
 
Child Abuse – Nonaccidental Injury (NAI) 
Issues and Controversies for Neuroradiology 

in the Era of Evidence-Based Medicine 
 

Patrick D. Barnes, MD 
Chief, Pediatric Neuroradiology 

Director, Pediatric MRI & CT Center 
Professor of Radiology 

Lucile Packard Children's Hospital 
Stanford University Medical Center 

Phone 650-823-9585 
Fax 650-497-8745 

pbarnes@stanford.edu 
http://www.stanford.edu/~pbarnes/ 

December 2009 
 

Abstract 

 

Because of the widely acknowledged controversy involving the 

determination of  nonaccidental injury (NAI), or child abuse, the 

radiologist must be familiar with the issues, the literature, and the 

principles of evidence-based medicine in order to understand the 

proper role of imaging. Children with suspected NAI must not only 

receive protective evaluation, but also require a timely and 

complete clinical and imaging workup, to include primary 

consideration for the mimics of abuse. The imaging findings 

cannot stand alone and must be correlated with clinical findings 

(including current and past history), adequate laboratory testing, 

and proper pathologic and forensic examinations. In the context of 

evidence-based medicine, along with recent legal and judicial 

reviews, challenges to the traditional tenets of NAI indicate that 



medical and imaging evidence cannot reliably diagnose 

"intentional" injury. Only the child protection investigation may 

provide the basis for "inflicted" injury in the context of supportive 

clinical, imaging, biomechanical, or pathology findings.  
 
 
Introduction 
 
Nonaccidental, inflicted, or intentional, trauma is said to be the 
most frequent cause of traumatic injury in infants with peak 
incidence at about 6 months of age, and accounting for about 80% 
of the deaths from traumatic brain injury in children under the age 
of two years [1-9]. Nonaccidental injury (NAI), or nonaccidental 
trauma (NAT), is the more recent terminology applied to the 
traditional labels “child abuse”, “battered child syndrome”, and 
“shaken baby syndrome” (SBS). A more recent restatement of the 
traditional definition of SBS is that it represents a form of physical 
NAI to infants characterized by the triad of  (1) subdural 
hemorrhage - SDH, (2) retinal hemorrhage - RH, and (3) 
encephalopathy (i.e. diffuse axonal injury - DAI) occurring in the 
context of inappropriate or inconsistent history (particularly when 
unwitnessed), and commonly accompanied by other apparently 
inflicted injuries (e.g. skeletal) [1] . This empirical formula is 
under challenge by evidence-based medical and legal principals 
[10-23].  
 
Traumatic Central Nervous System Injury  
  



The spectrum of  traumatic central nervous system (CNS) injury 
has been categorized in a number of ways [7,23]. Clinically and 
pathologically, primary injury (e.g. contusion, shear injury) 
directly results from the initial traumatic force and is immediate 
and irreversible.  Secondary injury arises from, or is associated 
with, the primary injury and is potentially reversible (e.g. swelling, 
hypoxia-ischemia, seizures, herniation). Traditional biomechanics 
teaches that impact loading is associated with linear forces and 
produces localized cranial deformation and “focal” injury (e.g. 
fracture, contusion, epidural hematoma - EDH). Accidental injury 
(AI) is said to be typically associated with impact and, with the 
exception of EDH, is usually not life threatening. Impulsive 
loading refers to angular acceleration / deceleration forces 
resulting from sudden non-impact motion of the head on the neck 
(i.e. whiplash) and produces “diffuse” injury, i.e. shear strain 
deformation and disruption at tissue interfaces (i.e. SBS including 
bridging vein rupture with SDH and white matter shear injury – 
DAI ). The young infant is said to be particularly vulnerable to the 
latter mechanism (i.e. SBS) because of weak neck muscles, a 
relatively large head, and an immature brain. SBS is traditionally 
postulated to result in the triad of primary traumatic injury (i.e. 
SDH, RH, and DAI) which has been reportedly associated with the 
most severe and fatal CNS injuries.  
 
Stated assault mechanisms in NAI have included battering, 
shaking, impact, shaking-impact, strangulation, suffocation, and 
combined assaults (shake-bang-choke) [1-9,23]. The spectrum of 



CNS injury occurring with NAI overlaps that due to AI. However, 
certain patterns have been traditionally reported to be 
characteristic of, or highly suspicious for, NAI [7,9,23]. These 
include multiple or complex cranial fractures [Fig.1], acute 
interhemispheric SDH [Fig.2], acute-hyperacute SDH [Fig.3], 
DAI, chronic SDH, and the combination of chronic and acute SDH 
[Fig.4]. The latter is said to be indicative of more than one abusive 
event.  Imaging evidence of CNS injury may occur with, or 
without, other clinical findings of trauma (e.g. bruising) or with 
other traditionally “higher specificity” imaging findings of abuse 
(e.g. classic metaphyseal lesions [CML] or rib fractures) [7-9] 
[Fig.5].  Therefore, clinical and imaging findings of injury out of 
proportion to the history of trauma, and injuries of different ages, 
are two traditional criteria used by medical professionals, 
including radiologists, to make a medical diagnosis and offer 
expert testimony that such “forensic” findings are  “proof”  of  
NAI / SBS,  particularly when encountered in the premobile, 
young infant.  
 
Evidence-based Medicine & the Law 
 
Evidence-based medicine (EBM) is now the guiding principle in 
establishing standards and guidelines as medicine has moved from 
an authoritarian to an authoritative era in order to overcome bias 
and ideology in medicine [23-27b]. EBM quality of evidence 
(QOE) ratings of the literature (e.g. classes I-IV) are based upon 
levels of accepted scientific methodology and biostatistical 



significance (e.g. p-values) and applies to every aspect of medicine 
including diagnostics, therapeutics, and forensics. EBM analysis 
reveals that few published reports in the traditional NAI / SBS 
literature merit a QOE rating above class IV (e.g. expert opinion 
alone) [10]. Such low ratings do not meet EBM recommendations 
for standards (e.g. level A) or for guidelines (e.g. level B). 
Difficulties exist in the rational formulation of a “medical” 
diagnosis or “forensic” determination of NAI / SBS based on an 
alleged event (e.g. shaking) that is inferred from clinical, imaging, 
or pathologic findings in the subjective context of (a) an 
“unwitnessed” event, (b) a “noncredible” history, or (c) an 
admission or confession under dubious circumstances [11]. This 
problem is further confounded by the lack of consistent and 
reliable criteria for the diagnosis of NAI / SBS, and that much of 
the traditional literature on child abuse consists of anecdotal case 
series, case reports, reviews, opinions, and position papers 
[10,11,28,29]. Many reports include cases having impact injury 
which undermines the SBS hypothesis by imposing a “shaking-
impact” syndrome. Also, the inclusion criteria provided in many 
reports are criticized as arbitrary. Examples include “suspected 
abuse”, “presumed  abuse”, “likely  abuse”, and “indeterminate” 
[28,29]. Furthermore, the diagnostic criteria often appear to follow 
“circular logic” such that the inclusion criteria (e.g. the triad equals 
SBS/NAI) becomes the conclusion (i.e. SBS/NAI equals the triad).  
 
