
Key Concepts

● Overall goal: reduce complexity

▪ Dependencies

▪ Obscurity

● Good design is an investment

▪ Tactical vs. strategic programming

● Complexity is incremental: zero

tolerance

● Abstraction: find simple ways to

think about complicated things

● Information hiding

▪ Interface vs. implementation

● Classes should be deep

● General-purpose classes are deeper

● Different layers should have different 

abstractions

● Pull complexity downward,

push specialization upward

● Comments should describe things 

that aren’t obvious from the code

● Comments are at a different level of 

precision than code

● Names matter!

● Define errors out of existence

● Code should be obvious

CS 190 Lecture Notes: Wrapup Slide 1



CS 190 Lecture Notes: Wrapup Slide 2

Red Flags

● Unnecessary specialization

● Shallow classes

● Information leakage

▪ Dependencies

▪ Conjoined methods/classes

● Temporal decomposition

● Pass-through methods

● Code duplication

● Special cases

● Inconsistencies

● Comment duplicates code

● Implementation contaminates 

interface documentation

● Documentation has to be

long to be complete

● Vague names

● Code is not obvious



CS 190 Lecture Notes: Wrapup Slide 3

Workloads

● If Project 1 was 1.0 unit of work, how many units were

● Project 2: 0.75, 0.7, 1,1, 1.1, 0.7, 0.9, 0.9, 0.7, 0.4, 0.5, 1.3, 1.5, 1.5, 

1.3, 0.6, 2.0, 0.5

● Project 3: 0.9, 0.8, 0.7, 0.7, 0.8, 1.0, 1.0, 0.8, 0.6, 0.5, 0.9, 0.9, 0.8, 0.7, 

1.0, 0.75, 0.2


