the highest autocorrelation, the weights on this factor are highest for long
maturities (see the recursion in Eq. (17)).

More detailed variance decompositions are listed in Table 9 for 1, 12 and 60
month maturities. To interpret the top row of Table 9, for the Yields-Only model,
14% of the 1-step ahead forecast variance of the 1-month yield is explained by the
first unobserved factor, 33% by the second unobserved factor and 53% by the third
unobserved factor. In the row labeled h ¼ 1 of the Macro Model in the first panel
corresponding to the 1-month yield, 49% of the 1-step ahead forecast variance is
attributable to inflation, 1% to real activity and the remainder to the latent factors.8

Focusing on the Macro Model, inflation has more explanatory power for
forecast variances than real activity at all points of the yield curve and for all forecast
horizons. The explanatory power of real activity generally rises with the forecast
interval h: At the long end of the yield curve, the explanatory power of inflation
decreases with h: At short horizons, very little of the forecast variance can be
attributed to real activity across the yield curve, but as the horizon increases, the
proportion due to real activity shocks increases to 13% of the 1-month and 11% of
the 12-month yield. The effect at the long end of the yield curve is much smaller (less
than 6% of the unconditional variance for the 60-month yield). This pattern is due to
the large weight on inflation in the simple Taylor rule and the much smaller weight
on real activity. At long yields, the higher persistence of the latent factors dominates,
which decreases the explanatory power for the macro factors.

In the Macro Lag Model, inflation and real activity explain roughly the same
proportion of the unconditional and long-horizon variances for the short and
medium segments of the yield curve as the Macro Model. However, the initial
variance decompositions at short forecasting horizons are much smaller than the
Macro Model. For example, for the 1-month yield, the initial Macro (Macro Lag)
inflation variance decomposition is 49% (0%). This is because the full effect of the
macro variables, particularly inflation, does not kick in until the 11th lag of inflation
in the Taylor rule with lags. At the long end of the yield curve, the Macro Lag Model
has very little role for macro factors. Here, the Macro Lag Model’s positive
(diagonal) prices of risk for the macro factors do not allow the long end of the yield
curve to share the same positive short end exposure to macro shocks as the Macro
Model’s negative (diagonal) prices of risk.

Turning now to the latent factors in Table 9, Unobs 1, is the most persistent latent
factor corresponding to a level effect. For the Yields-Only model, this factor
dominates the variance decompositions at long horizons across the yield curve. The
variance decomposition of Unobs 1 is markedly reduced for the 1-month and 12-
month yields for the Macro and Macro Lag Models. Here, the persistence of
inflation plays a major role in absorbing most of the mean forecast error due to the
large effect inflation has in the Taylor rule. For the 60-month yield, Unobs 1 has a
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8A Cholesky orthogonalization was used for inflation and real activity, which are correlated. Changing

the ordering of inflation and real activity has very little effect on the results. Note that the macro factors

and latent factors are orthogonal.
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Table 9

Variance decompositions

h Macro factors Latent factors

Inflation Real activity Unobs 1 Unobs 2 Unobs 3

1 month yield
Yields-Only 1 0.14 0.33 0.53

12 0.31 0.43 0.26
60 0.56 0.31 0.13
N 0.68 0.23 0.09

Macro 1 0.49 0.01 0.03 0.41 0.06
12 0.69 0.09 0.03 0.18 0.01
60 0.71 0.14 0.04 0.11 0.00
N 0.70 0.13 0.06 0.10 0.00

Macro 1 0.00 0.11 0.05 0.62 0.21
Lag 12 0.22 0.35 0.04 0.34 0.05

60 0.69 0.18 0.03 0.09 0.01
N 0.67 0.18 0.05 0.09 0.01

12 month yield
Yields-Only 1 0.60 0.35 0.05

12 0.71 0.28 0.01
60 0.86 0.14 0.00
N 0.91 0.09 0.00

Macro 1 0.63 0.03 0.07 0.21 0.05
12 0.71 0.08 0.07 0.13 0.01
60 0.66 0.12 0.13 0.09 0.00
N 0.62 0.11 0.19 0.08 0.00