Regarding the rules of evidence within the justice system, there are 
established standards for the admissibility of expert testimony 



[12,13,13a,17a,30]. The Frye standard requires only that the 
testimony be generally accepted in the relevant scientific 
community. The Daubert (and Kumho) standard requires 
assessment of the scientific reliability of the testimony. A criticism 
of the justice system is that the application of these standards vary 
with the jurisdiction (e.g. according to state v. federal law). 
Additional legal standards regarding proof are also applied in order 
for the triar of fact (e.g. judge or jury) to make the determination 
of civil liability or criminal guilt. In a civil action (e.g. medical 
malpractice lawsuit), money is primarily at risk for the defendant 
health care provider, and proof of liability is based upon a 
preponderance of the evidence (i.e. at least 51% scientific or 
medical certainty).  
 
In a criminal action, life or liberty is at stake for the defendant, 
including the permanent loss of child custody [12,13,13a,17a,30]. 
In such cases, the defendant has the constitutional protection of  
due process that requires a higher level of proof. This includes the 
principle of  innocent until proven guilty beyond a reasonable 
doubt with the burden of proof on the prosecution and based upon 
clear and convincing evidence.  However, no percentage of level 
of certainty is provided for these standards of proof  in most 
jurisdictions. Furthermore, only a preponderance of the medical 
evidence (i.e. minimum of 51 % certainty) is required to support 
proof of guilt whether the medical expert testimony complies with 
the Frye standard (i.e. general acceptance requirement) or the 
Daubert standard (i.e. scientific reliability requirement).  A further 



criticism of the criminal justice process is that in NAI cases, 
medical experts have defined SBS / NAI as “the presence of injury 
(e.g. the triad) without a sufficient historical explanation”, and that 
this definition unduly shifts the burden to the defendant to establish 
innocence by proving the expert theory wrong.  
 
The “Medical” Prosecution of NAI and its EBM Challenges 
 
Traditionally, the prosecution of NAI has been based upon the 
presence of any one, or more, of the injury components of the triad 
as supported by the premises that (a) shaking alone in an otherwise 
healthy child can cause SDH leading to death, (b) that such injury 
can never occur on an accidental basis (e.g. short fall) because it 
requires a massive force equivalent to a motor vehicle accident or a 
fall from a multi-story building, (c) that such injury is immediately 
symptomatic and cannot be followed by a lucid interval, and (d) 
that changing symptoms in a child with prior head injury indicates 
newly inflicted injury and not a spontaneous rebleed 
[12,13,13a,17a,23]. Using this reasoning, the last caretaker is 
automatically guilty of abusive injury, especially if not witnessed 
by an independent observer. Also, it has been asserted that RHs of 
a particular pattern are diagnostic of SBS / NAI. 
 
Reports from clinical, biomechanical, pathology, forensic, and 
legal disciplines, within and outside of the child maltreatment 
literature, have challenged the evidence base for NAI / SBS as the 
only cause for one or more elements of the triad [10-23].  Such 



reports indicate that the triad may also be seen with accidental 
injury (including witnessed short falls, lucid intervals, and 
rehemorrhage) [Figs 6,7], as well as in medical conditions. These 
are the “mimics” of NAI and often present as acute life threatening 
events (ALTE) [31-34]. The medical mimics include hypoxia-
ischemia (e.g. apnea, choking, respiratory or cardiac arrest) 
[Fig.2,6,7], ischemic injury (e.g. arterial vs. venous occlusive 
disease) [Fig.8], vascular anomalies (e.g. arteriovenous 
malformation –AVM) [Fig.9], seizures [Fig.2], infectious or post-
infectious conditions [Fig.10], coagulopathies [Fig.11], fluid-
electrolyte derangement, and metabolic or connective tissue 
disorders including vitamin deficiencies and depletions (e.g. 
C,D,K) [Figs.1,5,13]  [9,23].   
 
Many ALTE appear to be multifactorial and involve a 
combination, sequence, or cascade of predisposing and 
complicating events or conditions [23,31]. As an example, an 
infant may suffer a head impact, or choking spell, followed by 
seizures or apnea, and then undergoes a series of interventions 
including prolonged or difficult resuscitation and problematic 
airway management with subsequent hypoxia-ischemia and 
coagulopathy [Figs 2,6,7,11]. Another example is a young infant 
with a predisposing condition such as infectious illness, fluid-
electrolyte imbalance, metabolic disorder, or a coagulopathy, who 
then suffers seizures, respiratory arrest, and resuscitation with 
hypoxia-ischemia [Figs 2,8,10-13]. In many cases of alleged 
SBS/NAI it is often assumed that nonspecific premorbid symptoms 



(e.g. irritability, lethargy, poor feeding) in an “otherwise healthy” 
infant is an indicator of ongoing abuse or that such symptoms 
become the inciting factor for the abuse.  A thorough and complete 
medical investigation in such cases may reveal that the child is 
“not” otherwise healthy and, in fact, is suffering from a medical 
condition that progresses to an ALTE [10-23].  
 
Biomechanical Challenges 
 
The “mechanical” basis for SBS as originally hypothesized by 
Guthkelch (1971) and Caffey (1972, 1974), and then subsequent 
authors, was extrapolated from a single scientific source [5,6,35].  
The biomechanical and neuropathological experiment conducted 
by Ommaya (1968) used a whiplash model comprised of adult 
rhesus monkeys mounted on a piston-driven sled to determine the 
angular acceleration threshold (i.e. 40g) for head injury (i.e. 
concussion, SDH, shear injury) as well as neck injury [36]. From 
this experiment, it was assumed by Gutkelch and Caffey that 
manual shaking of an infant could generate these same forces and 
produce the triad [37-39]. Caffey stated “current evidence, though 
manifestly incomplete and largely circumstantial, warrants a 
nationwide educational campaign on the potential pathogenicity of 
habitual shaking of infants [6,35].”  As a result, centers for child 
abuse (e.g. Kempe, Chadwick) were established all across the 
country, along with mandated reporting laws, with the anticipation 
of further research into these issues.  
 



Probably the first and most widely reported biomechanical test of 
the SBS hypothesis was conducted by Duhaime et al (1987) who 
measured the angular accelerations associated with adult manual 
shaking (11g) and impact (52g) in a 1-month old infant 
anthropormorphic test device (ATD) [40]. Only accelerations 
associated with impact (4-5 times that associated with shakes), on 
an unpadded or padded surface, exceeded the injury thresholds 
determined by Ommaya. Furthermore, in the same study, the 
authors reported a series of 13 fatal cases of NAI / SBS in which 
all had evidence of blunt head impact (more than half noted only at 
autopsy) [40]. The authors concluded that CNS injury in SBS / 
NAI in its most severe form is usually not caused by shaking 
alone. Their results contradicted many of the original reports that 
had relied upon the “whiplash” mechanism as causative of  “the 
triad.” These authors also concluded that fatal cases of SBS / NAI, 
unless in children with predisposing factors (e.g. subdural 
hygroma, atrophy, etc.), are not likely to result from shaking 
during play, feeding, swinging, or from more vigorous shaking by 
a caretaker for discipline. They suggested the use of the new term 
“shaken-impact syndrome [40].”  
 
