Crystal: A Timing Analyzer for nMOS VLSI
Circuits

John K. OQusterhout
Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Abstracl

Crystal is a timing analyzer for nMOS circuits designed in the Mead-Conway
style. Based on the circuit extrected from a mask set, Crystal determines
the length of each clock phase and pinpeints the lengest paths, The
analysis is independent of specific data values and uses critical path tech-
niques along with a simple RC model of delays, Several additional tech-
niques are used to improve the speed and accuracy of the program, includ-
ing separate up/down Liming, stalic level assignment, low contrel for pass
transizstors, and precharging.

1. Introduction

A= the density of integrated circuits increases into the hundreds of
thousands of transistors, the intwitions of circuit designers become more
and more fallible. The large number of components and their complex
interrelationships make it almost impossible for designers to foresee all
the consequences of each design decision. To decrease the likelihood of
costly errors, designers depend on assistance from computer tools. Pro-
grams ranging from layout rule checkers to simulators are used to validate
designers” intuitions and root out errors before they are cast in silicon.

This paper is concerned with one particular aspect of design valida-
tion: performance. Even if a circuit design is logically correct and free of
layout errors, it will be of little or no use unless it can operate at an
acceptable speed. For small designs, circuit simulators such as SPICE [8]
can be used to verify performance. For large circuits, however, designers
are left largely on their own, since circuit simulators become intolerably
slow for even a few thousand transistors. Designers can extract pieces of a
large design and simulate the pieces, but this depends on the designers’
ability to select the right pieces. Experience with VL3I chips at U.C. Berke-
ley suggests that this is an error-prone approach [2,8]. The initial speed
limitations were due not to major elements like ALU carry chains, but to
seemingly trivial logic where small transistors were accidentally used to
drive large loads, In one case [2] the errors were not discovered until after
fabrication; in the other case [B] several such errors were discovered
before fabrication by an early version of Crystal.

Crystal is a data-independent timing analysis program. ILs inpul is a
descriplion of an nM0OS circuit. The description is extracted from the mask

57

58 Crystal: A Timing Analyzer for nMOS VLS| Circuits

layout and includes interconnect resistance and capacitance as well as
Lransistor sizes and types. Crystal determines the length of each clock
phase and identifles the slowest paths. The analysis is fast: one example
circuit of 45000 transistors can be processed in about 20 minutes of CPU
time on a VAX-11,/780. However, since Crystal uses a very simple model of
timing, it produces less accurate resulls Lhan circuit simulators. Our goal
iz ko achieve overall timing estimates within +20% of the simulation results
of SPICE,

Seclion 2 introduces the basic mechanism used by Crystal. In its sim-
plest form, this approach produces grossly pessimistic timing estimates.
Furthermore, the basic appreach suffers from severe computational
inefliciencies thalt make it impractical for any real circuits. Zection 3
discusses these problems and describes several additional mechanisms
used in Crystal to increase the efMiciency of the program and the accuracy
of its results. Section 4 presents the limits of the timing medel, and Sec-
tion 5 describes our experiences using the program.

2. The Basic Mechanism

The notion of timing analysis has existed for some time, and several
timing analyzers have been described in the literature [1,4,5]. A timing
analyzer can be thought of as a program thal simulates a single clock
cycle with all possible combinations of data values at the same time. In
this way it computes worst case delays and verifies that the timing require-
ments of the ecircuit’s various memory elements will be satisfied,

Most existing analyzers were designed for bipolar technologies such as
ECL and TTL. MOS eircuits, particularly Lthose designed in the Mead-Conway
style, differ in several important ways from bipolar circuits, and thus sug-
gest a different approach to Liming analysis. Whereas bipolar circuits tend
to use complicated asynchronous clocking schemes, MOS circuits in the
Mead-Conway style use simple, synchronous clocking mechanisms based on
non-overlapping clock phases. Thus Crystal does not deal with minimum
delay times or set-up and hold-times, which account for much of the com-
plexity of bipolar timing anaylzers. Crystal's approach is simpler: for each
clock phase, it merely delermines how long it takes after the clock
changes for all the effects of that change to propagate throughout the cir-
cuil. This results in a worst-case estimate for the length of the clock
phase.