Macro 1 0.02 0.22 0.21 0.47 0.10
Lag 12 0.33 0.19 0.20 0.26 0.02

60 0.59 0.12 0.19 0.09 0.01
N 0.52 0.11 0.28 0.08 0.01

60 month yield
Yields-Only 1 0.75 0.20 0.05

12 0.84 0.14 0.01
60 0.93 0.06 0.00
N 0.96 0.04 0.00

Macro 1 0.60 0.02 0.28 0.08 0.03
12 0.57 0.06 0.31 0.06 0.01
60 0.40 0.08 0.49 0.03 0.00
N 0.32 0.06 0.60 0.02 0.00

Macro 1 0.00 0.02 0.81 0.12 0.05
Lag 12 0.06 0.02 0.84 0.07 0.02

60 0.09 0.02 0.86 0.03 0.00
N 0.06 0.01 0.91 0.02 0.00

The table lists the contribution of factor i to the h-step ahead forecast of the 1 month yield. To interpret

the top row, for the Yields-Only model, 14% of the 1-step ahead forecast variance is explained by the first

unobserved factor, 33% by the second unobserved factor and 53% by the third unobserved factor. The

Yields-Only Model only has three latent factors. The macro models have inflation, real activity and three

latent factors. The Macro Model has no lags of inflation and real activity in the short rate equation, while

the Macro Lag Model does.
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much larger impact, explaining 60% (91%) of the unconditional variance for the
Macro (Macro Lag) Model. As we move across maturities, the initial macro shocks
to the short rate become more muted, since the weights to the macro factors become
smaller as maturity increases, as Fig. 4 shows. Making the time-varying prices of risk
more negative increases the positive responses at the long-end of the yield curve to
shocks in inflation and real activity.

5.4. Forecasts

The variance decompositions hint that term structure models with observable
macro variables may help in forecasting future movements in yields. However, these
are statements based on assuming a particular model as the true model after
estimation, and may not hold in a practical setting where more parsimonious data
representations often out-perform sophisticated models. To determine if this is
actually the case we conduct an out-of-sample forecasting experiment.

Our procedure for examining out-of-sample forecasts over the last 5 years of our
sample is as follows. We examine forecasts for all the five yields used in estimation.
At each date t; we estimate the models using data up to and including time t; and
then forecast the next month’s yields at time t þ 1: The macro factor data is formed
using the principal components of the macro data up to time t; and we estimate the
short rate equation and the bivariate VAR of the macro dynamics only using data up
to time t for the Macro and Macro Lag Models. Hence, we only use data available in
the information set at time t in making the forecast at time t þ 1:

We perform a comparison of out-of-sample forecasts for six models. First, we use
a simple random walk. Second, we investigate out-of-sample forecasts for the
corresponding VAR(12)’s which do not impose cross-equation restrictions. Our first
VAR uses only yields, and we use a second VAR which incorporates yields and
macro variables. Our last three models are the Yields-Only, Macro and the Macro
Lag Models. We use two criteria to compare our forecasts across the models. The
first is the Root Mean Squared Error, RMSE, of actual and forecasted yields, and
the second is the Mean Absolute Deviation, MAD.

Table 10 lists the results of the out-of-sample comparisons. Lower RMSE and
MAD values denote better forecasts. The best model RMSE or MAD is listed in
bold. We forecast over the last 60 months of the sample, where interest rate volatility
is much lower than over the full sample, which includes the very volatile late 1970s
and early 1980s. We note the following points regarding the forecasting performance
of the models. First, a random walk easily beats an unconstrained VAR. The result
holds independently of whether the VARs only contain yields, or are augmented
with macro variables. In fact, the forecasts are worse adding macro factors into the
unconstrained VARs. The bad performance is due to the high persistence of yields
and small sample biases in the estimation of autoregressive coefficients in over-
parameterized VARs.

