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Abstract

Computation and data are rapidly moving into data centers. Today’s faster storage systems and

faster networks enable the implementation of low latency applications. Unfortunately, today’s thread

management infrastructure forces applications to choose between low latency and efficient core

usage. Operators of latency-sensitive applications must statically provision CPU cores for them to

ensure latency SLOs. This is wasteful when such applications are underloaded. Additionally, the

applications themselves must be careful in their thread use to avoid oversubscription of cores.

This dissertation presents Arachne, a new system for thread management. Arachne combines

low latency with high utilization for threads with lifetimes of microseconds. Arachne changes the

scheduling abstraction for applications from one based on threads to one based on cores. A stan-

dalone process called the core arbiter allocates cores to applications. Each Arachne application

determines how many cores it needs based on its load. Applications always know the exact set of

cores they have been granted. Arachne also allows applications to control the placement of their

threads onto those cores.

Arachne enables applications to achieve a better combination of latency and throughput. The

core arbiter can reallocate a core in 30 µs, allowing applications to rapidly respond to load increases.

The Arachne runtime linked into each application is optimized to reduce cache misses; it can initiate

a new user thread on a different core in 320 ns. Adding Arachne to memcached improved SLO-

compliant throughput by 37%, reduced tail latency by more than 10x, and allowed memcached to

coexist with background applications with almost no performance impact. Adding Arachne to the

RAMCloud storage system increased its write throughput by more than 2.5x.
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Chapter 1

Introduction

A key challenge for cloud applications that interact with consumers is low-latency data access. Un-

like traditional high performance computing (HPC) applications, today’s cloud applications must

manipulate many small pieces of data and respond quickly enough to provide interactivity. For

example, constructing a Facebook feed requires collecting posts from a nontrivial subset of posts

made by one’s friends and then filtering them. Similarly, every time a Google search is performed,

the service must collect candidate webpages from many sources and rank them by relevance. Such

searches often also fetch user data for personalization and ad data for revenue generation. For scal-

ability reasons, these data are spread across multiple machines. Consequently, one external request

often triggers many internal requests.

Spawning many internal requests to access data to handle each external request makes it chal-

lenging for applications to respond interactively. If one internal request depends on the output of

another, applications must issue the two requests serially. In the Facebook example, the news feed

application must first fetch all of one’s friends before issuing the requests to find their posts. Even

if most internal requests can be issued in parallel, latency still suffers from the straggler problem.

Suppose a server issues one hundred internal requests and cannot respond to the external client until

at least fifty of them have responded. Its response latency is at minimum the response time of the

51th fastest response.

The traditional barriers to low latency data access have been networking and storage, but they

have become less of a bottleneck in recent years and are continuing to improve. In the past, it took

milliseconds to transmit a small message across a data center network [37] when running a typical

data center workload. Similarly, reading from spinning hard disks took several milliseconds. Today’s

network fabrics can transmit a small message in 2 µs over RDMA [9]. Kernel bypass libraries such

1



CHAPTER 1. INTRODUCTION 2

as DPDK [2] remove the overheads caused by kernel buffering and privilege boundary crossing.

New network transports such as Homa [37] and TIMELY [35] minimize queuing delays in the

network. Together, these developments drive network latencies down towards hardware limits. On

the storage front, today’s services have almost entirely migrated from hard drives to main memory

for storing data requiring low latency access, sidestepping slow disk speeds. Moreover, the recent

emergence of non-volatile memory devices is making it possible to access more data with low

latency.

As a result of these improvements, it is now possible for applications to service requests in as

little as a few microseconds. However, today’s kernel-based threading mechanisms cannot support

microsecond scale services efficiently. Starting a kernel thread takes several microseconds, making

it impractical to create a new thread for each request. Moreover, waking up a blocked kernel thread

takes several microseconds, so kernel threads must not block in applications requiring low latency.

This means they must busy-wait when waiting for operations taking microseconds. Examples of

such operations are remote procedure calls and the taking of contested mutexes. Cores which are

busy-waiting cannot perform other useful work; polling reduces useful core utilization.

Another problem in today’s threading systems is that applications lack visibility into and control

over the use of cores. The kernel completely owns thread management; applications cannot control

which of their threads run on which cores. Applications also cannot determine when the kernel will

schedule and deschedule threads. This makes reducing latency difficult because a thread handling a

request can be descheduled by the kernel at any time.

This dissertation describes and evaluates Arachne, a new system for core-aware thread manage-

ment. Arachne changes the interface between applications and the kernel scheduler from one based

on threads to one based on cores. In the traditional model, applications create kernel threads which

are multiplexed over cores by the operating system. In the Arachne model, applications request cores

from a user-space process, which are then exclusively controlled by the application. Each Arachne

application determines how many cores it needs based on its load. An Arachne application always

knows the exact set of cores it has been granted. Arachne implements fast threads in user space on

top of allocated cores, which do not suffer from the problems plaguing threads implemented by the

kernel. Applications using Arachne are able to control the placement of their threads onto cores,

enabling them to put threads with different latency requirements on different cores.

Arachne consists of three logical components (depicted in Figure 1.1), which work together to

offer a fast threading abstraction on top of allocated cores.
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Figure 1.1: The Arachne architecture. The core arbiter communicates with each application using one
socket for each kernel thread in the application, plus one page of shared memory.

• A core arbiter process allocates cores to applications. It leverages the Linux cpusets mecha-

nism and does not require kernel modifications.

• A runtime library links into each application and provides a fast user-level thread abstraction.

• A set of core policies determine the number of cores needed and define how application

threads are mapped onto cores.

An application writer will interact with a different subset of these components depending on their

performance needs. For example, applications requiring only a fast user thread abstraction with load

estimation can invoke APIs exposed by the Arachne runtime. If a developer wishes to implement

her own threads or events on top of the core abstraction, she can link against the core arbiter’s client

API and request cores. Applications with diverse threading needs and stringent latency requirements

may wish to control the scheduling of threads onto cores and perform their own load estimation;

these applications will implement new core policies.

User-level thread management systems have been implemented many times in the past [56, 17,

8] and the basic features of Arachne were prototyped in the early 1990s in the form of scheduler

activations [4]. Arachne makes the following novel contributions:

• Arachne contains mechanisms to estimate the number of cores needed by an application as it

runs. These mechanisms rely on simple metrics collected by the runtime at very low overhead.

• Arachne allows each application to define a core policy, which determines at runtime how

many cores the application needs and how threads are placed on the available cores.
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• The Arachne runtime was designed to minimize cache misses. It uses a novel representation

of scheduling information with no ready queues, which enables low-latency and scalable

mechanisms for thread creation, scheduling, and synchronization.

• Arachne provides a simpler formulation than scheduler activations, based on the use of one

kernel thread per core.

• Arachne runs entirely outside the kernel and needs no kernel modifications; the core arbiter

is implemented at user level using the Linux cpuset mechanism. Arachne applications can

coexist with traditional applications that do not use Arachne.

Arachne enables applications executing short-lived tasks to achieve a better combination of

latency and throughput. The Arachne runtime can initiate a new user thread on a different core in

320 ns. Adding Arachne to memcached improved SLO-compliant throughput by 37%, reduced tail

latency by more than 10x, and allowed memcached to coexist with background applications with

almost no performance impact. Adding Arachne to the RAMCloud storage system increased its

write throughput by more than 2.5x.

The remainder of this dissertation motivates Arachne with a more detailed look at the problems

with modern threading systems and describes the design and implementation of each of the compo-

nents of Arachne. It then describes the integration of Arachne into RAMCloud and memcached and

evaluates the performance of Arachne.



Chapter 2

Motivation

Arachne was motivated by our experiences building the RAMCloud storage system [42]. In building

and benchmarking RAMCloud, my research group discovered the difficulty of building systems that

offer low latency while making efficient use of cores with existing tools for thread management.

Efficient use of cores consists of two conditions:

• Not wasting cycles within an application: The ratio of cycles spent on useful work to cycles

spent on overhead is relatively high.

• Not wasting cycles globally: When load on a particular application is low, the remainder of

the cores are able to do useful work, rather than idling.

Today’s tools for thread management have three major problems, which individually and collec-

tively make it difficult to simultaneously achieve low latency and high efficiency when task lifetimes

are short.

• Thread primitives are too slow.

• Applications have neither visibility into and nor control over cores.

• It is difficult to isolate applications with dynamically changing workloads to different cores.

RAMCloud suffers from each of the three problems above, and this chapter uses it as an exam-

ple to illustrate these problems. RAMCloud achieves low latency in spite of slow thread primitives

by implementing many of its own thread primitives, but this approach resulted in high overheads,

wasting many CPU cycles. RAMCloud avoids interference from other applications by taking over

the entire machine. It attempts to avoid self-interference between threads induced by lack of control

5
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Figure 2.1: The RAMCloud cluster architecture.

over cores by limiting its number of runnable threads. Unfortunately, both of these behaviors can

easily waste most of the cores on the system when the system is underloaded. We built Arachne to

address the three problems above, and in doing so enable multi-threaded systems to enjoy a better

combination of latency and throughput. The following sections introduce RAMCloud, describe its

architecture, and elaborate on the problems that motivated Arachne, using RAMCloud as an illus-

trative example. A final section discusses broader motivations for having a system like Arachne.

2.1 A brief introduction to RAMCloud

2.1.1 RAMCloud overview

RAMCloud [42] is an in-memory storage system that provides low-latency access to large volumes

of durably replicated data. To support large capacities, it distributes data across the main mem-

ory of thousands of servers. RAMCloud uses a log-structured mechanism [50] to manage DRAM,

which results in high performance and efficient memory usage. To support low latency, RAMCloud

bypasses the kernel for networking and uses a polling-based approach to communication. Client

applications can read small objects from any RAMCloud storage server in less than 5 µs. Durable

writes complete in about 13.5 µs.

2.1.2 RAMCloud architecture

RAMCloud is a software package that runs on a collection of commodity servers (see Figure 2.1).

A RAMCloud cluster consists of a collection of storage servers managed by a single coordinator.
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Client applications access RAMCloud data over a datacenter network using a thin Rpc library. Each

storage server contains two components. A master module manages the DRAM of the server to

store RAMCloud data, and handles read and write requests from clients. A backup module uses

local disk or flash memory to store copies of data owned by masters on other servers.

A RAMCloud server performs a variety of client-facing and background tasks during its life-

time. Simple requests, such as reads, are run to completion and returned to the client immediately,

because they can be serviced directly from the server’s local log. Write requests must be durably

replicated to other servers. When a master receives a write Rpc, it writes the data to local memory

and then issues replication Rpcs to replicate the data to other servers before responding to the client.

Replication Rpcs are an example of nested Rpcs, which are Rpcs issued in the context of handling

another Rpc. In addition to these client-facing activities, each RAMCloud server must periodically

perform other tasks, including the following.

• Log cleaning to reclaim free space from its append-only log.

• Flushing backup segments to secondary storage.

• Writing log messages to a log file or stdout.

• Sending probe messages to other servers to detect crashes.

As a result of these periodic tasks and changes in load, the degree of parallelism required by a

RAMCloud sever varies over time.

2.1.3 RAMCloud threading model

This section describes how RAMCloud uses threads to implement the functionality described in the

previous section; the next section will leverage this threading model to explain the problems with

modern thread management tools.

Each RAMCloud server creates a fixed pool of threads at startup. Rpcs are handled by a single

dispatch thread and a collection of worker threads as shown in Figure 2.2. The dispatch thread

handles all network communication, including incoming requests and outgoing responses. When

a complete Rpc message has been received by the dispatch thread, it selects a worker thread and

hands off the request for processing. The worker thread handles the request, generates a response

message, and then returns the response to the dispatch thread for transmission.

For example, an incoming read request is received by the dispatch thread and handed off to a

worker thread. The worker thread reads the opcode to determine the type of request and looks up
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Figure 2.2: The RAMCloud threading architecture. A single dispatch thread handles all net-
work communication; it passes each incoming RPC request to a worker thread for handling.
The response message is returned to the dispatch thread for transmission. Each server also
contains additional threads for asynchronous tasks such as log cleaning.

the object, copying its contents into a response buffer for the Rpc. It then passes the response buffer

to the dispatch thread, which sends the response.

A write request is received and handed off to a worker thread in the same fashion. In the case

of a write request, the worker thread writes the data to the local log, sends out replication requests

to backups (by passing the requests to the dispatch thread to send), and then must wait until all

replication requests return before generating a response.

In addition to the dispatch and worker threads, a RAMCloud server periodically runs a small

number of background threads to handle the maintenance tasks described in Section 2.1.2. When-

ever the log cleaner runs, it does so in its own thread; this thread sleeps whenever there is no log

cleaning to be done. Printing messages to log files is also performed on a separate thread, to avoid

paying IO overheads in the threads generating the log messages. Flushing backup segments to disk

is also performed on a separate thread to avoid slowing down worker threads which could be used

for handling incoming requests.

2.2 Thread primitives are too slow

The first problem with today’s thread management is that thread primitives are too slow. Applica-

tions using today’s slow thread primitives naively (e.g. creating one thread per request) incur high

latency and low throughput. In modern Linux, it takes 13 µs to create a thread and 5 µs to wake

up a blocked thread. RAMCloud [42] can service a read request in 2 µs and a write request in 10

µs. Memcached [31] can service a read request in 10 µs. Thus, it is infeasible for these systems to
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Figure 2.3: Timeline to write a 100B object with 30B key chosen at random from a large table,
with a replication factor of three. The figure shows only time on the master and one of the three
backups.
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create a thread for every request; doing so would at least double latency and cut throughput by half.

Latency-sensitive systems work around slow threading primitives by avoiding their use when-

ever possible, but workarounds waste CPU cycles, using cores inefficiently. Consider the example

of servers issuing nested Rpcs. When waiting for a nested Rpc to return, a server thread has two op-

tions. It can either block and allow other threads to execute, or it can busy-wait until the nested Rpcs

return. It takes about 5 µs for one thread to sleep and a second thread to start running, so blocking is

pointless. By the time the worker thread issuing the nested Rpc had blocked and another thread was

running, the Rpc would have already returned. Instead, worker threads send out all the nested Rpcs

and poll until they complete. Unfortunately, polling means that the core is unavailable to service

other requests until the nested Rpcs have returned. I measured the breakdown of server-side time

for a RAMCloud write [42]. The result is shown in Figure 2.3. When handling a write request, a

RAMCloud worker thread spends approximately 55% (5.5 µs) of its service time (10 µs) waiting

for replication Rpcs to return.

The tradeoff between low latency and efficient core usage exists because threads are too slow. If

there existed highly efficient threads that could context switch in nanoseconds, it would be practical

for RAMCloud to service other requests while waiting for nested Rpcs to complete. Arachne is such

a threading system; integrating it doubles RAMCloud’s throughput without substantially increasing

latency.

2.3 Applications lack visibility into and control over cores

The second problem with today’s threading systems is applications’ lack of visibility into cores.

Without control over the cores they run on, it is difficult for applications to simultaneously offer low

latency and use machines efficiently.

I define an application’s offered parallelism to be the number of threads an application makes

runnable at a given point in time. By runnable, I mean the thread is not sleeping on a mutex, con-

dition variable, or blocking IO. Since the kernel is able to place threads on different cores, this

represents the maximum number of parallel tasks that an application can simultaneously run, as-

suming an infinite number of cores.

I loosely define number of available cores to be the number of threads that can simultaneously

execute on a given machine. For example, if a machine has four physical cores with two hyper-

threads each, I would declare that the machine has eight available cores. Note that the number of

cores available to a given application will almost always be less than the number of available cores
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on the machine, since the kernel and other applications must execute somewhere.

I define an application’s true parallelism as the number of threads that are running simultane-

ously at a given point in time. Suppose a machine has four cores and an application creates three

runnable threads. If the three threads are simultaneously executing on three distinct cores, then the

application’s true parallelism is three. If two of the application’s threads have been placed on the

same core so that they cannot run simultaneously, then the application’s true parallelism is two.

Lack of visibility and control over cores means that applications cannot communicate their

true parallelism needs to the operating system kernel. Instead, they can merely attempt to control

their offered parallelism by creating threads. Unfortunately, this sort of control forces applications

to choose between low latency and high efficiency at best, and grants neither at worst. In the ideal

case, using threads should give complete control over offered parallelism; real applications are often

not architected around such precise control.

2.3.1 Oversubscription of cores increases latency

A central premise in the discussions below is that oversubscription of cores (which happens when

an application or group of applications collectively offers more parallelism than the number of

available cores) increases latency for all applications on a system. This premise stems from the

belief that oversubscription of cores forces the operating system kernel to multiplex threads.

Why does kernel multiplexing of threads increase latency? When the kernel is tasked with run-

ning more threads than available cores, it must decide when to schedule each thread and when to

deschedule each thread. Unfortunately, the kernel lacks visibility into application state: it has no

idea what the application is doing semantically. Consequently, it cannot pick convenient times to

deschedule an application’s thread. For example, if a thread is handling a request and gets desched-

uled immediately before it sends a response, the response will be delayed by the amount of time

that the thread was descheduled. Further, if this thread was assigned to handle multiple requests at

the time it was descheduled, each of these requests experiences increased latency.

2.3.2 Offered parallelism is not enough

Suppose that an application’s architecture enables it to set its offered parallelism to an arbitrary value

at any time. For example, an application that computes pure functions as a service might create a

thread whenever it wants to increase its offered parallelism and terminate a thread whenever it wants

to decrease its offered parallelism. Even such an application must choose between efficiency and
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low latency.

The ability to control offered parallelism is not enough because the optimal setting for offered

parallelism depends on the number of available cores. The traditional assumption in multi-threaded

programming is that there is a single correct number of threads for a given application at a given

time: the application creates this many threads and the kernel schedules them. This assumption

is broken because there is no performance to be gained from offering more parallelism than the

number of available cores. The additional threads will simply be multiplexed by the kernel, increas-

ing latency without increasing throughput. For example, if RAMCloud created 4 worker threads (5

threads including dispatch) on a machine with only 4 cores, requests latency would increase, but

throughput would be no better than with 3 worker threads. For best performance, applications need

to match their offered parallelism to the number of available cores. It is strictly better (lower latency,

equivalent or better throughput) to serialize request processing in a few threads than to create more

threads than cores. Before Arachne, applications had no mechanism for determining the number of

available cores except to assume ownership of the entire machine.

If an application assumes ownership of the entire machine, it can match application parallelism

to available cores and handle the maximum number of requests in parallel by creating one thread for

each core. However, this approach is inefficient because most applications do not handle the same

load over time. When load is low, entire cores sit idle; this wastes cycles globally. Consequently,

an application with tight control over offered parallelism nevertheless cannot simultaneously enjoy

low latency and high efficiency.

2.3.3 Real applications lack tight control over offered parallelism

Real applications such as RAMCloud [42] and Memached [31] do not tightly control their of-

fered parallism; application threads wake up whenever there is work to be done without concern

about how many other threads are running. This makes it difficult to match offered parallelism to

available cores even when the application takes over the whole machine. For example, RAMCloud

servers run background threads somewhat sporadically depending on need. Whenever these threads

run, the application’s offered parallelism increases. Consequently, depending on how many threads

RAMCloud is configured to run with, its offered parallelism will either oversubscribe the cores

whenever background threads run or undersubscribe cores when the background threads do not

run. Therefore, even assuming whole-machine takeover and constant load, RAMCloud must choose

between offering high latency some of the time and wasting cores some of the time.
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2.4 Lack of isolation between applications

The third problem with today’s thread management is the lack of isolation between applications.

The operating system considers threads from different applications to be equivalent when making

scheduling decisions; it will happily multiplex threads from different applications on the same core.

Thus, two applications running on the same machine will compete for cores and interfere with one

another’s performance. For example, if RAMCloud runs on the same machine as another application

like the x264 video encoder [34], RAMCloud’s threads can be descheduled by the kernel to run

threads of x264. As discussed in Section 2.3.2, threads being descheduled increases latency.

In order to achieve both low latency and high efficiency using today’s threading systems, appli-

cations must coordinate their use of resources. For example, when load on RAMCloud increases,

it must simultaneously increase its offered parallelism and request x264 to decrease its offered par-

allelism. Otherwise, their combined offered parallelism would exceed the number of cores in the

system, forcing the kernel to multiplex their threads and increasing latency. If there are more than

two applications, they would have to all be aware of one another and communicate to maintain

low latency. It is unreasonable to expect all applications to coordinate with all other applications

when deciding how many threads to create. A system in which applications can negotiate over cores

rather than simply creating threads would make it easier for multiple applications to coordinate their

parallelism.