Crystal also differs from bipelar timing analyzers in its computation of
the basic delays. In bipolar technologies the delay of a piece of logic is
almeost independent of the way the logic is used, and wire delays can be
combined with logic delays in a simple fashion. The delay for each logic
type is provided by the user. In MOS, the delay calculation is a complex
function of the logic type, its geometry, and the way it is used in the cir-
cuit. The delay for one piece of logic may even be impacted by the logic
that provides its inputs. This makes the basic delay calculations much
more complex for MOS analyzers than for bipolar analyzers.

To compute how long it takes for a clock change to propagate, Crystal
makesz a recursive, depth-first pass over the circuit starting with the clock.
At any given time, Crystal considers a change in value al a particular
transistor gate, called the driver (see Figure 1). When the driver changes
value, il may cause certain other transiztor gates, called targels, to
change value at later times. Crystal finds each target of the driver and

J.K. Ousterhout 59

Vdd # (=) | ;
{a) 1 argetl
Driver
H 1
1
—| o e
(=) i 1 o l Target2

Figure 1. When it iz discovered that the driver changes value at a particu-
lar time, Crystal firsts looks on one side of the driving transistor to find
possible paths to Vdd and Ground at (a) and (b). Then it searches on the
other side of the driving transistor for pessible paths to olther gates at (c)
and (d). Delays are computed for each separale path between a target
gate and ¥Vdd or Ground (4 paths in this case).

computes the delay between driver and target. This information is then
propagated recursively by treating the target as driver and figuring out
which other gates it can affect. If a target is reached from several
different drivers, then it isn't necessary to perform the recursive step
unless the target’s new delay time is the latest one seen for it.

Crystal finds the targets of a particular driver in two steps, as illus-
trated in Figure 1. First, starting at the source terminal of the driving
transistor, Crystal searches through sources and drains of other transis-
tors to find all paths from the driver source to Vdd or Ground. Crystal
assumes that all transistors could conceivably be on. For each such path,
it then searches from the drain of the driving transistor through sources
and drains to all possible gates. Each of these gates is considered a target,
and the path from the target through the driver to Vdd or Ground is used
to compute the delay from driver to target.

To compute the delay, Crystal approximates each transistor with a
resistance value. The resistance values were chosen based on SPICE simu-
lations with expected processing parameters (see Table 1). Different resis-
tance values are used depending on whether the Larget is being pulled to
Vdd or Ground, and depending on whether the gate of the transistor is
known to have a particular value {see Section 3). All the resistances and
capacitances of transistors and nodes are summed along the path from
target to Vdd or Ground, and the RC product is used as the delay from
driver to target (lead devices require special processing; see Section 3.1

Transistor Ohms/square | Ohms/square
Type {pulling to 1) | (pulling to 0)
Enhancement 30000 15000
Depletion Load 22000 =

Super-Buffer
(depletion, gate 1)

Depletion
{gate 0 or unknown) | sanca | i

5500 8500

Table 1. Resistance values used for transistors.

60 Crystal: A Timing Analyzer for nMOS VLS| Circuits

for details). Only the resistance and capacitanee directly along the path
from target to supply rail is considered. If there are side paths separated
from the main path by pass transistors, the capacitance from those side
paths is ignored.

For each path from the driver source to Vdd or Ground, all possible
targets are found on the drain side of the driver and delays are calculated.
Then the drain side of the driver is examined for paths to Vdd or Ground,
and for each of these the source =ide is examined for targets.

The algorithm described above is just a depth-first critical path
analysis. A depth-first search is used ralther than a breadth-first one
because circuits such as static memory elements contain feedback loops;
by marking the pending nodes during the search, inflnite loops can be
avoided. In a depth-first search, the processing time could in the worst
possible case be exponential in the size of the circuit, whereas breadth-
first search is linear. Fortunately, the graphs describing integrated cir-
cuits tend to be shallow (only a few gate delays per clock period), and the
loops tend to be short {usually just two gates). This results in running
times that are almost linear in the size of the circuit.

Note that this analysis dees not consider any specific data values at
various nodes: all possible paths are assumed to be wvalid, and it is
assumed that all transistors could conceivably be turned on. A data-
independent analysis is more powerful than a simulation based on particu-
lar data values because it is certain to find the worst-caze time: simula-
tions will be effective only to the extent that the test cases are complete.