Second, imposing the cross-equation restrictions from no-arbitrage helps in
forecasting. The improvement in forecasting performance is substantial, generally
about 25% of the RMSE and 30% of the MAD for all yields. These constrained
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VAR’s perform in line with, and slightly better, than a random walk (except for the
3-month yield). Duffee (2002) remarks that beating a random walk with a traditional
affine term structure model is difficult. From forecasting exercises without risk
premia (not reported here), we know that this result crucially depends on the type of
risk adjustment. Linear risk premia, not considered by Duffee (2002), seem to do
well in this regard.

Third, the forecasts of the Macro Model are far better than those of the Macro
Lag Model. While the forecasts of the Macro Lag Model are comparable to those of
unconstrained VARs, the Macro model slightly outperforms a random walk (except
for the 3-month yield). Both the Macro Model and the Macro Lag Model impose
cross-equation restrictions on a VAR with yields and macro variables. The Macro
Lag Model, however, has a large number of insignificant coefficients entering the
short rate equation. This over-parameterization may cause its poor out-of-sample
performance.

Finally, incorporating macro variables helps in forecasting. More precisely, the
forecasts of the Macro Model are uniformly better than the Yields-Only Model

ARTICLE IN PRESS

Table 10

Forecast comparisons

Yield

(mths)

RW Unconstrained VARs VARs with cross-equation

restrictions

VAR VAR with Yields Macro Macro lag

Yields Only Macro Only model model

RMSE criteria

1 0.3160 0.3905 0.3990 0.3012 0.2889 0.3906

3 0.1523 0.2495 0.2540 0.1860 0.2167 0.2876

12 0.1991 0.2776 0.2722 0.1914 0.1851 0.2274

36 0.2493 0.3730 0.3644 0.2489 0.2092 0.2665

60 0.2546 0.3793 0.3725 0.2497 0.2333 0.2530

MAD criteria

1 0.2252 0.3076 0.3242 0.2155 0.2039 0.2981

3 0.1159 0.1987 0.2056 0.1442 0.1693 0.2344

12 0.1639 0.2176 0.2204 0.1616 0.1559 0.1870

36 0.1997 0.2991 0.2924 0.1974 0.1604 0.2111

60 0.2054 0.2957 0.2930 0.2017 0.1883 0.2064

We forecast over the last 60 months (the out-sample) of our sample and record the root mean square error

(RMSE) and the mean absolute deviation (MAD) of the forecast versus the actual values. Lower RMSE

and MAD values denote better forecasts, with the best statistics highlighted in bold. Forecasts are 1-step

ahead. We first estimate models on the in-sample, and update the estimations at each observation in the

out-sample. RW denotes a random walk forecast, VAR Yields Only denotes a VAR(12) only with 5 yields,

VAR with Macro denotes a VAR(12) fitted to the macro factors and all 5 yields, Yields-Only denotes the 3

factor latent variable model without macro variables, the Macro model has only contemporaneous

inflation and real activity in the short rate equation, and the Macro Lag model has contemporaneous and

12 lags of inflation and real activity in the short rate equation. The first three of these models are thus

unconstrained estimations, while the last three impose the cross-equation restrictions derived from the

absence of arbitrage.
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(except for the 3 month yield). Hence, we can conclude that (i) adding term structure
restrictions improves forecasts relative to unconstrained VARs, even beating a
random walk, and (ii) forecasts can be further improved by including macro
variables. Note, however, that we have shown this improvement is only in
incrementally adding macro factors to a given number of latent factors.

5.5. Comparison of factors

We now finally address the issue of how adding macro factors changes the original
latent factors of the Yields-Only model in Table 11. In this table we regress the latent
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Table 11

Comparison of Yields-Only and macro factors

Dependent variable Independent variables

Inflation Real Unobs 1 Unobs 2 Unobs 3 Adj R2

activity

Panel A: Regressions on macro factors

Unobs 1 0.4625 �0.0726 0.2180

‘‘level’’ (0.0735) (0.0860)

Unobs 2 �0.6707 �0.1890 0.4902

‘‘spread’’ (0.0716) (0.0611)

Unobs 3 0.0498 �0.1794 0.0343

‘‘curvature’’ (0.0629) (0.0714)