2.4.1 Thread affinity is not enough

A frequently proposed solution to the problem of thread management is setting thread affinities to

pin threads to different cores and thereby avoid kernel multiplexing. Unfortunately, setting affinities

only works if an application controls the whole machine. One application pinning its thread to core

0 does not prevent another application from also pinning its thread to core 0. In such a scenario, the

threads share the core even if other cores are available. Consequently, applications independently

setting affinity can actually hurt performance.

2.5 The limitations of virtualization

The problems described above result from virtualization, in which an operating system uses a set

of physical resources to implement a larger and more diverse set of virtual entities. Virtualization

has many benefits, but it only works if there is a balance between the use of virtual objects and the
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Figure 2.4: Cores are structured as a hierarchy. Communication latencies increases roughly 2x
with each additional layer. Latencies in this figure were measured on a dual-socket machine
running Intel(R) Xeon(R) CPU E5-2670.

available physical resources. For example, if the usage of virtual memory exceeds available physical

memory, the system will collapse under page thrashing. Threads abstract away cores and the chal-

lenges of core mangement from applications, but when there are more runnable threads than cores

in a system, performance suffers. Applications need visibility into cores to avoid oversubscribing

them. Arachne offers applications this kind of visiblity and enables them to run with low latency

and high efficiency.

2.6 Problems intensify when cores are not homogenous

The problems induced by virtualization of cores are already severe when all cores are interchange-

able, but virtualization exacerbates them on modern architectures because cores are not homoge-

nous. On modern architectures, cores are organized in a hierachy, as illustrated in Figure 2.4. Each

physical core typically has multiple (typically two) hyperthreads which run simultaneously and can

communicate with one another in tens of nanoseconds. A single CPU socket contains multiple phys-

ical cores, and a single machine can contain multiple CPU sockets. Hyperthreads of different cores

on the same socket can communicate in approximately one hundred nanoseconds. Hyperthreads of

cores on different sockets require hundreds of nanoseconds to communicate. Since the kernel does

not expose core topology and core allocations to applications, application threads are subject to
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unpredictable communication latencies. Pinning threads based on a known core topology can mit-

igate some of these problems but this only works if the application takes over the entire machine

and is non-portable. Arachne’s core arbiter tries to allocate cores to applications in a toplogy-aware

fashion, and its core policy framework offers applications the possibility of running across hetero-

genuous cores in a performant way.

2.7 Summary

This chapter motivated Arachne by describing the difficulty of implementing low latency systems

efficiently using today’s thread management systems. It pointed out three problems with today’s

thread abstraction: slow thread primitives, lack of visibility and control into cores, and lack of isola-

tion between applications. Finally, it briefly examined the limitations of virtualization and explained

why the performance issues of today’s threads are exacerbated by modern architectures.



Chapter 3

From Threads To Cores

Arachne changes the abstraction between applications and the kernel from threads to cores. It is the

next stage in a long line of work on thread management. This chapter briefly summarize the costs

and benefits of various models for managing threads, culminating in Arachne’s offering and how it

differs from prior models. It then elaborates on Arachne’s model of offering cores, expanding it into

a structural overview of the lifecycle of an Arachne application. This structural overview forms a

framework on which to hang the remainder of the dissertation.

3.1 User Threads and Kernel Threads

Threads are an abstraction for allowing multiple sequential execution streams to run in the same

address space. They can be supported at user level or in an operating system kernel. Anderson et.

al [4] argued that each approach has limitations; I describe both types of threads and summarize

their arguments below.

Threads implemented by the kernel enable simultaneous execution across multiple physical

processors, and are globally work-conserving: cores do not idle when there are threads to run. If one

thread is preempted, other threads from some application can be scheduled by the kernel, allowing

the application to continue to make progress. Since the kernel implements the page fault handler, it

can schedule other threads onto the physical processor if a thread takes a page fault. The story is the

same with blocking IO, which the kernel implements inside its system calls.

Unfortunately, kernel threads suffer from the problems described in Chapter 2. As a reminder,

they are too heavyweight (13 µs for a thread creation) for use in applications that create short-lived

threads. and can be descheduled at any time, causing increased latency for applications. Moreover,

16
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the kernel treats threads of different applications identically, resulting in threads of one application

being descheduled to run threads of a different application.

User level threads are typically implemented as a library linked into the application. They use

kernel threads as virtual processors. Like a physical processor, the kernel thread executes sequences

of instructions defined by the application. Context switching and thread operations (creation, syn-

chronization, blocking, etc) are implemented without going through the operating system kernel.

Consequently, user threads can perform thread management operations with an order of magntiude

lower latency than kernel threads.

Unfortunately, virtual processors are not equivalent to physical processors. The underlying OS

kernel is often tasked with running more threads than there are cores (as a result of applications cre-

ating threads without coordination), which means it will preempt and deschedule threads. When the

thread serving as a virtual processor is descheduled, user threads assigned to the virtual processor

must either be moved to other virtual processors or wait for the thread to be scheduled again before

they can run again. Moving user threads to another virtual processor is particularly expensive when

virtual processors are descheduled without warning, because other virtual processors must first de-

tect that user threads are piling up on a descheduled virtual processor, since there is no mechanism

for notifying them. Both scenarios delay the completion time of user threads. Moreover, the appli-

cation effectively loses its virtual processor, decrementing the application’s offered parallelism.

If a user thread takes a page fault or performs blocking IO, other user threads attached to its

processor suffer the same fate as in the descheduling case. That is, if one virtual thread traps to the

kernel to do an expensive operation, the other user threads effectively lose their virtual processor.

Since user threads do not visibility into kernel state, they cannot always anticipate when page faults

will happen or when a system call will block and prepare for it by migrating other user threads

attached to the same virtual processor away.

3.2 Definitions

I define fairness to mean that each runnable thread is able to run at least once over some user-defined

time interval. That is to say, if there are fifty runnable threads and the user specifies a time interval

of one hundred miliseconds, then each of those fifty threads will get a chance to run at least once

every one hundred milliseconds.

I define starvation of a runnable thread to mean that the thread never gets a chance to run.

For example, suppose a system has low priority threads and high priority threads. If system policy
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dictates that a low-priority thread will never run when there exists a runnable high-priority thread,

then a low-priority thread may starve if there are always runnable high-priority threads.

3.3 Threading Models

Over the years, a variety of hybrid threading models have been developed to work around the trade-

offs between user threads and kernel threads. The paragraphs below summarize the various thread-

ing models briefly.

The most ubiquitous threading model today is the one-to-one model, in which each kernel thread

is mapped to a single user thread. This model is semantically equivalent to directly using threads im-

plemented by the kernel, although the standard libraries of several programming languages provide

a language-level wrapper around the kernel thread interfaces. This model is simple to reason about

and develop against for the application writer because the kernel provides fairness and prevents star-

vation. The application writer can simply create threads and the kernel ensures that each thread will

get a reasonable share of hardware resources and make progress. If a thread runs for a long time, the

kernel will preempt it and allow other threads to run. If a thread blocks in the kernel, the kernel will

run another thread on the core. The downside of relying on the kernel to schedule threads is that the

kernel has no visibility into application behavior, so it cannot differentiate between convenient and

inconvenient times to deschedule a thread. For example, a thread might be descheduled immediately

before returning a response to a client, increasing the latency observed by that client.

A threading model that was popular when single-core processors were widespread, but no longer

makes sense in today’s multicore architectures, is the M-to-1 threading model [56, 1]. In this model,

an application process runs a single kernel thread and implements many user level threads on it. Such

a model allows for efficient context switches between threads because the process need not switch

from user mode to kernel mode and back again. Additionally, the application has more control over

when each thread runs. Using the example from above, the application can allow a user thread

to completely finish handling a request before switching context, because the information about

the thread’s request-handling state exists in the application’s own memory and is represented in

a format the application understands. This model offers the application more control over thread

management, but also creates more issues for the application to deal with; fairness and starvation

are entirely up to the application. For example, one application thread can induce starvation for other

application threads by never terminating and never relinquishing control. Additionally, the M-to-1

model suffers from the limitations of user threads described in the Section 3.1. It also cannot take
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Figure 3.1: An illustration of a thread-based API vs a core-based API.

advantage of multiple physical cores to run threads in parallel.

A threading model that is gaining traction as of this writing is the M-to-N threading model [8,

17]. Under this model, an application spawns multiple kernel threads and multiplexes user threads

over them. In typical implementations, the application is developed against the abstraction of user

threads; a language runtime or library will determine which user threads run on which kernel

threads. With an efficient implementation, applications enjoy fast context switching while being

able to take advantage of multiple physical cores. Unfortunately, this model also suffers from the

disadvantages of both user threads and kernel threads. If a particular kernel thread is descheduled,

then it becomes unuseable for running user threads, decreasing true parallelism. The problem of

kernel threads being descheduled at inconvenient times is further exabercated by M-to-N threading.

If a user thread acquires a highly contended mutex and gets preempted, other user threads needing

this mutex will be unable to run even if there are available cores.

3.4 Getting the best of both worlds: M user threads to N cores

Most of the problems with prior threading models stem from kernel threads not being equivalent

to cores; they can be descheduled without warning by the kernel and creating too many or too few

results in suboptimal performance as described in Chapter 2. Applications lack visibility into and

control over how physical cores are allocated by the kernel, so they must (inefficiently) take over an

entire machine to achieve low latency.

Arachne introduces the notion of cores as an allocatable entity, as illustrated in Figure 3.1.

Rather than requesting kernel threads from the operating system kernel, applications request cores.

Unlike kernel threads, Arachne’s cores correlate one-to-one with hardware cores. Once a core is
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allocated to an application, it belongs to the application and will not be preempted from the appli-

cation without warning.

Based on this new scheduling entity, Arachne introduces a new hybrid threading model: user

threads multiplexed over cores. This threading model offers all the benefits of the M-to-N thread-

ing models but eliminates the problems associated with kernel threads. Since Arachne threads are

implemented in user space, the overheads for thread primitives are low and threads can feasibly be

created for short-lived tasks. Applications integrating Arachne run on multiple physical cores, and

enjoy fast user threading without suffering from being descheduled at inconvenient times. Since

complete cores are allocated to applications, their threads are isolated from the threads of other

applications. Under Arachne, applications always have visibility into cores they own; the kernel

always asks before preempting cores, giving the application time to either finishing executing or

migrate existing user threads.

3.5 Arachne Application Lifecycle

What does life look like for an application integrating Arachne? Here’s a high-level summary of the

lifecycle for an Arachne application; later chapters dive into the details of each component.

• Initialization. When an Arachne application first starts, it is unknown to the Arachne system.

The application requests some initial number of cores N from the core arbiter. If cores are

available, the core arbiter grants N cores to the application. Otherwise, the core arbiter either

takes cores away from other applications or gives this application fewer than N cores, depend-

ing on the priority of the application’s request relative to the requests of other applications.

At this point, only the Arachne application can execute threads on these cores.

• Steady State. After initialization, the application enters normal execution, which is character-

ized by the following recurring activities.

1. The application creates Arachne threads using the Arachne runtime’s API and the Arachne

runtime asks the core policy to chose cores for them. For example, the core policy might

arrange for a polling-based dispatch thread to have exclusive access to a single core,

while worker threads share a pool of cores.

2. The Arachne runtime collects per-core statistics, such as utilization and number of

runnable threads.
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3. The active core policy uses these statistics to estimate the ideal number of cores for the

current load. If more or fewer cores are needed, the core policy makes a request to the

core arbiter.

• Gaining Cores. Both at initialization and any time the arbiter grants a core to an application,

the newly granted core registers itself with the core policy; the core policy will use this core

for future thread creations.

• Losing Cores. If the core arbiter needs to reclaim a core, for example to give to a higher prior-

ity application, then it does so in a cooperative fashion, by making a request to the application

and then waiting some time for the application to respond. The Arachne runtime code running

on the core detects the request, runs to a clean stopping point and de-registers the core with

the core policy before it returns the core to the arbiter.

3.6 Summary

This chapter introduced various schemes for implementing threads and describes their benefits and

limitations. It then offered Arachne’s M user threads to N cores model as a remedy to the limitations

of prior models. Finally, it elucidated this model by presenting a high-level overview of the lifecycle

of an Arachne application.



Chapter 4

Core Arbiter

Chapter 2 highlighted the difficulty of choosing the right number of kernel threads for an applica-

tion. When multiple applications independently create kernel threads to offer parallelism, the result

is descheduling of threads without notice and high latencies. Multicore systems need centralized

coordination of cores to be performant and efficient. Arachne’s core arbiter offers this means of

centralized coordination.

This chapter describes how the core arbiter claims control over (most of) the system’s cores and

allocates them among applications. The core arbiter has three interesting features. First, it imple-

ments core management entirely at user level using existing Linux mechanisms; it does not require

any kernel changes. Second, it allows Arachne applications to coexist with existing applications

that do not use Arachne. And third, it takes a cooperative approach to core management, both in its

priority mechanism and in the way it preempts cores from applications.

4.1 Classes of Cores

The core arbiter divides cores into two groups: managed cores and unmanaged cores. Managed

cores are allocated to Arachne applications by the core arbiter; only the kernel threads created by

Arachne run on these cores. Unmanaged cores continue to be scheduled by Linux. They are used

by processes that do not use Arachne, and also by the core arbiter itself. In addition, if an Arachne

application creates new kernel threads outside Arachne, for example, using std::thread, these

threads will run on the unmanaged cores.

22
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4.2 Allocating cores using Linux cpusets

Arachne uses kernel threads to control cores. A kernel thread that is the only runnable kernel thread

on a given core owns the core. On initialization, Arachne applications create a collection of blocked

kernel threads. The core arbiter allocates a core to an application by unblocking one of the these

kernel threads and ensuring that it is the only runnable kernel thread on the core being allocated.

The core arbiter is implemented without kernel modifications. It runs as a user process with root

privilege and uses the Linux cpuset mechanism to manage cores. A cpuset is a collection of one or

more cores and one or more banks of memory. At any given time, each kernel thread is assigned to

exactly one cpuset, and the Linux scheduler ensures that the thread executes only on cores in that

cpuset. By default, all threads run in a cpuset containing all cores and all memory banks. The core

arbiter uses cpusets to allocate specific cores to specific applications.

When the core arbiter starts up, it creates one cpuset for unmanaged cores (the unmanaged

cpuset) and places all of the system’s cores into that set. It then assigns every existing kernel thread

(including itself) to the unmanaged cpuset; any new threads spawned by these threads will also

run on this cpuset. The core arbiter also creates one managed cpuset corresponding to each core,

which contains that single core but initially has no threads assigned to it. To allocate a core to

an Arachne application, the arbiter removes that core from the unmanaged cpuset and assigns an

Arachne kernel thread to the managed cpuset for that core. When a core is no longer needed by any

Arachne application, the core arbiter adds the core back to the unmanaged cpuset.

This scheme allows Arachne applications to coexist with traditional applications whose threads

are managed by the Linux kernel. Arachne applications receive preferential access to cores, except

that the core arbiter reserves at least one core for the unmanaged cpuset. The core arbiter moves

cores back into the unmanaged cpuset if they have not been allocated to an application for a few

milliseconds. In steady state, each core is either in the unmanaged cpuset or allocated to an Arachne

application.

4.3 Interaction with the Arachne runtime

The Arachne runtime communicates with the core arbiter using three methods in the arbiter’s library

package:

• setRequestedCores: invoked by the runtime whenever its core needs change; indicates

the total number of cores needed by the application at various priority levels (see below for
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details).

• blockUntilCoreAvailable: invoked by a kernel thread to identify itself to the core

arbiter and put the kernel thread to sleep until it is assigned a core. At that point the kernel

thread wakes up and this method returns the identifier of the assigned core.

• mustReleaseCore: invoked periodically by the runtime; a true return value means that

the calling kernel thread should invoke blockUntilCoreAvailable to return its core to

the arbiter.

Normally, the Arachne runtime handles all communication with the core arbiter, so these meth-

ods are invisible to applications. However, an application can implement its own thread and core

management by calling the arbiter library package directly.

The methods described above communicate with the core arbiter using a collection of Unix

domain sockets and a shared memory page (see Figure 1.1). The arbiter library opens one socket for

each kernel thread. This socket is used to send requests to the core arbiter, and it is also used to put

the kernel thread to sleep when it has no assigned core. The shared memory page is used by the core

arbiter to pass information to the arbiter library; it is written by the core arbiter and is read-only to

the arbiter library.

When the Arachne runtime starts up, it invokes setRequestedCores to specify the applica-

tion’s initial core requirements; setRequestedCores sends a message to the core arbiter over

the thread’s socket. Then the runtime creates one kernel thread for each core on the machine; all of

these threads invoke blockUntilCoreAvailable. blockUntilCoreAvailable sends a

request to the core arbiter over the socket belonging to that kernel thread and then attempts to read a

response from the socket. This has two effects: first, it notifies the core arbiter that the kernel thread

is available for it to manage (the request includes the Linux identifier for the thread); second, the

socket read puts the kernel thread to sleep.

At this point the core arbiter knows about the application’s core requirements and all of its

kernel threads, and the kernel threads are all blocked. The initial thread that invoked setReques-

tedCores enters a loop where it joins each of the kernel threads it spawned one at a time; when

the application terminates these kernel threads will exit and the initial thread will unblock and exit.

When the core arbiter decides to allocate a core to the application, it chooses one of the application’s

blocked kernel threads to run on that core. It assigns that thread to the cpuset corresponding to the

allocated core and then sends a response message back over the thread’s socket. This causes the
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thread to wake up, and Linux will schedule the thread on the given core; the blockUntilCore-

Available method returns, with the core identifier as its return value. The kernel thread then

invokes the Arachne dispatcher to run user threads.

4.3.1 Cooperatively reclaiming cores from applications

The core arbiter does not unilaterally preempt cores, since the core’s kernel thread might be in

an inconvenient state (e.g. it might have acquired an important spin lock); abruptly stopping it

could have significant performance consequences for the application. If the core arbiter wishes to

reclaim a core from an application, it asks the application to release the core. It does so by setting a

variable in the shared memory page, indicating which core(s) should be released. Then it waits for

the application to respond.

Each kernel thread is responsible for testing the information in shared memory at regular inter-

vals by invoking mustReleaseCore. The Arachne runtime does this in its dispatcher. If must-

ReleaseCore returns true, then the kernel thread cleans up as described in Section 5.5 and in-

vokes blockUntilCoreAvailable. This notifies the core arbiter and puts the kernel thread to

sleep. At this point, the core arbiter can reallocate the core to a different application.

Applications can delay releasing cores for a short time in order to reach a convenient stopping

point, such as a time when no locks are held. The Arachne runtime will not release a core until the

dispatcher is invoked on that core, which happens when a user thread blocks, yields, or exits.

If an application fails to release a core within a timeout period (currently 10 ms), then the

core arbiter will forcibly reclaim the core. It does this by reassigning the core’s kernel thread to

the unmanaged cpuset. The kernel thread will be able to continue executing, but it will probably

experience degraded performance due to interference from other threads in the unmanaged cpuset.

4.3.2 The benefits of asymetric communication

The communication mechanism between the core arbiter and applications is intentionally asymmet-

ric: requests from applications to the core arbiter use sockets, while requests from the core arbiter

to applications use shared memory. The sockets are convenient because they allow the core arbiter

to sleep while waiting for requests; they also allow application kernel threads to sleep while waiting

for cores to be assigned. Socket communication is relatively expensive (several microseconds in

each direction), but it only occurs when application core requirements change, which we expect to

be infrequent. The shared memory page is convenient because it allows the Arachne runtime to test
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efficiently for incoming requests from the core arbiter; these tests are made frequently (every pass

through the user thread dispatcher), so it is important that they are fast and do not involve kernel

calls.

4.4 Core allocation

4.4.1 Core request structure

For the purposes of core allocation, the core arbiter treats a machine thread (also known as a hyper-

thread) as a unit of allocation. I use the term core to refer to a hyperthread. This work uses the term

hypertwin with respect to a given core A to refer to the core B that A shares a physical core with.

The core arbiter uses a priority-with-constraints mechanism for allocating cores to applications.

Arachne applications can request cores on different priority levels (the current implementation sup-

ports eight) and specify constraints on the set of cores they are granted. A core request consists of a

vector of integers and two boolean flags, described below.

• vector<int> coresRequestedByPriority: Each integer corresponds to the num-

ber of cores requested at the priority level of its index in the vector.

• bool noSharedCores: A value of 1 means that the application is unwilling to run on a

hypertwin of a core that is running a thread belonging to a different application.

• bool singleNUMAOnly: A value of 1 means that the application is unwilling to run on

cores that span multiple NUMA nodes.

