
Arachne: Core-Aware Thread Management
Henry Qin

Stanford University
hq6@cs.stanford.edu

Qian Li
Stanford University

qianli@cs.stanford.edu

Jacqueline Speiser
Stanford University

jspeiser@cs.stanford.edu

Peter Kraft
Stanford University
kraftp@stanford.edu

John Ousterhout
Stanford University

ouster@cs.stanford.edu

Abstract
Arachne is a new user-level implementation of threads that
provides both low latency and high throughput for appli-
cations with extremely short-lived threads (only a few mi-
croseconds). Arachne is core-aware: each application de-
termines how many cores it needs, based on its load; it al-
ways know exactly which cores it has been allocated, and
it controls the placement of its threads on those cores. A
central core arbiter allocates cores between applications.
Adding Arachne to memcached improved SLO-compliant
throughput by 37%, reduced tail latency by more than 10x,
and allowed memcached to coexist with background ap-
plications with almost no performance impact. Adding
Arachne to the RAMCloud storage system increased its
write throughput by more than 2.5x. The Arachne thread-
ing library is optimized to minimize cache misses; it can
initiate a new user thread on a different core (with load bal-
ancing) in 220 ns. Arachne is implemented entirely at user
level on Linux; no kernel modifications are needed.

1 Introduction
Advances in networking and storage technologies have
made it possible for datacenter services to operate at ex-
ceptionally low latencies [5]. As a result, a variety of low-
latency services have been developed in recent years, in-
cluding FaRM [9], Memcached [18], MICA [15], RAM-
Cloud [25], and Redis [28]. They offer end-to-end response
times as low as 5 µs for clients within the same datacenter
and they have internal request service times as low as 1–
2 µs. These systems employ a variety of new techniques
to achieve their low latency, including polling instead of
interrupts, kernel bypass, and run to completion [6, 26].

However, it is difficult to construct services that pro-
vide both low latency and high throughput. Techniques
for achieving low latency, such as reserving cores for peak
throughput or using polling instead of interrupts, waste re-
sources. Multi-level services, in which servicing one re-
quest may require nested requests to other servers (such as
for replication), create additional opportunities for resource
underutilization, particularly if they use polling to reduce
latency. Background activities within a service, such as
garbage collection, either require additional reserved (and
hence underutilized) resources, or risk interference with
foreground request servicing. Ideally, it should be possible

to colocate throughput-oriented services such as MapRe-
duce [8] or video processing [17] with low-latency services,
such that resources are fully occupied by the throughput-
oriented services when not needed by the low-latency ser-
vices. However, this is rarely attempted in practice because
it impacts the performance of the latency-sensitive services.

One of the reasons it is difficult to combine low latency
and high throughput is that applications must manage their
parallelism with a virtual resource (threads); they cannot
tell the operating system how many physical resources
(cores) they need, and they do not know which cores have
been allocated for their use. As a result, applications can-
not adjust their internal parallelism to match the resources
available to them, and they cannot use application-specific
knowledge to optimize their use of resources. This can lead
to both under-utilization and over-commitment of cores,
which results in poor resource utilization and/or subopti-
mal performance. The only recourse for applications is to
pin threads to cores; this results in under-utilization of cores
within the application and does not prevent other applica-
tions from being scheduled onto the same cores.

Arachne is a thread management system that solves these
problems by giving applications visibility into the physical
resources they are using. We call this approach core-aware
thread management. In Arachne, application threads are
managed entirely at user level; they are not visible to the
operating system. Applications negotiate with the system
over cores, not threads. Cores are allocated for the ex-
clusive use of individual applications and remain allocated
to an application for long intervals (tens of milliseconds).
Each application always knows exactly which cores it has
been allocated and it decides how to schedule application
threads on cores. A core arbiter decides how many cores
to allocate to each application, and adjusts the allocations
in response to changing application requirements.

User-level thread management systems have been im-
plemented many times in the past [34, 12, 4] and the basic
features of Arachne were prototyped in the early 1990s in
the form of scheduler activations [2]. Arachne is novel in
the following ways:
• Arachne contains mechanisms to estimate the number

of cores needed by an application as it runs.
• Arachne allows each application to define a core pol-

icy, which determines at runtime how many cores the

1

application needs and how threads are placed on the
available cores.

• The Arachne runtime was designed to minimize cache
misses. It uses a novel representation of scheduling
information with no ready queues, which enables low-
latency and scalable mechanisms for thread creation,
scheduling, and synchronization.

• Arachne provides a simpler formulation than scheduler
activations, based on the use of one kernel thread per
core.

• Arachne runs entirely outside the kernel and needs no
kernel modifications; the core arbiter is implemented at
user level using the Linux cpuset mechanism. Arachne
applications can coexist with traditional applications
that do not use Arachne.

We have implemented the Arachne runtime and core
arbiter in C++ and evaluated them using both synthetic
benchmarks and the memcached and RAMCloud storage
systems. Arachne can initiate a new thread on a different
core (with load balancing) in about 220 ns, and an appli-
cation can obtain an additional core from the core arbiter
in 20–30 µs. When Arachne was added to memcached,
it reduced tail latency by more than 10x and allowed 37%
higher throughput at low latency. Arachne also improved
performance isolation; a background video processing ap-
plication could be colocated with memcached with almost
no performance loss. When Arachne was added to the
RAMCloud storage system, it improved write throughput
by more than 2.5x.

2 The Threading Problem
Arachne was motivated by the challenges in creating ser-
vices that process very large numbers of very small re-
quests. These services can be optimized for low latency or
for high throughput, but it is difficult to achieve both with
traditional threads implemented by the operating system.

As an example, consider memcached [18], a widely
used in-memory key-value-store. Memcached processes
requests in about 10µs. Kernel threads are too expensive to
create a new one for each incoming request, so memcached
uses a fixed-size pool of worker threads. New connections
are assigned statically to worker threads in a round-robin
fashion by a separate dispatch thread.

The number of worker threads is fixed when memcached
starts, which results in several inefficiencies. If the number
of cores available to memcached is smaller than the num-
ber of workers, the operating system will multiplex workers
on a single core, resulting in long delays for requests sent
to descheduled workers. For best performance, one core
must be reserved for each worker thread. If background
tasks are run on the machine during periods of low load,
they are likely to interfere with the memcached workers,
due to the large number of distinct worker threads. Further-
more, during periods of low load, each worker thread will

be lightly loaded, increasing the risk that its core will en-
ter power-saving states with high-latency wakeups. Mem-
cached would perform better if it could scale back dur-
ing periods of low load to use a smaller number of kernel
threads (and cores) more intensively.

In addition, memcached’s static allocation of connec-
tions to workers can result in load imbalances under skewed
workloads, with some worker threads overloaded and oth-
ers idle. This can impact both latency and throughput.

The RAMCloud storage system provides another exam-
ple [25]. RAMCloud is an in-memory key-value store that
processes small read requests in about 2 µs. Like mem-
cached, it is based on kernel threads. A dispatch thread
handles all network communication and polls the NIC for
incoming packets using kernel bypass. When a request ar-
rives, the dispatch thread delegates it to one of a collection
of worker threads for execution; this approach avoids prob-
lems with skewed workloads. The number of active worker
threads varies based on load. The maximum number of
workers is determined at startup, which creates issues sim-
ilar to memcached.

RAMCloud implements nested requests, which result in
poor resource utilization. When a worker thread receives a
write request, it sends copies of the new value to backup
servers and waits for those requests to return before re-
sponding to the original request. All of the replication re-
quests complete within 7-8 µs, so the worker busy-waits
for them. If the worker were to sleep, it would take sev-
eral microseconds to wake it up again; in addition, context-
switching overheads are too high to get much useful work
done in such a short time. As a result, the worker thread’s
core is wasted for 70-80% of the time to process a write
request; write throughput for a server is only about 150
kops/sec for small writes, compared with about 1 Mops/sec
for small reads.