3. Improvements in Speed and Accuracy

In actual chips, not all transistors will always be turned on, and not all
data values will be possible. A completely data-independent analysis, like
that of Section 2, will chase many paths that can never be exercised in the
real circuit, so it is likely to produce ridiculously pessimistic time esti-
mates. Furthermore, the time required to chase all the paths will make
the program too slow to be practical. Thus, although Crystal uses the sim-
ple mechanism as the core of its analyzer, il alsoc employs several addi-
tional techniques that incorporate a few data dependencies in order to
make its estimates more exact and its running times more reasonable.

o s B ooy

{a) Ons —* l4ns —* 28ns —* 4.2ns —* 5.6n5
(Ons X: L4ns 1.Tns X: 3.1ns x d.4ns Rise
b)

Ons .ans 1.7ns 2.0ns 3.4ns Fall

Figure 2 Cryslal keeps separate rise and fall delay times for each node. If
only the worst case times were used (Lhe rising delay), then the pessimistic
delay estimates in (a) would result. Instead, Crystal recognizes the invert-
ers and combines rise delays for one stage with fall delays for the next, as
shown in (b).

J.K. Qusterhout 61

d.1. Up/Down Times and Loads

In a purely data-independent analysis, Crystal would have Lo use the
worst-case time for each driver-target delay. This will almost always be the
low-to-high transition, since nMOS rise times are usually several times
longer Lhan fall times, However, real circuits consist almost exclusively of
inverting logic. For example, in Figure 2 it is unnecessarily pessimistic to
assume that each of the several inverter stages is rising. Instead, Crystal
keeps separate times for high-to-low and low-to-high transitions at each
node and computes delays to reflect the level inversions that occur. Fig-
ure 2 shows how delay estimates are reduced by keeping separate up- and
down-times.

There are three distinct cases that can oeccur in nMOS: pulldown,
enhancement pullup, and depletion pullup. These are illustrated in Figure
3. Figure 3a) shows the pulldown case. In this case a level inversion
occurs: when the driver transistor turns on it pulls the target to ground.
Only the high-to-low time of the target is affected, and it is determined by
adding the low-to-high time of the driver to the delay through the path.

The enhancement pullup case is illustrated in Figure 3(b). No level
inversion occurs here: when the pass transistor turns on, it pulls the tar-
get to a high voltage., For Lhis path, only the low-to-high time of the target
is affected. It is determined by adding the low-to-high time of the driver to
the delay through the path. Because the target is being pulled high,

_____ Target -L d
Driver | —Hf‘i

{a}

Driver

Vid
K A e
(i) __.'_‘____Turgeljf‘

Target |
@ | Hd

Driver "L —I

Figure 3. The three different ways that targets are driven in nMOS: a) a
pulldown transistor Lurns on, causing the target to be pulled to 0 b) a
pass transistor turns on, causing the target to be pulled to 1; ¢} a pull-
down turns off, causing the target to be pulled to 1 through a depletion

lead.

62 Crystal: A Timing Analyzer for nMOS VLSI Circuits

different resistances are used for the transistors along the path than in the
pulldown case. In the case of Figure 3(b), it is likely that there is also a
path through the pass transistor to ground; this path will be analyzed
separately using the pulldown rules to compute a new high-to-low time for
the target.

The third case, depletion pullup, is illustrated in Figure 3(c). After the
driver transistor turns off, the load will pull the target to a high level.
When chasing out the paths, Crystal watches for load devices along the
path, and remembers the closest load te each target. The low-to-high time
for the target is computed by adding the high-to-low time for the driver to
the delay to Vdd through the load. Only the closest load to the target is
considered. Furthermore, if a depletion load is seen along a particular
path, then enhancement pullup times are ignored for the path: Crystal
assumes that the depletion load will be responsible for all low-to-high tran-
sitions at the target.

3.2. Fixed Values

In real circuits, certain nodes will have fixed values during each clock
phase, These fixed values will prevent some delay paths from occurring
when the chip runs. The most obvious examples are the clock signals
themselves, as illustrated in the dynamic shift register example of Figure
4. Without any knowledge that Phase2 is zero when Phasel is on, Crystal
will attempt to propagate the input signal through all the shift register
stages during Phasel, and will thus produce a very long worst-case time for
Phasel.