4.4.2 Allocation algorithm

The core allocation algorithm grants cores to applications from highest priority to lowest, subject to

hypertwin and socket constraints. Low-priority applications may receive no cores. If there are not

enough cores for all of the requests at a particular level, the core arbiter approximately divides the

cores evenly among the requesting applications. In additional to respecting the constraints above,

the arbiter allocates all of the hyperthreads of a particular hardware core to the same application

whenever possible, and attempts to keep all of an application’s cores on the same socket. These core

placement heuristics strongly affect application performance because core topology affects both

communication latency and shared cache behavior. Cores on different sockets pay at least a 2.5x

performance penalty to communicate compared to cores on the same socket. Hyperthreads of the
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same physical core share an L1 and L2 cache; threads from the same application running on two

hyperthreads of the same physical core can help fill each other’s cache, while threads from different

applications will compete for cache space.

The algorithm determines which applications get which cores; this is particularly complicated

when there are more cores requested than cores available.

To help illustrate the algorithm, consider a situation with three Arachne applications on a system

that made the following core requests.

• Application A: coresRequestedByPriority: [5,0,0,0,0,0,0,0], noSharedCores: true, singleNU-

MAOnly: true

• Application B: coresRequestedByPriority: [3,0,0,0,0,0,0,0], noSharedCores: false, singleNU-

MAOnly: true

• Application C: coresRequestedByPriority: [0,1,0,0,0,0,0,0], noSharedCores: false, singleNU-

MAOnly: true

Assume that these applications are running on a single socket machine with four physical cores

that have two hyperthreads each. Assume further that the hyperthreads are numbered 0 to 7, and

consecutive even-odd pairs are hypertwins of one another. That is, Core 0 is the hypertwin of Core

1.

The algorithm that the core arbiter runs to allocate cores among applications is described below.

The primary challenge in designing this algorithm is balancing application-specified constraints,

performance considerations of machine topology, and core request priorities in a way that balances

performance and fairness; the algorithm additionally aims to be work-conserving. Conceptually,

the algorithm allocates cores to applications in request priority order and reallocates cores from

higher-priority applications to lower-priority applications until all constraints are satisfied. This,

a higher-priority application with more strict constraints may sometimes yield cores to a lower-

priority application with less strict constraints, in the case where the former’s constraints cannot

be satisfied. To do this, the algorithm computes an ideal ordering for granting cores to applications

if all cores were constructed equal and optimistically grants cores in this order, revoking the most

recently granted core (and granting it to the next process in the order) whenever constraints are

violated.

1. Construct global priority list. Compute a priority-ordered list of candidate core grants as-

suming a machine with infinite cores; each entry in the list represents the grant of a core to
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an application. This list is constructed by iterating over the priority levels from highest (0)

to lowest (7) and adding grants for applications in a round robin fashion. If an application

requested an odd number of cores and set noSharedCores, increment its requested core

count temporarily before building this list. In our example, the list is A,B,A,B,A,B,A,A,A,C,

where the name of the application represents a candidate grant to that application.

2. Create initial core assignment. Iterate over this list and assign (generic, not specific) cores

to applications up to the limit of the total cores available in the system. In our example, the

assignments might look like A : 5,B : 3,C : 0. Note that the ordering of these assignments is

not significant here.

3. Adjust for hypertwin constraints. If any application with noSharedCores set is assigned

an odd number, decrement its core grant and offer the core to the next application on the list. In

our example, this happens twice. First, the grant to A at the 8th position in the global priority

list is revoked, and a core is granted to A because it appears at the 9th position. Then, the grant

to A at the 9th position is revoked, and a core is granted to C. The subsequent assignments are

A : 4,B : 3,C : 1.

4. Assign applications to sockets. Assign applications with singleNUMAOnly set to sockets

in descending order of cores granted. In our example, that means the assignment order is ABC.

If an application does not fit in any socket, unassign the last assigned core, make a core grant

to the next process on the global priority list, and go back to Step 3.

5. Assign specific cores to applications. Iterate over the applications and assign specific cores

from the assigned socket to each application. This assignment prioritizes granting cores to an

application that were previously granted to it, and attempts to minimize sharing of hypertwins

among applications. In our example, one possible assignment is A : [0,1,2,3],B : [4,5,6],C :

[7].

The core arbiter recomputes the core allocation whenever application requests change.

4.5 Central Event Loop

The core arbiter server is implemented as a single-threaded, non-terminating epoll loop which

wakes up to handle any of the following events.
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• New connection. A new Arachne application thread is informing the arbiter of its existence.

The arbiter sets up state to track the thread.

• Core request. An application has invoked setRequestedCores. The arbiter recomputes

core allocations and either unblocks threads or requests preemptions as appropriate to satisfy

the newly computed allocation.

• Thread blocking. A thread has invoked blockUntilCoreAvailable and will be going

to sleep. The core arbiter updates its metadata about the thread and eventually removes it from

the core. If the thread blocked in response to a preemption, the core arbiter might unblock a

thread from a higher priority application.

• Preemption timer expired. When the arbiter requests a core back from an application as a

result of core reallocation, it sets a timer. When this timer expires, the arbiter is awoken to

check whether the application has complied with the request.

• Closed connection. When an Arachne application exits, its threads will close their socket

connections, triggering the arbiter to wake up and clean up state for the thread and process.

4.6 Limitations

The core arbiter offers the useability benefit of requiring no kernel modifications, but this benefit

comes at a cost of being unable to fully remove interference on cores. The cpuset mechanism allows

the arbiter to move threads belonging to other user processes to unmanaged cores, but it cannot

move threads belonging to the kernel itself. Chapter 7’s results show that this limitation does not

appear to impact our experimental results, but it is possible that more kernel-intensive background

workloads will cause a performance impact.

4.7 Summary

This chapter described how the core arbiter implements centralized control of cores using the

Linux cpuset mechanism. The core arbiter enables Arachne applications to request cores rather

than threads while coexisting with traditional Linux applications.



Chapter 5

The Arachne Runtime

This chapter discusses how the Arachne runtime implements user threads. The most important goal

for the runtime is to provide a fast and scalable implementation of user threads for modern multi-

core hardware. This chapter describes general design considerations, explains why performance in

Arachne’s world is all about cache misses, and presents Arachne’s runtime design, which minimizes

cache misses with one unified mechanism for thread creation, thread blocking, thread sleeping, and

thread migration. It wraps by discussing other functions of the runtime, such as metrics collection

and (de-)initialization of cores.

5.1 Design considerations

The Arachne runtime is designed to make efficient use of cores even if tasks have lifetimes of only

a few microseconds. For example, a low latency server might create a new thread for each incoming

request, and the request might take only a microsecond or two to process. The focus on short tasks

necessitates that the overheads of thread primitives must be as low as possible, lest they become a

significant fraction of task execution time, as discussed in Chapter 2.

An additional and non-obvious consequence of designing for short-lived tasks is that load bal-

ancing of threads among cores must be done at thread creation time. The common approach to

load-balancing today is based on work stealing [17, 22, 12]: child threads are placed on the cre-

ator’s core, and cores steal from one another when they run out of work. Work-stealing has several

benefits. It is work-conserving, in that idle cores will find threads to execute if there are threads wait-

ing to run. It avoids cross-core communication as long as each core remains busy. When stealing, a

core can steal multiple threads, amortizing the cost of cross-core communication for each thread.

30
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However, relying on work-stealing to load-balance does not make sense for short-lived tasks

for several reasons. First, work-stealing adds latency to thread execution, because threads sit in the

creator’s core while waiting to be stolen. Executing the child thread with low latency on the creator’s

core implies that the creator either yielded or exited very soon after creating the thread. This cannot

be the common case, because such a creator could simply invoke the child thread’s top level function

rather than creating a new thread; the creation of the new thread represents a desire to execute code

in parallel. Second, a thread that has started running on one core and then migrates to another core

will often need to move more state (such as stack memory) compared to a thread that was created on

the second core to begin with. Moving additional state incurs cache misses, which increases running

time by a roughly one hundred nanoseconds for each cache miss. This increase represents a larger

fraction of the running time of short-lived tasks than long-lived tasks.

Thus, placing a short-lived child thread on the creator’s core by default is not useful, and such

placement should only occur if all other cores are more heavily loaded than the creator’s core.

Instead, Arachne performs load-balancing at thread creation time, with the goal of getting a new

thread running on an unloaded core as quickly as possible.

5.2 Minimizing cache traffic for high performance

Cache coherence dominates the performance of threading primitives. Since we expect threads to run

on different cores in the common case, cross-core communication is necessary for thread creation

and other thread operations. Operations such as creating a new thread or waking up a sleeping thread

do not require many instructions to complete (14 instructions for a context switch on x86), but they

require data to be transferred from one core to another. Moving data results in cache invalidations

and cache misses, and a single cache miss costs a hundred or more cycles, so the cost of cache

operations easily overwhelms the cost of instructions.

Arachne achieves high performance by eliminating cache misses where possible, and overlap-

ping the remaining cache misses to the degree possible. As an example, consider the problem of

designing a load-balanced thread creation mechanism. Here is the mininum set of information that

must be transferred between cores.

• Load statistics: A thread runtime must choose a core for the new thread in a way that balances

load across available cores. Load state is shared by definition because it must be updated by

the target core and read by the creator’s core. Moreover, to load balance effectively in a

system running short-lived threads, the thread creator must collect the most up-to-date load;



CHAPTER 5. THE ARACHNE RUNTIME 32

this virtually ensures a cache miss.

• Race avoidance synchronization: The thread performing the creation must synchronize with

other creators to ensure that management data structures are not written by more than one

creator at a time.

• Execution state: The address and arguments for the thread’s top-level function must be trans-

ferred from the parent’s core to the child’s core.

• Scheduling: The parent must indicate to the child’s core that the child thread is runnable.

Arachne’s thread creation attempts to take no cache misses beyond what is necessary to transfer this

set of data.

5.2.1 Overlapping cache misses and hiding expensive computation

The effective cost of a cache miss can be reduced by performing other operations concurrently

with the miss; modern processors have out-of-order execution engines that can continue executing

instructions while waiting for cache misses, and each core has multiple memory channels. If several

cache misses occur within a few instructions of each other, they can all be completed for the cost of

a single miss. Thus, additional cache misses are essentially free. However, modern processors have

an out-of-order execution limit of about 100 instructions, so code must be designed to concentrate

likely cache misses near each other.

Similarly, a computation that takes tens of nanoseconds in isolation may actually have zero

marginal cost if it occurs in the vicinity of a cache miss; it will simply fill the time while the cache

miss is being processed.

5.3 A cache-optimized thread management mechanism

The traditional approach to thread scheduling uses one or more ready queues to identify runnable

threads (typically one queue per core, to reduce contention), plus a scheduling state variable for

each thread, which indicates whether that thread is runnable or blocked. This representation is prob-

lematic from the standpoint of cache misses. Adding or removing an entry to/from a ready queue

requires updates to multiple variables. Even if the queue is lockless, this is likely to result in multiple

cache misses when the queue is shared across cores. Furthermore, we expect sharing to be common:
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Arachne’s Key Data Structures
ThreadContext A data structure associated with each thread; includes thread stack,

scheduling state, saved execution state, and pointer to top-level function.
MaskAndCount A data structure associated with each core; it consists of a 64-bit value

divided into a 56-bit mask and an 8-bit count of set bits in the mask.
Each bit in the mask corresponds to an element in an associated array of
ThreadContext’s; a set bit indicates that the corresponding context
holds a thread. The mask field is named occupied and the count field
is named numOccupied.

Table 5.1: Each core has an associated variable of type MaskAndCount and array of
ThreadContext’s. The MaskAndCount variable is named maskAndCount in the text and the
code.

a thread must be added to the ready queue for its core when it is awakened, and the wakeup typically

comes from a thread on a different core.

In addition, the scheduling state variable is subject to races. For example, if a thread blocks on a

condition variable, but another thread notifies the condition variable before the blocking thread has

gone to sleep, a race over the scheduling state variable could cause the wakeup to be lost. This race

can be eliminated with a lock that controls access to the state variable. However, the lock results in

additional cache misses, since it is shared across cores.

In order to minimize cache misses, Arachne does not use ready queues. Instead of associating

a ready queue with each core, Arachne binds an array of ThreadContext’s to each core (see

Table 5.1). Each user thread is assigned to a thread context when it is created, and the thread executes

only on the context’s associated core. Most threads live their entire life on a single core. A thread

moves to a different core only as part of an explicit migration (discussed in Section 5.3.3). A thread

context remains bound to its core after its thread completes. Arachne reuses recently-used contexts

when creating new threads to take advantage of these contexts already being cached.

In lieu of checking a ready queue, the Arachne dispatcher repeatedly scans all of the active user

thread contexts associated with the current core until it finds one that is runnable. This approach

turns out to be relatively efficient, for two reasons. First, I expect only a few thread contexts to

be occupied for a core at a given time (many occupied contexts imply that the application is not

keeping up with its load). Second, the cost of scanning the active thread contexts is largely hidden

by an unavoidable cache miss on the scheduling state variable for the thread that woke up. This

variable is typically modified by a different core to wake up the thread, which means the dispatcher

will have to take a cache miss to observe the new value. 100 or more cycles elapse between when
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Figure 5.1: Data structures used for queueless thread scheduling. Wakeup time and top level function
and arguments for a thread live in one cache line, while the maskAndCount variable for each core
lives in its own cache line.

the previous value of the variable is invalidated in the dispatcher’s cache and the new value can be

fetched; a large number of thread contexts can be scanned during this time. The cost of this approach

is evaluated in in Chapter 7.

Arachne also uses a new lockless mechanism for scheduling state. The scheduling state of a

thread is represented with a 64-bit wakeupTime variable in its thread context. This variable stores

time because it generalizes to handling thread sleep, as discussed in Section 5.3.2. The dispatcher

considers a thread runnable if its wakeupTime is less than or equal to the processor’s fine-grain

cycle counter. Before transferring control to a thread, the dispatcher sets its wakeupTime to the

largest possible value. wakeupTime doesn’t need to be modified when the thread blocks: the large

value will prevent the thread from running again. To wake up the thread, wakeupTime is set to

0. This approach eliminates the race condition described previously, since wakeupTime is not

modified when the thread blocks; thus, no synchronization is needed for access to the variable.

5.3.1 Thread creation

To help with thread creation, the Arachne runtime associates a maskAndCount variable with each

core (see Table 5.1). This variable serves two purposes: it is used to track load for load balancing,

and to provide mutual exclusion on each thread context associated with the core.
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When creating new threads, Arachne uses the “power of two choices” approach for load bal-

ancing [36]. It selects two cores at random, reads their maskAndCount values, and selects the core

with the fewest active thread contexts. This will likely result in a cache miss for each maskAndCount,

but they will be handled concurrently so the total delay is that of a single miss. Arachne then scans

the mask bits for the chosen core to find an available thread context and uses an atomic compare-

and-swap operation to update the maskAndCount for the chosen core. If the compare-and-swap

fails because of a concurrent update, Arachne rereads the maskAndCount for the chosen core and

repeats the process of allocating a thread context. This approach should work well on systems with

many cores: multiple thread creations can occur simultaneously, and the creators will pick different

cores with high probability, so there will be few collisions.

Once a thread context has been allocated, Arachne copies the address and arguments for the

thread’s top-level function into the context and schedules the thread for execution by setting its

wakeupTime to 0. In order to minimize cache misses, Arachne places wakeupTime in the same

cache line as the function and arguments. Thus, this costs two cache miss times for reading and

invalidation on the creator’s core, and then one additional cache miss for the dispatcher on the target

core to read wakeupTime. Figure 5.1 shows the cache lines boundaries around the data structures.

With this mechanism, a new thread can be invoked on a different core in five cache miss times.

Two cache misses times are required to read and perform a compare-and-swap on the target core’s

maskAndCount, and three cache miss times are required to transfer the line containing the func-

tion address and arguments and the scheduling flag.

Thread creation failure

Thread creations in Arachne can fail and this ability to fail imposes a cost on application developers:

everywhere in their code where they create threads, they must check for and reason about the correct

behavior in the event of thread creation failure.

A substantial benefit of thread creation failure is automatic load throttling. When an application

integrating Arachne is offered more load than the sytem’s cores can keep up with, the 56 contexts on

each core fill up with threads, and attempts to create threads will fail until cores clear up the backlog

of work. By failing thread creations at this point, Arachne effectively signals to the application that

the system is in overload and that creating more threads will simply increase the size of the backlog.

An application can use this signal to exert backpressure on its clients to decrease load.

Thread creation failure also simplifies edge cases related to core management. A core that is

about to be returned to the core arbiter can reject attempted thread creations by failing them. If
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thread creations were defined to not fail, they would need to implement retry logic with back-off to

handle cores going offline.

Consequently, application code that creates threads must always check for and handle thread

creation failures. This imposes a complexity cost of application developers, but I believe the cost

is outweighted by the benefits described above, and applications are quite capable handle these

failures. When thread creations fail, applications have multiple options for handling the failure. One

option is to repeatedly retry the thread creation until it succeeds; this works reasonably well when

overload is not expected and failures are likely the result of core management operations. A second

option is to schedule a retry after an exponential backoff. If the application is a service, a third

option is to inform the client that triggered the thread creation that the server is busy; the client can

then make the request again later. Additionally, the thread creator could choose to run the top level

function of the thread itself.

5.3.2 Thread Sleep and Wakeup

Arachne’s representation of scheduling state using wakeupTime and an array of threadContexts

enables an simple, efficient implementation of the synchronization primitives sleep and signal.

A thread can block itself by invoking sleep. If an optional time argument is passed, then wakeupTime

is set to the current time plus the time argument. Otherwise, wakeupTime remains the maximum

representable value. No other memory is accessed, so sleep costs either zero or one cache miss

time. One thread can wake up another by calling signal with the target thread’s context. This

function simply sets wakeupTime to 0, incurring two cache miss times: one to invalidate for writ-

ing, and another for the target core’s dispatcher to read. It is worth noting that no additional data

structures are used for keeping track of sleeping threads, reducing the surface area for potential

cache misses.

5.3.3 Thread Migration for Core Cleanup

When an Arachne application is underloaded, it scales down its number of cores, as described in

Section 5.5. To facilitate this scale-down, the runtime reuses the same thread management mecha-

nism for emptying a core of its threads. To satisfy Arachne’s performance goals, it is important for

migration to be as efficient as possible with respect to minimizing cache misses. The key insight for

efficiently migrating a thread from core X to core Y is to exchange an occupied ThreadContext

on core X with an empty ThreadContext on core Y. Using this technique, migration can happen
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while preserving the number of thread contexts associated with each core, and there is no need to

re-balance thread contexts among cores. To satisfy correctness, migration must eventually termi-

nate, so the migration procedure must also prevent new thread creations from re-filling the core as

threads are being migrated. This is done by making the core appear to be filled with threads. The

full migration function, described below, is executed inside a user thread on the target core.

1. Block all future creations by setting numOccupied to 56.

2. Wait out pending creations that began before creations were blocked. A creation is pending on

a ThreadContext if its wakeupTime is set to the special sentinel value UNOCCUPIED,

but the corresponding bit in maskAndCount is set. Scan over the array until this combina-

tion of set bit and wakeupTime no longer exists.

3. For each user thread on the core, perform the following procedures.

(a) Use the power of two choices to select a target core. This costs one cache miss time to

read the maskAndCounts.

(b) Reserve a slot by setting an occupied bit, just as in thread creation. This costs one cache

miss time to write the maskAndCount.

(c) Swap ThreadContext pointers with the target thread, so that the thread being mi-

grated is now bound to the target core, and an empty ThreadContext from the target

core is bound to the current core. This costs 2 cache miss times to read and then write

the ThreadContext pointer.

When the target core discovers the migrated thread, it will incur one cache miss to read the new

ThreadContext pointer (this miss is only occurs during migrations), and one cache miss to read

the wakeupTime, function and arguments. Thus, the above mechanism costs 6 cache miss times

for each migrated thread to start running. If the target core was busy running another thread at the

time the migration started, it only pays the cost of the last two cache misses to start the migrated

thread.

Why thread migration occurs inside a user thread context

Thread migration must occur inside a user thread context on the source core because the runtime

code that detects a core preemption request from the arbiter is executing on a user stack borrowed

from a user thread context. (Arachne’s runtime is designed this way to avoid a context switch during
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thread creations, making them faster.) If the thread context that owns the current stack is occupied,

the migration code cannot migrate it, because it should not migrate the stack it is executing on to

another core; such migration could result in two cores executing on the same stack simultaneously,

which leads to stack memory corruption. Not being able to migrate the thread occupying the current

active context is a problem because there is no guarantee that the thread will terminate after it

regains control of the core, so the core may never be completely cleared. If the thread context that

owns the current stack is unoccupied, then a thread creation currently in progress can create a thread

on it before the algorithm starts running, creating the same problem. Performing migration inside a

separate thread ensures that the one thread which cannot be migrated (the one that is performing the

migration) will naturally terminate at the completion of migration, resulting in a core that is clear of

threads.