The goal for Arachne is to provide a thread manage-
ment system that allows a better combination of low la-
tency and high throughput. For example, each application
should match its workload to available cores, taking only as
many cores as needed and dynamically adjusting its inter-
nal parallelism to reflect the number of cores allocated to it.
In addition, Arachne should provide an implementation of
user-level threads that is efficient enough to be used for very
short-lived threads, and that allows useful work to be done
during brief blockages such as those for nested requests.

3 Arachne Overview
Figure 1 shows the overall architecture of Arachne. Three
components work together to implement Arachne threads.
The core arbiter consists of a stand-alone user process plus
a small library linked into each application. The Arachne
runtime and core policies are libraries linked into applica-
tions. Different applications can use different core policies.
An application can also substitute its own threading library

2

sockets

Application

Arbiter Library

Core Ar

shared
memory

Arachne
Runtime

Core
Policy 1

Application

Arbiter Library

Arachne
Runtime

Core
Policy 2

Application

Arbiter Library

Custom
Thread Library

Core Arbiter

Figure 1: The Arachne architecture. The core arbiter
communicates with each application using one socket for
each kernel thread in the application, plus one page of shared
memory.

for the Arachne runtime and core policy, while still using
the core arbiter.

The core arbiter is a user-level process that manages
cores and allocates them to applications. It collects in-
formation from each application about how many cores it
needs and uses a simple priority mechanism to divide the
available cores among competing applications. The core
arbiter adjusts the core allocations as application require-
ments change. Section 4 describes the core arbiter in detail.

The Arachne runtime creates several kernel threads and
uses them to implement user threads, which are used by
Arachne applications. The Arachne user thread abstraction
contains facilities similar to thread packages based on ker-
nel threads, including thread creation and deletion, locks,
and condition variables. However, all operations on user
threads are carried out entirely at user level without mak-
ing kernel calls, so they are an order of magnitude faster
than operations on kernel threads. Section 5 describes the
implementation of the Arachne runtime in more detail.

The Arachne runtime works together with a core pol-
icy, which determines how cores are used by that appli-
cation. The core policy computes the application’s core
requirements, using performance information gathered by
the Arachne runtime. It also determines which user threads
run on which cores. Each application chooses its core pol-
icy. Core policies are discussed in Section 6.

Arachne uses kernel threads as a proxy for cores. Each
kernel thread created by the runtime executes on a separate
core and has exclusive access to that core while it is run-
ning. When the arbiter allocates a core to an application,
it unblocks one of the application’s kernel threads on that
core; when the core is removed from an application, the ker-
nel thread running on that core blocks. The Arachne run-
time runs a simple dispatcher in each kernel thread, which
multiplexes several user threads on the associated core.

Arachne uses a cooperative multithreading model for
user threads: the runtime does not preempt a user thread
once it has begun executing. If a user thread needs to exe-
cute for a long time without blocking, it must occasionally
invoke a yieldmethod, which allows other threads to run
before the calling thread continues. We expect most threads
to either block or complete quickly, so it should rarely be

necessary to invoke yield.
One potential problem with a user-level implementation

of threads is that a user thread might cause the underlying
kernel thread to block. This could happen, for example,
if the user thread invokes a blocking kernel call or incurs
a page fault. This prevents the kernel thread from run-
ning other user threads until the kernel call or page fault
completes. Previous implementations of user-level threads
have attempted to work around this inefficiency in a variety
of ways, often involving complex kernel modifications.

Arachne does not take any special steps to handle block-
ing kernel calls or page faults. Most modern operating sys-
tems support asynchronous I/O, so I/O can be implemented
without blocking the kernel thread. Paging is almost never
cost-effective today, given the low cost of memory and the
large sizes of memories. Modern servers rarely incur page
faults except for initial application loading. Thus, for sim-
plicity, Arachne does not attempt to make use of the time
when a kernel thread is blocked for a page fault or kernel
call.

Note: we use the term core to refer to any hardware
mechanism that can support an independent thread of com-
putation. In processors with hyperthreading, we think of
each hyperthread as a separate logical core, even though
some of them share a single physical core.

4 The Core Arbiter
This section describes how the core arbiter claims control
over (most of) the system’s cores and allocates them among
applications. The core arbiter has three interesting features.
First, it implements core management entirely at user level
using existing Linux mechanisms; it does not require any
kernel changes. Second, it coexists with existing applica-
tions that don’t use Arachne. And third, it takes a coop-
erative approach to core management, both in its priority
mechanism and in the way it preempts cores from applica-
tions.

The core arbiter runs as a user process and uses the Linux
cpuset mechanism to manage cores. A cpuset is a collec-
tion of one or more cores and one or more banks of memory.
At any given time, each kernel thread is assigned to exactly
one cpuset, and the Linux scheduler ensures that the thread
executes only on cores in that cpuset. By default, all threads
run in a cpuset containing all cores and all memory banks.
The core arbiter uses cpusets to allocate specific cores to
specific applications.

The core arbiter divides cores into two groups: man-
aged cores and unmanaged cores. Managed cores are al-
located by the core arbiter; only the kernel threads created
by Arachne run on these cores. Unmanaged cores continue
to be scheduled by Linux. They are used by processes that
do not use Arachne, and also by the core arbiter itself. In ad-
dition, if an Arachne application creates new kernel threads
outside Arachne, for example, using std::thread,

3

these threads will run on the unmanaged cores.
When the core arbiter starts up, it creates one cpuset for

unmanaged cores (the unmanaged cpuset) and places all
of the system’s cores into that set. It then assigns every
existing kernel thread (including itself) to the unmanaged
cpuset; any new threads spawned by these threads will also
run on this cpuset. The core arbiter also creates one man-
aged cpuset corresponding to each core, which contains
that single core but initially has no threads assigned to it.
To allocate a core to an Arachne application, the arbiter re-
moves that core from the unmanaged cpuset and assigns an
Arachne kernel thread to the managed cpuset for that core.
When a core is no longer needed by any Arachne applica-
tion, the core arbiter adds the core back to the unmanaged
cpuset.

This scheme allows Arachne applications to coexist with
traditional applications whose threads are managed by the
Linux kernel. Arachne applications receive preferential ac-
cess to cores, except that the core arbiter reserves at least
one core for the unmanaged cpuset.

The Arachne runtime communicates with the core ar-
biter using three methods in the arbiter’s library package:
• setRequestedCores: invoked by the runtime

whenever its core needs change; indicates the total
number of cores needed by the application at various
priority levels (see below for details).

• blockUntilCoreAvailable: invoked by a ker-
nel thread to identify itself to the core arbiter and put
the kernel thread to sleep until it is assigned a core. At
that point the kernel thread wakes up and this method
returns the identifier of the assigned core.

• mustReleaseCore: invoked periodically by the
runtime; a true return value means that the calling ker-
nel thread should invokeblockUntilCoreAvail-
able to return its core to the arbiter.

Normally, the Arachne runtime handles all communication
with the core arbiter, so these methods are invisible to ap-
plications. However, an application can implement its own
thread and core management by calling the arbiter library
package directly.

The methods described above communicate with the
core arbiter using a collection of Unix domain sockets and
a shared memory page (see Figure 1). The arbiter library
opens one socket for each kernel thread. This socket is used
to send requests to the core arbiter, and it is also used to put
the kernel thread to sleep when it has no assigned core.
The shared memory page is used by the core arbiter to pass
information to the arbiter library; it is written by the core
arbiter and is read-only to the arbiter library.