More recently, Prange et al (2003) using a 1.5 month-old ATD 
showed that  (a) peak angular accelerations and maximum change 
in angular velocity increased with increasing fall height and 
surface hardness, (b) that inflicted impacts against hard surfaces 
were more likely to be associated with brain injury than falls from 
less than 1.5m or from vigorous shaking, and (c) there are no data 



to show that such measured parameters during shaking or inflicted 
impacts against unencased foam is sufficient to cause SDH or TAI 
in an infant [41]. Their results along with other animal, cadaver, 
and clinical case studies also indicate that SDH and death from 
minor falls in infants are more likely to occur with falls > 1.5 m (4-
5 ft.) and on to a hard surface [41].  With further improvements in 
ATDs, more recent experiments indicate that maximum head 
accelerations may exceed injury reference values (IRV) at lower 
fall heights than previously determined [Table 1; 41a].  
Subsequent studies with varying QOE ratings and using 
biomechanical (ATD), animal, or computer models have either 
supported, or failed to invalidate, the Duhaime study [42-50]. 
Some critics of the Duhaime and Prange studies (Cory & Jones 
2003, Roth et al 2006, Pierce & Bertocci 2008) also contend that 
there is no adequate human infant surrogate yet designed to 
properly test “shaking vs. impact [44,49,50].”  Even more recently, 
Coats and Margulies (2008) used an innovative 3D biomechanical 
technique to provide preliminary verification of prior cadaver drop 
results that infant linear skull fractures may occur with head-first 
fall heights 0.9 m (3 feet) onto carpet and 0.6-0.9 m (2-3 feet) onto 
concrete [44a].   
 
Other reports (Ommaya et al 2002, Bandak 2005, etc.) also show 
that shaking alone cannot result in brain injury (i.e. the triad) 
unless there is concomitant structural failure with injury to the 
neck, cervical spinal column, or cervical spinal cord, since these 
are the “weak links” between the body and head of the infant 



[42,45].  Although Bandak’s results were criticized by Margulis et 
al [45a], to whom Bandak subsequently responded [45b], Margulis 
et al acknowledged the possibility for neck injury during severe 
shaking without impact. Spinal cord injury without radiographic 
abnormality (SCIWORA), whether AI or NAI, is an important 
form of primary neck and spinal cord injury with secondary brain 
injury [Fig.7] [51]. For example, a falling infant experiences a 
head-first impact with subsequent neck hyperextension, or 
hyperflexion, from the force of the trailing body mass. There is 
resultant upper spinal cord injury without detectable spinal column 
injury on plain films or CT. Compromise of the respiratory center 
at the cervico- medullary junction results in hypoxic brain injury 
including the “thin” SDH [Fig.7].  CT often shows the brain injury, 
but only MRI may show the additional neck or spinal cord injury.   
 
The minimal force required to produce one or more of the elements 
of the triad has yet to be established. However, from the current 
evidence base in biomechanical science, one may reasonably 
conclude that (1) shaking may not produce direct brain injury, but 
may cause indirect brain injury if associated with neck and cervical 
spinal cord injury, (2) angular acceleration / deceleration injury 
forces clearly occur with impact trauma, (3) that such injury on an 
accidental basis does not require a force that can only be associated 
with motor vehicle accident or a multi-story fall, (4) that household 
(i.e. short-distance falls) may produce direct or indirect brain 
injury, (5)  that in addition to fall height, impact surface and type 
of landing are important factors, and (6) that head-first impacts in 



young infants not having developed a defensive reflex (e.g. 
extension of a limb to break the fall) are the most dangerous and 
may result in direct or indirect brain injury (e.g. SCIWORA).  
 
Neuropathological Challenges  
 
Probably the first and largest systematic neuropathological study in 
alleged SBS / NAI (53 cases) was reported by Geddes et al (2001) 
[52,53]. The findings in their 37 infant cases ( age < 9 months) 
indicate (a) only 8 infants had no evidence of impact with only one 
case of admitted shaking, (b) that the cerebral swelling in young 
infants is more often due to “diffuse” axonal injury of hypoxic-
ischemic encephalopathy (HIE) rather than traumatic axonal, or 
shear, injury (TAI); (c) that although fracture, “thin” SDH (e.g. 
dural vascular plexus origin), and RH  are commonly present, the 
usual cause of death was increased intracranial pressure from brain 
swelling associated with HIE [Fig.2],; and, (d) that cervical 
epidural hemorrhage and focal axonal brain stem, cervical cord, 
and spinal nerve root injuries were characteristically seen in these 
infants (most with impact). Such upper cervical cord / brainstem 
injury may result in apnea / respiratory arrest and be responsible 
for the HIE. In the older infant and child case group (16 victims: 
ages 13 months to 8 years), the pathologic findings were primarily 
those of the “battered child or adult trauma syndrome” including 
extracranial injuries (e.g. abdominal), large SDH (i.e. bridging vein 
rupture), and TAI.  
 



Additional neuropathologic series by Geddes et al (2003, 2004) 
have shown that SDH are also seen in non-traumatic fetal, 
neonatal, and infant brain injury cases and that such SDH are 
actually of intradural vascular plexus origin rather than bridging 
cortical vein origin [54,55]. The common denominator in these 
cases is likely a combination of cerebral venous hypertension and 
congestion, arterial hypertension, brain swelling, immaturity with 
vascular fragility further compromised by HIE or infection [Fig. 
2], This “unified hypothesis” of Geddes et al has received criticism 
in nonscientific reviews and surveys (Punt et al 2004, Minns 2005, 
Byard et al 2007, David 2008, Jaspan 2008) [21,22,56-58]. 
However, Geddes et al findings and conclusions have been 
validated by the research of  Cohen et al (2008), as well as others 
[59-62b]. In their post-mortem series, Cohen et al described 25 
fetuses (gestational age range 26-41 weeks) and 30 neonates 
(postnatal age range 1 hour – 19 days) with HIE who also had 
macroscopic intradural hemorrhage (IDH), including frank parietal 
SDH in two-thirds.  The IDH component was most prominent 
along the posterior falcine and tentorial vascular plexuses (i.e. 
interhemispheric fissure) [Fig.2]. They concluded from their work, 
along with the findings of other cited researchers, that IDH and 
SDH are commonly associated with HIE (including the targeting 
of claudin-5, a key neurovascular tight-junction molecule), and 
particularly when associated with increases in central venous 
pressure [63]. This also explains the frequency of RH associated 
with perinatal events [64]. 
 



From the evidence base in forensic pathology, one may conclude 
that (1) shaking may not cause direct brain injury, but may cause 
indirect brain injury (i.e. HIE) if associated with cervical spinal 
cord injury, (2) that impact may produce direct or indirect brain 
injury (e.g. SCIWORA), (3) that the pattern of brain edema with 
thin SDH (dural vascular plexus origin) may reflect HIE whether 
due to AI or NAI, and (4) that the same pattern of injury may result 
from non-traumatic or medical causes (e.g. HIE from any cause of 
ALTE).  Furthermore, since the observed edema does not represent 
TAI (which results in immediate neurologic dysfunction), a lucid 
interval is possible particularly in the infant whose sutured skull 
and dural vascular plexus have the distensibility to tolerate early 
increases in intracranial pressure. Also, the lucid interval 
invalidates the premise that the last caretaker is always responsible 
in alleged NAI. 
 
Clinical Challenges.   
 