Before invoking the delay analysis for a particular clock phase, users
can indicate that certain signals {most notably the other clock phases)
have fixed values. Crystal performs a static logic simulation to fix as many
other node values as possible. If one input of a NAND structure is fixed at
0, Crystal will infer that the output must be fixed at 1. If one input of a
NOR structure is fixed at 1, Crystal will infer that the cutput must be fixed
at 0, and so on.

When searching for delay paths, Crystal assumes that there is a zero
delay to all nodes with flxed values. It also refuses to propagate delays
through enhancement transistors whose gates are fixed al zero. In the
case of Figure 4, this means that only a few short paths will be considered
during Phasel, and only a (different) few short paths during Phase2.

Phasel Phase2 Fhasel Phase2 Fhasel

Figure 4. In analyzing the delays for Phasel it is impertant to realize that
Phase2 is zero. Olherwise, delays will be computed under the assumption
that data could flow from end to end in a single clock phase. Feor Lhe
FPhasel analysis, the user indicates that Phase2 is fixed at 0; Crystal will
evaluate the path from (a) to (b} but not frem (b) to {c).

J.K. Ousterhout 63

3.3. Flow Control

Pass transistors cause special problems, especially when the pass
transistors are bi-directional. An example is in Figure 5. Without any extra
information, Crystal will try a path where Inputl drives OQulpul2 by passing
forwards and backwards through the multiplexor structure. In practice,
only one of the mux pass transistors will be turned on at a time, so the
path is impossible. A more severe problem arises for barrel shifters and
other structures where arrays of pass transistors are used to re-arrange
data, as in Figure 6. In searching for all possible paths between a driver on
the left and a target at the bottom, Crystal will analyze tortuous long paths
through the pass transistor array. This has two consequences. First, a
large number of pass transistors will be examined in series, leading to
unrealistic long delay estimates (in reality only a few pass transistors are
enabled at any one time). Second, the number of possible paths through
such a structure grows exponentially with its size. For even a 18-bit barrel
shifter the analysis takes Loo long to be practical.

One approach to the problem is to use fixed values to limit the possi-
ble paths. For example, in the case of the 2-input mux, 2 separate timing
analyses could be performed, one with Select fixed to 0 and Select flxed to
1, and one with the values reversed. This is the approach taken by the
SCALD system. However, this approach has lwo disadvantages. First, it is
tedious and expensive to make separate analyses with different flxed
values, especially for more complex structures where there are many valid
combinations of control lines, The second problem is that no delays are
valculated through fixed nodes. Thus, if the eritical path involves the

Select signal, Crystal will never detect that fact.

Crystal's solution to the prokblem is to allow designers Lo indicate the
direction of signal flow through transistors. This feature is used in two
ways. For the mux case, where information always flows in one direction,
designers indicate which side of each pass transistor is the source of the

Select Seleak
g b] _L
Inputl —E:)O—'_‘_ Inputl
(e utpukl #— Outputl
Select i Select
Ml L
Inputd Inputa =
— Dutputd Outpul?
{a) (&)

Figure 5 Without any information about how information flows through
pass transistors, Crystal will examine the dotted path in {a), which can nev-
er gccur in practice. [f the user indicates that 0/1 signals always flow into
the two mux pass trensistors at their left sides, as in (b), then Crystal will
not examine the bogus path.

64 Crystal: A Timing Analyzer for nMOS VLSI Circuits

Inputl —|>c Q.. ;o g
Input2 —DC ;ru
Inputs —DC ;*
Input4 —DC ;.-

gl ol 7

S
S

Outl Out? Outd Outd

Flgure 8. Ancther example where bogus paths, like the dotted onas, will be
examined unless information s provided about how the structure is used.

zero or one signal, as shown in Figure 5(b). The indication is made directly
in the mask layoul and passed through te Crystal by Lhe circuit extractor.
Crystal will then ignore any paths through the pass transistor with the zero
or one source on the wrong side.