Panel B: Regressions on factors from macro model

Unobs 1 0.1118 0.0307 0.9507 �0.0174 0.0038 0.9971

(0.0054) (0.0056) (0.0055) (0.0056) (0.0047)

Unobs 2 �0.9364 �0.1026 0.0199 0.7624 0.0279 0.9981

(0.0037) (0.0037) (0.0042) (0.0032) (0.0029)

Unobs 3 0.0427 �0.1238 0.1656 �0.1455 0.9071 0.9256

(0.0262) (0.0260) (0.0289) (0.0241) (0.0233)

Panel C: Regressions on factors from macro lag model

Unobs 1 �0.0580 �0.0207 1.0248 0.0035 0.0058 0.9979

(0.0049) (0.0040) (0.0044) (0.0047) (0.0036)

Unobs 2 �0.7069 �0.1132 �0.2955 0.5700 0.1306 0.8715

(0.0393) (0.0313) (0.0356) (0.0376) (0.0315)

Unobs 3 0.1112 �0.0081 0.2059 0.0228 0.8119 0.7470

(0.0458) (0.0386) (0.0507) (0.0365) (0.0424)

Regressions of the latent factors from the Yields-Only model with only latent factors (dependent variables)

onto the macro factors and latent factors from the Macro and Macro Lag model (independent variables).

All factors are normalized, and standard errors, produced using 3 Newey–West (1987) lags, are in

parentheses. Panel A lists coefficients from a regression of the Yields-Only latent factors onto only macro

factors. Panel B lists coefficients from a regression of Yields-Only latent factors on the macro and latent

factors from the Macro model with only contemporaneous inflation and real activity in the short rate

equation. Panel C lists coefficients from a regression of Yields-Only latent factors on the macro and latent

factors from the Macro Lag model with contemporaneous inflation and real activity and 11 lags of

inflation and real activity in the short rate equation.
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factors from the Yields-Only model onto the macro and latent factors from the
Macro and Macro Lag Models. We run three series of regressions, first only on
the macro variables (Panel A), and then onto the macro and latent variables of the
Macro Model (Panel B), and then onto the macro and latent variables of the Macro
Lag Model (Panel C). All the variables in the regressions are normalized.

Turning first to Panel A of Table 11, the traditional level factor loads significantly
onto inflation and real activity, with an adjusted R2 of 22%. In particular, the
loading on inflation is positive and large (0.46). This suggests that the traditional
level factor captures a strong inflation effect. When the second latent factor, labeled
‘‘slope,’’ is regressed onto the macro factors, we obtain a high R2 of 49%, with
significant negative loadings particularly on inflation ð�0:67Þ: Hence, much of the
traditional slope factor is also related to the dynamics of inflation. Finally, the third
latent factor (‘‘curvature’’) is poorly accounted by macro factors R2 ¼ 3%: However,
the traditional curvature factor does load significantly on real activity.

Panel B of Table 11 reports the regression from the traditional Yields-Only factors
onto the macro and latent factors implied by the Macro Model. The level factor from
the Yields-Only model translates almost one for one with the level factor of the
Macro Model. The magnitude of the coefficient on Unobs 1 of the Macro model is
close to 1 (0.95), showing that there is some qualitative similarity. However, we reject
that the coefficient is equal to 1 at the 1% level, showing that the two latent factors
are statistically different. The loadings on the macro factors remain significant
suggesting that macro variables do account for some of the level factor.

The reason why the level factor survives largely intact when macro factors are
introduced is because the level factor proxies for the first principal component
of the yield curve. Fig. 3 shows that the residuals from the Taylor rules largely mimic
the level of the short rate. Since the unobservable factors are linear combinations of
the yields, the best linear combination of yields which explains term structure
movements is the first principal component, or the level of the short rate. When
macro factors are added, these factors still do not resemble the level of the yield
curve, and so this factor is still necessary to explain the movements across the term
structure.