When the Arachne runtime starts up, it invokes setRe-
questedCores to specify the application’s initial core
requirements; setRequestedCores sends a message
to the core arbiter over a socket. Then the runtime cre-
ates one kernel thread for each core on the machine; all

of these threads invokeblockUntilCoreAvailable.
blockUntilCoreAvailable sends a request to the
core arbiter over the socket belonging to that kernel thread
and then attempts to read a response from the socket. This
has two effects: first, it notifies the core arbiter that the ker-
nel thread is available for it to manage (the request includes
the Linux identifier for the thread); second, the socket read
puts the kernel thread to sleep.

At this point the core arbiter knows about the applica-
tion’s core requirements and all of its kernel threads, and
the kernel threads are all blocked. When the core arbiter
decides to allocate a core to the application, it chooses one
of the application’s blocked kernel threads to run on that
core. It assigns that thread to the cpuset corresponding to
the allocated core and then sends a response message back
over the thread’s socket. This causes the thread to wake up,
and Linux will schedule the thread on the given core; the
blockUntilCoreAvailable method returns, with
the core identifier as its return value. The kernel thread
then invokes the Arachne dispatcher to run user threads.

If the core arbiter wishes to reclaim a core from an appli-
cation, it asks the application to release the core. The core
arbiter does not unilaterally preempt cores, since the core’s
kernel thread might be in an inconvenient state (e.g. it might
have acquired an important spin lock); abruptly stopping it
could have significant performance consequences for the
application. So, the core arbiter sets a variable in the shared
memory page, indicating which core(s) should be released.
Then it waits for the application to respond.

Each kernel thread is responsible for testing the infor-
mation in shared memory at regular intervals by invoking
mustReleaseCore. The Arachne runtime does this in
its dispatcher. If mustReleaseCore returns true, then
the kernel thread cleans up as described in Section 5.4 and
invokes blockUntilCoreAvailable. This notifies
the core arbiter and puts the kernel thread to sleep. At this
point, the core arbiter can reallocate the core to a different
application.

The communication mechanism between the core arbiter
and applications is intentionally asymmetric: requests from
applications to the core arbiter use sockets, while requests
from the core arbiter to applications use shared memory.
The sockets are convenient because they allow the core
arbiter to sleep while waiting for requests; they also al-
low application kernel threads to sleep while waiting for
cores to be assigned. Socket communication is relatively
expensive (several microseconds in each direction), but it
only occurs when application core requirements change,
which we expect to be infrequent. The shared memory
page is convenient because it allows the Arachne runtime
to test efficiently for incoming requests from the core ar-
biter; these tests are made frequently (every pass through
the user thread dispatcher), so it is important that they are
fast and do not involve kernel calls.

4

Applications can delay releasing cores for a short time in
order to reach a convenient stopping point, such as a time
when no locks are held. The Arachne runtime will not re-
lease a core until the dispatcher is invoked on that core,
which happens when a user thread blocks, yields, or exits.

If an application fails to release a core within a timeout
period (currently 10 ms), then the core arbiter will forcibly
reclaim the core. It does this by reassigning the core’s ker-
nel thread to the unmanaged cpuset. The kernel thread will
be able to continue executing, but it will probably experi-
ence degraded performance due to interference from other
threads in the unmanaged cpuset.

The core arbiter uses a simple priority mechanism for
allocating cores to applications. Arachne applications can
request cores on each of eight priority levels. The core
arbiter allocates cores from highest priority to lowest, so
low-priority applications may receive no cores. If there are
not enough cores for all of the requests at a particular level,
the core arbiter divides the cores evenly among the request-
ing applications. The core arbiter repeats this computation
whenever application requests change. The arbiter allo-
cates all of the hyperthreads of a particular hardware core
to the same application whenever possible. The core ar-
biter also attempts to keep all of an application’s cores on
the same socket.

This policy for core allocation assumes that the appli-
cations running on a given system will cooperate in their
choice of priority levels: a misbehaving application could
starve other applications by requesting all of its cores at the
highest priority level. Anti-social behavior could be pre-
vented by requiring applications to authenticate with the
core arbiter when they first connect, and allowing system
administrators to set limits for each application. We leave
such a mechanism to future work.

5 The Arachne Runtime
This section discusses how the Arachne runtime imple-
ments user threads. The most important goal for the run-
time is to provide a fast and scalable implementation of
user threads for modern multi-core hardware. We want
Arachne to support granular computations, which consist
of large numbers of extremely short-lived threads. For ex-
ample, a low latency server might create a new thread for
each incoming request, and the request might take only a
microsecond or two to process; the server might process
millions of these requests per second.

5.1 Cache-optimized design
The performance of the Arachne runtime is dominated by
cache misses. Most threading operations, such as creating
a thread, acquiring a lock, or waking a blocked thread, are
relatively simple, but they involve communication between
cores. Cross-core communication requires cache misses.
For example, to transfer a value from one core to another,

it must be written on the source core and read on the des-
tination core. This takes about three cache miss times: the
write will probably incur a cache miss to first read the data;
the write will then invalidate the copy of the data in the des-
tination cache, which takes about the same time as a cache
miss; finally, the read will incur a cache miss to fetch the
new value of the data. Cache misses can take from 50-200
cycles, so even if an operation requires only a single cache
miss, the miss is likely to cost more than all of the other
computation for the operation. On our servers, the cache
misses to transfer a value from one core to another in the
same socket take 7-8x as long as a context switch between
user threads on the same core. Transfers between sockets
are even more expensive. Thus, our most important goal in
implementing user threads was to minimize cache misses.

The effective cost of a cache miss can be reduced by per-
forming other operations concurrently with the miss. For
example, if several cache misses occur within a few in-
structions of each other, they can all be completed for the
cost of a single miss (modern processors have out-of-order
execution engines that can continue executing instructions
while waiting for cache misses, and each core has multi-
ple memory channels). Thus, additional cache misses are
essentially free. However, modern processors have an out-
of-order execution limit of about 100 instructions, so code
must be designed to concentrate likely cache misses near
each other.

Similarly, a computation that takes tens of nanoseconds
in isolation may actually have zero marginal cost if it oc-
curs in the vicinity of a cache miss; it will simply fill the
time while the cache miss is being processed. Section 5.3
will show how the Arachne dispatcher uses this technique
to hide the cost of seemingly expensive code.

5.2 Thread creation
Many user-level thread packages, such as the one in
Go [12], create new threads on the same core as the par-
ent; they use work stealing to balance load across cores.
This avoids cache misses at thread creation time. How-
ever, work stealing is an expensive operation (it requires
cache misses), which is particularly noticeable for short-
lived threads. Work stealing also introduces a time lag be-
fore a thread is stolen to an unloaded core, which impacts
service latency. For Arachne we decided to perform load-
balancing at thread creation time; our goal is to get a new
thread on an unloaded core as quickly as possible. By op-
timizing this mechanism based on cache misses, we were
able to achieve thread creation times competitive with sys-
tems that create child threads on the parent’s core.

Cache misses can occur during thread creation for the
following reasons:
• Load balancing: Arachne must choose a core for the

new thread in a way that balances load across available
cores; cache misses are likely to occur while fetching
shared state describing current loads.

5

• State transfer: the address and arguments for the
thread’s top-level method must be transferred from the
parent’s core to the child’s core.

• Scheduling: the parent must indicate to the child’s core
that the child thread is runnable.

• Thread context: the context for a thread consists of
its call stack, plus metadata used by the Arachne run-
time, such as scheduling state and saved execution state
when the thread is not running. Depending on how this
information is managed, it can result in additional cache
misses.

We describe below how Arachne can create a new user
thread with as few as four cache misses.