A similar but more powerful technique is used [or bidireclicnal strue-
tures, such as the one in Figure 7. For bidirectional structures, designers
tag one side of each transistor in the structure with a particular name
other than “In” or "Out". When a potential path contains transistors
tagged this way, Crystal will consider the path only if information fow in
the path is always unidirectional with respect to the tags. This permits
separate paths passing in opposite directions across the structure, but
ignores paths that go back and forth. Each different structure in the cir-
cuit uses a separate tag for its pass transistors, so Crystal handles them
independently.

Although it might seem that this kind of flow control would require the
designer to spend a large amount of time tagging his design, in practice
the work for this is small. In the RISC Il Cache [B], which has several large
bidirectional structures, approximately 12000 transistors have tags out of
48000 total transistors. But because Lhe design uses arrays extensively,
only 103 individual tags had to be entered by the designers, compared to

T B S

Figure 7. To handle bidirectional structures, the designer indicates a
direction of flow by tegging one side of each transistor in the structure.
Crystal permits paths in either direction, e.g. from @ to b or from ¢ to d or
from ¢ te &, but not paths that pass back and forth with respect to the
tags, as fromatoc tod

J.K. Ousterhout 65

about BO0 other distinet node labels. If all pass transistors are unidirec-
tional, it may be possible for the timing analyzer to infer the directionality
and eliminate flow tegging. This is the approach taken by the TV program

[3].

3.4. Busses and Precharging

Consider the structure of Figure 8, where several memory cells con-
nect to a single bus and each cell can be written from or read out onto the
bus. When analyzing this circuit, Crystal will consider paths from each
memory cell out onto the bus and into E%ﬂh other memory cell. Thus, for N
cells on the bus, Crystal will consider N® paths, For large memory arrays
this is both expensive and unnecessary.

As long as the capacitance of the bus is much greater than the inter-
nal capacitance of any of the memory cells, the delay from one cell to
anocther can be approximated by two separate delays: one from a cell onto
the bus, and a second "independent” delay from the bus to each other cell.
Thus, instead of N? paths, Crystal need only examine 2N paths: N paths
from cells onto the bus, and N paths from the bus back into individual
cells, There are two ways Lthat Crystal finds out about busses. First, users
may indicate this explicitly. Second, there is a user-settable capacilance
threshold above which Crystal automatically considers a node to be a bus.
The default thresheold is 1pf.

Cry=tal also allows users to specifly that certain nodes are precharged
before certain clock phases. When this happens, Crystal ignores all low-to-
high transitions for the precharged nodes.

3.5. Cross-Phase Signals

It is guite common for a particular piece of combinational logic Lo sta-
hilize across several clock phases. For example, the input to an ALU might
be lnaded at the beginning of Phase 1 and the output latched at the end of
Phase 2. In this case, Crystal will “bill" the entire delay of the ALU to
Phase 1: it assumes that anything that could change in a clock phase must
change during that clock phase. Work is currently underway to relax this
restriction. Instead of requiring all nodes to settle during each clock

5O 8D

..1
S S

Figure 8. To aveid examining separate paths from each memory cell onto
the bus then out to each ether memory cell, Crystal computes separate de-
lays from cells Lo the bus and from the bus to cells,

66 Crystal: A Timing Analyzer for nMOS VLS| Circuits

phase, only static and dynamic memory nodes loaded by that clock must
settle. Other nodes can continue settling during the next cleck phase,
This mechanism has only recently been implemented and is still undergo-
ing testing. It appears to be important, though: all of the designs that
have used Crystal so far contain such cross-phase signals.

4. Weakness of the Delay Model

The simple resistive approximation for transistors can occasionally
produce large errors in delay estimates. Consider the situation of Figure
8. In (b} the inverter will take much longer to drive its output to zero than
in (a) because the gate voltage is much lower than Vdd when the output is
being driven in {(b). In general, the effective drive power of a transistor is a
function both of the input waveform and of the load being driven, whereas
Crystal considers only the load being driven. If the characteristic resis-
tance for a transistor is chosen based on fast inputs, the delay for a given
device may be underestimated by as much as an order of magnitude., In
the case of Figure 8(b), the delay of the input signal is much greater than
the delay of the inverter itself, so the underestimate for the inverter’s
delay will cause only a small percentage error in the overall delay estimate
for the circuit. However, there are many situations where overall errors of
as much as 50% or more will occur if a single resistance value is used for
each transistor type (see Section 5).