5.4 Collecting metrics

As the Arachne runtime performs threading operations on behalf of applications, it gathers computa-

tionally cheap runtime metrics on each core. These metrics are useful for benchmarking, debugging

and optimization. They are recorded as monotonically increasing counters, and consequently add

very little overhead to the critical path of the Arachne runtime. The full list of metrics is given below.

• Idle time: The number of cycles spent in the Arachne dispatcher looks for threads to run,

rather than executing application code.

• Total time core owned: The number of cycles the runtime has owned the current core, since

the last time this application acquired it.

• Threads created: The number of threads this core has created. The number of threads created

onto each core is possibly more useful, but it is expensive because it adds an extra cache miss

to each thread creation.

• Threads completed: The number of threads that have exited on this core. By summing this

number and the number of threads created across all cores, it is easy to tell whether threads

were lost due to bugs in the runtime.

• Contended creations: The number of times the compare-and-swap operation failed at least

once during a thread creation. This can occur in any of the following scenarios.

– Two or more thread creators simultaneously attempt to create a thread on the same core.
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– A thread creation targets a core at the same time a thread is exiting on the same core.

– One or more thread creators or thread migrators simultaneously target a core.

• Threads run in the current dispatcher pass: The number of threads the dispatcher found to be

runnable in the most recent scan through all the contexts on the core. This is used for core

estimation to estimate the number of runnable threads.

• Weighted loaded cycles: The number of threads run in the current dispatcher cycle multipled

by the number of CPU cycles it took to finish the pass.

• Core increments: The number of times the runtime has gained a core from the arbiter.

• Core decrements: The number of times the runtime has returned a core to the arbiter.

The metrics are stored in a simple data structure called PerfStats, which contains one value

for each metric. Each core maintains its own instance of PerfStats, and they are updated only by

that core, so updates incur no cache misses. Arachne’s runtime provides functions for aggregating

the PerfStats across arbitrary subsets of cores. These functions require cache misses to fetch the

values, but aggregation occurs relatively infrequently.

5.5 Gaining and losing cores

When the Arachne runtime first obtains a core from the arbiter, it owns the core but the core is not

yet ready for use by the runtime. The runtime is responsible for initializing cores with core-local

state when they are granted by the core arbiter and de-initializing cores before returning them to

the core arbiter. Here are the procedures that the runtime uses to initialize and deinitialize cores. As

discussed in Chapter 4, Arachne uses a kernel thread running exclusively on a core to control it; the

steps below are executed by this kernel thread.

Initializing Cores

1. Store pointers to the maskAndCount and ThreadContext array bound to the core that

the kernel thread woke up on in thread local variables. This optimization is valuable because

the runtime’s dispatcher constantly accesses these data structures between periods when user

threads are running.

2. Inform the Core Policy that the new core is available.
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3. Finally, switch execution context to the first user context and enter the Arachne dispatcher. By

executing on the first user context, the Arachne dispatcher can execute the first thread created

on this core without having to swap context.

Deinitializing Cores When the Arachne dispatcher on a core is notified that the core arbiter

wants the core back, it takes the following steps to prepare a core for return to the core arbiter.

1. Inform the core policy that the core is no longer available.

2. Create a new user thread (call this the cleaner thread) on the core, which will run the algorithm

described in Section 5.3.3 to clear all threads off the core, and then exit. It is important that

the core cleaning algorithm runs in a dedicated user thread, because this ensures that the core

can be completely cleared, for reasons described in Section 5.3.3.

3. Immediately before the cleaner thread exits, it sets a thread-local flag to inform the dispatcher

that the core is ready to be returned to the core arbiter.

4. When the dispatcher sees this flag, it detaches the thread local variable from the PerfStats

for the core, and returns control of the core to the core arbiter.

5.6 Limitations

The maskAndCount variable limits Arachne to 56 threads per core at a given time. As a result,

programming models that rely on large numbers of blocked threads are unsuitable for use with

Arachne. Since Arachne assumes threads are created for physical parallelism rather than logical

concurrency, there is very little performance gain from creating the 57th thread on a core before the

first one finishes executing.

Additionally, Arachne applications are likely to have fewer blocked threads. Rather than a long-

lived thread that periodically wakes up to do work, an Arachne application can create a new thread

each time work needs to be done; a single long-lived thread can wake up at fixed intervals to spawn

such threads. Arachne’s primitives are fast enough to make this cheap, and this approach also allows

the new threads to be load balanced rather than being stuck on a possibly overloaded core if they

were long-lived.

The colocation of wakeupTime with the function and arguments limits argument lists to 6

one-word parameters on machines with 64-byte cache lines; larger parameter lists must be passed

by reference, which will result in additional cache misses.
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5.7 Summary

This chapter discussed the importance of using threads for parallel execution and its implications

for system design. It then explained the importance of minimizing cache traffic, and explained why

Arachne’s runtime takes fewer cache misses than approaches based on ready queues. Finally, it

described how the Arachne runtime achieves a fast and scalable implementation of user threads

using a cache-conscious design.



Chapter 6

Core Policies

One of Arachne’s goals is to give applications precise control over their usage of cores. Core poli-

cies are Arachne’s mechanism for applications to precisely control how many cores to request from

the core arbiter and how threads are scheduled onto cores. This chapter motivates core policies, dis-

cusses how they enable applications to address the thread placement and core estimation problems,

describes the interactions between the runtime and core policies, and discusses Arachne’s default

core policy.

6.1 Introduction

Arachne’s core arbiter and runtime solve the three problems associated with thread management

described in Chapter 2 by allocating dedicated cores to applications and implementing fast thread-

ing primitives. However, control over cores introduces new problems for applications. They must

decide which threads to place on which cores, and how many cores they need. In the pre-Arachne

world, these decisions were made (poorly) by the operating system kernel. In Arachne’s new core-

aware world, they represent opportunities for applications to reduce latency and improve efficiency.

I believe logic that runs in the application’s address space and observes the application’s scheduling

behavior has a better chance of making these decisions efficiently. A core policy encapsulates logic

for making these decisions in a reusable way.

Since applications have diverse threading needs, a single core policy is unlikely to address the

needs of all applications. For example, a latency-sensitive application like RAMCloud [42] may

utilize a long-lived dispatch thread to communicate over the network and dispatch requests. It would

be best if such a thread did not share its core with request-executing threads, since it is often a

42
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bottleneck in dispatch-based thread structures. As another example, many applications [31, 42] have

maintenance threads that run periodically but execute for a long time. An application can ensure that

request-handling threads are not blocked by maintenance threads by placing all maintenance threads

on a single core, and not placing request-handling threads on the same core as a maintenance thread.

As a third example, a service application may serve data to and perform computation on behalf of

both user-facing and batch consumers. A core policy can run the threads executing requests on

behalf of different types of consumers on different cores to prevent batch requests from increasing

latency for user-facing requests.

Core policies can allow applications to more effectively handle diverse hardware topologies.

If an application cannot fit on a single NUMA node, a core policy can be used to shard request-

handling threads across NUMA nodes based on the data they access. That is, it could place threads

that need to access different shards of data on different NUMA nodes to minimize communication

overheads.

Additionally, applications may have application-specific metrics for determining how inten-

sively to use cores. One application may have a 100 µs SLO at the 99th percentile and be willing to

tolerate wasting 60% of its cores to achieve that SLO. Another application may be willing to tolerate

1 ms response times at the 50th percentile but wants to run at 80% core utilization or higher. A third

application may care only about how quickly it can service read requests, and only increase its core

demands when there are insufficient cores for handling read traffic.

Lacking the experience to anticipate the needs of future applications, I hypothesize that a single

core policy cannot address the needs of all applications. Consequently, Arachne offers a frame-

work that provides interfaces and support functions for writing new core policies. Writing high-

performance core policies is likely to be challenging, particularly for policies that deal with NUMA

issues and hyperthreads. I hope that a small collection of reusable policies can be developed to meet

the needs of most applications, so that it will rarely be necessary for an application developer to

implement a custom core policy. Applications with unusual threading needs may still need to write

their own core policies.

6.1.1 What is a core policy?

A core policy is a pluggable software module that interfaces with Arachne’s runtime. It consists of

two components that help applications address the two questions arising from application ownership

of cores:
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• A thread placement component determines which core each thread runs on.

• A core estimation component determines how many cores an application needs and makes

requests to the core arbiter whenever this number changes.

6.2 Thread placement

The first component of core policies addresses the placement of threads onto cores. For example, a

particular core policy may decide that threads performing expensive write operations can only run

on the first acquired core. A different core policy could run a high-priority thread on Core X and

idle the hypertwin of Core X to improve its single-threaded performance.

6.2.1 Design considerations

The core policy framework is designed to simplify the development of core policies and enable

third-party researchers to rapidly experiment with new core policies, without needing a deep under-

standing Arachne internals. That is, implementors of new core policies should only need to specify

where threads live, and not have to implement or understand the plumbing needed to place them

there. To be more explicit, a well-designed framework should allow a core policy to specify that

thread T should run on core X without needing to implement the logic for actually migrating the

function and the arguments there. As another example, a core policy should be able to specify that

a thread A can run on any of cores X, Y, or Z without having to implement load balancing between

them. Thus, a well-designed core policy framework will delegate as many of the details of thread

creation to the Arachne runtime as possible, while leaving core policies complete control over which

cores threads were placed on.

Consequently, both the runtime and the core policy must participate in thread creation (and

migration). I considered two possible designs for how they interact.

In the chosen design, the runtime offers thread creation APIs to the application and invokes the

core policy to request a list of acceptable cores. To implement this design, the threads of an Arachne

application are divided into groups called thread classes. Threads in the same class have similar

behaviors, such as short-lived worker threads, low-priority background threads, or long-running

dispatch threads. The thread class of every Arachne thread is specified by the application when the

thread is created.

Each core policy defines its own thread classes and uses them in arbitrary ways to manage
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threads. An application using Arachne selects a core policy at implementation time and may only

create threads of the thread classes that are defined by that core policy; thread classes have no

meaning outside the context of the core policy that defines them.

Core policies control thread placement by restricting the set of cores that threads of a particular

class can run on. The Arachne runtime enforces the core policy’s control over thread placement by

asking the core policy for a list of acceptable cores each time a thread is created or migrated. A list

is returned rather than a single core because it allows load-balancing (described in Section 5.3.1) to

be implemented in the Arachne runtime and shared across all core policies. In cases where a core

policy desires to deterministically control the exact core a new thread is placed on, it can return a

list containing a single core.

An alternate design is for the core policy to offer thread creation APIs and call into the runtime to

create threads on cores of its choosing. Under this design, there are no thread classes. Instead, each

core policy offers a set of distinct API calls for creating different types of threads. For example, the

default core policy (presented in Section 6.5) would offer the functions createNormalThread

and createExclusiveThread rather than offering normal and exclusive thread classes. This

alternate design offers more flexibility because such thread creation methods could accept custom

arguments (in addition to the function and arguments for the new thread). For example, a thread

could be scheduled for deferred creation until a time that is passed in by the application.

Despite the greater expressiveness, Arachne does not use this alternative design for the interface

between the core policy and the runtime. First, the alternate design offers increased flexibility at the

cost of increased surface area (complexity) in the core policy interface. The scenarios in which the

marginal increase in flexibility would be beneficial all seem contrived and farfetched, while the ar-

bitrary increase in core policy surface area (e.g., complexity) imposes cognitive load on application

developers. Second, the alternate design places a burden of API design on the creators of new core

policies, while the chosen design only requires them to define thread classes. By imposing an API

on core policies, Arachne simplifies their design. Third, the alternate design enables and encourages

core policy implementors to keep state around about special threads, such as long-running threads,

because they have access to the thread handles as result of performing the thread creation. This in-

creases complexity in core policy implementations and causes information about thread lifetimes to

be shared between the runtime, the core policy and the application logic. Systems with less shared

ownership are easier to manage and reason about.
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6.2.2 API

The thread placement component of a core policy is implemented by providing implementations for

the three methods of the pure abstract class CorePolicy.

• getCores(int threadClass): This method is invoked by the Arachne runtime on

every thread creation (and migration) to obtain a list of cores that the thread can be created

on (migrated to). A core policy implementation can choose a specific core for the thread by

returning a list containing a single core.

• coreAvailable(int coreId): This method is invoked by the Arachne runtime to no-

tify the core policy that a core has been granted by the core arbiter and is now available for

the core policy’s use.

• coreUnavailable(int coreId): This method is invoked by the Arachne runtime to

notify the core policy that a core is about to be returned to the core arbiter, and should no

longer be used for running new threads.

6.2.3 Memory management for core lists

The return value semantics of the getCoresmethod of the API involves a subtle memory manage-

ment problem. The Arachne runtime calls this method to request a list of cores from the active core

policy on every thread creation, so it is important that these lists are returned from the core policy to

the runtime in a way that minimizes overhead in this critical path. There are two types of semantics

for returning these lists: value semantics and reference semantics. In this context, value semantics

means that the full contents of the core list are copied from the core policy into the runtime on every

thread creation. Reference semantics means that a pointer to the list is copied, and changes to the

original list will be observed by the caller. If a core list is passed with value semantics, it can quickly

become unwieldy on machines with large numbers of cores, because the memory footprint of each

copy of the core list scales linearly with the number of cores. Thus, it makes sense for core lists to

use reference semantics.

Unfortunately, reference semantics lead to a memory management problem because core lists

are sometimes static and sometimes dynamically generated. Static core lists commonly hold cores

serving frequently used thread classes; a core policy might maintain a long-lived collection of cores

dedicated to runnning threads of such classes, and grow or shrink the collection with size. Dynami-

cally generated core lists are used when returning cores for thread classes that are infrequently used
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and do not have a long-lived collection of cores dedicated to them. These two cases have differ-

ent memory management semantics. The underlying storage for a statically allocated core list is

allocated by the core policy when it first initializes and persists until program termination, so the

runtime should not free that storage. If the core policy returns a dynamically generated core list,

the underlying storage must eventually be freed to avoid leaking memory, but neither the runtime

nor the core arbiter has sufficient knowledge to free it. Only the runtime knows when it is done

using a core list, and only the core policy knows whether the core list was generated statically or

dynamically; neither has complete information about both when and whether it is safe to free the

storage.

There exist known complex and expensive solutions to handle this problem, such as manual

reference counting and shared pointers, but Arachne uses a shockingly simple and specific solution.

The core list consists of a flat array of core IDs (returned by reference) and a single bit indicating

whether the underlying storage should be freed or not. This bit is set by the core policy on dynam-

ically generated core lists, and used in the core list’s destructor (which is executed by the runtime)

to determine whether to free the underlying storage.

6.2.4 Arachne runtime support for thread placement

Core policies control core use, but all the thread control structures belong to the Arachne runtime.

Since core policy implementations are intended to be decoupled from the runtime’s implementation,

it is best if they do not directly read and manipulate runtime data structures. Thus, the Arachne

runtime offers a small set of support functions to help core policies manipulate threads and cores.

Core policies are comparatively new to Arachne, so the current implementation’s runtime sup-

port is heavily tailored to the current default core policy’s needs. The remainder of this section de-

scribes an idealized set of general-purpose primitives for Arachne’s runtime to provide; Section 6.5

will discuss the set of primitives actually implemented.

Since a core policy’s primary core manipulation task is to dynamically determine which cores to

use for which thread classes, it may need to change the way it is using particular cores. For example,

suppose that one set of cores is used for handling write requests and another set is used for handling

read requests. If the ratio of read requests to write requests suddenly increased, the core policy may

choose to allocate more cores to reads and fewer to writes. If radical and fast changes in core use are

needed, a core policy may need to migrate threads off of cores. Thread migration is implemented

by the runtime and touches runtime data structures, so it makes sense for the runtime to expose

this functionality as an API to core policies. Additionally, thread creations already in progress may
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attempt to create a thread onto the core that has already been repurposed to run threads of a different

class. Hence, the runtime should also offer APIs for disabling and re-enabling creations to a core.

More explicitly, Arachne’s runtime should offer the following three API calls.

• void migrateThreadsFromCore(int coreId): When this function returns, the

core with the given id should be empty of threads. The core policy does not provide a list

of destination cores for the migration because threads of different classes can coexist on a

single core. Instead, the runtime will ask the core policy where to migrate each thread to

based on its thread class.

• void disableCreationsOnCore(int coreId): When this function returns, sub-

sequent creations to the core will be disallowed. This is used to prevent thread creations al-

ready in progress (those that have already obtained a stale core list from the core policy) from

proceeding; the core policy can prevent creations that are not yet in progress by returning a

core list that does not contain the core.

• void enableCreationsOnCore(int coreId): When this function returns, subse-

quent creations to the core will be permitted.

6.3 Core estimation

The second responsibility of core policies is to compute how many cores the application needs at

each point in time. Core estimation is directly tied to Arachne’s goals of offering a better combina-

tion of latency and throughout. By helping applications determine an appropriate number of cores

for handling their current load, a good core estimator maintains low latency for applications without

using more cores than necessary to achieve a given latency target.

Both the mechanism and semantics of core estimation are entirely up to the implementer of

the core policy. Core estimation does not appear in the core policy API, because Arachne’s core

policy framework does not dictate how, when, or even whether it happens. A particular core policy

implementation could spawn a thread that periodically wakes up and checks whether the current

core utilization is above or below some threshold; another core policy might define a method for

applications to call when an application-observed latency increases significantly. The following

are examples of possible core estimation schemes; they are by no means exhaustive and are only

intended to give a flavor of what is possible.
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• Fixed core count. A core policy could choose not to implement core estimation at all if the

applications using it have a constant workload. Instead, applications using such a core policy

would have the same number of cores throughout their lifetime.

• Utilization-based estimation: A core policy can periodically collect metrics from the runtime

to compute utilization and adjust cores based on some set of thresholds.

• Application metrics: A core policy can perform estimation based on application metrics by

invoking an application-defined function to report normalized load as observed by the appli-

cation and put a threshold on that.

6.3.1 Runtime support for core estimation

As mentioned in Section 5.4, the Arachne runtime gathers basic runtime metrics and makes them

available through an API that aggregates them across caller-specified subsets of cores. A core policy

can utilize these metrics to estimate load.

6.3.2 Reuseable core estimation module

A core policy with multiple thread classes and a distinct set of cores for each thread class must deter-

mine both how many cores to use for running threads of each thread class and whether more cores

are needed globally. If the load generated by threads of different thread classes changes over the

lifetime of an application, a core policy must re-evaluate and adjust the allocation of cores used for

different classes dynamically. For example, a core policy that offers thread classes for background,

foreground, and long-running threads might wish to periodically re-evaluate the allocation of cores

for background and foreground threads.

Arachne is packaged with a general purpose core estimator that any core policy can use to

estimate whether the number of cores currently allocated to running a particular thread class is

appropriate for its current load. This core estimator takes a set of cores as input and determines

whether these cores are overloaded or underloaded. It outputs a recommendation to either scale up

the number of cores or scale down the number of cores being used to handle the workload being

offered to this set of cores.

How does this core estimation module work? Estimating the cores required for running a set

of threads requires making a tradeoff between core utilization and fast response time. Even fast

core allocation [41] takes on the order of microseconds, so reallocating cores every time a thread
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is created is too expensive in terms of latency. If the estimator attempts to keep cores busy 100%

of the time, fluctuations in load will create a backlog of pending threads, resulting in delays for

new threads. On the other hand, the estimator could optimize for fast response time by requesting

enough cores to handle the worst-case load, but this would result in low utilization of cores. The

more bursty a workload, the more resources it must waste in order to get a fast response.

Arachne’s core estimator navigates this tradeoff by providing applications with a set of intuitive

knobs for tuning the system between the dual extremes of the lowest possible latency and highest

possible efficiency. The mechanisms described below for scaling up and down are parameterized:

an application can select how aggressively it wants to favor latency over efficiency or vice versa, as

well as how frequently to re-evaluate its decision.

The core estimator runs periodically and averages the measurements collected by the runtime

since the previous time it ran to make core count recommendations. Because it averages measure-

ments over time, core counts will not rapidly oscillate over a short period of time. The downside of

averaging measurements is the estimator cannot react rapidly to extreme (and unsustained) bursts in

load, on the order of microseconds.

The core estimator uses different mechanisms for scaling up and scaling down. Scaling up is

intended to reduce response time, so it makes sense for the estimator to scale up based on a metric

that is intuitively correlated with response time. One such metric is average number of runnable user

threads on a core: the more runnable threads on a core, the longer a new thread will have to wait

before it executes. For example, if three threads were runnable on a core at a particular time, then

two of them had to wait while the other one ran. If there were more cores, they could run on those

cores and complete in less time.