In order to minimize cache misses for thread contexts,
Arachne binds each thread context to a single core (the
context is only used by a single kernel thread). Each user
thread is assigned to a thread context when it is created, and
the thread executes only on the context’s associated core.
Most threads live their entire life on a single core. A thread
moves to a different core only as part of an explicit migra-
tion. This happens only in rare situations such as when
the core arbiter reclaims a core. A thread context remains
bound to its core after its thread completes, and Arachne
reuses recently-used contexts when creating new threads.
If threads have short lifetimes, it is likely that the context
for a new thread will already be cached.

To create a new user thread, the Arachne runtime must
choose a core for the thread and allocate one of the thread
contexts associated with that core. Each of these opera-
tions will probably result in cache misses, since they ma-
nipulate shared state. In order to minimize cache misses,
Arachne uses the same shared state to perform both op-
erations simultaneously. The state consists of a 64-bit
maskAndCount value for each active core. 56 bits of the
value are a bit mask indicating which of the core’s thread
contexts are currently in use, and the remaining 8 bits are a
count of the number of ones in the mask.

When creating new threads, Arachne uses the “power
of two choices” approach for load balancing [21]. It se-
lects two cores at random, reads their maskAndCount
values, and selects the core with the fewest active thread
contexts. This will likely result in a cache miss for each
maskAndCount, but they will be handled concurrently
so the total delay is that of a single miss. Arachne then
scans the mask bits for the chosen core to find an available
thread context and uses an atomic compare-and-swap oper-
ation to update the maskAndCount for the chosen core.
If the compare-and-swap fails because of a concurrent up-
date, Arachne rereads the maskAndCount for the chosen
core and repeats the process of allocating a thread context.
This creation mechanism is scalable: with a large number
of cores, multiple threads can be created simultaneously on
different cores.

Once a thread context has been allocated, Arachne

copies the address and arguments for the thread’s top-level
method into the context and schedules the thread for exe-
cution by setting a scheduling state variable. In order to
minimize cache misses, Arachne uses a single cache line
to hold all of this information. This limits argument lists
to 6 one-word parameters on machines with 64-byte cache
lines; larger parameter lists must be passed by reference,
which will result in additional cache misses.

With this mechanism, a new thread can be invoked in
four cache miss times in the best case. One cache miss is
required to read themaskAndCount and three cache miss
times are required to transfer the line containing the method
address and arguments and the scheduling flag.

5.3 Thread scheduling
The traditional approach to thread scheduling uses one or
more ready queues to identify runnable threads (typically
one queue per core, to reduce contention), plus a scheduling
state variable for each thread, which indicates whether that
thread is runnable or blocked. This representation is prob-
lematic from the standpoint of cache misses. Adding or
removing an entry to/from a ready queue requires updates
to multiple variables. Even if the queue is lockless, this is
likely to result in multiple cache misses when the queue is
shared across cores. Furthermore, we expect sharing to be
common: a thread must be added to the ready queue for its
core when it is awakened, but the wakeup typically comes
from a thread on a different core.

In addition, the scheduling state variable is subject to
races. For example, if a thread blocks on a condition vari-
able, but another thread notifies the condition variable be-
fore the blocking thread has gone to sleep, a race over the
scheduling state variable could cause the wakeup to be lost.
This race is typically eliminated with a lock that controls
access to the state variable. However, the lock results in
additional cache misses, since it is shared across cores.

In order to minimize cache misses, Arachne does not
use ready queues. Instead of checking a ready queue, the
Arachne dispatcher repeatedly scans all of the active user
thread contexts associated with the current core until it finds
one that is runnable. This approach turns out to be relatively
efficient, for two reasons. First, we expect only a few thread
contexts to be occupied for a core at a given time (there is no
need to keep around blocked threads for intermittent tasks;
a new thread can be created for each task). Second, the
cost of scanning the active thread contexts is largely hidden
by an unavoidable cache miss on the scheduling state vari-
able for the thread that woke up. This variable is typically
modified by a different core to wake up the thread, which
means the dispatcher will have to take a cache miss to ob-
serve the new value. 100 or more cycles elapse between
when the previous value of the variable is invalidated in the
dispatcher’s cache and the new value can be fetched; a large
number of thread contexts can be scanned during this time.
Section 7.4 evaluates the cost of this approach.

6

Arachne also uses a new lockless mechanism for
scheduling state. The scheduling state of a thread is rep-
resented with a 64-bit wakeupTime variable in its thread
context. The dispatcher considers a thread runnable if its
wakeupTime is less than or equal to the processor’s fine-
grain cycle counter. Before transferring control to a thread,
the dispatcher sets itswakeupTime to the largest possible
value. wakeupTime doesn’t need to be modified when
the thread blocks: the large value will prevent the thread
from running again. To wake up the thread, wakeupTime
is set to 0. This approach eliminates the race condition
described previously, since wakeupTime is not modified
when the thread blocks; thus, no synchronization is needed
for access to the variable.

The wakeupTime variable also supports timer-based
wakeups. If a thread wishes to sleep for a given time period,
or if it wishes to add a timeout to some other blocking op-
eration such as a condition wait, it can set wakeupTime
to the desired wakeup time before blocking. A single test in
the Arachne dispatcher detects both normal unblocks and
timer-based unblocks.

Arachne exports the wakeupTime mechanism to ap-
plications with two methods:
• block(time) will block the current user thread.

The time argument is optional; if it is specified,
wakeupTime is set to this value (using compare-and-
swap to detect concurrent wakups).

• signal(thread) will set the given user thread’s
wakeupTime to 0.

These methods make it easy to construct higher-level syn-
chronization and scheduling operators. For example, the
yield method, which is used in cooperative multithread-
ing to allow other user threads to run, simply invokes
block(0).

5.4 Adding and releasing cores

When the core arbiter allocates a new core to an applica-
tion, it wakes up one of the kernel threads that was blocked
in blockUntilCoreAvailable. The kernel thread
notifies the core policy of the new core as described in Sec-
tion 6 below, then it enters the Arachne dispatcher loop.

When the core arbiter decides to reclaim a core from an
application, mustReleaseCore will return true in the
Arachne dispatcher running on the core. The kernel thread
modifies its maskAndCount to prevent any new threads
from being placed on it, then it notifies the core policy of
the reclamation. If any user threads exist on the core, the
Arachne runtime migrates them to other cores (we omit the
details of this mechanism, due to space limitations). Once
all threads have been migrated away, the kernel thread on
the reclaimed core invokes blockUntilCoreAvail-
able. This notifies the core arbiter that the core is no
longer in use and puts the kernel thread to sleep.

6 Core Policies
One of our goals for Arachne is to give applications pre-
cise control over their usage of cores. For example, in
RAMCloud the central dispatch thread is usually the per-
formance bottleneck. Thus, it makes sense for the dispatch
thread to have exclusive use of a core. Furthermore, the
other hyperthread on the same physical core should be idle
(if both hyperthreads are used simultaneously, they each
run about 30% slower than if only one hyperthread is in
use). In other applications it might be desirable to colo-
cate particular threads on hyperthreads of the same core or
socket, or to force all low-priority background threads to
execute on a single core in order to maximize the resources
available for foreground request processing.

The Arachne runtime does not implement the policies
for core usage. These are provided in a separate core policy
module. Each application selects a particular core policy
at startup. Over time, we expect Arachne to incorporate
a few simple core policies that handle the needs of most
applications; applications with special requirements can
implement custom core policies outside of Arachne.

In order to manage core usage, the core policy must know
which cores have been assigned to the application. The
Arachne runtime provides this information by invoking a
method in the core policy whenever the application gains
or loses cores.

When an application creates a new user thread, it spec-
ifies an integer thread class for the thread. Thread classes
are used by core policies to manage user threads; each
thread class corresponds to a particular level of service,
such as “foreground thread” or “background thread.” Each
core policy defines its own set of valid thread classes. The
Arachne runtime stores thread classes with threads, but has
no knowledge of how they are used.