The solution to this problem is to include the input waveform in the
delay calculation. An approach that we are currently explering is to
include slopes in delay calculations. In the slope model, the low-to-high
and high-to-low times for each node will be accompanied by slopes. The
resistance values of Lransistors will be specified as functions of the transis-
tor type, input slope, and load being driven,

¥dd

Qutput

Inpul

—
i. Output

{n} (b

Figure 9. If the inpul to an inverter rises quickly to 1, as in (a), the outpul
i driven quickly to 0. If the input rises very slowly as in (b), the pulldown
transistor is driven by a lower gate voltage, so the output falls more slowly.

J.K. Ousterhout 67

5. Experiences Using Crystal

It was fortunate, and not entirely coincidental, that the RISC II Cache
chip was undergoing final pre-fabrication validation at the same time that
Crystal was developed. The cache has been used throughout the develop-
ment of Crystal as a large test case. It contains about 46000 transistors,
over half of which are in a large memory array. It uses a four-phase non-
overlapping clocking scheme. Crystal uncovered a half-dozen performance
bugs that would have forced the clock to run 40% slower than planned. The
most important bug found was a small transistor accidentally left to drive
very long line, resulting in a 80ns delay for that one wire. In virtually all
cases. the long delays were due to single isolated transistors; in each case
there was plenty of space to increase the driving size. Thus, the perfor-
mance tuning was easy Lo do, once the slow transistors were identifled.

Approximately 20 minutes of CPU time are required to process the
four clock phases of the cache on a VAX-11/780. Of this time, only B
minutes was spent in delay analysis {only one of the four clock phases
required more than 1 minute of analysis time); 7 minutes were reguired
just to read in the 2.5 megabyte circuit description file, 4 minutes were
used to propagate fixed node values, and the remaining 3 minutes were
used in scanning the database to print out results. Although Crystal is
relatively fast, it is not small: the pregram requires nearly 5 megabyles of
virtual address space Lo process the cache chip, or about 100 bytes per
transistor.

The RISC Il microprocessor has also been analyzed using Crystal. RISC
1l contains over 40000 transistors, and the design has been carried out with
relatively ambitious performance goals. The designers did net initially
expect Crystal to be ready in time for their use, so they made extensive
timing ehecks using SPICE and hand calculations. The Crystal analysis of
this circuit pinpointed only one performance bug, which would have slowed
the clock time by 40%. Crystal also uncovered a functional error that was
not detected during simulation because none of the test cases triggered it.
The timing analysis for the RISC Il microprocessor requires over an hour of
CPU time.

The third Crystal experience to date is a small circuit (2100 transis-
tors) provided by the VLSI Systems Area at Xerox PARC. This circuit had
been fabricated and tested before running it through Crystal. The initial
version of the circuit had required 200ns for Phase 1, instead of the
hoped-for time of 50ns. The designers found and fixed a performance bug,
and the second fabrication of the circuit ran at 50ns. We ran both versions
of the circuit through Crystal. In the first version, Crystal pinpointed the
performance bug and estimated a clock time of around 190ns. In the
second version of the circuit, Crystal estimated a clock time of about 55na.
The entire Crystal analysis of both versions of the circuit, including modify-
ing the mask layout to produce the second version and extracting the cir-
cuit, took less than one day of real time. Crystal's analysis required less
than a minute of CPU time.

Crystal provides several kinds of cutput. It identifies the longest path
for each clock phase, and can also print out the longest paths, If desired,
Crysltal will identify single-stage delays that are longer than a given value,
so designers can identify all the slow drivers. Crystal will also pinpoint
nodes with large capacitance or resistance values. Output is provided both
textually and graphically. Graphical output is provided by generating a
command file for the Caesar layout editor [7]: when Caesar processes the

68 Crystal: A Timing Analyzer for nMOS VLS| Circuits

command file it identifies the critical path with patches of a special layer
along with text giving the delay to each point. Caesar commands ean Lhen

be used to view each transistor in the path in detail, from beginning to end.