When we regress the Yields-Only slope factor (Unobs 2) onto the Macro Model
factors, the loading of the Unobs 2 factor from the Macro Model is much smaller
than 1 (0.76), while the coefficient on inflation is very large and negative, and the
coefficient on real activity is also significant. The loading on the Unobs 2 factor from
the Macro Lag Model is even smaller (0.57). This means that a large part of the
traditional slope factor can be attributed to macro factors, in particular, inflation
movements. When inflation is high, the slope narrows because the short rate
increases relative to the long rate. Turning finally to the regression of the Yields-Only
curvature factor (Unobs 3), this regression still has a significant negative coefficient
on real activity, but most of the correspondence is with the Unobs 3 factor from the
Macro Model (the coefficient is 0.91). Nevertheless, this coefficient is also
statistically different from 1 at the 1% level.

Panel C of Table 11 reports the regression coefficients of the latent factors from
the Yields-Only Model onto the macro and latent factors of the Macro Lag Model.
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We see that here the level effect survives almost one for one and there is still a large
loading on the inflation factor by the Yields-Only model’s Unobs 2. However, the
R2’s of the Unobs 2 and Unobs 3 regressions are much smaller than the Macro
Model regressions in Panel B.

In summary, Table 11 shows that the traditional level and slope factors are
markedly associated with and accounted by observable macro factors. In particular,
inflation accounts for large amounts of the dynamics of the traditional slope factor.
However, the level effect qualitatively survives largely intact when macro factors are
added to a term structure model.

6. Conclusion

This paper presents a Gaussian model of the yield curve with observable
macroeconomic variables and traditional latent yield variables. The model takes a
first step towards understanding the joint dynamics of macro variables and bond
prices in a factor model of the term structure. Risk premia are time-varying; they
depend on both observable macro variables and unobservable factors. The approach
extends existing VAR studies of yields and macro variables by imposing no-arbitrage
assumptions.

We find that macro factors explain a significant portion (up to 85%) of
movements in the short and middle parts of the yield curve, but explain only around
40% of movements at the long end of the yield curve. The effects of inflation shocks
are strongest at the short end of the yield curve. Comparing the latent factors from
traditional three latent factor models of term structure, the ‘‘level’’ factor survives
almost intact when macro factors are incorporated, but a significant proportion of
the ‘‘level’’ and ‘‘slope’’ factors are attributed to macro factors, particularly to
inflation. Moreover, we find that imposing the cross-equation restrictions from no
arbitrage helps in out-of-sample forecasts. Incorporating macro factors in a term
structure model further improves forecasts.

In future research, we plan to extend our empirical specification to allow for non-
diagonal terms in the companion form for the factors which introduces feedback
from latent factors to macro variables. Yields can then forecast macro variables
along the lines of Estrella and Hardouvelis (1991) but with the dynamics of the yield
curve modeled in a no-arbitrage pricing approach.

Appendix A. Recursive bond prices

To derive the recursions in Eq. (17), we first note that for a one-period bond,
n ¼ 1; we have

p1
t ¼Et½mtþ1
 ¼ expf�rtg

¼ expf�d0 � d01Xtg: ðA:1Þ
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Matching coefficients leads to %A1 ¼ �d0 and %B1 ¼ �d1: Suppose that the price of an
n-period bond is given by pn

t ¼ expð %An þ %B0
nXtÞ: Now we show that the exponential

form also applies to the price of the n þ 1 period bond:

pnþ1
t ¼Et½mtþ1pn

tþ1


¼Et exp �rt �
1

2
l0tlt � l0tetþ1 þ %An þ %B0

nXtþ1

� �� �

¼ exp �rt �
1

2
l0tlt þ %An

� �
Et½expf�l0tetþ1 þ %B0

nXtþ1g


¼ exp �rt �
1

2
l0tlt þ %An

� �
Et½expf�l0tetþ1 þ %B0

nðmþ fXt þ Setþ1Þg


¼ exp �d0 þ %An þ %B0
nmþ ð %B0

nf� d01ÞXt �
1

2
l0tlt

� �
� Et½expf�ðl0t þ %B0

nSÞetþ1g


¼ exp �d0 þ %An þ %B0
nðm� Sl0Þ þ

1

2
%B0

nSS
0 %Bn � d01Xt

�

þ %B0
nfXt � %B0

nSl1xt

�
: ðA:2Þ

The last equality relies on et being IID normal with E½et
 ¼ 0 and a degenerate
variance-covariance matrix var½et
 which contains many zeros (see Eq. (8)). Also, lt

contains zero submatrices (see Eq. (11)). Taken together, these assumptions imply
that l0tlt ¼ l0tvarðetÞlt: Matching coefficients results in the recursive relations in
Eqs. (17).