Unfortunately, computing the average number of runnable user threads directly is expensive, be-

cause doing so requires continuous monitoring of all the wakeupTime variables on every context.

Such monitoring amounts to keeping a running weighted average of runnable threads that is updated

on every thread creation, exit, block and unblock; this is costly because the each wakeupTime vari-

able is updated by both itself and all cores that create threads on it, so the running average must also

be updated by multiple cores, resulting in an extra cache miss on every thread creation and exit.

Due to the high cost, the core estimator instead uses a quantity called load factor as an ap-

proximation of the average number of runnable user threads; load factor is reasonably accurate,

up-to-date, and cheap to compute. Thus, the decision to scale up is based on load factor: when the

average load factor across all cores in the input set of cores reaches a configurable threshold value,

the core estimator recommends an increase in core count. The intuitive correlation between load
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factor and response time makes it easier for users to specify a non-default threshold value for load

factor if needed. In addition, early performance measurements (not included in this dissertation)

showed that load factor works better than utilization for scaling up: a single load factor threshold

works for a variety of workloads, whereas the best utilization for scaling up depends on the bursti-

ness and overall volume of the workload.

On the other hand, scaling down is based on utilization: the average fraction of time that each

Arachne kernel thread spends executing user threads. Load factor is hard to use for scaling down

because the metric of interest is not the current load factor, but rather the load factor that will occur

with one fewer core; this is hard to estimate. Instead, the core estimation module records the total

utilization (sum of the utilizations of all cores in the input core set) each time it recommends an

increase in the number of cores. When the total utilization for this set of cores returns to a level

slightly less than this, the core estimator recommends a decrease in the core count (the “slightly

less” factor provides hysteresis to prevent oscillations).

Three parameters control the core estimation mechanism: the load factor for scaling up, the

interval over which statistics are averaged for core estimation, and the hysteresis factor for scaling

down. The core estimation module defaults to a load factor threshold of 1.5, an averaging interval

of 5 ms, and a hysteresis factor of 9% utilization. These parameter values are not sacred; they were

picked empirically using the benchmarks in Chapter 7.

The approach to core estimation described above has many benefits. It enables an application

to make a reasonable trade-off between its latency and efficiency needs. Moreover, it is relatively

cheap to compute, imposing very little computational overhead on the applications.

Computing load factor and utilization

Load factor is computed as the ratio of weightedLoadedCycles to totalCycles. After each pass of the

dispatcher through all the contexts (as described in Section 5.3) during the measurement interval,

weightedLoadedCycles is incremented by the number of threads ran multiplied by the number of

cycles that it took for the dispatcher to scan all the contexts. This quantity is cheap to compute

because the dispatcher merely has to increment a thread-local counter each time a runnable thread is

found, and perform a single multiplication each time it reaches context 0. totalCycles is the number

of cycles elapsed during the measurement interval. Load factor is a reasonable approximation of

average runnable thread count on a core when the average thread creation rate is relatively stable

over the time it takes the dispatcher to go through all the contexts. If the rate of thread creations

keeps roughly N threads on a core during the scanning interval, the dispatcher will observe and run
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roughly N threads in one pass, and multiply N by the number of cycles it took to go through them.

When this quantity is normalized by the total cycles elapsed during the same period, the result is the

average number of runnable threads.

The utilization used in the computations above is actually a lower bound on true utilization. It

is computed by subtracting idleCycles from totalCycles and dividing by totalCycles. idleCycles is

estimated as the number of cycles the core has been looking for work to do rather than executing

application code. Intuitively, a core only spends a long time looking for work if there are no runnable

threads: that is the definition of being idle. However, since a core must spend a nonzero number of

cycles looking for work each time a thread exits or blocks in order to find the next thread to run,

idleCycles can be slightly overestimated, resulting in an underestimate of utilization.

6.3.3 Using the core estimation module with multiple sets of cores

The core estimation module described above can be used by a core policy to determine how to

reallocate cores between threads of different classes as well as determining whether more cores are

needed from the core arbiter. The following algorithm describes how a core policy might use the

core estimator to determine how to change its core use.

1. Iterate over each set of cores dedicated to handling a distinct thread class.

2. Run the core estimator on it to determine whether that set of cores needs to scale up or scale

down. Record the new desired number of cores for each of these classes.

3. Reallocate existing cores owned by the application among different thread classes to satisfy

the new desired core counts.

4. Request more or fewer cores from the core arbiter if the net number of desired cores across

all sets of cores has changed.

6.4 Interactions with the Arachne runtime

Chapter 5 hinted at interactions between the Arachne runtime and core policies but did not flesh

out the details because core policies were not yet introduced. This section makes those interactions

explicit and ties up the loose ends.
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6.4.1 Gaining and Losing Cores

Section 5.5 described how the Arachne runtime initializes and deinitializes cores. Core policies are

notified of these events through the core policy API described in Section 6.2.2. Core initialization

informs the core policy that a core is ready for use by invoking coreAvailable. After this call

returns, a core policy may allow thread creations to the new core. It also has the option to idle the

core to improve global performance for the application. For example, idling a core can enable its

hypertwin to run faster. Core deinitialization notifies the policy that the core is no longer available by

invoking coreUnavailable. After this call returns, a well-behaved core policy implementation

will no longer offer the core as part of any core lists it returns. However, a thread creator holding

a cached list of cores containing this core can still successfully create a thread on this core after

coreUnavailable returns. The cleaner thread described in Section 5.5 deals with this problem;

it ensures that subsequently created threads get migrated and no further creations are possible.

6.4.2 Thread creation

To create threads, application code invokes the Arachne runtime function

createThreadWithClass(int class,...). The implementation of this function invokes

getCores on the core policy to determine where it should create the new thread. The runtime then

uses the power of two choices [36] to select a core from the the options provided, as described in

Section 5.3.1. That is, it will pick two cores from the list provided by getCores rather than from

all the cores owned by the application.

6.4.3 Thread Migration

The Arachne runtime needs to migrate threads in two scenarios:

• It is cleaning up a core for return to the arbiter.

• It is migrating threads on behalf of a core policy.

In both of these cases, the runtime invokes getCores with the class of each thread being

migrated to request acceptable cores for the thread to migrate to. Just as in creation, migration uses

the power of two choices to select a migration target.
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6.5 Default core policy

Arachne’s current default core policy is a first attempt at building a useful core policy; it does not

represent any beliefs about what thread classes an ideal default core policy should offer. Since core

policies are relatively new to Arachne, there has not been much iteration on the default core policy,

and it is likely that a better default would minimally support foreground and background threads in

addition to the thread classes described below.

The core policy supports two thread classes: exclusive and normal. Each exclusive thread runs

on a separate core reserved for that particular thread; when an exclusive thread is blocked, its core

is idle. Exclusive threads are useful for long-running, high-priority threads, such as dispatch threads

that poll. Normal threads share a pool of cores that is disjoint from the cores used for exclusive

threads; there can be multiple normal threads assigned to a core at the same time. This pair of

thread classes represent the bare minimum for getting reasonable performance from integrating

Arachne with RAMCloud and memcached; both used exclusive threads as dispatch threads and

normal threads for request handling.

6.5.1 Implementing exclusive threads

Offering an exclusive thread class introduces the challenge of managing dedicated cores (within an

application) efficiently, with minimal waste of CPU cycles. A naive implementation might involve

requesting a new core from the arbiter whenever the application requests the creation of an exclusive

thread; this approach causes the thread creation to take tens of microseconds (while the arbiter grants

a core). Another potential implementation might pre-request additional cores from the core arbiter

in anticipation of exclusive threads being created, but this is inefficient if the core policy incorrectly

guesses the number of exclusive cores needed by the application.

In the default core policy’s implementation, cores are allocated and de-allocated from exclusive

use in an on-demand fashion. When cores are granted by the core arbiter, they join the pool of shared

cores used for running normal threads. The default core policy keeps a cache of cores recently

used for exclusive threads, which is initially empty. If the Arachne runtime requests a core for

creating an exclusive thread, the core policy first examines the cache to see if any of the cores in the

cache are empty of threads using the runtime support function findAndExtractUnusedCore,

described in Section 6.5.2. If a core is available, it is placed in a core list by itself and returned

to the runtime. Otherwise, the runtime picks an arbitrary core from the pool of shared cores and

invokes prepareForExclusiveUse (described in Section 6.5.2) on it to remove other threads
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and prevent normal thread creations. Afterwards, it adds the core to the cache of exclusive cores

and returns the core to the runtime. A core in the cache whose exclusive thread has exited may be

converted back into a shared core if core estimation determines that more cores are needed.

Tracking exclusive thread termination

The default core policy’s exclusive thread class introduces the problem of core reclamation: how

does the core policy know when an exclusive thread has exited? It is beneficial for a core policy

to discover the exit of an exclusive thread so that it can recycle the core, either for use by normal

threads or for return to the core arbiter. If there are long periods of time where the core policy does

not discover the exited threads, entire cores can be wasted during these periods.

There are multiple options for handling the core reclamation problem, but most of them boil

down to one of two models. The first is to have the core policy receive notifications when an exclu-

sive thread exits. This can be done by requiring application developers to make an explicit API call

to signal the imminent termination of an exclusive thread, or by modifying the runtime to notify the

core policy on every thread exit. The former is unreliable because it relies on all application devel-

opers to behave correctly and is unenforceable. The latter directly increases exit latency for every

thread. In the second model, the core policy drives the core reclamation by asking the Arachne run-

time whether the core that the exclusive thread was scheduled on is clear of threads. It might do

this periodically or on demand when more cores are needed. This adds no overhead in the common

case, but can result in periods of time when a core is idle and unavailable to run threads.

Since Arachne is designed for low latency, its design errs on the side of wasting resources in the

name of lower latency. Arachne’s default core policy checks for empty cores when the core estimator

determines that more shared cores are needed for running normal threads. The same thread that runs

the load estimator also periodically looks for exclusive threads that have exited and reclaims the

cores they were running on.

6.5.2 Runtime support tailored to the default core policy

As mentioned in Section 6.2.4, the Arachne runtime’s current implementation offers support that

is tailored for the default core policy’s implementation; there is substantial room for improvement

in both the default core policy’s implementation and the support functions (which are too special-

purpose) offered by the runtime. The functions that are currently implemented by the runtime are

listed below.
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• findAndExtractUnusedCore: Invoked by core policies to analyze a list of cores and

extract a core which is currently not running user threads. Core policies cannot perform this

action because the data structures that track the occupancy of cores are internal to the Arachne

runtime. This method handles the exclusive thread termination problem described in Sec-

tion 6.5.1.

• prepareForExclusiveUse: Invoked by core policies to clear all threads from a core and

prevent future creations. This method allows core policies to convert a core that runs threads

of class A to a core that serves threads of class B, in the case where class B threads do not

want to share cores with class A threads or vice versa.

6.5.3 Core estimation in the default core policy

The default core policy uses the built-in core estimator described in Section 6.3.2 to estimate and

adjust the number of shared cores. If the core estimator determines that more cores are needed, the

default core policy will first check the cache of exclusive cores to check if cores are available before

requesting another core from the core arbiter.

6.6 Summary

This chapter introduced the notion of core policies and explained why they are useful for facilitating

thread placement and core estimation on behalf of applications. It described the APIs for implement-

ing new core policies, and pointed out how core policies interact with the Arachne runtime. Finally,

it described Arachne’s default core policy.



Chapter 7

Evaluation

This chapter evaluates Arachne’s implementation using microbenchmarks and real applications. It

seeks to answer the following questions.

• How efficient are the Arachne threading primitives, and how does Arachne compare to other

threading systems?

• Does Arachne’s core-aware approach to thread management produce significant benefits for

low-latency applications?

• How do Arachne’s internal mechanisms, such as its queue-less approach to thread scheduling

and its mechanisms for core estimation and core allocation, contribute to performance?

Table 7.1 describes the configuration of the machines used for benchmarking.

CloudLab m510[48]
CPU Xeon D-1548 (8 x 2.0 GHz cores)
RAM 64 GB DDR4-2133 at 2400 MHz
Disk Toshiba THNSN5256GPU7 (256 GB)
NIC Dual-port Mellanox ConnectX-3 10 Gb Ethernet
Switches HPE Moonshot-45XGc

Table 7.1: Hardware configuration used for benchmarking. All nodes ran Linux 4.4.0. C-States were
enabled and Meltdown mitigations were disabled. Hyperthreads were enabled (2 hyperthreads per core).
Machines were not configured to perform packet steering such as RSS or XPS.

57
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Benchmark Arachne Arachne RQ std::thread Go uThreads
No HT HT No HT HT

Thread Creation 275 ns 320 ns 524 ns 520 ns 13329 ns 444 ns 6132 ns
One-Way Yield 83 ns 149 ns 137 ns 199 ns N/A N/A 79 ns
Null Yield 14 ns 23 ns 13 ns 24 ns N/A N/A 6 ns
Condition Notify 251 ns 272 ns 459 ns 471 ns 4962 ns 483 ns 4976 ns
Signal 233 ns 254 ns N/A N/A N/A N/A N/A
Thread Exit Turnaround 328 ns 449 ns 408 ns 484 ns N/A N/A N/A

Table 7.2: Median cost of scheduling primitives. Creation, notification, and signaling are measured
end-to-end, from initiation in one thread until the target thread wakes up and begins execution on a
different core. In “One-Way Yield”, control passes from the yielding thread to another runnable thread
on the same core. In “Null Yield”, there are no other runnable threads, so control returns immediately
to the yielding thread. “Thread Exit Turnaround” measures the time from the last instruction of one
thread to the first instruction of the next thread to run on a core. N/A indicates that the threading system
does not expose the measured primitive. “Arachne RQ” means that Arachne was modified to use a ready
queue instead of the queueless dispatch mechanism described in Section 5.3. “No HT” means that each
thread ran on a separate core using one hyperthread; the other hyperthread of each core was inactive.
“HT” means the other hyperthread of each core was active, running the Arachne dispatcher.

7.1 Implementation and source code structure

Arachne is implemented in C++ on Linux; source code is available on GitHub [44]. The core arbiter

contains 4500 lines of code, the runtime contains 3400 lines, and the default core policy contains

270 lines. The initial design and implementation of the core arbiter was done in collaboration with

Jacqueline Speiser. The source code is distributed as a git repository with the following submodules.

• Arachne: This repository contains the runtime, the core policy and their unit tests.

• CoreArbiter: This repository contains the core arbiter server and client library and their unit

tests.

• ArachnePerfTests: This repository contains code that runs the microbenchmarks described

later in this chapter.

• PerfUtils: This repository contains an assortment of performance measurement libraries and

tools for processing performance statistics, developed in my research group over the years.

Both the runtime and the core arbiter depend on libraries in this respository.
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7.2 Threading Primitives

Table 7.2 compares the cost of basic thread operations in Arachne with those in C++ std::thread,

Go, and uThreads [8]. std::thread is a wrapper around threads implemented by the Linux ker-

nel; Go implements threads at user level in the language runtime; and uThreads uses kernel threads

to multiplex user threads, like Arachne. uThreads is a highly rated C++ user threading library on

GitHub and claims high performance. For each of the Arachne benchmarks, we report numbers

under two configurations of hyperthreading. In the ”No HT” configuration, the hypertwins of the

core(s) involved in the experiment are deliberately idled to remove hypertwin interference. In the

”HT” experiment, the hypertwins of the cores are running the Arachne dispatcher. The latter con-

figuration is likely more representative of a real deployment of Arachne, since it is better for overall

efficiency, but a system could choose to idle one hypertwin to get improved performance for a par-

ticularly important core. The measurements use microbenchmarks that repeatedly run an operation

to find the median time, so they represent best-case performance.

The core semantics for multi-thread operations vary widely across thread libraries. Consider

thread creation as an example. Arachne creates all threads on a different core from the parent. Go

always creates Goroutines on the parent’s core. uThreads uses a round-robin approach to assign

threads to cores; when it chooses the parent’s core, the median cost drops to 250 ns. In the case of

std::thread, the kernel scheduler decides where the new thread will run.

Arachne’s thread operations are considerably faster than any of the other systems, except that

yields are faster in uThreads. Arachne’s cache-optimized design performs thread creation signifi-

cantly faster than Go, even though Arachne places new threads on a different core from the parent

while Go creates new threads on the parent’s core.

To evaluate Arachne’s queueless approach for finding threads to run, I modified Arachne to use

a wait-free multiple-producer-single-consumer queue [11] on each core to identify runnable threads

instead of scanning over all contexts. I selected this implementation for its speed and simplicity

from several candidates on GitHub. Table 7.2 shows that the queueless approach is 28–40% faster

than one using a ready queue (I counted four additional cache misses for thread creation in the ready

queue variant of Arachne).

Arachne’s thread creation mechanism is designed not just to minimize latency, but also to pro-

vide high throughput. I ran two experiments to measure thread creation throughput. In the first

experiment (Figure 7.1(a)), a single “dispatch” thread creates new threads as quickly as possible
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Figure 7.1: Thread creation throughput as a function of available cores. In (a) a single thread creates
new threads as quickly as possible; each child consumes 1 µs of execution time and then exits. In (b) 3
initial threads are created for each core; each thread creates one child and then exits.
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(this situation might occur, for example, if a single thread is polling a network interface for incom-

ing requests). The new threads spin for one µs, bump a counter to record completion and exit. A

single Arachne thread can spawn more than 5 million new threads per second, which is 2.5x the rate

of Go and at least 10x the rate of std::thread or uThreads. This experiment demonstrates the

benefits of performing load balancing at thread creation time. Go’s work stealing approach creates

significant additional overhead, especially when threads are short-lived, because threads are unable

to run until they are first stolen by another core. At low core counts, Go exhibits higher throughput

than Arachne because it runs threads on the creator’s core in addition to other available cores, while

Arachne uses the creator’s core only for dispatching.

The second experiment measures thread creation throughput using a distributed approach. The

experiment is initialized with 3N threads, where N is the number of cores. Each thread creates one

child thread, records its own completion, and then exits. The results are shown in Figure 7.1(b). In

this experiment both Arachne and Go’s throughput scaled well with the number of available cores.

Neither uThreads nor std::thread had scalable throughput; uThreads had 10x less throughput

than Arachne or Go and std::thread had 100x less throughput. Go’s approach to thread creation

worked well in this experiment; each core created and executed threads locally and there was no

need for work stealing since the load naturally balanced itself. As a result, Go’s throughput was 1.5–

2.5x that of Arachne. Arachne’s performance reflects the costs of thread creation and exit turnaround

from Table 7.2, as well as occasional conflicts between concurrent thread creations.

Figure 7.1 also includes measurements of the ready queue variant of Arachne. Arachne’s queue-

less approach provided higher throughput than the ready queue variant for both experiments.

7.3 Integrating Arachne into memcached

Memcached [31] is a remote in-memory key-value cache that is widely deployed in industry and

frequently optimized in research.

I worked with Qian Li to modify memcached [31] version 1.5.6 to use Arachne (as her rotation

project); the source is available on GitHub [29]. The sections below describe memcached’s original

threading model and the changes introduced by integrating with Arachne.
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(a) (b)

Figure 7.2: Memcached threading model before and after Arachne integration. In (a) connections are
statically assigned to worker threads in a fixed-size pool. In (b) requests are dispatched to pool of cores
which vary with load.

7.3.1 Memcached’s original threading model

Memcached’s original threading model (depicted in Figure 7.2(a)) consists of a single connection

dispatcher thread and several worker threads. The number of worker threads is set by the oper-

ator when the memcached server instance is started. Each of these threads normally blocks in a

libevent loop until a request arrives on one of its connections. When a memcached client sends

its first request to a memcached server, a connection is established for use in future communications.

The state for this conection is created by the connection dispatcher, which wakes up and assigns the

connection to a worker thread. All future requests on the connection will be handled by the assigned

worker thread. Connections are asigned in round-robin order across the worker threads.

Memcached’s threading model delivers high throughput and efficient use of cores if the follow-

ing assumptions hold.

• Request traffic is constant over time.

• Request traffic is roughly evenly distributed across connections.

• No other applications run on the system.

Since the assumptions above rarely hold in practice, memcached suffers from a variety of thread-

model-induced problems. Load on memcached servers running in data centers varies with time of
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day. Because memcached’s threading model requires static setting of the number of worker threads

at initialization, an operator must provision memcached servers with enough resources for peak

load to ensure low latency. This approach wastes cores at lower loads. If one runs background

applications (breaking the last assumption) to utilize the cores under low load, such applications

will contend with memcached for cores at high load, resulting in latency increases when memcached

threads are descheduled. An additional problem with the threading model is that if request traffic is

not uniform across all connections, some worker threads may become overloaded while others are

idle. This enables scenarios where the system as a whole is overloaded while some cores are idle,

reducing overall throughput. Finally, because memcached uses kernel threads, the kernel can place

two worker threads on the same core, causing requests handled by both to experience high latencies.

