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Abstract

Today’s datacenter applications demand large-scale and low-latency systems. Unfortunately, consis-

tency mechanisms were not designed in consideration of large-scale and low-latency settings. Most

existing consistency mechanisms incur huge penalties on scalability or latency, so many datacen-

ter systems have forgone consistency. As a result, application developers or end-users suffer from

unpredictable system behaviors.

This dissertation presents two new consistency mechanisms for large-scale and low-latency sys-

tems: Reusable Infracture for Linearizability (RIFL) and Consistent Unordered Replication Protocol

(CURP). RIFL provides a general-purpose mechanism for converting at-least-once RPC semantics

to exactly-once semantics, thereby making it easy to turn non-linearizable operations into lineariz-

able ones. RIFL is designed for large-scale systems and is lightweight enough to be used in low-

latency environments. On the RAMCloud storage system, RIFL adds only 0.5 to the 13.5 µs base

latency for durable writes, and it can support 1 million clients with minimal performance degrada-

tion (⇠5% latency increase).

We also used RIFL to construct a new multi-server transaction mechanism (RIFL-TX) in RAMCloud;

RIFL’s facilities significantly simplified the transaction implementation. The transaction mechanism

can commit simple distributed transactions in about 20 µs and it outperforms the H-Store main-

memory database system for the TPC-C benchmark.

Replication is a must-have for large-scale systems for masking individual server failures and

maintaining high availability. However, consistent replication incurs significant overhead, such as

doubling the latency of operations. As a result, many large-scale systems have settled for weakly

consistent replication. To address this dilemma, I present Consistent Unordered Replication Pro-

tocol (CURP), which removes most of the overhead of consistent replication. CURP avoids per-

formance penalties by allowing clients to directly replicate their requests, as long as the requests

are commutative. This strategy allows most operations to complete in 1 RTT (the same as an un-

replicated system). On RAMCloud, CURP improved write latency by ⇠2x (14 µs ! 7.1 µs) and

iv



write throughput by 4x. Compared to unreplicated RAMCloud, CURP’s latency overhead for 3-way

replication is just 1 µs (6.1 µs vs. 7.1 µs).
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Chapter 1

Introduction

Today’s datacenter applications can be characterized as large scale and low latency. Regarding scale,

many web applications service hundreds of millions or sometimes billions of users (Facebook has

2.1 billion daily users as of 2019 [82]). To store and process the data of their users, web applications

operate on a large number of machines connected by a network, called large-scale systems. Back

in 2013, the number of servers used by Microsoft and Google exceeded a million [10]. The need

for large-scale systems is growing even more today since the increasing use of machine learning

requires systems that can store a large amount of data. Also, the growing number of IoT devices

further extends the need for large-scale systems to store and process their sensor data.

Regarding latency, both industry and academia have been striving to lower the latency of op-

erations used by datacenter applications. Faster operations can enable complex applications that

process more data within a given time budget. Facebook adopted the Memcached [52] in-memory

cache to enable real-time rendering of timeline webpages; the adoption of Memcached reduced the

latency of remote object reads to around 300 µs [56]. In academia, recent research works drove

down the latency even more: RAMCloud [62] and FaRM [25] storage systems enabled sub-10 µs

read latency without contention; Homa [53], Shenango [60], and Arachne [70] enabled low latency

even in highly loaded datacenter settings.

Unfortunately, most systems featuring large scale and low latency forgo strong consistency;

in other words, those systems sometimes exhibit unpredictable abnormal behaviors, making appli-

cation development difficult (details in §1.1). The existing mechanisms for consistency were not

designed in consideration of large scale and low latency, so applying the consistency mechanisms

incurs a huge penalty on the scalability or latency of systems.

This thesis addresses the lack of consistency mechanisms for large scale and low latency. By
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2 CHAPTER 1. INTRODUCTION

Alice posts “Free table! Giving out to the first commenter.”
Bob comments “I am interested!,” and confirms his comment shows up first.
Charlie also comments “I am interested!,” and confirms his comment shows up first.
Alice sees Bob’s comment before Charlie’s, and she gives the table to Bob.
Charlie gets confused and upset for the table was not given to him.