The core policy uses thread classes to manage the place-
ment of new threads. When a new thread is created,
Arachne invokes a method getCores in the core policy,
passing it the thread’s class. The getCores method uses
the thread class to select one or more cores that are ac-
ceptable for the thread. The Arachne runtime places the
new thread on one of those cores using the “power of two
choices” mechanism described in Section 5. If the core
policy wishes to place the new thread on a specific core,
getCores can return a list with a single entry. Arachne
also invokes getCores to find a new home for a thread
when it must be migrated as part of releasing a core.

One of the unusual features of Arachne is that each ap-
plication is responsible for determining how many cores it
needs; we call this core estimation, and it is handled by the
core policy. The Arachne runtime measures two statistics
for each core, which it makes available to the core policy
for its use in core estimation. The first statistic is utilization,
which is the average fraction of time that each Arachne
kernel thread spends executing user threads. The second

7

statistic is load factor, which is an estimate of the average
number of runnable user threads on that core. Both of these
are computed with a few simple operations in the Arachne
dispatching loop.

6.1 Default core policy
Arachne currently includes one core policy; we used the
default policy for all of the performance measurements in
Section 7. The default policy supports two thread classes:
exclusive and normal. Each exclusive thread runs on a sep-
arate core reserved for that particular thread; when an ex-
clusive thread is blocked, its core is idle. Normal threads
share a pool of cores that is disjoint from the cores used
for exclusive threads; there can be multiple normal threads
assigned to a core at the same time.

6.2 Core estimation
The default policy requests one core for each exclusive
thread, plus additional cores for normal threads. Estimating
the cores required for the normal threads requires making
a tradeoff between core utilization and fast response time.
If we attempt to keep cores busy 100% of the time, fluc-
tuations in load will create a backlog of pending threads,
resulting in delays for new threads. On the other hand, we
could optimize for fast response time, but this would result
in low utilization of cores. The more bursty a workload, the
more resources it must waste in order to get fast response.

The default policy uses different mechanisms for scaling
up and scaling down. The decision to scale up is based on
load factor: when the average load factor across all cores
running normal threads reaches a threshold value, the core
policy increases its requested number of cores by 1. We
chose this approach because load factor is a fairly intuitive
proxy for response time; this makes it easier for users to
specify a non-default value if needed. In addition, perfor-
mance measurements showed that load factor works better
than utilization for scaling up: a single load factor threshold
works for a variety of workloads, whereas the best utiliza-
tion for scaling up depends on the burstiness and overall
volume of the workload.

On the other hand, scaling down is based on utilization.
Load factor is hard to use for scaling down because the
metric of interest is not the current load factor, but rather
the load factor that will occur with one fewer core; this is
hard to estimate. Instead, the default core policy records the
total utilization (sum of the utilizations of all cores running
normal threads) each time it increases its requested num-
ber of cores. When the utilization returns to a level slightly
less than this, the runtime reduces its requested number of
cores by 1 (the “slightly less” factor provides hysteresis to
prevent oscillations). A separate scale-down utilization is
recorded for each distinct number of requested cores.

Overall, three parameters control the core estimation
mechanism: the load factor for scaling up, the interval over
which statistics are averaged for core estimation, and the

CloudLab m510[30]

CPU Xeon D-1548 (8 x 2.0 GHz cores)
RAM 64 GB DDR4-2133 at 2400 MHz
Disk Toshiba THNSN5256GPU7 (256 GB)
NIC Dual-port Mellanox ConnectX-3 10 Gb
Switches HPE Moonshot-45XGc

Table 1: Hardware configuration used for benchmarking.
All nodes ran Linux 4.4.0. C-States were enabled and
Meltdown mitigations were disabled. Hyperthreads were
enabled (2 hyperthreads per core).

Benchmark Arachne std::thread Go uThreads

Thread Creation 217 ns 13329 ns 444 ns 6132 ns
One-Way Yield 93 ns − − 79 ns
Null Yield 12 ns − − 6 ns
Condition Notify 281 ns 4962 ns 483 ns 4976 ns
Signal 282 ns − − −

Table 2: Median cost of scheduling primitives. Arachne
creates all threads on a different core from the parent. Go
always creates Goroutines on the parent’s core. uThreads
uses a round-robin approach to assign threads to cores; when
it chooses the parent’s core, the median cost drops to 250
ns. Creation, notification, and signaling are measured from
initiation in one thread until the target thread wakes up and
begins execution. In “One-Way Yield”, control passes from
the yielding thread to another runnable thread on the same
core. In “Null Yield”, there are no other runnable threads, so
control returns to the yielding thread.

hysteresis factor for scaling down. The default core policy
currently uses a load factor threshold of 2.25, an averaging
interval of 50 ms, and a hysteresis factor of 5% utilization.

7 Evaluation
We implemented Arachne in C++ on Linux. The core ar-
biter contains 4200 lines of code, the runtime contains 3400
lines, and the default core policy contains 270 lines.

Our evaluation of Arachne addresses the following ques-
tions:
• How efficient are the Arachne threading primitives, and

how does Arachne compare to other threading systems?
• Does Arachne’s core-aware approach to threading pro-

duce significant benefits for low-latency applications?
• How do Arachne’s internal mechanisms, such as its

queue-less approach to thread scheduling and its mech-
anisms for core estimation and core allocation, con-
tribute to performance?

Table 1 describes the configuration of the machines used
for benchmarking.

7.1 Threading Primitives
Table 2 compares the cost of basic thread operations in
Arachne with C++std::thread, Go, and uThreads [4].
std::thread is based on kernel threads; Go implements
threads at user level in the language runtime; and uThreads
uses kernel threads to multiplex user threads, like Arachne.
uThreads is a highly rated C++ user threading library on

8

0 2 4 6 8 10 12 14
Number of Cores

0
1
2
3
4
5
6

Th
re

ad
 C

om
pl

et
io

ns
(M

/s
ec

) Arachne
Go
std::thread
uThread

(a)

0 2 4 6 8 10 12 14
Number of Cores

0

10

20

30

40

(b)
Figure 2: Thread creation throughput as a function of
available cores. In (a) a single thread creates new threads as
quickly as possible; each child consumes 1 µs of execution
time and then exits. In (b) 3 initial threads are created for
each core; each thread creates one child and then exits.

GitHub and claims high performance. The measurements
use small microbenchmarks, so they represent best-case
performance.

Arachne’s thread operations are considerably faster than
any of the other systems, except that yields are faster in
uThreads. Arachne’s cache-optimized design performs
thread creation twice as fast as Go, even though Arachne
places new threads on a different core from the parent while
Go creates new threads on the parent’s core.

We designed Arachne’s thread creation mechanism not
just to minimize latency, but also to provide high through-
put. We ran two experiments to measure thread creation
throughput. In the first experiment (Figure 2(a)), a single
“dispatch” thread creates new threads as quickly as possible
(this situation might occur, for example, if a single thread is
polling a network interface for incoming requests). A sin-
gle Arachne thread can spawn more than 5 million new
threads per second, which is 2.5x the rate of Go and at
least 10x the rate of std::thread or uThreads. This
experiment demonstrates the benefits of performing load
balancing at thread creation time. Go’s work stealing ap-
proach creates significant additional overhead, especially
when threads are short-lived, and the parent’s work queue
can become a bottleneck.

The second experiment measures thread creation
throughput using a distributed approach, where each of
many existing threads creates one child thread and then ex-
its (Figure 2(b)). In this experiment both Arachne and Go
scaled in their throughput as the number of available cores
increased. Neither uThreads norstd::thread had scal-
able throughput; uThreads had 10x less throughput than
Arachne or Go and std::thread had 100x less. Go’s
approach to thread creation worked well in this experiment.
It eliminated cache coherence overheads and contention
between creators, and there was no need for work stealing
since the load naturally balanced itself. As a result, Go’s
throughput was 1.5–2.5x that of Arachne.