Doubt has been raised in the literature that NAI / SBS is the cause 
in all traumatic cases manifesting the triad. In the prosecution of 
NAI, as previously mentioned, it is often stipulated that short falls 
cannot be associated with serious (e.g. fatal) head injury or a lucid 
interval.  Traditionally, it has also been stipulated that non-
intentional new bleeding in an existing SDH is always minor, that 
SDH does not occur in benign extracerebral collections, and that 
symptomatic or fatal new bleeding in SDH requires newly inflicted 
trauma [12,13,23]. A number of  past and current reports refute the 



significance of low level falls in children, including in-hospital and 
outpatient clinic series [65-72]. However,  there are other reports, 
including emergency medicine, trauma center, neurosurgical, and 
medical examiner series, that indicate a heightened need for 
concern regarding the potential for serious intracranial injury 
associated with “minor” or “trivial” trauma scenarios, particularly 
in infants [72-93]. This includes reports of skull fracture or acute 
SDH from accidental simple falls in infants, SDH in infants with 
predisposing wide extracerebral spaces (e.g. benign extracerebral 
collections of infancy, chronic subdural hygromas, arachnoid cyst, 
etc.) [Figs 4,14,15] , and fatal pediatric head injuries due to 
witnessed, accidental short-distance falls, including those with a 
lucid interval, SDH, RH, and malignant cerebral edema [Fig. 6]. 
Also included are infants with chronic SDH from prior trauma (e.g. 
at birth) who then develop rehemorrhage [Figs 1,4,14].   
 
Short falls, lucid intervals, and malignant edema. Hall et al (1989) 
reported that 41% of  childhood deaths (mean age 2.4 yr.) from 
head injuries associated with AI were from low level falls (3 feet 
or less), while running, or down stairs [65]. Chadwick et al (1991) 
reported fatal falls of less than 4 feet in 7 infants, but considered 
the histories unreliable [66]. Plunkett (2001) reported witnessed 
fatal falls of 2-10 feet in 18 infants and children, including those 
with SDH, RH, and lucid intervals [76]. Greenes and Schutzman 
(1998) reported intracranial injuries, including SDH, in 18 
asymptomatic infants with falls of 2 feet to 9 stairs [77]. Christian 



et al (1999) reported 3 infants with unilateral RH and SDH / SAH 
due to witnessed accidental household trauma [83].  
 
Denton and Mileusic (2003) reported a witnessed, accidental 30-
inch fall in a 9 month old infant with a 3 day lucid interval before 
death [79]. Murray et al (2000) reported more intracranial injuries 
in young children (49% < age 4 yr.; 21% < age 1 yr.)  with 
reported low level falls (< 15 feet), both AI and NAI [80]. Kim et 
al (2000) reported a high incidence of intracranial injury in 
children (ages 3 mo. – 15 yr.; 52% < age 2yr.) accidentally falling 
from low heights (3-15 feet; 80% < 6 feet; including 4 deaths) 
[81]. Because of the “lucid” intervals in some patients, including 
initially favorable Glascow Coma scores (GCS) with subsequent 
deterioration, both Murray and Kim expressed concern regarding 
caretaker delays and medical transfer delays contributing to the 
morbidity and mortality in these patients [74-76,78-81].  
 
Bruce et al (1981) reported one of the largest pediatric series of 
head trauma (63 patients, ages 6 months to 18 years), both AI and 
NAI, associated with “malignant brain edema” and SAH / SDH 
[Fig.6] [75]. In the higher GCS (>8) subgroup, there were 8 with a 
lucid interval and all 14 had complete recovery. In the lower GCS 
(</= 8) subgroup, there were 34 with immediate and continuous 
coma, 15 with a lucid interval, 6 deaths, and 11 with moderate to 
severe disability. More recently, Steinbok et al (2006) reported 5 
children (4 < age 2yr.; 3 falls) with witnessed AI, including SDH 
and cerebral edema detected by CT 1-5 hours post-event [82]. All 



experienced immediate coma with rapid progression to death 
[Fig.6].  
 
Benign extracerebral collections (BECC). BECC of infancy (aka 
benign external hydrocephalus - BEH, benign extracerebral 
subarachnoid spaces – BESS) is a common and well-known 
condition characterized by diffuse enlargement of the subarachnoid 
spaces [85-94]. A transient disorder of cerebrospinal fluid 
circulation, probably due to delayed development of the arachnoid 
granulations, is widely accepted as the cause and develops from 
birth.  BECC is typically associated with macrocephaly, but may 
also occur in infants with normal or small head circumferences, 
including premature infants. As with any cause of craniocerebral 
disproportion (e.g. BECC, hydrocephalus, chronic SDH or 
hygroma, arachnoid cyst, underdevelopment or atrophy), there is a 
susceptibility to SDH that may be spontaneous or associated with 
“trivial” trauma [Figs 4,14]. A recent large series report and review 
by Hellbusch (2007) emphasizes the importance of this 
predisposition and cites other confirmatory series and case reports  
(30 references) [93]. Papasian and Frim (2003) designed a 
theoretical model that predicts the predisposition of BEH to SDH 
with minor head trauma [88]. Piatt’s case report (1999) of BECC 
with SDH (27 references), including RH, along with McNeely et al 
case series (2006) are further warnings that this combination is far 
from specific for SBS / NAI [86,92].   
 



Birth Issues. In addition to the examples cited above ( e.g. short 
falls, BECC), another important but often overlooked factor is 
birth-related trauma [7,23,95-109]. This includes “normal” as well 
as complicated labor and delivery events (e.g. pitocin 
augmentation, prolonged labor, vaginal delivery, instrumented 
delivery, c-section, etc.). It is well-known that acute SDH often 
occurs even with the normal birth process, and that this 
predisposes to chronic SDH, including in the presence of BECC 
[Figs 1,4,14].  Intracranial hemorrhages, including SDH and RH, 
have been reported in a number of CT and MRI series of “normal” 
neonates including a frequency of  50%  by Holden et al (1999), 
8% by Whitby et al (2004), 26% by Looney et al (2007), and 46% 
by Rooks et al (2008) [95,97-99]. Chamnanvanakij et al (2002) 
reported 26 symptomatic term neonates with SDH over a 3-year 
period following uncomplicated deliveries [96]. Long-term 
followup imaging has not been provided in many of these series, 
although Rooks et al did report one child in their series who 
developed SDH with rehemorrhage superimposed upon BECC 
[Fig.16] [99].  
 
Chronic SDH and re-hemorrhage. Chronic SDH is one of the most 
controversial topics in the NAI vs. AI debate [1-9,19,21-23,37-39]. 
The “unexplained” SDH is often ascribed to NAI. By definition, a 
newly discovered chronic SDH started as an acute SDH that, for 
whatever reason, may have been “subclinical.” There is likely 
more than one mechanism for SDH which has prompted a 
revisiting of the concept of the “subdural compartment” [19,55,62-



62b,110,111]. Mack et al have provided an updated review on the 
this important topic [110]. In some cases of infant trauma, 
dissection at the relatively weak dura-arachnoid borderzone (i.e. 
dural border cell layer - DBCL) may allow cerebrospinal fluid 
(CSF) to collect and enlarge over time as a dural interstitial (i.e. 
intradural) hygroma. In other cases, there is bridging vein rupture 
within the dural interstitium that results in an acute subdural or 
intradural hematoma that extends along the DBCL. Further yet, 
traumatic disruption of the dural vascular plexus (i.e. venous, 
capillary, lymphatic), which is particularly prominent in the young 
infant, may also produce an acute intradural hematoma. Some of 
these collections undergo resorption while others progress to 
become chronic SDH. Some progressive collections may represent 
mixed CSF-blood collections [Figs 1,4,14,16].  
 