Figure 1.1: An example of anomalies visible to Facebook users [51]

● Remote Procedure Call (RPC): request-response style communication
§ Ex) int Increment(char* key) è returns new value

● Linearizability: strongest form of consistency for concurrent systems

Slide 7

Remote Procedure Call & Linearizability

time

Client sends
request for operation
(e.g. increment “x”)

Client receives
response
(e.g. new value of “x” is 5)

Behaves as if executing exactly once and instantaneously

Figure 1.2: Linearizability consistency guarantee

presenting consistency mechanisms that do not significantly harm scalability or latency, this disser-

tation demontrates that it is possible to achieve consistency for large-scale and low-latency systems.

1.1 Consistency Challenge

The level of consistency indicates how predictably a system behaves. Systems with weak consis-

tency guarantees exhibit behaviors that are not intuitive to users; so, it is notoriously difficult to

write programs correctly on them. In many cases, applications propagate anomalies to end users,

who become confused and frustrated [66].

Here are examples of consistency anomalies. The first example is duplicate execution. It is

not unusual to see a single user request get executed multiple times. If someone sends a message

on an Internet messaging service such as Google Hangout or iMessage, the same message often

appears multiple times, especially with unstable Internet connections. Such systems cannot be used

for critical operations like bank transfers. A second example is delayed propagation of updates.

After a Facebook user posts a comment and confirms it is published, his/her friend may not see the

new comment for a while. This anomaly can result in a more complex problem in Figure 1.1. In

practice, Facebook reported that 0.0004% of their read operations returned stale values [51].

The ideal consistency guarantee is linearizability [34], and this dissertation work targets to pro-

vide linearizability. A client operation is considered linearizable if it appears to happen exactly



1.1. CONSISTENCY CHALLENGE 3

once, and instantaneously, at some time point between when the client sends a request and receives

a response (See Figure 1.2). In other words, linearizability guarantees exactly-once atomic exe-

cution and synchronous execution (execution must complete before returning the response). If all

operations supported by a system are linearizable, the system is considered linearizable. With lin-

earizability, it is very intuitive to write application programs. A linearizable system doesn’t allow

any of the anomalies in the previous paragraph.

Unfortunately, linearizability is difficult to achieve for distributed systems. Since data is spread

over multiple servers, maintaining consistency requires complex coordination among multiple servers.

For example, let’s consider an operation that updates multiple objects in different servers. Such an

operation cannot be simply executed at each server independently. If one does that, linearizability

can be violated. To illustrate the problem, let’s consider a bank transfer between acounts whose

balance data are stored in different servers. If each server individually deducts or adds the trans-

fer amount, some other clients may see the increased balace without seeing the reduction from the

source, or vice versa. The transfer operation appears not to happen exactly-once at a time point, so

it is not linearizable. For the illusion of atomic exactly-once execution, a mechanism like two-phase

locking must be used; first, all involved objects must be locked so that no other operations may

read or modify the objects, and then each server can execute the updates. In general, systems need

non-trival mechanisms to keep consistency.

Furthermore, the common mechanisms for strong consistency incur a huge penalty on scala-

bility and latency, which prevents large-scale low-latency systems from employing the consistency

mechanisms. As seen in the multi-object operation example, atomicity across many servers requires

an extra prepare step before taking action, which increases latency at least by one round-trip time.

Regarding scalability, a single coordinator server usually drives such a consistency protocol (e.g., a

transaction coordinator server, a primary server in primary-backup replication); such a single coor-

dinator server becomes a bottleneck for scalability and limits throughput.

The complexity and performance penalty made many large-scale systems forgo consistency.

For example, updates can be delayed (eventual consistency) in [16, 72, 67, 23, 43], and multi-object

atomic updates (ACID transactions) are not supported in [23, 8, 18, 16].

However, consistency mechanisms’ impacts on scalability or latency can be minimized (almost

avoided) with careful protocol designs and implementations. In this disseration, I present three con-

sistency mechanisms for linearizability with minimal performance penalties (details in §1.3) so that

large-scale low-latency systems can achieve strong consistency.
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1.2 Latency Challenge

Today’s datacenter applications run not only on slow networking (>10 ms) but also on extremely

fast networking (⇠10 µs). Ideal consistency mechanisms should avoid penalty on both slow and fast

networking.