7.2 Arachne’s benefits for memcached
We modified memcached [18] version 1.5.6 to use Arachne.
In the modified version (“memcached-A”), the pool of
worker threads is replaced by a single dispatch thread,

which waits for incoming requests on all connections.
When a request arrives, the dispatch thread creates a new
Arachne thread, which lives only long enough to handle all
available requests on the connection. Memcached-A uses
the default core policy; the dispatch thread is “exclusive”
and workers are “normal” threads.

Memcached-A provides two benefits. First, it reduces
performance interference, both between kernel threads
(there is no multiplexing) and between applications (cores
are dedicated to applications). Second, memcached-A pro-
vides finer-grain load-balancing (at the level of individual
requests rather than connections).

We performed three experiments with memcached; their
configurations are summarized in Table 3. The first ex-
periment, Realistic, measures latency as a function of
load under realistic conditions; it uses the Mutilate bench-
mark [14, 22] to recreate the Facebook ETC workload [3].
Figure 3(a) shows the results. The maximum through-
put of memcached-A is about 20% lower than memcached
(memcached-A has two fewer cores, since one core is re-
served for unmanaged threads and one for the dispatcher; in
addition, Arachne’s thread creation mechanism adds over-
head). However, memcached-A has significantly lower
latency, so it provides higher usable throughput for ap-
plications with service-level requirements. For example,
if an application requires a median latency less than 100
µs, memcached-A can support 37.5% higher throughput
than memcached (1.1 Mops/sec vs. 800 Kops/sec). At
the 99th percentile, memcached-A’s latency ranges from 3–
40x lower than memcached. We found that Linux migrates
memcached threads between cores frequently: at high load,
each thread migrates about 10 times per second; at low load,
threads migrate about every third request. Migration adds
overhead and increases the likelihood of multiplexing.

One of our goals for Arachne is to adapt automatically
to application load and the number of available cores, so
administrators do not need to specify configuration options
or reserve cores. Figure 3(b) shows memcached’s behavior
when it is given fewer cores than it would like. For mem-
cached, the 16 worker threads were multiplexed on only 8
cores; memcached-A was limited to at most 8 cores. Max-
imum throughput dropped for both systems, as expected.
Arachne continue to operate efficiently: latency was about
the same as in Figure 3(a). In contrast, memcached ex-
perienced significant increases in both median and tail la-
tency, presumably due to additional multiplexing; with a
latency limit of 100 µs, memcached could only handle 300
Kops/sec, whereas memcached-A handled 780 Kops/sec.

The second experiment, Colocation, varied the load dy-
namically to evaluate how well Arachne’s core estimator
responded. It also measured memcached and memcached-
A performance when colocated with a compute-intensive
application (the x264 video encoder [20]). The results are
in Figure 4. The top graph shows that memcached-A used

9

Experiment Program Keys Values Items PUTs Clients Threads Conns Pipeline IR Dist

Realistic Mutilate [22] ETC ETC 1M .03 20+1 16+8 1280+8 1+1 GPareto
Colocation Memtier [19] 30B 200B 8M 0 1+1 16+8 320+8 10+1 Poisson
Skew Memtier 30B 200B 8M 0 1 16 512 100 Poisson

Table 3: Configurations of memcached experiments. Program is the benchmark program used to generate the workload (our
version of Memtier is modified from the original). Keys and Values give sizes of keys and values in the dataset (ETC recreates the
Facebook ETC workload [3], which models actual usage of memcached). Items is the total number of objects in the dataset. PUTs
is the fraction of all requests that were PUTs (the others were GETs). Clients is the total number of clients (20+1 means 20 clients
generated an intensive workload, and 1 additional client measured latency using a lighter workload). Threads is the number of
threads per client. Conns is the total number of connections per client. Pipeline is the maximum number of outstanding requests
allowed per connection before shedding workload. IR Dist is the inter-request time distribution. Unless otherwise indicated,
memcached was configured with 16 worker threads and memcached-A scaled automatically between 2 and 15 cores.

101

102

103

104

La
te

nc
y

(u
s)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

101

102

103

104

La
te

nc
y

(u
s)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

(a) memcached: 16 worker threads, 16 cores

101

102

103

104

La
te

nc
y

(u
s)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

101

102

103

104

La
te

nc
y

(u
s)

0.0 0.3 0.6 0.9 1.2 1.5 1.8
Throughput (MOps/Sec)

(b) memcached: 16 workers; both: 8 cores

Memcached (99%)

Memcached-A (99%)

Memcached (50%)

Memcached-A (50%)

Figure 3: Median and 99th-percentile request latency as a function of achieved throughput for both memcached and memcached-A,
under the Realistic benchmark. Each measurement ran for 30 seconds after a 5-second warmup. Y-axes use a log scale.

0.0

0.5

1.0

Th
ro

ug
hp

ut
 (M

Op
s/

Se
c)

0

50

100

50
%
 L
at
en
cy
 (u

s) Throughput

0

4

8

99
%
 L
at
en
cy
 (m

s) Memcached-A alone
Memcached-A w/ x264

Memcached alone
Memcached w/ x264

0
8

16

Co
re
s

0 20 40 60 80 100 120 140 160
Time (Seconds)

0

80

160

Fr
am

es
/s
ec

x264 Alone
x264 w/ Memcached-A

x264 w/ Memcached

Figure 4: Memcached performance in the Colocation
experiment. Throughput increased gradually from 10
Kops/sec to 1 Mops/sec and then decreased back to 10
Kops/sec. In some experiments the x264 video encoder [20]
ran concurrently, using the raw video file (sintel-1280.y4m)
from Xiph.org [16]. Top graph: number of cores allocated
to memcached-A over time. Middle graphs: 99th percentile
and median tail latency for memcached and memcached-A.
Bottom graph: throughput of the video decoder (averaged
over trailing 4 seconds) when running by itself or with
memcached or memcached-A.

only 2 cores at low load (dispatch and one worker) and

0.0

0.5

1.0

1.5

Th
ro
ug

hp
ut
 (M

Op
s/
Se

c)

0 20 40 60 80 100 120 140 160
Time (Seconds)

0.0

0.5

1.0

1.5

Th
ro
ug

hp
ut
 (M

Op
s/
Se

c)

0 20 40 60 80 100 120 140 160
Time (Seconds)

Memcached-A
Memcached
Memcached Hot Worker

0.0
0.5
1.0

Fr
ac
. L
oa

d

0.0
0.5
1.0

Fr
ac
. L
oa

d

0.0625

Hot Worker
Average Worker

Figure 5: The impact of workload skew on memcached
performance with a target load of 1.5 Mops/sec. Initially,
the load was spread evenly over all connections; over time,
an increasing fraction of the total workload was directed to
connections serviced by a single “hot” memcached worker
thread (top graph). The bottom graph shows the overall
throughput, as well as the throughput of the overloaded
worker thread in memcached.

ramped up to use all available cores as the load increased.
Memcached-A maintained near-constant median and tail
latency as the load increased, which indicates that the core
estimator chose good points at which to change its core re-
quests. Memcached’s latency was higher than memcached-
A and it varied more with load; even when running without
the background application, 99th-percentile latency was
10x higher for memcached than for memcached-A.

When memcached was colocated with the video appli-
cation, its latency doubled, both at the median and at the

10

0 10 20 30
Number of Clients

0

50

100

150

200

250

300

350
W
rit

e
Th

ro
ug

hp
ut
 (k

op
s/
s)

RAMCloud
RAMCloud with Arachne

Figure 6: Throughput of a single
RAMCloud server when many clients
perform continuous back-to-back write
RPCs of 100-byte objects. Throughput
is measured as the number of completed
writes per second.