Memcached could theoretically avoid many of these problems if it used cores instead of kernel

threads, performed load-balancing per-request instead of per-connection, and dynamically adjusted

its core usage instead of statically setting offered parallelism. Under such a model, memcached

would be able to enjoy low latency because its own kernel threads would not interfere with one

another. Its performance would be unaffected by uneven loads across different connections. Finally,

dynamic scaling can allow memcached to use cores commensurate with its load.

7.3.2 Memcached’s threading model after integrating with Arachne

We hypothesized that a thread model based on Arachne could solve the problems above, so we

modified memcached to use Arachne. In the modified version (“memcached-A”) (shown in Fig-

ure 7.2(b)), the pool of worker threads is replaced by a single request dispatcher thread, which waits

for incoming requests on all connections (we retain the original memcached connection dispatcher;

it always assigns connections to this single worker thread). When a request arrives, the request dis-

patcher creates a new Arachne thread, which lives only long enough to handle all available requests

on the connection. If the thread creation fails due to overload, the dispatcher handles the request

in-place. Memcached-A uses Arachne’s default core policy; the dispatch thread is “exclusive” and

workers are “normal” threads. The number of cores used automatically scales with load.

7.4 Arachne’s benefits for memcached

Memcached-A provides two benefits over the original memcached. First, it provides finer-grain

load balancing (at the level of individual requests rather than connections). Request-based load bal-

ancing is agnostic to which connections requests come in, so connection skew no longer results in
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(a) memcached: 16 worker threads, 16 cores
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Figure 7.3: Median and 99th-percentile request latency as a function of achieved throughput for both
memcached and memcached-A, under the Realistic benchmark. Each measurement ran for 30 seconds
after a 5-second warmup. Y-axes use a log scale.
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Experiment Program Keys Values Items PUTs Clients Threads Conns Pipeline IR Dist

Realistic Mutilate [38] ETC ETC 1M .03 20+1 16+8 1280+8 1+1 GPareto
Colocation Memtier [32] 30B 200B 8M 0 1+1 16+8 320+8 10+1 Poisson
Skew Memtier 30B 200B 8M 0 1 16 512 100 Poisson

Table 7.3: Configurations of memcached experiments. Program is the benchmark program used to
generate the workload (the version of Memtier used here is modified [33] from the original). Keys and
Values give sizes of keys and values in the dataset (ETC recreates the Facebook ETC workload [6],
which models actual usage of memcached). Items is the total number of objects in the dataset. PUTs is
the fraction of all requests that were PUTs (the others were GETs). Clients is the total number of clients
(20+1 means 20 clients generated an intensive workload, and 1 additional client measured latency using
a lighter workload). Threads is the number of threads per client. Conns is the total number of connec-
tions. Pipeline is the maximum number of outstanding requests allowed per connection before shedding
workload. IR Dist is the inter-request time distribution. Unless otherwise indicated, memcached was
configured with 16 worker threads and memcached-A scaled automatically between 2 and 15 cores.

degraded performance. Second, memcached-A reduces performance interference, both between ker-

nel threads (there is no multiplexing) and between applications (cores are dedicated to applications).

Consequently, it is possible to run background applications on the same machine as memcached-A

to soak up CPU cycles without increasing its latency.

We performed three experiments with memcached; their configurations are summarized in Ta-

ble 7.3. The first experiment, Realistic, measures latency as a function of load under realistic

conditions; it uses the Mutilate benchmark [28, 38] to recreate the Facebook ETC workload [6].

Figure 7.3(a) shows the results. The maximum throughput of memcached is 20% higher than

memcached-A (1.6 million QPS vs 1.3 million QPS). This is because memcached-A uses two

fewer cores (one core is reserved for unmanaged threads and one for the dispatcher); in addition,

memcached-A incurs overhead to spawn a thread for each request, because thread start and exit con-

sume cycles. However, memcached-A has significantly lower latency than memcached. Thus, if an

application has service-level requirements, memcached-A provides higher useable throughput. For

example, if an application requires a median latency less than 100 µs, memcached-A can support

37.5% higher throughput than memcached (1.1 Mops/sec vs. 800 Kops/sec). For any SLO up to

about 500 µs median latency, memcached-A provides higher throughput than memcached.

At the 99th percentile, memcached-A’s latency ranges from 3–40x lower than memcached.

Memcached never achieves 99th percentile latency lower than 1 ms, whereas memcached-A pro-

vides 99th percentile latency of a few hundred microseconds over most of its operating range. Low
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latency is one of the primary reasons for using memcached, so Arachne provides a significant ad-

vantage. One of reasons for this difference is that Linux migrates memcached threads between cores

frequently: at high load, we found that each thread migrates about 10 times per second; at low load,

threads migrate about every third request. Migration adds overhead and increases the likelihood of

multiplexing.

One of Arachne’s design goals is to adapt automatically to application load and the number

of available cores, so administrators do not need to specify configuration options or reserve cores.

Figure 7.3(b) shows memcached’s behavior when it is given fewer cores than it would like. For

memcached, the 16 worker threads were multiplexed on only 8 cores; memcached-A was limited

to at most 8 cores. Maximum throughput dropped for both systems, as expected. Arachne contin-

ued to operate efficiently: latency was about the same as in Figure 7.3(a). In contrast, memcached

experienced significant increases in both median and tail latency, presumably due to additional mul-

tiplexing; with a median latency limit of 100 µs, memcached could only handle 300 Kops/sec,

whereas memcached-A handled 780 Kops/sec.

The second experiment, Colocation, varied the load dynamically to evaluate Arachne’s core

estimator. It also measured memcached and memcached-A performance when colocated with a

compute-intensive application (the x264 video encoder [34]). The results are in Figure 7.4. Fig-

ure 7.4(a) shows that memcached-A used only 2 cores at low load (dispatch and one worker) and

ramped up to use all available cores as the load increased. Memcached-A maintained near-constant

median and tail latency as the load increased, which indicates that the core estimator chose good

points at which to change its core requests. Memcached’s latency was higher than memcached-A

and it varied more with load; even when running without a background application, 99th-percentile

latency was 10x higher for memcached than for memcached-A. To investigate the reasons for this

difference, we instrumented memcached to find out where its worker threads were being placed by

the kernel. We observed that the Linux scheduler often placed two of memcached’s workers on the

same hyperthread even when more hyperthreads were available, and hypothesize that this is one

reason for the increased latency.

When a background video application was colocated with memcached, memcached’s latency

doubled, both at the median and at the 99th percentile, even though the background application ran

at lower priority. In contrast, memcached-A was almost completely unaffected by the video appli-

cation. This indicates that Arachne’s core-aware approach improves performance isolation between

applications. Figure 7.4(a) shows that memcached-A ramped up its core usage more quickly when
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Figure 7.4: Memcached performance in the Colocation experiment. The request rate increased gradu-
ally from 10 Kops/sec to 1 Mops/sec and then decreased back to 10 Kops/sec. In some experiments the
x264 video encoder [34] ran concurrently, using a raw video file (sintel-1280.y4m) from Xiph.org [30].
When memcached-A ran with x264, the core arbiter gave memcached-A as many cores as it requested;
x264 was not managed by Arachne, so Linux scheduled it on the cores not used by memcached-A. When
memcached ran with x264, the Linux scheduler determined how many cores each application received.
x264 sets a “nice” value of 10 for itself by default; we did not change this behavior in these experi-
ments. (a) shows the number of cores allocated to memcached-A; (b) shows 99th percentile tail latency
for memcached and memcached-A; (c) shows median latency, plus the rate of requests; (d) shows the
throughput of the video decoder (averaged over trailing 4 seconds) when running by itself or colocated
with memcached or memcached-A.



CHAPTER 7. EVALUATION 68

Time (Seconds)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

5

10

15

9
9
%

 L
a
te

n
c
y
 (

m
s
) Memcached-A alone

Memcached-A w/ x264

NoArbiter alone

NoArbiter w/ x264

Time (Seconds)

0 20 40 60 80 100 120 140 160

Time (Seconds)

0

60

120

5
0
%

 L
a
te

n
c
y
 (

u
s
)

Figure 7.5: Median and tail latency in the Colocation experiment with the core arbiter (“Memcached-
A”, same as Figure 7.4) and without the core arbiter (“NoArbiter”).

colocated with the video application. This suggests that there actually was some performance in-

terference from the video application, but that the core estimator detected this and allocated cores

more aggressively to compensate.

Figure 7.4(d) shows the throughput of the video application. At high load, the video applica-

tion’s throughput when colocated with memcached-A was less than half its throughput when colo-

cated with memcached. This is because memcached-A confined the video application to a single un-

managed core. With memcached, Linux allowed the video application to consume more resources;

unfortunately, this degraded the performance of memcached.

Figure 7.5 shows that dedicated cores are fundamental to Arachne’s performance. For this figure,

we ran the Colocation experiment using a variant of memcached-A that did not have dedicated cores:

instead of using the core arbiter, Arachne scaled by blocking and unblocking kernel threads on

semaphores, and the Linux kernel scheduled the unblocked threads. The number of kernel threads

was the same in both cases. As shown in Figure 7.5, this resulted in significantly higher latency

both with and without the background application. Additional measurements revealed that latency

spikes occurred when Linux descheduled a kernel thread but Arachne continued to assign new user
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Figure 7.6: The impact of workload skew on memcached performance with a target load of 1.5
Mops/sec. Initially, the load was evenly distributed over 512 connections (each memcached worker
handled 512/16 = 32 connections); over time, an increasing fraction of total load was directed to one
specific “hot” worker thread by increasing the request rate on the hot worker’s connections and decreas-
ing the request rate on all other connections. The bottom graph shows the overall throughput, as well as
the throughput of the overloaded worker thread in memcached.

threads to that kernel thread; during bursts of high load, numerous user threads could be stranded

on a descheduled kernel thread for many milliseconds. Without the dedicated cores provided by the

core arbiter, memcached-A performed significantly worse than unmodified memcached.

The final experiment for memcached is Skew, shown in Figure 7.6. This experiment evaluates

memcached performance when the load is not balanced uniformly across client connections. Since

memcached statically parititions client connections among worker threads, hotspots can develop,

where some workers are overloaded while others are idle; this can result in poor overall through-

put. In contrast, memcached-A performs load-balancing during each request, so performance is not

impacted by the distribution of load across client connections.

7.4.1 Caveats and Limitations

In addition to the connection dispatcher and worker thread pool, memcached contains a few periodi-

cally running maintenance threads. A full integration with Arachne would convert these threads into
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Arachne threads so that they do not affect offered parallelism, but our integration is incomplete, so

these threads run on the unmanaged cores in our experiments. As far as we could tell, not converting

these threads did not impact our measurements, and work by others [16] indicates that converting

them is feasible.

Comparisons between our evaluation and both past [10, 53] and later [41] efforts to improve

memcached performance might lead one to conclude that Arachne introduces less substantial im-

provements to memcached’s latency and throughput than other systems. For example, Shenango [41]

reports five million requests per second with a 99.9% response time of 93 µs. This perception is

misleading because Arachne’s evaluation measures the impact of core-aware thread management in

isolation, while other works combine networking improvements with carefully hand-tuned thread

placement and load balancing. IX [10] rewrite’s the kernel network stack, and Shenango bypasses

the kernel’s network stack using dpdk [2]. Previous work [10] and our measurements confirm that

memcached spends about 70% of its time doing networking-related tasks, so optimizations that do

not change the networking stack will necessarily show more modest gains compared to optimiza-

tions that replace the networking stack. Note that Arachne’s techniques are orthogonal and com-

plementary to techniques for speeding up the networking stack, such as kernel bypass [2] and new

transports [37]. Arachne could be combined with a higher performance network stack to produce

much higher performance.

7.5 Arachne’s Benefits for RAMCloud

I worked with Peter Kraft to modify RAMCloud [43] to address the efficiency issues in RAMCloud

described in Chapter 2 using Arachne. In the modified version (“RAMCloud-A”), the long-running

pool of worker threads is eliminated, and the dispatch thread creates a new Arachne thread for each

request. Threads that are busy-waiting for nested RPCs to complete yield after each iteration of their

polling loop (blocking rather than yielding is a more correct design, but it would have required more

substantial changes to RAMCloud). This allows other requests to be processed during the waiting

time, so that the core is not wasted. As in memcached-A, the number of cores automatically scales

with load.

Figure 7.7 shows that RAMCloud-A has 2.5x higher write throughput than RAMCloud. On the

YCSB benchmark [14] (Figure 7.8), RAMCloud-A provided 54% higher throughput than RAMCloud

for the write-heavy YCSB-A workload. On the read-only YCSB-C workload, RAMCloud-A’s through-

put was 15% less than RAMCloud, due to the overhead of Arachne’s thread invocation and thread
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Figure 7.9: Cost of signaling a blocked thread as the number of threads on the target core increases.
Latency is measured from immediately before signaling on one core until the target thread resumes
execution on a different core.

exit. These experiments demonstrate that Arachne makes it practical to schedule other work during

blockages as short as a few microseconds.

7.6 Arachne Internal Mechanisms

This section evaluates several of the internal mechanisms that are key to Arachne’s performance. As

mentioned in Section 5.3, Arachne forgoes the use of ready queues as part of its cache-optimized

design; instead, the dispatcher scans the wakeupTime variables for occupied thread contexts until

it finds a runnable thread. Consequently, as a core fills with threads, its dispatcher must iterate over

more and more contexts. To evaluate the cost of scanning these flags, we measured the cost of

signaling a particular blocked thread while varying the number of additional blocked threads on the

target core; Figure 7.9 shows the results. Even in the worst case where all 56 thread contexts are

occupied, the average cost of waking up a thread increased by less than 100 ns, which is equivalent

to about one cache miss time. This means that an alternative implementation that avoids scanning all

the active contexts must do so without introducing any new cache misses; otherwise its performance

will be worse than Arachne. Arachne’s worst-case performance in Figure 7.9 is still better than the

ready queue variant of Arachne in Table 7.2.

Figures 7.10 and 7.11 show the performance of Arachne’s core allocation mechanism. Figure
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7.10 shows the distribution of allocation times, measured from when a thread calls setReques-

tedCores until a kernel thread wakes up on the newly-allocated core. In the first scenario, there

is an idle core available to the core arbiter, and the cost is merely that of moving a kernel thread to

the core and unblocking it. In the second scenario, a core must be reclaimed from a lower priority

application so the cost includes signaling another process and waiting for it to release a core. Fig-

ure 7.10 shows that Arachne can reallocate cores in about 30 µs, even if the core must be reclaimed

from another application. This makes it practical for Arachne to adapt to changes in load at the

granularity of milliseconds.

Figure 7.11 shows the timing of each step of a core request that requires the preemption of

another process’s core. About 80% of the time is spent in socket communication. Recent work on

core allocation [41] has shown that much of this cost could be eliminated (down to 8-10 µs for

reallocating a core) using a shared eventfd in place of a Unix domain socket.

7.7 Summary

This chapter evaluated Arachne along different dimensions against various systems using a variety

of benchmarks. Arachne’s thread primitives are faster than thread primitives implemented by Go,

uThreads and std::thread. Its cache-optimized thread dispatching mechanism is significantly

faster than using a wait-free queue. Adding Arachne to memcached reduced tail latency by more

than 10x and allowed memcached to coexist with background applications with almost no perfor-

mance impact. Adding Arachne to the RAMCloud storage system increased its write throughput by

more than 2.5x.



Chapter 8

Related Work

Improving the efficiency of CPU scheduling has been of interest to academia and industry since

the mid-1970’s [20, 27]. Arachne was not the first and will not be the last system to improve the

software stack for CPU scheduling; it inherits many ideas from the past. This chapter illustrates

where Arachne fits into this rich research ecosystem.

8.1 Core-aware scheduling

The idea of core-awareness in thread management was first introduced by scheduler activations [4],

and has inspired several recent systems [47, 41] targeting improved performance for data center ap-

plications, including Arachne itself. The systems differ in semantics, complexity of implementation,

core management mechanism and in the degree of core awareness visible to applications.

Arachne’s formulation of core-awareness in thread management consists of the following ideas;

each subsection that follows will discuss which of these ideas the other systems implement.

• Core allocation: The operating system or a process operating on its behalf allocates dedicated

cores to applications rather than threads.

• Topology-aware core allocation: The system performing core allocation among applications

allocates cores to applications in a manner that promotes locality within an application and

reduces interference between applications. In practice, this means that they try to offer hyper-

twins to the same application, and avoid splitting applications across CPU sockets.

• Cooperative core preemption: Cores are never taken away from applications without warn-

ing; applications are notified and have time to clean up before losing cores that have been

75
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granted to them.

• Core estimation: Applications determine for themselves how many cores they need and ne-

gotiate with the system for the number of cores they need.

• Core-aware thread placement: Applications have visibility into system topology and can

implement a mechanism for controlling thread placement on cores. In Arachne, this is the

thread placement component of core policies.

8.1.1 Scheduler activations

In proposing scheduler activations [4], Anderson et. al pointed out the limitations of using either

only user threads or only kernel threads discussed in Section 3.1, and argued that naive multiplexing

of user threads over kernel threads does not eliminate their shortcomings. Instead, kernel support

for user threads is needed to “combine the functionality of kernel threads with the performance

and flexibility of user-level threads”. Towards this end, scheduler activations introduces the notion

of a virtual multiprocessor, an abstraction of a dedicated physical machine. Although the framing

differs, a virtual multiprocessor is semantically equivalent to a collection of Arachne’s dedicated

cores. As in Arachne, each application knows exactly how many and which cores are part of its

virtual multiprocessor, and has full control over which threads run on which cores. In contrast to

Arachne’s cooperative preemption, the operating system kernel of scheduler activations can remove

a core from an application at any time and notifies the application afterwards of the loss.

In the virtual multiprocessor model, the kernel offers cores to applications by means of a sched-

uler activation, which is an upcall from the OS kernel into userspace in modern terminology. This

upcall grants control to a user level thread scheduler, which puts it in control of a core. It is also used

to notify the user level thread scheduler of other cores being preempted, threads being blocked in

the kernel, and threads being unblocked in the kernel. Scheduler activations are never resumed after

blocking, so the user threading system must migrate the context for a blocked user thread to a new

activation. Compared to Arachne, the scheduler activations upcall mechanism is more heavyweight,

requires kernel modifications, and permits preemptions to occur at potentially awkward times for

the application, such as inside a critical section. To work around the last issue, scheduler activations

has a cumbersome, special-purpose workaround. When an upcall reports a preemption, the thread

system checks if the preempted user thread was in a critical section. If so, the thread is immediately

migrated to the activation that did the upcall, and continues execution until the critical section is

complete.
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In contrast, Arachne’s formulation of core aware thread management, which is based on kernel

threads rather than upcalls, involves fewer kernel crossings and no kernel modifications. Scheduler

activations paid significant complexity to enable processor preemption during blocking kernel calls.

Arachne’s implementation does not address the blocking kernel call problem, but its design is com-

patible with modern solutions proposed in other recently developed thread packages [56, 8, 17].

Scheduler activations does not implement core estimation, core-aware thread placement, topology-

aware core allocation, and cooperative core preemption; it defers user level thread management to

the FastThreads [5] library.

8.1.2 Akaros

Akaros [47] is a full-fledged research operating system that follows the tradition of scheduler activa-

tions in allocating dedicated cores to applications. It claims the ”Many-Core Process” abstraction as

its primary contribution, and presents experiments showing an order of magnitude less interference

(from kernel activity to application threads) on isolated cores compared to Linux. As with Arachne,

processes in Akaros are spawned as single-core and perform user space scheduler initialization.

Then, they make a request to the Akaros kernel to morph into a multi-core process, which results in

the kernel executing the application’s user space schedulers on dedicated cores. Akaros processes

do not suffer from loss of cores when they make blocking system calls, because Akaros makes all

system calls functionally asynchronous. If a system call needs to block, the kernel will automatically

return control to userspace by invoking the userspace scheduler.

Akaros’ functionality is similar to the Arachne core arbiter, and its applications enjoy a greater

level of core isolation because it can remove in-kernel threads from dedicated cores. It also im-

plements cooperative core preemption. Akaros does not implement topology-aware core allocation,

core estimation, or core-aware thread placement. Moreover, its benefits cannot be practically en-

joyed because it does not appear to have reached a level of maturity that can support meaningful

performance measurements. On the contrary, Arachne’s core arbiter runs on commodity Linux and

exhibits measurable performance gains from core isolation.