The pathology and pathophysiology of neomembrane formation in 
chronic SDH, including rebleeding, is well-established in adults 
and appears similar, if not identical, to that in infants [112-133] . 
While acute SDH is most often due to impact or deformational 
trauma, whether AI or NAI, it must be differentiated from chronic 
SDH with re-hemorrhage. Progression of chronic SDH and 
rehemorrhage is likely related to capillary leakage and intrinsic 
thrombolysis [112,113]. Other factors include dural vascular 
plexus hemorrhage associated with increases in intracranial or 
central venous pressures (e.g. birth trauma, congenital heart 
disease, venous thrombosis, dysphagic choking), or with increased 
meningeal arterial pressure (e.g. reperfusion following hypoxia-



ischemia) with resultant acute hemorrhage (or re-hemorrhage) in 
“normal” infants or superimposed upon “predisposing” chronic 
BECC, hygromas, hematomas, or arachnoid cysts [Figs 1,2,4,14-
16] [19,31,55,62,85-94,110,111]. The phenomenon of acute 
infantile SDH, whether AI or NAI, evolving to chronic SDH and 
re-hemorrhage, including RH, is well-documented in several 
neurosurgical series reports including Aoki et al (1984, 1990), 
Ikeda et al (1987), Parent (1992), Howard et al (1993), Hwang et al 
(2000), Vinchon (2002,2004), and others [114,117-119,122-124].  
 
From the clinical evidence base, in addition to the biomechanical 
science and forensic pathology data bases, one may conclude that  
(1) significant head injury, including SDH and RH, may result 
from low fall levels, (2) such injury may be associated with a lucid 
interval, (3) in some, the injury may result in immediate 
deterioration with progression to death, (4) BECC predisposes to 
SDH, (5) SDH may date back to birth, and (6) rehemorrhage into 
an existing SDH occurs in childhood and may be serious.  
 
RH Challenges. 
 
Many guidelines for diagnosing NAI depend upon the presence of 
RH, including those of a particular pattern (e.g. retinal schisis, 
perimacular folds), and based upon the theory of vitreous traction 
due to inflicted acceleration / deceleration forces (e.g. SBS) [134-
153].  However, the specificity of RH for NAI has been repeatedly 
challenged. Plunkett (2001) reported RH in 2/3 of eye exams in 



children with fatal AI [76]. Goldsmith and Plunkett (2004) 
reported a child with extensive bilateral RH in a videotaped fatal 
accidental short fall [74]. Lantz et al (2004) reported RH with 
perimacular folds in an infant crush injury [144]. Gilles et al 
(2003) reported the appearance and progression of RH with 
increasing intracranial pressure following head injury in children 
[142]. Obi et al (2007) reported RH with schisis and folds in two 
children, one with AI and the other with NAI [147]. Forbes et al 
(2007) reported RH with epidural hematoma in five infant AI cases 
[148]. From a research perspective, Brown et al (2007) found no 
eye pathology in their fatal shaken animal observations [150]. 
Binenbaum et al (2007) observed no eye abnormalities in piglets 
subjected to acceleration/deceleration levels >20 times what 
Prange et al (2003) predicted possible in inflicted injury [41,149]. 
Emerson et al (2007) found no support for the vitreous traction 
hypothesis as unique to NAI [151].  
 
The eye and optic nerve are an extension of, and therefore a 
window to, the CNS including their shared vascularization, 
meningeal coverings, innervation, and CSF spaces. RH has been 
reported with a variety of conditions including AI, resuscitation, 
increased intracranial pressure, increased venous pressure, 
subarachnoid hemorrhage, sepsis, coagulopathy, certain metabolic 
disorders, systemic hypertension, and other conditions 
[143,145,153]. The common pathophysiology appears to be 
increased intracranial pressure or increased intravascular pressure. 
Furthermore, many cases of RH (and SDH) are confounded by the 



sequence or cascade of multiple conditions (e.g. the unified 
hypothesis of Geddes) that often have a synergistic influence on 
the type and extent of RH. For example, consider the common 
situation of a child who has had trauma (factual or assumed) 
followed by seizures, apnea or respiratory arrest, and resuscitation 
with resultant HIE or coagulopathy. In much of the traditional NAI 
/ SBS literature, little if any consideration has been given to any 
predisposing or complicating factors, and often there is no 
indication of the timing of the eye exams relative to the clinical 
course or the brain imaging [135,136,141,152].  
 
From the research and clinical evidence base, one may conclude 
that (1) RH is not specific for NAI, (2) RH may occur in AI and 
medical conditions, and (3) that predisposing factors and cascade 
effects must be considered in the pathophysiology of RH.   
 
Medical Conditions Mimicking NAI. 
 
Also a significant part of the controversy are the medical 
conditions that may mimic the clinical presentations (i.e. the triad) 
and imaging findings of  NAI [7,9,23,31-34,109,121].  
Furthermore, such conditions may predispose to, or complicate, AI 
or NAI, as part of a cascade that results in, or exaggerates, the 
triad. In some situations it may be difficult, or impossible, to tell 
which of these elements are “causative” and which are the 
“effects.” These include HIE, seizures, dysphagic choking ALTE, 
cardiopulmonary resuscitation, infectious or post infectious 



conditions (e.g. sepsis, meningoencephalitis, post-vaccinial), 
vascular diseases, coagulopathies, venous thrombosis, metabolic 
disorders, neoplastic processes, certain therapies, extracorporeal 
membrane oxygenation (ECMO), and other conditions 
[23,31,109,121].  Regarding pathogenesis of the triad (+/- other 
organ system involement - e.g. skeletal), and whether due to NAI, 
AI, or medical etiologies, the pathophysiology appears to be some 
combination, or sequence, of factors including increased 
intracranial pressure, increased venous pressure, systemic 
hypotension or hypertension, vascular fragility, hematologic 
derangement, and/or a collagenopathy imposed upon the immature 
CNS, including the vulnerable dural vascular plexus, as well as 
other organ systems [23,31,54,55,62].  
 
Although the initial medical evaluation including history, 
laboratory tests, and imaging studies may suggest an alternative 
condition, the diagnosis may not be made because of a “rush to 
judgement” regarding NAI [10-18,23].  Such bias may have 
devastating effects upon the injured child and family. It is 
important to be aware of these mimics, since a more extensive 
workup may be needed beyond the routine “screening”  tests.  
Also, the lack of confirmation of a specific condition does not  
automatically indicate the “default” diagnosis of NAI. In all cases, 
it is critical to review all past records dating back to the pregnancy 
and birth, as well as the postnatal pediatric records, the family 
history, the more recent history preceding the acute presentation, 
the details of the acute event itself, the resuscitation, and the 



subsequent management, all of which may contribute to the 
clinical and imaging findings. An incomplete medical evaluation 
may result in unnecessary cost-shifting to the child protection and 
criminal justice systems and have further adverse effects regarding 
transplantation organ donation in brain death cases and custody / 
adoptive dispositions for the surviving child and siblings. 
 
Sirotnak’s recent review, along with others, extensively catalogues 
the many conditions that may mimic NAI [23,31,109,121]. These 
include perinatal conditions (birth trauma and congenital 
conditions), accidental trauma (including dysphagic choking 
ALTE), genetic and metabolic disorders, hematologic diseases and 
coagulopathies, infectious diseases, autoimmune and vasculitic 
conditions, oncologic disease (e.g. neuroblastoma, leukemia), 
toxins, poisons, and nutritional deficiencies, and medical and 
surgical complications. A partial summary is provided below. 
 