0 10 20 30 40 50
Number of Occupied Thread Contexts

0

100

200

300

400

500

La
te
nc
y
(n
s)

Latency (50%)
Latency (99%)

Figure 7: Cost of signaling a blocked
thread as the number of threads on
the target core increases. Latency is
measured from immediately before sig-
naling on one core until the target thread
resumes execution on a different core.

10 20 30 40 50 60 70
Microseconds

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Fr
ac

tio
n

Reclaimed
Idle

Figure 8: Cumulative distribution
of latency from core request to core
acquisition (a) when the core arbiter
has a free core available and (b) when
it must reclaim a core from a competing
application.

A B C D F
YCSB Workload

0.0

2.5

5.0

7.5

10.0

Ag
gr

eg
at

e
M

op
s/

se
c RAMCloud

RAMCloud-A

Figure 9: Comparison between RAMCloud and
RAMCloud-A on a modified YCSB benchmark [7] us-
ing 100-byte objects. Both were run with 12 storage
servers. Y-values represent aggregate throughput across 30
independent client machines, each running with 8 threads.

99th percentile. In contrast, memcached-A was almost
completely unaffected by the video application. This indi-
cates that Arachne’s core-aware approach improves perfor-
mance isolation between applications. Figure 4 shows that
memcached-A ramped up its core usage more quickly when
colocated with the video application. This suggests that
there was some performance interference from the video
application, but that the core estimator detected this and
allocated cores more aggressively to compensate.

The bottom graph in Figure 4 shows the throughput of the
video application. At high load, its throughput when colo-
cated with memcached-A was less than half its through-
put when colocated with memcached. This is because
memcached-A confined the video application to a single
unmanaged core. With memcached, Linux allowed the
video application to consume more resources, which de-
graded the performance of memcached.

The final experiment for memcached is Skew, shown in
Figure 5. If the workload for memcached doesn’t match the
static partitioning of its connections among workers, over-
all throughput suffers. In contrast, skew has no impact on
memcached-A.

7.3 Arachne’s Benefits for RAMCloud

We also modified RAMCloud [25] to use Arachne. In the
modified version (“RAMCloud-A”), the long-running pool
of worker threads is eliminated, and the dispatch thread
creates a new worker thread for each request. Threads

that are busy-waiting on nested RPCs yield after each it-
eration of their polling loop. This allows other requests
to be processed during the waiting time, so that the core
isn’t wasted. Figure 6 shows that RAMCloud-A has 2.5x
higher write throughput than RAMCloud. On the YCSB
benchmark [7] (Figure 9), RAMCloud-A provided 54%
higher throughput than RAMCloud for the write-heavy
YCSB-A workload. On the read-only YCSB-C work-
load, RAMCloud-A’s throughput was 15% less than RAM-
Cloud, due to the overhead of Arachne’s thread invocation
mechanism. These experiments demonstrate that Arachne
makes it practical to schedule other work during blockages
as short as a few microseconds.

7.4 Arachne Internal Mechanisms
This section evaluates several of the internal mechanisms
that are key to Arachne’s performance. As mentioned in
Section 5.3, Arachne forgoes the use of ready queues as
part of its cache-optimized design. Consequently, as cores
fill with threads, each core must iterate over more and more
wakeup flags in its dispatcher loop. To evaluate the cost of
scanning these flags, we measured the cost of signaling a
particular blocked thread while varying the number of ad-
ditional blocked threads on the target core; Figure 7 shows
the results. Even in the worst case where all 56 thread con-
texts are occupied, the average cost of waking up a thread
increased by less than 100 ns, which is equivalent to about
one cache coherency miss. This means that an alternative
implementation that avoids scanning all the active contexts
must do so without introducing any new cache misses; oth-
erwise its performance will be worse than Arachne.

Figures 8 and 10 show the performance of Arachne’s
core allocation mechanism. Figure 8 shows the distribu-
tion of allocation times, measured end-to-end from when a
thread calls setRequestedCores until a kernel thread
wakes up on the newly-allocated core. In the first scenario,
there is an idle core available to the core arbiter, and the
cost is merely that of moving a kernel thread to the core
and unblocking it. In the second scenario, a core must be
reclaimed from a lower priority application so the cost ad-
ditionally involves signaling another process and waiting

11

Idle kernel

 thread

 Requesting

 kernel thread

Acquiescing

kernel thread

Core Arbiter

Recompute core allocations: 2.7�s

Sleep in blockUntilCoreAvailable

Time to wake up on core: 29�s

Notify arbiter of new core requirements (socket): 6.6�s

Prepare to release core: 0.4�s Sleep in blockUntilCoreAvailable

Tell arbiter this thread is blocking (socket): 6.5�s

Request release

(shared memory):

0.5�s

Recompute core

allocations: 1.9�s Wake up blocked thread (socket): 7.9�s

Change blocked thread’s cpuset: 2.6�s

setRequestedCores

Figure 10: Timeline of a core request to the core arbiter. There are two applications. Both applications begin with a single dedicated
core, and the top application also begins with a thread waiting to be placed on a core. The top application has higher priority than
the bottom application, so when the top application requests an additional core the bottom application is asked to release its core.

for it to release a core. Figure 8 shows that Arachne can
reallocate cores in about 30 µs, even if the core must be re-
claimed from another application. This makes it practical
for Arachne to adapt to changes in load at the granularity of
milliseconds.

Figure 10 shows the timing of each step of a core request
that requires the preemption of another process’s core.
About 80% of the time is spent in socket communication.

8 Related Work
Numerous user-level threading packages have been de-
veloped over the last several decades. We have already
compared Arachne with Go [12] and uThreads [4]. Boost
fibers [1], Folly [11], and Seastar [31] implement user-
level threads but do not multiplex user threads across mul-
tiple cores. Capriccio [34] solved the problem of blocking
system calls by replacing them with asynchronous system
calls, but it does not scale to multiple cores. Wikipedia[35]
lists 21 C++ threading libraries as of this writing. Of these,
10 offer only kernel threads, 3 offer compiler-based auto-
matic parallelization, 3 are commercial packages without
any published performance numbers, and 5 appear to be de-
funct. None of the systems listed above supports load bal-
ancing at thread creation time, the ability to compute core
requirements and conform to core allocations, or a mecha-
nism for implementing application-specific core policies.

Scheduler activations [2] are similar to Arachne in that
they allocate processors to applications to implement user-
level threads efficiently. A major focus of the scheduler
activations work was allowing processor preemption dur-
ing blocking kernel calls; this resulted in significant kernel
modifications. Arachne focuses on other issues, such as
minimizing cache misses in thread operations, estimating
core requirements, and enabling application-specific core
policies.

Akaros [29] and Parlib [13] follow in the tradition of
scheduler activations. Akaros is a new operating system
that allocates dedicated cores to applications and makes
all blocking system calls asynchronous; Parlib is a frame-
work for building user schedulers on top of dedicated cores.
Akaros offers functionality analogous to the Arachne core
arbiter, but it does not appear to have reached a level of ma-

turity that can support meaningful performance measure-
ments.

The traditional approach for managing multi-threaded
applications on multi-core machines has been gang
scheduling [10, 24]. In gang scheduling, each application
unilaterally determines its threading requirements; the op-
erating system then attempts to schedule all of an applica-
tion’s threads simultaneously on different cores. Tucker
and Gupta pointed out that gang scheduling results in inef-
ficient multiplexing when the system is overloaded [33].
They argued that it is more efficient to divide the cores
so that each application has exclusive use of a few cores;
the application can then adjust its degree of parallelism to
match the available cores. Arachne implements this ap-
proach.