The creators of Akaros made an additional contribution to core-aware scheduling: they ported

the Go runtime to Akaros. While the performance of the port has not been measured due to Akaros’

lack of maturity, its existence proves the feasibility of moving Go on top of an allocated cores

abstraction. This suggests that Go could also be ported to other systems that offer allocated cores,

such as Arachne.
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8.1.3 Shenango

Shenango is a new runtime system that combines kernel bypass networking, network packet steer-

ing, and fast core allocation to achieve low latency and high throughput in data center workloads.

Shenango consists of an independent process called the IOKernel and a runtime thread scheduler.

The IOKernel steers network packets to the appropriate core for an application, estimates core

needs every five microseconds, and performs core allocations using CPU affinities. Like Arachne,

Shenango uses kernel threads as proxy for applications to control cores. Like the core arbiter, the

IOKernel uses asymmetric communication when communicating with applications: it uses shared

memory to pass information to applications, while applications use a shared eventfd to commu-

nicate with the IOKernel, which doubles as a means of parking client threads.

Shenango implements some of Arachne’s functionality with lower overhead; Arachne might

benefit from adapting some of its techniques. Shenango’s core estimation is simpler and faster than

Arachne’s default core estimation: if there are new packets or threads queued in the last five mi-

croseconds, then it allocates a new core to the application. If a kernel thread in an application runs

out of work and cannot find work to steal, it yields its core. This differs from Arachne, in which core

estimation results in a core request to the core arbiter, which then requests a preemption. In order to

ramp up quickly, Shenango does not do cooperative core preemption. Shenango’s core allocation is

topology-aware, and runs 3x faster than Arachne’s core allocation (8-9 µs vs 30 µs) because it uses

a shared eventfd instead of Unix domain sockets.

Like Arachne, Shenango’s runtime offers fast, lightweight thread operations on top of allocated

cores. The published results indicate that its threading primitives are faster than Arachne on a single

core, but they do not show benchmarks for cross-core operations. One of the authors indicated that

the Shenango runtime always creates threads on the same core and uses work stealing to do load

balancing after the thread creation. The published benchmark does not include the cost of work-

stealing or any other form of load-balancing, so Shenango’s published thread creation latency is not

directly comparable to Arachne’s load-balanced, cross-core thread creation latency. Shenango also

does load balancing based on software RSS when the IOKernel steers packets to individual cores

owned by an application. Thus, a measurement of the time from when the IOKernel first receives

a packet to when a user thread starts executing would be more directly comparable to Arachne’s

load balanced cross-core thread creation. Alternately, a measurement of the time it takes from a

thread creation to starting execution on a different core after work stealing would also be directly

comparable. Neither of these measurements are available.
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By placing threads on cores based on network packet core affinities and using per-core net-

work queues to estimate core needs, Shenango’s architecture enables network-based applications

to achieve low latency and high throughput. However, this tight coupling limits its applicability to

applications that do not use the network, and limits its flexibility with respect to thread placement,

since it relies on software RSS to place threads when a request arrives. Shenango applications cannot

do core-aware thread placement because the network dictates where the threads are placed.

8.2 User-level threading

Numerous user-level threading packages have been developed over the last several decades. Chap-

ter 7 compared the performance of Arachne with Go [17] and uThreads [8]; this secton will describe

several others as well.

8.2.1 M-to-N two-level schedulers

Recall from Chapter 3 that M-to-N scheduling is characterized by multiplexing multiple user threads

over multiple kernel threads. This section discusses systems that offer this form of scheduling.

Go

Go [17] implements M-to-N scheduling [57] using three abstractions: Processors, OS Threads,

and Goroutines. OS threads are equivalent to Arachne’s kernel threads, and Processors correspond

roughly to Arachne’s cores, but they represent generic cores rather than specific cores. Goroutines

are roughly equivalent to Arachne’s threads; the Go runtime multiplexes them over OS Threads.

Go’s runtime limits each application’s offered parallelism using the Processor abstraction: an OS

Thread is only permitted to execute user space code in a Goroutine after it successfully acquires a

Processor, which is an abstract resource with limited quanity. An operator can set the the number of

Processors by assigning the environment variable GOMAXPROCS. If a Goroutine blocks in the ker-

nel, the OS Thread executing it relinquishes its Processor. The Golang runtime documentation [19]

implies that Go has a mechanism for detecting when OS threads block in system calls, and Austin

Clements from the Go team at Google confirmed that the runtime uses a simple 10 ms timer to de-

cide if a Goroutine has blocked in the syscall. With this scheme, the parallelism of Go applications

must be statically assigned by an operator and its kernel threads are neither isolated from each other

nor isolated from threads of other applications, so true parallelism may be lower than desired. In
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contrast, Arachne uses one OS thread per core and allows applications to dynamically adjust their

true parallelism based on load without static configuration.

The key contributions of Go are lightweight threading, explicit control over offered parallelism,

and handling blocking IO. Arachne’s runtime subsumes the first contribution by offering similar

thread abstractions with lower latency. As explained in Section 2.3.2, control over offered paral-

lelism is insufficient for achieving low latency and high throughput. Arachne’s core arbiter gives

applications a strict upgrade: explicit control over true parallelism. Arachne’s current implementa-

tion does not handle blocking IO: it will temporarily lose an entire core if an Arachne thread blocks

in the kernel. However, the architecture does not preclude adding a mechanism such as Go’s for

handling blocking IO. Arachne could feasibily be modified to use a different kernel thread to exe-

cute user threads on a particular core if the current one blocks, using the same mechanism as Go.

In particular, an API call could be added to the core arbiter for an application to select a different

kernel thread to execute on a core already owned by an application.

uThreads

uThreads [8] implements a hierachical M-to-N scheduling scheme using three abstractions: Clus-

ters, kThreads, and uThreads. The kThread abstraction corresponds one-to-one with an operating

system thread. uThreads are schedulable units equivalent to Arachne’s threads. For clarity of ex-

position, this section will use the term user thread to refer to a uThread object and disambiguate

between the name of the library and the name of the thread. The Cluster abstraction represents a

set of kThreads. Application writers must specify a target Cluster when user threads are created;

user threads can also be migrated explicitly between clusters using an API call. uThreads explores

different types of queues for scheduling threads; it offers four different schedulers all based on

some form of queuing. A compile-time flag is used to experiment with different implementations of

queues with different locking and organizations.

• Global ReadyQueue per Cluster: When a new user thread is created, the scheduler enqueues

it onto the unbounded intrusive ReadyQueue associated with a specific Cluster, protected by

a kernel mutex and CV. Each kThread dequeues a batch of user threads when it runs out of

work, to amortize the cost of global synchronization over multiple user threads.

• Local RunQueue per kThread using mutex and cv: The scheduler assigns new user threads to

kThreads in a round-robin manner.
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• Local RunQueue per kThread using lock-free non-intrusive Multiple-Producer-Single-Consumer

Queue: Same as the above, but uses a lock-free queue (LFQ) instead of mutex and CV.

• Local RunQueue per kThread using lock-free intrusive Multiple-Producer-Single-Consumer

Queue: Same as the above, but uses an intrusive LFQ.

uThread’s Cluster abstraction offers superficially similar functionality to Arachne’s core policies,

but neither subsumes the other. The Cluster abstraction allows different groups of threads to be

separated onto different groups of kernel threads; Arachne’s core policies allow running different

groups of threads on different sets of cores. The creator of uThreads recommends that operators

manually pin kThreads to get Arachne-style core isolation. The Cluster abstraction is more general

in that it allows distinct schedulers with entirely different data structures for representing scheduling

information on each cluster, while Arachne’s queueless representation of scheduling information is

a key part of its design, and core policies cannot change it. Clusters are less general than core

policies because the uThreads system does not allow migration of kThreads between Clusters, and

nor does it allow a kThread to belong to more than one cluster simultaneously; this limits its ability

to dynamically adapt to changes in threading needs.

uThreads suffers from the same limitation as Go with respect to Arachne: offered parallelism

must be hand-specified by an operator, and lack of isolation means that true parallelism is not guar-

anteed. The creator of uThreads recommends pinning kThreads to specific cores to improve locality,

but as discussed in Section 2.4.1, this approach cannot provide true parallelism in the presence of

colocated applications.

uThreads addresses the problem of losing kernel threads when a user thread makes synchronous

network calls into the kernel by offering a user-level blocking network API. This API allows user

threads to block on network events at user level by making nonblocking network calls to the kernel

and blocking the caller if the network is not ready. A single poller kThread polls the network devices

and unblocks user threads when a related network event causes a user thread to be runnable. For

example, suppose a user thread makes a receive network call on a socket and there are no packets

available to receive. If the user thread made this network call by making a blocking system call, it

would block inside the kernel and the uThreads runtime would lose the use of the kernel thread

that was executing the user thread. If the user thread instead made the network call using uThreads’

receive API, this call would get translated into an asychronous kernel call, whose return value

would indicate the absence of packets. Upon seeing this return value, the runtime would block the

user thread and the kernel thread could then run a different user thread. At some time in the future,
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the poller kThread observes that the socket becomes readable, and marks the uThread as runnable.

Arachne does not addess the core loss problem when user threads block in the kernel, but its de-

sign is compatible with uThreads’ technique of wrapping asynchronous kernel interfaces to provide

synchronous user interfaces.

8.2.2 M-to-1 user-level threading systems

Recall from Chapter 3 that M-to-1 scheduling is characterized by multiplexing multiple user threads

over a single kernel thread. Before multi-core hardware became widely available, several systems

implemented M-to-1 user threading systems. Such systems do not enable parallel execution on

multiple cores and make little sense on today’s multi-core hardware, but they are discussed here

because they provide historical context and present techniques for managing user threads that may

generalize to M-to-N threading. Additionally, some implementations are compatible with running

on multiple cores, but do not themselves provide mechanisms for actually managing multiple kernel

threads, deferring them to the application.

Capriccio [56] implemented lightweight user threads with compiler support on a single kernel

thread with a focus on making it feasible to use threading in Internet servers with the one-thread-

per-connection programming style. At the time it was implemented, event-based systems were be-

coming prolific and the community believed that threads were less performant than events. The

authors built Cappricio to offer performance parity with event-based systems and demonstrate that

a good implementation of threads could be equally performant. Towards this end, they introduced

techniques to make it feasible to support large numbers of threads and obtain the resource efficiency

offered by event-based systems.

To address the problems of thread stacks consuming large amounts of address space, Cappricio

introduces the notion of linked stack management, which allows non-contiguous stacks to grow and

shrink at runtime. It uses compiler analysis to determine the maximum space each function’s stack

frame will consume. The same analysis is used to find cycles in the call graph and insert snippets of

code that check whether the stack needs to grow. In today’s 64-bit address machines, virtual address

space is a less scarce resource, so Arachne forwent such complex stack management in favor of

large, contiguous, pre-allocated stacks. Additionally, Arachne is not designed for huge numbers of

threads.

To improve system efficiency, Cappricio introduces the idea of resource-aware scheduling,

which involves generating a blocking graph (at runtime) based on the observed behavior of threads:
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nodes represent points in execution where threads block, and edges represent periods of uninter-

rupted execution. The runtime then annotates the edges of the graph with information about thread

behavior, such as average running time and changes in resource usage (memory, stack space, and

sockets). When determining which thread to schedule, the runtime determines dynamically if each

resource is near its limit and uses the annotated graph to prioritize threads which release such re-

sources. Unlike Cappricio, the Arachne runtime only collects metrics about core usage and does not

attempt to be clever about balancing other resources. It is unclear whether the overhead of Cappri-

cio’s sophisticated runtime analysis is compatible with Arachne’s goals of low latency.

Like Go and uThreads, Cappricio offers a solution to the problem of blocking I/O causing the

loss of a kernel thread. To avoid requiring changes in application code, Cappricio overrides the

system call stub functions for blocking I/O in libc to block user threads by converting them to

use asynchronous I/O mechanisms. Arachne could be modified to employee this technique but the

current implementation does not.

Boost fibers [13] and Facebook’s Folly [15] library implement lightweight user threads over a

single kernel thread that are similar to Cappricio. Both are compatible with using multiple kernel

threads, but the neither contains mechanisms for managing them or automatically distributing user

threads across kernel threads; application writers must implement their own load balancing.

8.3 Automatic parallelization

Automatic parallelization frameworks, compilers, and libraries have the opposite goal of Arachne:

they try to abstract away the physical machine and allow application writers to focus on algorithms

instead of trying to make applications more aware of the physical hardware they are running.

8.3.1 Cilk

Cilk [12] is an extension of the C language designed to make it easy to write parallel programs

without explicitly considering available cores. Cilk attempts to achieve theoretically optimal perfor-

mance for large computations that can be split into tasks that can be run in parallel. For example,

one might implement a recursive Fibonacci number calculator by spawning a new Cilk task for

each recursive call. Cilk defines performance as the completion time for a large computation, rather

than the completion time of individual tasks. In constrast, Arachne is designed around data center

workloads in which the completion time of individual threads matters to end users. Another signifi-

cant difference is that Cilk’s thread model requires that threads are non-blocking and always run to
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completion, while Arachne offers a fully general threading model in which threads can block and

synchronize.

One implication of Cilk’s non-blocking constraint is that parent threads cannot wait for the

completion of their children. This complicates the Cilk threading model by forcing functions to be

split up in all the places where they would logically join a child thread. Arachne’s more general

model allows parents to join their children as well as use any other synchronization patterns built

on monitors or semaphores.

8.3.2 OpenMP

OpenMP [40] is a set of compiler directives (#pragmas in C/C++) directing the compiler to au-

tomatically parallelize particular sections of code. For example, one might prepend a loop with

#pragma omp parallel for to instruct the compiler to automatically generate code to chop

up different ranges of the loop and farm out the execution to different kernel threads. Like Go,

OpenMP allows operators and developers to specify the amount of offered parallelism using an

environment variable. Like Cilk, its target audience appears to be the speeding up of large compu-

tations using parallel computing, rather than handling large numbers of small computations with

low latency. Unlike Arachne, it does not provide true parallelism to applications and also does not

automatically scale offered parallelism.

8.3.3 Thread Building Blocks

Intel’s Thread Building Blocks [54] is a C++ library which offers similar functionality to OpenMP.

The library’s API includes function calls like parallel for. Thread Building Blocks addition-

ally offers lower level synchronization primitives such as various types of mutexes and atomic oper-

ations, which makes it look closer to a standard threading library. However, Intel explicitly markets

the ability to “specify logical parallelism instead of threads”, which places it at the opposite end of

the core-awareness spectrum from Arachne, which grants explicit control over cores.

8.4 Hardware scheduling optimizations

Carbon [26] aims to provide efficient hardware support for fine-grained parallelism. The authors

point out that improved performance from a given granularity of parallelism depends on the cost

of scheduling overheads compared to the length of tasks. For example, if one can schedule tasks in
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a few hundred nanoseconds, it becomes feasible to run tasks that complete in a few microseconds.

Carbon proposes the use of hardware queues that are closer to cores than the memory subsystem

to cache tasks, and provides mechanisms for spilling tasks to memory and pulling tasks back from

memory. The hardware queues are split into a centralized piece of hardware (GTU) which contains

a queue per hardware thread, and a small hardware addition (LTU) to each core to prefetch tasks

from the GTU and hide latency.

Since Carbon was evaluated on a simulator, it is difficult to directly compare performance with

Arachne. However, it would be quite surprising if a specialized hardware implementation of queues

failed to execute faster than Arachne, since it can bypass the memory system and eliminate cache

miss times. However, Carbon requires changes to hardware and is limited to a fork-join model [7]

of parallelism, while Arachne is a general-purpose thread management system without the need for

specialized hardware.

8.5 Cache-optimized design

The notion of optimizing programs by improving cache behavior predated Arachne by over a

decade [24]; CPU speeds have exceeded memory speeds for a substantial time. Cache optimiza-

tion was originally introduced in the context of general-purpose software being written with access

patterns and data structures that were cache-friendly, rather than as a communication bottleneck in

shared-memory thread runtimes. However, it has recently become widespread in systems built on

multiple threads. In addition to Arachne, several other recent systems [58, 41, 23, 49] are designed

around limiting cache line transfers to achieve better performance.

8.6 Events as an alternative scheduling mechanism

Event-based applications such as Redis [46] and nginx [39] represent an alternative to user threads

for achieving high throughput and low latency. Such models require application writers to separate

their functions into non-blocking chunks, and manually save their state in between invocations [3].

In single core systems that do not offer true parallelism, event-based systems can avoid the use of

expensive synchronization. However, applications that wish to take advantage of the parallelism on

a multi-core system must still synchronize even if they use events. Behren et al. [56] argued that

event-based approaches are a form of application-specific optimization and such optimization is

due to the lack of efficient thread runtimes; Arachne offers efficient threading as a more convenient
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alternative to events.



Chapter 9

Conclusion

This dissertation described and evaluated Arachne, a system offering core aware thread manage-

ment to provide a better combination of latency and throughput in data center applications. Fast

networking and the increased use of memory have paved the way for applications to service re-

quests in a few microseconds, but today’s kernel-based threading mechanisms cannot support such

services efficiently. Since kernel thread creation and wakeup take microseconds, threads must not

block in applications requiring low latency. Consequently, they must busy-wait when waiting for

the completion of operations taking microseconds, which reduces useful core utilization.

Arachne changes the interface between applications and the kernel scheduler from one based on

threads to one based on cores. It implements several mechanisms to help applications achieve better

performance based on this change.

• Core Estimation: Arachne introduces the idea that applications should determine how many

cores they need, and implements a simple and effective heuristic to estimate the number of

cores an application needs in order to keep latency low and utilization reasonable.

• Core Policy: Arachne proposes a simple API and a small set of support functions that allow

applications to implement their own core estimation and determine their own thread place-

ment.

• Cache-Optimized Runtime: While Arachne’s APIs can support arbitrary thread runtimes on

top of dedicated cores, its own cache-optimized runtime provides fast threading primitives

that enable one-thread-per-request usage in many applications.

• User Space Core Allocation: By running entirely outside the kernel and requiring no kernel

87
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modifications, Arachne enables applications using it to achieve low latency while coexisting

with traditional applications.

Experiments show that integrating Arachne into applications can reduce tail latency and im-

prove SLO-compliant throughput even in well-optimized applications. Furthermore, Arachne en-

ables interference-free colocation of latency-sensitive applications and throughput-oriented appli-

cations, allowing data center servers to achieve low latency without wasting cycles.

Today’s data centers frequently run applications in containers that are granted CPU cycles rather

than specific cores. Such applications are subject to thread migration and kernel multiplexing, which

makes their latency unpredictable and simple performance measurements difficult to reproduce.

Moreover, important latency-sensitive workloads must be run on dedicated machines. I believe in-

troducing Arachne into the data center in place of today’s containers model can drive latency down

and make performance experiments more reproducible. I am not alone in this view; Paul Turner re-

cently stated that the Google kernel scheduler team’s next major push is core-aware scheduling [55].

9.1 Future directions

The nature of research seems to be that interesting work tends to open up new research directions.

While I hope that Arachne has made the need for efficient, high-performance applications to be core-

aware clear, I believe Arachne represents a new beginning rather than an end to research on core-

aware thread management. This field is still relatively unexplored, and there are several interesting

and unexplored opportunities that fall directly out of Arachne’s design and implementation.

9.1.1 Virtual machines

Arachne’s core-aware approach to scheduling could be profitably applied to virtual machines. To-

day’s hypervisors multiplex virtual cores over physical cores much like an operating system kernel

multiplexes kernel threads over physical cores [52]. Moreover, physical cores are often oversub-

scribed by virtual cores. This means that application threads running inside a virtual machine can

get descheduled in either of the following situations:

• The guest kernel deschedules the thread in favor of a different thread in the same virtual

machine.

• The hypervisor deschedules the virtual core that the guest kernel had scheduled the applica-

toin thread on.
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Virtual machines could use a multi-level core-aware approach, where applications use Arachne to

negotiate with their guest OS over cores, and the guest OSes use a similar approach to negotiate

with the hypervisor. This would provide a more flexible and efficient way of managing cores than

today’s approaches, since the hypervisor would know how many cores each virtual machine needs.

9.1.2 Cluster scheduling

Today’s datacenters are commonly orchestrated by container-oriented cluster schedulers such as

Kubernetes [25], which schedule containers based on statically declared resource requirements.

This approach to cluster scheduling is not responsive to workload changes and does not effectively

isolate applications running on the same machine.

Core-aware scheduling can bring significant benefits to cluster schedulers for datacenter-scale

applications. A cluster scheduler could collect information about core requirements from the core

arbiters on each of the cluster machines and use this information to dynamically place applica-

tions and move services among machines. This would allow decisions to be made based on actual

core needs rather than statically declared maximum requirements. Arachne’s performance isolation

would allow cluster schedulers to run background applications more aggressively without fear of

impacting the response time of foreground applications.