Birth Trauma and Neonatal Conditions. Manifestations of birth 
trauma, including fracture, SDH, and RH may persist beyond the 
neonatal period. Other examples are the sequelae of extracorporeal 
membrane oxygenation (ECMO) therapy, at-risk prematurity, and 
congenital heart disease.  When evaluating a young infant with 
apparent NAI, it is important to consider that the clinical and 
imaging findings may actually stem from parturitional and 
neonatal issues [93-109]. This includes hemorrhage, or re-
hemorrhage, into extracerebral collections existing from birth [Figs 
1,4,12,14-16]. There may be associated skeletal findings of birth 



trauma (e.g. new or healing clavicle, rib, or long bone fractures), 
particularly in the presence of a bone fragility disorder [Figs 2,5] 
[153a – 153c].  
 
Developmental anomalies and Congenital Conditions. Vascular 
malformations are rarely reported causes for the triad, but may be 
underdiagnosed [Fig.9]. BECC and arachnoid cysts are also known 
to be associated with SDH and RH, spontaneously and with trauma 
[Figs 4, 14-16] [85-94]. 
 
Genetic and Metabolic Disorders.  A number of conditions in this 
category may present with intracranial hemorrhage (e.g. SDH) or 
RH. These include osteogenesis imperfecta, glutaric aciduria type I 
[Fig.13], Menkes kinky hair disease, Ehlers-Danlos and Marfan 
syndromes, homocystinuria, and others [23,109,121,154-158 ].  
 
Hematologic Disease and Coagulopathy. Conditions in this 
category predispose to intracranial hemorrhage and RH [Figs 
11,12].  The bleeding or clotting disorder may be primary or 
secondary. A more extensive workup beyond the usual “screening” 
tests is needed, including a hematology consultation. This includes 
the anemias, hemorrhagic disease of the newborn (vitamin K 
deficiency), the hemophilias, thrombophilias, disseminated 
intravascular coagulation and consumption coagulopathy, liver or 
kidney disease, hemophagocytic lymphohistiocytosis, and 
anticoagulant therapy [23, 109, 121, 159-161].  
 



Venous thrombosis includes dural venous sinus thrombosis 
(DVST) and cerebral venous thrombosis (CVT). DVST or CVT 
may be associated with primary or secondary hematologic or 
coagulopathic states [23,109,121,161-167]. Risk factors include 
acute systemic illness, dehydration, fluid-electrolyte imbalance, 
sepsis, perinatal complications, chronic systemic disease, cardiac 
disease, connective tissue disorder, hematologic disorder, 
oncologic disease and therapy, head and neck infection, and 
hypercoagulable states. Infarction, SAH, SDH, or RH may be seen, 
especially in infants. High densities on CT may be present along 
the dural venous sinuses, tentorium, falx, or the cortical, 
subependymal, or medullary veins and be associated with SAH, 
SDH, or intracerebral hemorrhage [Fig.8]. There may be focal 
infarctions, hemorrhagic or nonhemorrhagic, intraventricular 
hemorrhage, and massive, focal or diffuse edema. Orbit, paranasal 
sinus, or otomastoid disease may be present. The thromboses and 
associated hemorrhages have variable MRI appearances depending 
upon their age.  CTV or MRV may readily detect DVST but not 
CVT. The latter may be better detected as abnormal 
hypointensities on susceptibility-weighted T2* sequences, but 
difficult to distinguish from hemorrhage (SDH, SAH), 
hemorrhagic infarction, contusion, or hemorrhagic shear injury.  
 
Infectious and Post-infectious Conditions. Meningitis, encephalitis, 
or sepsis may involve the vasculature resulting in vasculitis, 
arterial or venous thrombosis, mycotic aneurysm, infarction, and 
hemorrhage [23, 109, 121]. SDH and RH may also be seen 



[Fig.10]. Post-infectious illnesses may also be associated with 
these findings. Included in this category are the “encephalopathies 
of infancy and childhood”, “hemorrhagic shock and 
encephalopathy syndrome,” and post-vaccinial encephalopathy 
[23,109,121,168-173].   
 
Toxins, Poisons, and Nutritional Deficiencies. This category 
includes lead poisoning, cocaine, anticoagulants, over-the-counter 
cold medications, prescription drugs, and vitamin deficiencies or 
depletions (e.g. K, C, D) [23,109,121,159, 170-175].  Preterm 
neonates, and other chronically ill infants, are particularly 
vulnerable to nutritional deficiencies and complications of 
prolonged immobilization that often primarily effect bone 
development. Furthermore, the national and international epidemic 
of vitamin D deficiency and insufficiency in pregnant mothers, 
their fetuses, and their undersupplemented breastfed neonates 
predisposes them to rickets (i.e. congenital). Such infants, whom 
have also been subjected to the trauma of birth, may have skeletal 
imaging findings (e.g. multiple healing fractures or 
pseudofractures) that are misinterpreted as NAI, especially in the 
presence of the triad [Figs 2,5] [175].   
 
Dysphagic  Choking ALTE as a Mimic of NAI. Apnea is an 
important and common form of ALTE in infancy whose origin 
may be central, obstructive, or combined [31]. The obstructive and 
mixed forms may present with choking, gasping, coughing, or 
gagging due to mechanical obstruction. When paroxysmal or 



sustained, the result may be severe brain injury or death due to a 
combination of central venous hypertension and hypoxia-ischemia. 
It is this synergism that produces cerebral edema and dural 
vascular plexus hemorrhage with SDH, SAH, and RH [Fig.17]. 
Examples include dysphagic choking (e.g. aspiration of a feed, 
gastroesophageal reflux), viral airway infection (e.g. RSV), and 
pertussis, and particularly when occurring in a predisposed child 
(e.g. prematurity, Pierre-Robin syndrome, SIDS) [31,176-183].   
 
 
Imaging Challenges and the Importance of a 
Differential Diagnosis.  
 
Computed Tomography (CT).  Because of the evidence-based 
challenges to NAI, imaging protocols should be designed to 
evaluate not only NAI vs. AI, but also the medical mimics. Non-
contrast CT has been the primary modality for brain imaging 
because of its access, speed, and ability to show lesions (e.g. 
hemorrhage and edema) requiring immediate neurosurgical or 
medical intervention [23,123,124,128,184-202]. Cervical spinal 
CT may also be needed. CT angiography or venography (CTA, 
CTV) may be helpful to evaluate the cause of hemorrhage (e.g. 
vascular malformation, aneurysm) or infarction (e.g. dissection, 
venous thrombosis). A radiographic or scintigraphic skeletal 
survery should also be obtained according to established guidelines 
(201,202). 
 