Appendix B. Likelihood function

We have data on an N vector of zero coupon yields Yt: Our approach to
estimation is to solve for the unobserved factors f u

t from the yields Yt and the
observed variables X o

t ; which includes observed macro variables f o
t and latent

variables f u
t and lagged terms of the driving factors.

Suppose first that we have N ¼ K2 yields of different maturity n1;y; nK2
; as many

yields as we have unobserved factors, f u
t : Stacking the equations for the K2 yields,

with Yt ¼ ðyn1
t yy

nK2
t Þ0; we can write

Yt ¼ A þ BXt; ðB:1Þ

where A is K2 � 1 and B is K2 � K : Partition the matrix B into B ¼ ½B0 Bu
 where Bo

is a K2 � ðK � K2Þ matrix which picks up the observable factors and Bu is a K2 � K2

invertible matrix that picks up the unobservable factors. Then we can infer the
unobservable factors in X u

t � f u
t from Yt and the pricing matrices A and B using an

inversion from the equation:

Yt ¼ A þ BoX o
t þ BuX u

t : ðB:2Þ
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The term structure model only prices exactly the yields used to invert the latent
factors. To increase the number of yields to N > K2 in the estimation, we follow
Chen and Scott (1993), and others, in assuming that some of the yields are observed
with measurement error. There will be K2 yields from which we invert to obtain the
latent variables, and the other N � K2 yields are measured with error. We assume
this measurement error is IID, and the measurement error is uncorrelated across the
yields measured with error. Let Bm denote a N � ðN � K2Þ measurement matrix and
um

t be an ðN � K2Þ-dimensional Gaussian white noise with a diagonal covariance
matrix independent of Xt: With N yields, the matrix ½BoBu
 of yield coefficients now
has dimension N � K : (Bo is N � ðK � K2Þ; while Bu is N � K2:) We can then write

Yt ¼ A þ BoX o
t þ BuX u

t þ Bmum
t : ðB:3Þ

In Eq. (B.3) the yields measured without error will be used to solve for X u
t ; and the

yields measured with error have non-zero um
t : For a given parameter vector y ¼

ðm;F;S; d0; d1; l0; l1Þ; we can invert Eq. (B.3) to obtain X u
t and um

t :
Denoting the normal density functions of the state variables Xt and the errors um

t

as fX and fum respectively, the joint likelihood LðyÞ of the observed data on zero
coupon yields Yt and the observable factors X o

t is given by

LðyÞÞ ¼
YT
t¼2

f ðYt;X
o
t j Yt�1;X

o
t�1Þ

logðLðyÞÞ ¼
XT

t¼2

� log j detðJÞj þ log fxðX o
t ;X

u
t j X o

t�1;X
u
t�1Þ þ log fumðum

t Þ

¼ � ðT � 1Þlog j detðJÞj � ðT � 1Þ
1

2
logðdetðSS0ÞÞ

�
1

2

XT

t¼2

ðXt � m� FXt�1Þ
0ðSS0Þ�1ðXt � m� FXt�1Þ

�
T � 1

2
log

XN�K2

i¼1

s2i �
1

2

XT

t¼2

XN�K2

i¼1

ðum
t;iÞ

2

s2i
; ðB:4Þ

where s2i is the variance of the ith measurement error and the Jacobian term is
given by

J ¼
I 0 0

Bo Bu Bm

 !
:

Note that the Jacobian terms of the likelihood in equation (B.4) do not involve An;
and hence the constant prices of risk l0 but do involve the linear prices of risk l1:

Appendix C. Impulse responses

To derive the IR’s of the yields from shocks to the macro variables and
latent yield factors Ft ¼ ðf o0

t ; f u0

t Þ0 consider the VAR(12) form of Ft in Eq. (7),
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repeated here:

Ft ¼ F0 þ F1Ft�1 þ?þ F12Ft�12 þ y0ut: ðC:1Þ

The Fi coefficients take the following form in our parameterization:

F0 ¼ 0 F1 ¼
r1 0

0 r

 !
; Fi ¼

ri 0

0 0

 !
for i ¼ 2;y; 12:

We write this as an implied Wold MA(N) representation:

Ft ¼
XN
i¼0

Piut�i; ðC:2Þ

where ut ¼ ðuo0

t uu0

t Þ
0 are the shocks to Ft:Note that a Choleski adjustment is needed to

take into account the contemporaneous correlation of the shocks.
The yield on an n-period zero coupon bond yn

t is a linear combination of current
and lagged values of ut from Eq. (18), which we can write as

yn
t ¼ An þ

XN
i¼0

cn
i ut�i; ðC:3Þ

where the row vectors cn
i are functions of Bn: Note that this is just a linear

transformation of the original MAðNÞ form, and the Bn are closed-form from
Eq. (17).

For example, for the Macro Model, the state-space Xt is given by

Xt ¼ ðf o0

t f o0

t�1 y f o0

t�11 f u0

t Þ0;

where f o
t are the two macro factors, and f u

t are the three unobservable factors. The
yields for maturity n; yn

t ; can be written as:

yn
t ¼An þ B0

nXt

¼An þ Bo0

n0f
o

t þ?þ Bo0

n11f o
t�11 þ Bu0

n f u
t

¼An þ %B0
n0Ft þ?þ %B0

n11Ft�11; ðC:4Þ

where we partition as Bn ¼ ½Bo
n0yBo

n11Bu
n
; where Bo

ni corresponds to f o
t�i for i ¼

0;y; 11 and Bu
n corresponds to f u

t ; and %Bn0 ¼ ½Bo
n0 Bu

n
; and %Bni ¼ ½Bo
ni 0
 for

i ¼ 1;y; 11:

cn
0 ¼ %B0

n0P0

cn
1 ¼ %B0

n0P1 þ %B0
n1P0

^

cn
i ¼ %B0

n0Pi þ?þ %B0
n11Pi�11 for iX11 ðC:5Þ

and so on.
The vector cn

i is the IR for the n-period yield at horizon i for shocks to the driving
variables Ft at time 0. For k yields of maturities n1;y; nk; we can stack the
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coefficients of each yield to write:

Yt ¼ A þ
XN
i¼0

Ciut�i; ðC:6Þ

where Yt ¼ ðyn1
t yynk

t Þ0 and the jth row of Ci is c
n
i :

Appendix D. Variance decompositions

Working with the MA(N) representation of the yields in Eq. (C.6), the error of
the optimal h-step ahead forecast at time t; #Ytþh j t is

#Ytþh j t � Ytþh ¼
Xh�1

i¼0

Ciutþh�i: ðD:1Þ

Let the jth component of a vector be denoted by a superscript j and Cjk;i denote the
element in row j; column k of Ci: Then

#Y
j
tþh j t � Y

j
tþh ¼

XK

k¼1

ðCjk;0u
k
tþh þyCjk;h�1u

k
tþ1Þ: ðD:2Þ

Denote the mean squared error of #Y
j
tþh j t as MSEð #Ytþh j tÞ: Then

MSEð #Ytþh j tÞ ¼
XK

k¼1

ðC2
jk;0 þ?þC2

jk;h�1Þ: ðD:3Þ

The contribution Ojk;h of the kth factor to the MSE of the h-step ahead forecast of
the jth yield is

Ojk;h ¼

Ph�1
i¼0 C

2
jk;i

MSEð #Ytþh j tÞ
; ðD:4Þ

which decomposes the forecast variance at horizon h of the jth yield to the various
factors.
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