9.1.3 Enhancements to Linux cpusets

Section 4.6 mentioned that the Linux cpusets mechanism can remove threads that belong to other

user-level applications from managed cores, but they are unable to remove threads that belong to

the kernel itself. Today, the only way to remove kernel-owned threads from a core is to take the

core offline and then bring it back online again. If the Linux kernel is updated to enable cpusets

to remove kernel-owned threads, it is likely that Arachne applications would be able to enjoy even

lower tail latency, as well as the same latency at higher latency percentiles.

9.1.4 Arachne internals enhancements

There are a few aspects of Arachne that this dissertation has not fully explored. This dissertation

describes only early efforts at implementing core policies, and our current core policy does not

address issues related to NUMA machines, such as how to allocate cores in an application that spans

multiple sockets. I hope that a variety of reusable core policies will be created, so that application

developers can achieve high threading performance without having to write a custom policy for each
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application. In addition, setting the parameters for core estimation is still more art than science. The

current values were chosen based on a few experiments with benchmark applications. They provide

a good trade-off between latency and utilization for our benchmarks, but it is unknown whether

these will be the best values for all applications.

9.2 Lessons Learned

I have always believed and still believe there are two prototypical types of PhD students, and differ-

ent students embody different linear combinations of them. The first type is output-oriented: their

goal is to produce as much research as possible during their PhD using the resources provided by

their advisor and university, and they will learn what they must to achieve this goal. The second

type is input-oriented: their goal is to soak up as much knowledge as possible from their advisor and

their PhD experience, and producing interesting research is a side-effect of that goal. I am the latter

type, and so I believe it is important to discuss my experience in addition to my research.

The last seven years have been filled with wonder, joy, learning, illumination, euphoria, and

the indulgement of intellectual curiosity. They have also been filled with missteps, wasted work,

missed opportunities, and suboptimal choices. In this penultimate section of my dissertation, I share

the insights and knowledge that would likely have made this journey even more glorious, joyful,

and productive. These fall into two categories: wisdom directly gleaned from John, and insights

I gathered from my own experience. Since I am not unique, perhaps some of my learnings will

generalize enough to be useful to others who seek to follow this path.

9.2.1 Never trust a number produced by a computer

In early years of my PhD, I would bring performance measurements to John and he would scrutinize

them for less than five minutes before finding myriad internal inconsistencies and anomolies that

I could not explain. John would repeatedly tell me ”All young PhD students are too trusting“, and

request and that I learn to be more suspicous of numbers and verify all numbers with deeper and

differently designed experiments.

Over time, I learned to trust numbers less and less, but I do not know when I will achieve John’s

level of distrust. If the system under test is not buggy, then the measurement code is buggy, or exper-

iments are measuring the wrong numbers, or the compiler is reordering instructions, or statistics are

being computed incorrectly. Because so many things can go wrong in an experiment, the probability

of correct numbers appearing from an experiment in the first N attempts is vanishingly small. While
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N may grow smaller as a researcher becomes more paranoid, it never seems to shrink below 3.

9.2.2 Always measure one level deeper

My very first research project with John was to answer the following question of the RAMCloud

storage system [42]: “Where is the time going?” At the time, I lacked the knowledge to understand

how to interpret the question, much less answer the question, but over the years it became a pow-

erful way of thinking for me. Learning this lesson happened when I brought reasonable-looking

performance measurements (after ironing out all the obvious bugs) to John and he made one of the

following suggestions.

• Subdivide the time intervals until we could identify a single line of code or assembly that was

taking a long time.

• Measure the same value using a different mechanism and see if the results lined up.

• Measure a different value that would be correlated with the given value in a correct imple-

mentation and see if it matches.

For example, at one point I counted cache misses with rdpmc and correlated the cost of the critical

path with the number of cache misses on it.

This lesson superficially looks like the other side of the lesson on distrusting numbers, but is in

reality much broader. Deeper measurements do not merely help us find errors and inconsistencies

in our experiments; they can identify opportunities for further optimization and give us confidence

in our designs.

9.2.3 Have a fast pipeline from data to graph-in-paper

I attribute this excellent advice to my labmate Collin Lee, who gleaned it from his early paper-

writing experience. A naive and organic but inefficient way of generating graphs for papers might

look something like the following:

1. Run experiment and produce data that is convenient for humans to consume.

2. Use a combination of miscellaneous scripts or manual editing to massage the data into a form

that is easy to plot.

3. Write a script to turn that data into a plot.
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4. Show the plot to advisor and discuss.

5. While either advisor or student finds problems, go back to Step 1. Otherwise, go to the next

step.

6. Add the plot into the git repository for the paper.

This approach keeps the paper repository clean and allows papers written in LaTeX to build quickly.

A problem arises when one discovers a need to rerun the experiment on newer hardware, or to verify

reproducibility. Now there is a manual process of re-massaging the data and rerunning the plotting

script, and re-copying the plot into the paper repository. Such a process is error-prone and can induce

tremendous stress when submitting a paper under deadline pressure.

The right way to generate graphs and organize papers is to write experiments that generate data

in an easy-to-parse format, and commit the data directly to the paper repository. The Makefile for the

paper should perform any necessary data transformations and generate the plot from the data. Then,

it will be possible to run an experiment, copy data, and immediately produce an updated paper.

9.2.4 Write one piece of code per graph

When I write software, I try to make it general purpose rather than hardcoding parameters; a good

application can accept a variety of input formats and produce a variety of output formats based on

options passed on the command line or in environmetal variables.

Naturally, I tried to apply this principle when writing the scripts used for generating graphs in

papers. John has high standards for graphs, so I figured that having flexible plotting software would

help me converge onto a reasonable looking graph faster, as well allow code reuse across graphs.

For example, I would have a script called line plot.py which accepted command line ar-

guments for all of the following parameters and more.

• Input format.

• Column names for use in legend.

• Colors for each line.

• Location of legend.

• Whether to use scale or linear scale on the X axis

• Whether to use scale or linear scale on the Y axis
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• Whether to use gridlines or not

• If multiple data files are given, whether to plot them on the same graph or separate graphs.

After using this for a while, I realized that I had effectively moved the contents of my program, sans

data I/O, from inside the plotting script to the Makefile containing the command line arguments

that invoked the script. It turns out that programs that live almost entirely inside command line

arguments are difficult to read, maintain, and version control.

Eventually, I switched to a one-script-per-graph model. Under this model, the parameters for a

given graph are hardcoded directly into the script that produces it; only the path to the data is passed

in on the command line. This decision resulted in simpler, more readable and maintainable plotting

code, as well as readable command line invocations. Furthermore, it eliminated situations where

changes to a plotting script to fix the appearance of one graph breaks other graphs generated from

the same script.

9.2.5 Always output both vector and raster graphics

There are two broad ways of representing visual information in a computer. Raster graphics rep-

resent visual informmation as a two-dimensional array of pixels. Vector graphics represent visual

information as a list of instructions for drawing lines and shapes. Most recently published academic

papers use vector graphics for their architecture diagrams and graphs, because they can be rendered

by software at arbitrarily high resolutions. Thus, it seemed natural for me to write plotting scripts

that generating only vector graphics.

Unfortunately, there exists widely used collaborative presentation software [18] that does not

support the importing of vector graphics. When creating presentations, I wasted nontrivial time

finding the script that generated a particular graph in a paper and adding a line to output raster

graphics. Consequently, I think all plotting scripts should just generate both types of images by

default.

9.2.6 Making ideas extremely specific and concrete

When discussing system designs, algorithms, or theoretical performance, it often helps to make the

discussions extremely specific and concrete. When iterating on the design of the Arachne runtime,

John and I walked through a thread creation step by step and counted cache miss times at every step.

We also examined very specific interleavings of threads that might cause problems for Arachne.

Similarly, when Qian Li first described memcached’s threading model to John, he asked her to
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define exactly what each term meant, precisely what each thread was doing, and enumerate the steps

for handling a request. I find that this process is useful for making my own thinking more precise,

verifying my own understanding, and finding issues in designs before they are implemented.

9.2.7 Strong opinions, loosely held

One of the earliest and most important lessons I learned from working with John is that attachment

to opinions in the face of conflicting evidence is a massive handicap to doing great work.

In my first year of working with John, we wanted to measure how much time various pieces of a

RAMCloud read operation were taking and disagreed about the best way to do the measurements. I

wanted to create an interface where intervals were first-class, named entities called Counters, which

had a startInterval / stopInterval interface, because it was more closely aligned with

my intuition of measuring intervals. John proposed a timestamp-based measurement scheme, in

which timestamps were first-order entities and intervals were calculated during postprocessing by

taking deltas. John pointed out the unnecessary verbosity in my design as well as its propensity for

losing time, and I believed his arguments, but I held onto my prior belief that my design matched

more closely with intuition and implemented it anyways.

My implementation became a RAMCloud module called PerfCounters which was almost

never used again. John eventually implemented his design himself one summer. His implementation

became a module called TimeTrace, which I eventually exported into PerfUtils and now use

for almost all latency measurements.

I spent about 6 months implementing and polishing PerfCounters. Strong attachment to

beliefs in the face of conflicting evidence is harmful.

9.2.8 Discipline in taking well-organized notes

Keeping well-organized notes that are easy to browse and search has been a significant challenge

throughout my PhD career. I was surrounded by knowledge and there were many occasions to record

information in written form:

• Research talks

• Advisor meetings

• Experiment setups

• Experiment data
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• Design discussions

• Research ideas

• Feedback from talks I gave

• Course notes

I tried a variety of organizational strategies, such as having a file for each day, having a file per

experiment, and one giant file for everything related to a project. Each approach had problems. The

daily file made it difficult to view everything related to a given project at once, because it’s difficult

to extract unstructured notes from multiple files. A file per experiment made it hard to find the file

for a given experiment without already knowing the file name and path; it also makes it difficult

to logically link together the notes for related experiments. One giant (mostly unstructured) file for

each project resolves the problem of finding related experiments, but makes it difficult to find the

position in a file referring to a particular experiment.

Ultimately, the challenge of organizing notes in a useful way caused me to be undisciplined in

how I managed them for most of my PhD career. Sometimes I would stick with one organization

scheme for several months, but I never persisted because it was a lot of effort to remember the

correct place in the correct file to add notes to. In such cases, I would relapse to doing the simplest

short-term strategy: when I was having a meeting or receiving feedback, I would open a new file

with an ad hoc name at an ad hoc path and write notes in it. A given note would thus only have

a useful lifetime while I still remembered its full path; in practice this meant the notes would live

only as long as I was actively working on the experiment or talk it was related to. After I forgot

the path to a note, it would effectively be unreachable without a recursive grep through the home

directories of all the machines I worked on. It did not help that I sometimes took notes on a server

and sometimes on my laptop.

My lack of discipline in organizing notes caused all manner of frustration when I tried to find

notes on a file from more than a year ago. Often it meant that experiments were difficult to reproduce

because I had forgotten the exact configuration and commands used. Other times, it meant that

interesting design ideas were lost and had to be re-discovered through discussion years later. John

and I iterated on the design of each componeent of Arachne several times. At each iteration we

enjoyed several interesting design discussions, producing useful insights that might generalize to

other systems. An effective note taking discipline could have preserved much of the history of

the design of Arachne, and this dissertation would have been more complete for it. Instead, those



CHAPTER 9. CONCLUSION 96

insights live on only in the my intuition about systems, and this dissertation merely describes the

present design of Arachne.

After six years of frustration with different organization schemes, I thought deeply about the

problem and realized that the underlying organization problem was discoverability. That is, useful

notes are structured in a way that made it easy to find notes related to a particular topic. An ab-

straction that satisfies this structure is a collection of linked text files. Then, one could create an

index file for each project, which links to individual files for each experiment. Moreover, discus-

sions concerning a given project or experiment can link to the file that describes the experiment. At

the time, the closest approximation I could find to the desired linking functionality was Vim’s gf

command, which loads the filename under the cursor. However, its default behavior is somewhat

limited and does not create new files on demand. It also did not solve the problem of individual files

being unstructured.

One day, my labmate Behnam Montazeri observed me writing an outline for this dissertation

and he recommended Vimwiki to me. Vimwiki is a Vim plugin that implements a wiki abstraction

inside Vim. Unlike traditional web-based wikis which are linked HTML files, Vimwiki implements

a collection of linked text files, which was precisely the abstraction I sought. In addition, it imple-

ments semantic headers, lists, tables, and syntax highlighting for both text and code, allowing text

files to be well-structured and easy to navigate. With Vimwiki, it became easy to find the correct

place to write notes, because the linked structure makes it easy to find files and the semantic struc-

ture makes it easy to find the right place in a file. The friction of placing notes in the right place

decreased, and my notes became much more permanently useful.

I do not believe Vimwiki is the right tool for everyone. Some people prefer graphical tools such

as Microsoft OneNote, Google Docs and Omnifocus; such tools can serve the same purpose as

Vimwiki if they help reduce the friction of keeping organized notes. Vimwiki is the right tool for me

because I am already a Vim user and fixed-width fonts and syntax highlighting for any programming

language supported by Vim are important to me.

In retrospect, I could have saved myself significant pain and frustration by being disciplined

enough to keep all my notes for a project in one directory on one server, even without the proper

tool for organizing them perfectly. A little bit more thought earlier in my PhD career could have

resulted in a rudimentary organization scheme that would be better than having no fixed scheme.

For example, as a bare minimum, I could have had a directory containing a named and timestamped

file for every meeting I ever had.

The discipline to keep everything in one place, even if the organization is not perfect, can save
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time and reduce frustration in a PhD.

9.2.9 Separating planning from execution

My productivity varied substantially over the course of my PhD, and hindsight indicates that high

productivity periods were characterized by having extremely clear and concrete goals each day. In

the early years, those periods tended to be deadline-driven; an upcoming talk, poster presentation,

or demo would offer a clear top-level goal, which I could then break down into smaller goals and

execute on.

Eventually, I realized that the reason for increased productivity during deadline periods was

not only the pressure of the deadline but also the behavior they induced: having a clear separation

between a planning phase and an execution phase. That is, there are benefits to allocating a dedicated

period of time to decide on the highest priority tasks to work on without actually working on them,

and then allocating a different dedicated period of time to actually work on these tasks, without

thinking about planning. Consequently, I was able to capture much of same productivity during

non-deadline periods/latency by the simple act of deciding the tasks I would pursue each day on the

night before.

9.2.10 “What” must always be tied to “why” in writing and speaking

One of the most important lessons I learned during my PhD is how challenging it is to clearly

communicate technical ideas. A significant challenge in technical communication is learning to

understand the difference between the why and the what and effectively communicating each.

In writing and speaking about systems or any other topic, the what is the presentation of facts:

design decisions made, system architecture, implementation details, experiment designs, benchmark

numbers, descriptions of related works and the like. The why is the presentation of concepts and

intuition; it consists of the train of thought that led to the facts and explains how the what took on

its current form. The why provides a mental framework for making sense of the facts, by sharing

the mental context of the speaker or writer with the audience.

• Why was a particular design decision made?

• What problem is the system trying to solve?

• Why do each of the components of a system exist, and what role do they play in solving the

overall problems?
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• Why did we run experiment X? What did we hope to learn from it?

• Why is it reasonable to design experiment X thus?

• Why was the related work selected, and how does it relate to the current topic being discussed?

As a more concrete example, let us consider the following description of Arachne’s core arbiter,

taken from an early draft of the OSDI paper [45]:

Requests from a

corearbiter

client to the

corearbiter

server are handled with Unix domain sockets. When the server needs to communciate

with a client, it does so via a shared memory page specific to a given process. This

shared memory page also provides basic statistics such as how many cores are currently

unassigned and how many threads the process currently has waiting for cores. Client

objects lazily establish a separate connection with the server per thread.

This is a wonderfully clear description of the communication mechanism between a core arbiter

and a client application, but it does not address the questions of why we chose these particular

communication mechanisms or why we did not use the same mechanism for the two directions of

communication. Thus, the audience has no context for evaluating whether this design was good or

bad or whether any thought went into the choice. In the revised version, we explicitly state the the

reasons for the design:

The communication mechanism between the core arbiter and applications is intention-

ally asymmetric: requests from applications to the core arbiter use sockets, while re-

quests from the core arbiter to applications use shared memory. The sockets are conve-

nient because they allow the core arbiter to sleep while waiting for requests; they also

allow application kernel threads to sleep while waiting for cores to be assigned. Socket

communication is relatively expensive (several microseconds in each direction), but it

only occurs when application core requirements change, which we expect to be infre-

quent. The shared memory page is convenient because it allows the Arachne runtime
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to test efficiently for incoming requests from the core arbiter; these tests are made fre-

quently (every pass through the user thread dispatcher), so it is important that they are

fast and do not involve kernel calls.

While a reader may disagree with our reasoning or discover a better way to solve the problems we

aimed to solve, they are at least aware of how we arrived at the current design.

My earliest memories of John’s feedback on both dry runs of presentations and drafts of papers

are dominated by a single phrase: “It’s all what and no why”. Unfortunately, it took nearly six years

for the reasoning behind this feedback to finally sink in. In the remainder of this section, I will share

how I finally conceptualized the why behind this statement.

When I was working on my Bachelor’s degree, I read a book called Made To Stick [21] to try

to learn how to communicate better; this book introduced an idea called the curse of knowledge: A

cognitive bias that makes it hard for people to explain ideas without unconsciously (and inadver-

tently) assuming some level of background knowledge on the part of the audience. This idea made

sense to me intuitively, and it was only after connecting John’s feedback to this idea that I finally

understood it.

When we write and speak about technical ideas, the ”why” associated with the ideas is embed-

ded in the process of getting to the idea. This process is something that we experienced for ourselves,

and so we know it quite deeply. Thus, it is particularly hard to realize that the ”why” is not obvious

to the audience of our talks and papers. And so, we omit the ”why” without even considering that

others might not know it, succumbing to the curse of knowledge.

The result is that our audience is left with some interesting ideas, but no context for how they

came to be, and the intuition that gave rise to them. It is akin to reading code without documentation.

One can tell what the code does, but not why the code does what it does. The ”why” is really about

the context; it captures the state of the creator’s mind when they created an idea, and enables an

audience to replicate that frame of mind when understanding an idea.

Thus, in order to communicate effectively, one must be vigilant about whether one has provided

enough context for the ideas that one is communicating, and make an effort to always present the

why along with what. Additionally, because it is impossible to fully escape the curse of knowledge,

it is important to always collect feedback from others.
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9.2.11 Low-level performance measurement is hard

I spent a great deal of time during my PhD measuring latency at the granularity of tens of nanosec-

onds, seeking explanations for the limitations of systems performance. On modern systems, mea-

suring performance is extremely tricky. In addition to the issues mentioned in Section 9.2.1, modern

hardware (especially the CPU cache subsystem) abstracts away functionality that has performance

implications. For example, while it is possible to measure last level cache misses on each Intel core,

there is little hardware support for precisely measuring the number of cache invalidations and the

cross-core time cost of compare-and-swap in the context of other cache activity. Consequently, we

can often only measure cycles spent on an instruction, and use published models of cache coherence

protocols to reason about what might be happening in the hardware.

Since such reasoning is based on models and not measurement, it can be error-prone. Before

my OSDI talk in October 2018, John and I believed that Arachne thread creation cost only 4 cache

miss times, because we assumed that the cache coherence operation triggered by the compare-and-

swap operation on the MaskAndCount variable could overlap with the cache miss to read the

cache line containing the function and arguments. This was slightly inconsistent with our block-

and-signal experimental results; we counted three cache miss times for signaling a blocked thread,

but thread creation took more than four thirds as much time. In early 2019, I read a paper [51]

describing the x86 memory model in great detail that was corroborated by the Intel manual. This

memory model stated that the compare-and-swap instruction is fully serialized with other cache

operations, so Arachne’s thread creations actually took five cache misses rather than four. This is

more consistent with the ratio of thread creation time to thread signal time, so we currently believe

this is correct. However, the fact that we have no visiblity into the actual hardware behavior speaks

to how difficult low-level performance measurement is, and how carefully it must be reasoned about.

9.3 Final Comments

9.3.1 Abstraction and performance opacity

To enable applications to make better scheduling decisions and achieve better performance, Arachne

exposes information about physical cores to applications. This information was previously hidden

behind the abstraction of kernel threads. I believe that the kernel threads abstraction is useful be-

ceause it reduces the cognitive load on the application developer, but revealing the physical details

hidden by the abstraction is necessary to achieve better performance.
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More generally, abstractions are useful precisely because they hide information and complexity,

but in doing so, they make it harder to reason about and improve performance. I speculate that there

is a trade-off between the amount of information an abstraction hides and the ease of investigating

performance. I believe there is value in considering this tradeoff when designing abstractions for

high-performance systems.
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