Magnetic Resonance Imaging (MRI). Brain and cervical spinal 
MRI should be done as soon as possible because of its sensitivity 
and specificity regarding pattern of injury and timing parameters 
[23,124,128,203-216]. Brain MRI should include T1, T2, T2*, 
FLAIR, and diffusion imaging (DWI / ADC). Gadolinium-
enhanced T1 images should probably be used along with MRA and 
MRV. T1 and T2 are necessary for estimating the timing of 
hemorrhage, thrombosis, and other collections using published 
criteria [23,215,216]. T2* techniques are most sensitive for 
detecting hemorrhage or thromboses, but may not distinguish new 
(e.g. deoxyhemoglobin) from old (e.g. hemosiderin). DWI  plus 
ADC can be quickly obtained to show hypoxia-ischemia or 
vascular occlusive ischemia [23,169,216,217]. However, restricted, 
or reduced, diffusion may be seen with other processes including 
encephalitis, seizures, or metabolic disorders, and with suppurative 
collections and some tumors [23,169,216,217]. Gadolinium-
enhanced sequences and MRS can be used to evaluate for these 
other processes. Additionally, MRA and MRV are important to 
evaluate for arterial occlusive disease (e.g. dissection) or venous 
thrombosis, although they cannot rule out small vessel disease. The 
STIR technique is particularly important for cervical spine 
imaging. 
 
Scalp and Skull Abnormalities. Scalp injuries (e.g. edema, 
hemorrhage, laceration) are difficult to precisely time on imaging 
studies and depend upon the nature and number of traumatic events 
or other factors (e.g. circulatory compromise, coagulopathy, 



medical interventions, etc.) [7,23]. Skull abnormalities may 
include fracture and suture splitting. Fracture may not be readily 
distinguished from sutures, synchondroses, their normal variants, 
or from wormian bones (e.g. osteogenesis imperfecta) on CT or 
skull films. 3DCT surface reconstructions may be needed. In 
general, the morphology of a fracture cannot differentiate NAI 
from AI, and must be correlated with the trauma scenario (e.g. 
biomechanically) [Fig.1]. Skull fractures are also difficult to time 
because of the lack of periosteal reaction [7,23]. Suture diastasis 
may be traumatic or a reflection of increased intracranial pressure, 
but must be distinguished from pseudodiastasis due to a metabolic 
or dysplastic bone disorder (e.g. congenital rickets) [Fig.2] 
[7,23,175,153a-c, 175]. The “growing fracture” (e.g. 
leptomeningeal cyst” is not specific for NAI and may follow any 
diastatic fracture in a young infant, including birth-related 
[Fig.1][7,9,23]. Nondetection of scalp or skull abnormalities on 
imaging should not be interpreted as the absence of impact injury.  
 
Intracranial Collections. It should not be assumed that such 
collections are always traumatic in origin. A differential diagnosis 
is always necessary and includes NAI, AI, coagulopathy 
(hemophilic and thrombophilic conditions), infectious and post-
infectious conditions, metabolic disorders, and so forth 
[9,23,29,37,109,110,121,126-130]. It may not be possible to 
specify with any precision the components, or age, of an 
extracerebral collection because of meningeal disruptions (e.g. 
acute or subacute subdural hygroma [SDHG] vs. chronic SDH, or 



subarachnoid vs. thin subdural hemorrhage) 
[7,23,123,124,186,193,197,200a]. Vezina has recently summarized 
the literature regarding the complexity of timing of intracranial 
collections [200a]. Subarachnoid and subdural collections, 
hemorrhagic or nonhemorrhagic, may be localized or extensive, 
and may occur about the convexities, interhemispheric (along the 
falx), and along the tentorium. With time and gravity, these 
collections may redistribute to other areas, including into, or out 
of, the spinal canal and cause confusion [23, 199,200a,219].  For 
example, a convexity SDH may migrate to the peritentorial and 
posterior interhemispheric regions, or into the intraspinal spaces.  
SDH migration may lead to a misinterpretation that there are 
hemorrhages of different timing. The distribution, or migration, of 
the sediment portion of a hemorrhage with blood levels (i.e. 
hematocrit effect) may cause further confusion since density / 
intensity differences between the sediment and supernatant may be 
misinterpreted as hemorrhages (and trauma) of differing age and 
location [23,124,200-200a]. Prominent subarachnoid cerebrospinal 
fluid (CSF) spaces are commonly present  in infants (i.e. benign 
extracerebral collections – BECC). This entity predisposes infants 
to SDH which may be spontaneous or associated with trauma of 
any type (e.g. dysphagic choking ALTE) [Figs 4,14,16] [23,85-
93]. A hemorrhagic collection may continually change, or evolve, 
with regard to size, extent, location, and density / intensity 
characteristics. Rapid spontaneous resolution and redistribution of 
acute SDH over  a few hours to 1 - 2 days has been reported 



[23,199,220]. A tear in the arachnoid may allow SDH washout into 
the subarachnoid space or CSF dilution of the subdural space. 
 
For apparent CT high densities, it may be difficult to differentiate 
cerebral hemorrhage from subarachnoid hemorrhage or from 
venous thrombosis [Figs 2,3,6-11,14,15,17] [23]. According to the 
literature, hemorrhage or thromboses that are high density (i.e. 
clotted) on CT (i.e. acute to subacute) have a wide timing range of 
0-3 hours up to 7-10 days [23,124,200,200a]. Hemorrhage that is 
iso-hypodense on CT (i.e. nonclotted) may be hyperacute (<  3 
hrs.) or chronic (> 10 days) [Fig.3,11]. The low density may also 
represent pre-existing wide CSF-containing subarachnoid spaces 
(e.g. BECC) or SDHG (i.e. CSF-containing) that may be acute or 
chronic [Figs 3,13,14] [23, 123,124,197,200a].  Blood levels are 
unusual in the acute stage unless there is coagulopathy 
[23,124,215,216]. CT cannot distinguish acute hemorrhage from 
re-hemorrhage upon existing chronic collections (BECC or chronic 
SDHG) [Figs 3,14] [23,86,92,99,112-124,193,200,200a].  
Traditionally, the interhemispheric SDH as well as mixed density 
SDH were considered characteristic, if not pathognomonic, of  
SBS/NAI [7-9,184,190,193]. This has been proven unreliable. In 
fact, interhemispheric SDH may be seen with AI or with 
nontraumatic conditions (e.g. HIE, venous thrombosis, venous 
hypertension, dysphagic choking ALTE) [Figs 2,6-10]. Mixed 
density SDH also occurs in AI as well as in other conditions [Figs 
3,9,11]. Furthermore, SDH may occur in BECC either 
spontaneously or result from minor trauma (i.e. AI), and 



rehemorrhage within SDH may occur spontaneously or with minor 
AI [Figs 1,4,14,16] [19,23,54,62,82,110,124,200,200a].   
 
Only MRI may provide more precise information regarding pattern 
of injury and timing, particularly with regard to (a) hemorrhage vs. 
thromboses (see Table) and (b) brain injury [23,124,128,203-217].  
As a result, MRI has become the standard and should be done as 
soon as possible. Mixed intensity collections, however, are 
problematic regarding timing [200a]. Matching the MRI findings 
with the CT findings may help along with followup MRI. Blood 
levels may indicate subacute hemorrhage vs. coagulopathy. The 
timing guidelines are better applied to the sediment than to the 
supernatant. With mixed intensity collections, MRI cannot reliably 
differentiate BECC with acute SDH from acute SDHG / SDH, 
from hyperacute SDH, or from chronic SDH or chronic SDHG 
with re-hemorrhage [Figs 1,4,12-16] [23,124].  T2* 
hypointensities are iron-sensitive but may not differentiate 
hemorrhages from venous thromboses that are not detected by 
MRV (e.g. cortical, medullary, subependymal). 
 