Crystal also generates a SPICE deck for the critical path that it finds.
The SPICE deck includes all the transistors along the path as well as parasi-
tic capacitance and resistance for the interconnect. No information is out-
put for side paths. Table 2 compares Crystal's and SPICE's estimates for
several sample circuits. For small circuits Crystal's estimates are very
close to SPICE's more detailed calculations. For the larger cache circuits,
Crystal's error relative to SPICE is 40-80%. The deviation belween SPICE
and Crystal is almost entirely due to problems of the sort discussed in Sec-
tion 4.

8. Summary

The following list contains the approximations made by Crystal in com-
puting delays:
[1] Each transistor type is characterized by an effective resistance when

pulling to Vdd and another eflective resistance when pulling to
Ground.

[2] Capacitance from side paths is not included: Crystal considers only
the direct path from a particular gate to Vdd or Ground.

[3] When examining a path, the closest depletion load device to the target
gate is assumed to be responsible for pulling the gate high.

[4] For nodes with large capacitance, delays through the node are broken
down into separate delays to the node and from the node.

In spite of these approximations, | believe Crystal will be a useful tool for
designers, particularly if the model can be upgraded to include slope infor-
mation. In any case, even the simplest model has enabled designers to find
performance bugs and to pinpoint potential trouble spots for more detailed
analysis with SPICE.

7. Acknowledgements

Berkeley's VL3l community provides a fertile environment for experi-
mentation with new design tools. The ambitious design projects led by

Circuit Crystal | Spice | Error
Test 20ns 21ns 8%
FLA 17ns 18ns 6%

Cache Phase 1 THns 11ins 417
Cache Phase 2 176ns 270ns 53%
Cache Phase 3 Bins Bins A7TR
Cache Phase 4 104ns 170ns B4%

Table 2. Comparison of Crystal and SPICE delay calculations for several
sample circuits, Test consists of 4 AND gates and inverters in series. PLA
is & small programmed logic array with 4 inputs, § minterms, 4 oulputs.
The last four circuits are the critical paths (as determined by Crystal) for
the four clock phases of the RISC II Cache chip.

J.K. Ousterhout 69

Prof. Dave Patterson motivate much of the tools work and validate the
results. Lynn Conway, Alan Bell, and Gaetano Borriello of the VLSI Design
Area at Xerox PARC provided early advice to us as well a= the test case dis-
cussed above, Dimitris Lioupis, Bob Sherburne, and Gaetano Borriello were
early users and critics of Crystal and have provided important feedback,
Dan Fitzpatrick modified our circuit extractor to provide flow information
for transistors. Dave Patterson and Carlo Séquin have provided helpful
comments on this paper.

The work described here was supported in part by the Defense Ad-
vanced Research Projects Agency {DoD), ARPA Order Ne. 3803, monitored
by the Naval Electronic Systemn Command under Contract No, NOOD39-81-
K-0251.

B. References
[1] Bening, L.C., et al. "Developments in Logic Network Path Delay

Analysis.” Proc. 19th Design Autometbion Conference, 1982, pp. B05-
G15.

[2] Foderaro, J.LK., Van Dyke, K.5., and Pattersen, D.A. “'Running RISCs."
VLSI Design, Vol. Ill, No. 5, Sept./Oct. 1982,

[3] Jouppi, NP, “TV: An NMOS Timing Verifier.” 3Jrd Caltech Confersnce
an VLSI, 1983.

[4] Kirkpatrick, T.I. and Clark, N.R. "PERT as an Aid to Logic Design." /&M
Jouwrnal of Research ond Development, Vol. 10, March 1988, pp. 135-
141.

[5] MeWilliams, T.M. "Verification of Timing Constraints on Large Digital
Systems.” Proc. 17th Design Automaotion Conference, 1980, pp. 139-
147.

[6] Nagel, L.W. "SPICEZ: A Computer Program to Simulate Semicondue-
tor Circuits.” ERL Memo ERL-M520, Univ. of California, Berkeley, May
1875,

[7] Ousterhout, J.K. "Caesar: An Interactive Editor for VLSL" VLSS
Design, Vol. 1I, No. 4, Fourth Quarter 1981, pp. 34-38,

[B] Patterson, DA, et al. ""Architecture of a VLSI Instruction Cache.” To
appear, 10th Int 1l Symposium on Computer Archileclure, 1983