Event-based applications such as Redis [28] and ng-
inx [23] represent an alternative to user threads for achiev-
ing high throughput and low latency. Behren et al. [34] ar-
gued that event-based approaches are a form of application-
specific optimization and such optimization is due to the
lack of efficient thread runtimes; Arachne offers efficient
threading as a more convenient alternative to events.

Several recent systems, such as IX [6], Zygos [27],
and Shenango [32], have combined thread schedulers with
high-performance network stacks. These systems share
Arachne’s goal of combining low latency with efficient
resource usage, but they take a more special-purpose ap-
proach than Arachne by coupling the threading mechanism
to the network stack. Arachne is a general-purpose mecha-
nism; it can be used with high-performance network stacks,
such as in RAMCloud, but also in other situations.

9 Conclusion
One of the most fundamental principles in operating sys-
tems is virtualization, in which the system uses a set of
physical resources to implement a larger and more diverse
set of virtual entities. However, virtualization only works
if there is a balance between the use of virtual objects and
the available physical resources. For example, if the usage
of virtual memory exceeds available physical memory, the
system will collapse under page thrashing.

Arachne provides a mechanism to balance the usage of

12

virtual threads against the availability of physical cores.
Each application computes its core requirements dynami-
cally and conveys that to a central core arbiter, which then
allocates cores among competing applications. The core
arbiter dedicates cores to applications and tells each appli-
cation which cores it has received. The application can then
use that information to manage its threads. Arachne also
provides an exceptionally fast implementation of threads
at user level, which makes it practical to use threads even
for very short-lived tasks. Overall, Arachne’s core-aware
approach to thread management enables granular applica-
tions that combine both low latency and high throughput.

References
[1] Boost fibers. http://www.boost.org/doc/

libs/1_64_0/libs/fiber/doc/html/
fiber/overview.html, 2013.

[2] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and
H. M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism.
ACM Transactions on Computer Systems (TOCS),
10(1):53–79, 1992.

[3] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale
key-value store. In ACM SIGMETRICS Performance
Evaluation Review, volume 40, pages 53–64. ACM,
2012.

[4] S. Barghi. uthreads: Concurrent user threads in
c++. https://github.com/samanbarghi/
uThreads, 2014.

[5] L. Barroso, M. Marty, D. Patterson, and P. Ran-
ganathan. Attack of the Killer Microseconds. Com-
munications of the ACM, 60(4):48–54, Mar. 2017.

[6] A. Belay, G. Prekas, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion. IX: A Protected
Dataplane Operating System for High Throughput
and Low Latency. In 11th USENIX Symposium
on Operating Systems Design and Implementation
(OSDI 14), pages 49–65, Broomfield, CO, Oct. 2014.
USENIX Association.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serving
systems with ycsb. In Proceedings of the 1st ACM
symposium on Cloud computing, pages 143–154.
ACM, 2010.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Communications
of the ACM, 51:107–113, January 2008.

[9] A. Dragojević, D. Narayanan, M. Castro, and
O. Hodson. FaRM: Fast Remote Memory. In 11th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 14), pages 401–414,
Seattle, WA, 2014. USENIX Association.

[10] D. G. Feitelson and L. Rudolph. Gang scheduling
performance benefits for fine-grain synchronization.
Journal of Parallel and distributed Computing,
16(4):306–318, 1992.

[11] Folly: Facebook open-source library. https:
//github.com/facebook/folly, 2012.

[12] The Go Programming Language. https:
//golang.org/.

[13] K. A. Klues. OS and Runtime Support for Efficiently
Managing Cores in Parallel Applications. PhD
thesis, University of California, Berkeley, 2015.

[14] J. Leverich and C. Kozyrakis. Reconciling High
Server Utilization and Sub-millisecond Quality-of-
Service. In Proc. Ninth European Conference on
Computer Systems, EuroSys ’14, pages 4:1–4:14,
New York, NY, USA, 2014. ACM.

[15] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky.
MICA: A Holistic Approach to Fast In-Memory Key-
Value Storage. In Proc. 11th USENIX Symposium
on Networked Systems Design and Implementation
(NSDI 14), pages 429–444, Seattle, WA, Apr. 2014.
USENIX Association.

[16] M. Lora. Xiph. org:: Test media. World Wide Web
electronic publication, 2008, 1994.

[17] A. Lottarini, A. Ramirez, J. Coburn, M. A. Kim,
P. Ranganathan, D. Stodolsky, and M. Wachsler.
vbench: Benchmarking video transcoding in the
cloud. In Proceedings of the Twenty-Third Inter-
national Conference on Architectural Support for
Programming Languages and Operating Systems,
pages 797–809. ACM, 2018.

[18] memcached: a Distributed Memory Object Caching
System. http://www.memcached.org/.

[19] Memtier benchmark. https://github.com/
RedisLabs/memtier_benchmark, 2013.

[20] L. Merritt and R. Vanam. x264: A high performance
H.264/AVC encoder. http://neuron2.net/
library/avc/overview_x264_v8_5.pdf,
2006.

[21] M. Mitzenmacher. The Power of Two Choices in
Randomized Load Balancing. IEEE Transactions on

13

Parallel and Distributed Systems, 12(10):1094–1104,
2001.

[22] Mutilate: high-performance memcached load gen-
erator. https://github.com/leverich/
mutilate, 2015.

[23] Nginx. https://nginx.org/en/.

[24] J. Ousterhout. Scheduling Techniques for Concurrent
Systems. In Proc. 3rd International Conference on
Distributed Computing Systems, pages 22–30, 1982.

[25] J. Ousterhout, A. Gopalan, A. Gupta, A. Kejriwal,
C. Lee, B. Montazeri, D. Ongaro, S. J. Park, H. Qin,
M. Rosenblum, et al. The RAMCloud Storage
System. ACM Transactions on Computer Systems
(TOCS), 33(3):7, 2015.

[26] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe.
Arrakis: The Operating System is the Control Plane.
In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages 1–16,
CO, 2014. USENIX Association.

[27] G. Prekas, M. Kogias, and E. Bugnion. ZygOS:
Achieving Low Tail Latency for Microsecond-scale
Networked Tasks. In Proc. of the 26th Symposium
on Operating Systems Principles, SOSP ’17, pages
325–341, New York, NY, USA, 2017. ACM.

[28] Redis. http://redis.io.

[29] B. Rhoden, K. Klues, D. Zhu, and E. Brewer. Improv-
ing per-node efficiency in the datacenter with new os
abstractions. In Proceedings of the 2nd ACM Sympo-
sium on Cloud Computing, page 25. ACM, 2011.

[30] R. Ricci, E. Eide, and The CloudLab Team. In-
troducing CloudLab: Scientific infrastructure for
advancing cloud architectures and applications.
USENIX ;login:, 39(6), dec 2014.

[31] Seastar. http://www.seastar-project.
org/, 2014.

[32] Shenango: CPU-Efficient Microsecond-Level Tail
Latency for Datacenter Workloads. Submitted
for publication (author names omitted to preserve
blindness for reviewing), 2018.

[33] A. Tucker and A. Gupta. Process Control and
Scheduling Issues for Multiprogrammed Shared-
memory Multiprocessors. In Proc. of the Twelfth
ACM Symposium on Operating Systems Principles,
SOSP ’89, pages 159–166, New York, NY, USA,
1989. ACM.

[34] R. Von Behren, J. Condit, F. Zhou, G. C. Necula, and
E. Brewer. Capriccio: scalable threads for internet
services. In ACM SIGOPS Operating Systems
Review, volume 37, pages 268–281. ACM, 2003.

[35] Wikipedia. List of c++ multi-threading libraries —
wikipedia, the free encyclopedia, 2017. [Online;
accessed 27-September-2017].

14