Brain Injury.  
 
Edema or swelling in pediatric head trauma may represent primary 
injury or secondary injury and be acute-hyperacute (e.g. minutes to 
a few hours) or delayed (e.g. several hours to a few days) including 
association with short falls and lucid interval [23,52-55,74-82].  
The edema or swelling may be further subtyped as traumatic, 



malignant, hypoxic-ischemic, or related to (or combined with) 
other factors. Traumatic edema is related to areas of primary brain 
trauma (i.e. contusion or shear) or to traumatic vascular injury with 
infarction (e.g. dissection, herniation, spasm) [Figs 3,6,9,11]. 
Traumatic edema is usually focal or multifocal, whether 
hemorrhagic or not. However, CT may not distinguish focal or 
multifocal cerebral high densities as hemorrhagic contusion, 
hemorrhagic shear, or hemorrhagic infarction (23). Focal or 
multifocal low density edema may also be seen with infarction 
(e.g. arterial or venous occlusive), encephalitis, demyelination (e.g. 
ADEM), or seizure edema [23,109,161-169]. Also, MRI often 
shows shear and contusional injury as focal / multifocal restricted 
diffusion, GRE hypointensities, and/or T2 / FLAIR high intensities 
(23). Focal / multifocal ischemic findings may also be due to 
traumatic arterial injury (e.g. dissection) or venous injury (e.g. tear, 
thrombosis), arterial spasm (as with any cause of hemorrhage), 
herniation, or edema with secondary perfusion deficit or seizures 
(e.g. status epilepticus) [Figs 1,6,11] [23,84,169,217,218]. 
However, these may not be reliably differentiated from focal / 
mutlifocal ischemic or hemorrhagic infarction from nontraumtic 
causation (e.g. dissection, vasculitis, venous, embolic) even 
without supportive MRA, CTA, MRV, or angiography. Also, 
similar cortical or subcortical intensity abnormalities (including 
restricted diffusion) may also be observed with encephalitis, 
seizures, and metabolic disorders. Therefore, a differential 
diagnosis is always required [23,169,217,218]. 
 



Malignant brain edema, a term used for severe cerebral swelling 
following head trauma, may lead to rapid deterioration 
[7,23,75,82]. The edema is usually bilateral and may be related to 
cerebrovascular congestion (i.e. hyperemia) as a vasoreactive 
rather than an autoregulatory phenomenon and associated with 
global ischemia. A unilateral form may also occur in association 
with an ipsilateral SDH that progresses to bilateral edema [Fig.3,6] 
[84]. There may be rapid or delayed onset (i.e. lucid interval).  
Predisposing factors are not well-established, but likely include a 
genetic basis. Hyperemic edema may appear early as accentuated 
gray-white matter differentiation on CT, then progresses to loss of 
differentiation.  
 
Global hypoxia (e.g. apnea, respiratory failure) or ischemia (e.g. 
cardiovascular failure or hypoperfusion) is likely a major cause of, 
or contributor to, brain edema in the child with head trauma (e.g. 
malignant edema) [23,52-55,62,75,82]. HIE, depending on its 
severity and duration, may have a diffuse appearance acutely (i.e. 
diffuse or “vascular” axonal injury) with decreased gray-white 
differentiation throughout the cerebrum on CT (e.g. white 
cerebellum sign), and then evolve to a more specific pattern on CT 
or MRI (e.g. borderzone or watershed, basal ganglia / thalamic, 
cerebral white matter necrosis, reversal sign) [Figs 2,6,7,10,17] 
(23,217) . It is typically bilateral but may not be symmetric. This 
more diffuse pattern may distinguish HIE from the multifocal 
pattern of primary traumatic injury, although they may coexist. 
Hypoxia-ischemic brain injury due to apnea / respiratory arrest 



may occur with head trauma or with neck / cervical spine / cord 
injuries (e.g. SCIWORA) whether AI or NAI [Fig. 7] [23,51-53]. 
It may also occur with any nontraumatic cause (e.g. choking, 
paroxysmal coughing, aspiration, etc.) [Figs 2,17] [23, 31,176-
182]. In addition to the diffuse brain injury, there may be 
associated subarachnoid and subdural hemorrhage without mass 
effect [Figs 2,7,10,17] [23,51-53,62].  MRI shows hypoxic-
ischemic injury, depending upon timing, as diffuse restricted 
diffusion on DWI / ADC plus matching T1/T2 abnormalities as the 
injury evolves [Figs 2,6] [23,217]. Other important contributors to 
edema or swelling include such complicating factors as seizures 
(e.g. status epilepticus [Fig.2]), fluid-electrolyte imbalance, other 
systemic or metabolic derangements (e.g. hypoglycemia, 
hyperglycemia, hyperthermia), or hydrocephalus [23]. It is well 
known that many of these may also be associated with restricted 
diffusion along with other nontraumatic processes (encephalitis, 
seizures, and metabolic disorders) [23,169,214,215,217]. Once 
again, a differential diagnosis is required.  
 
 
Conclusion 
 
An extensive review of the literature to date fails to establish an 
evidence base for reliably distinguishing NAI from AI or from the 
medical mimics. The medical and imaging findings alone cannot 
diagnose “intentional” injury. Only the child protection 
investigation may provide the basis for “inflicted” injury in the 



context of  “supportive” medical, imaging, or pathologic data. The 
duty of the radiologist is to give a detailed description of the 
imaging findings, provide a differential diagnosis, and 
communicate the concern for NAI, directly to the primary care 
team in a timely manner. The radiologist should be prepared to 
consult with child protection services, other medical and surgical 
consultants, including the pathologist or biomechanical specialist, 
law enforcement  investigators, and attorneys for all parties as 
appropriate. The radiologist must also be aware of certain 
conditions that are known to have clinical and  imaging features 
that may mimic abuse. These should be properly evaluated, and the 
possibility of combined, or multifactorial, mechanisms with 
synergistic effects should also be considered. Furthermore, a 
negative medical evaluation does not make NAI the default 
diagnosis. A timely and thorough multidisciplinary evaluation may 
be the difference between  appropriate child  protection versus an 
improper breakup of the family or a wrongful indictment and 
conviction. 
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Table 2  - MRI of Intracranial Hemorrhage & Thrombosis*      
                         
 
 STAGE           BIOCHEMICAL FORM        SITE            T1-MRI          T2-MRI 
   
Hyperacute                     Fe II oxyHb            Intact RBCs       Iso-Low I           High I  
 (+edema) 



[<12 hours] 
 
 Acute                             Fe II deoxy Hb        Intact RBCs       Iso-Low I           Low I 
(+edema) 
[1-3 days] 
 
Early Subacute                Fe III metHb           Intact RBCs         High I              Low I 
   (+edema) 
[3-7 days] 
 
 Late Subacute                 Fe III metHb           Lysed RBCs         High I             High I 
   (-edema)                                                       (extracellular) 
[1-2 weeks] 
 
 Early Chronic                 Fe III transferrin       Extracellular         High I             High I 
   (-edema) 
[>2 weeks] 
 
 Chronic                          Fe III ferritin &         Phagocytosis        Iso-Low I       Low I 
 (cavity)                             hemosiderin 
 
 
*RBCs - red blood cells, I - signal intensity, + present, - absent,  Hb - hemoglobin, Fe II - 
ferrous, Fe III - Ferric, Iso - isointense. 
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