Global-scale datacenter applications use high latency networking to access data in remote data-

centers (e.g., geo-replication), whose latency is usually tens or hundreds of milliseconds. When we

make operations across datacenters consistent, it is important to avoid additional inter-datacenter

communication (each additional communication step would add tens or hundreds of milliseconds

to the operation latency).

Those applications also have many operations within fast intra-datacenter networking. New dat-

acenter networking hardware such as Infiniband and 10 Gigabit Ethernet (currently being upgraded

to 100 Gigabit) has enabled extremely low latency communication; a small message can travel from

a host’s network interface card (NIC) to another host’s NIC within 2µs [1, 65].

Unfortunately, the benefits of microsecond-scale networking devices can be nullified quickly

by slow software [11]. For example, traditional datacenter networking stacks (e.g., thread dis-

patch, interrupt, RPC, TCP/IP) may add 75µs overhead to the 2µs NIC-to-NIC round-trip time;

so, reducing the software overheads for datacenter networking stacks has been an active area of

reasearch [62, 25, 12, 69, 39, 48].

Consistency mechanisms tend to have high software overhead as well since they usually have to

send/receive extra messages and track more states. This is a problem since consistency mechanisms

must run on majority of client operations (e.g., updates). Thus, with today’s low-latency network-

ing, minimizing the software overhead of consistency mechanisms is as important as minimizing

message exchange steps.

By minimizing message exchange steps and software overhead, consistency mechanisms can be

employed without hurting the performance of datacenter applications.

1.3 Contribution: Consistency Mechanisms For Large-scale Low-latency
Systems

This dissertation addresses the lack of consistency mechanisms for today’s datacenter applica-

tions which run at extremely low latency and large scale. My contribution is re-designing and

re-implementing the following three distributed systems primitives (Figure 1.3) so that datacenter
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Figure 1.3: The three distributed systems primitives I address in this dissertation. A typical
user request arrives at a client application server, which reads and/or updates the data in storage
systems through RPCs or distributed transactions. All updates on data in servers are replicated
to other servers.

applications can enjoy strong consistency without sacrificing either scalability or latency much.

1) Remote Procedure Call (RPC): distributed systems use RPCs to operate on data in remote

machines. Using RPCs with consistency is difficult when failures can happen. When a client doesn’t

receive a response, the client usually retries by resending the request; this can result in a duplicate

execution of the same operation, leading to consistency issues such as double increments or over-

writing later operations.

I developed Reusable Infrastructure for Linearizability (RIFL) [47] which transforms an incon-

sistent RPC to a linearizable one. It prevents duplicate executions by saving the results of RPC

executions and allowing systems to handle retries by returning the saved result. I implemented it on

a low-latency large-scale storage system, RAMCloud [62], whose write operation takes only 14 µs.

RIFL on RAMCloud incurs only 0.5 µs overhead (3.5% of RAMCloud’s write latency), and RIFL

can support 1 million clients.

2) Distributed Transaction: a transaction atomically updates data in multiple servers. In gen-

eral, a client sends a transactional update request to a transaction coordination server which drives a

two-phase commit procedure to all participating servers. However, relaying through a coordination

server doubles latency and limits scalability. Those overheads can be avoided by driving two-phase

commits from clients [6]. However, this complicates recovery since servers now have to clean up

client failures.
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Along with Collin Lee, I leveraged RIFL to simplify the recovery of a client-driven commit pro-

tocol and implemented a new multi-object distributed transaction mechanism in RAMCloud (RIFL-

TX [47]). By using clients to manage two-phase commits, RIFL-TX can commit small distributed

transactions in 20 µs, which is just 6 µs more than 14 µs for non-atomic updates on RAMCloud. By

avoiding a centralized transaction coordinator server, RIFL-TX’s throughput scales almost linearly

with the number of servers.

3) Replication: large-scale systems mask individual server failures and maintain high availabil-

ity by replicating data to backup servers. Providing linearizability on replicated data incurs perfor-

mance penalties; consistent replication (which doesn’t break linearizability) often doubles latency

and reduces throughput, causing systems to accept weaker consistency such as eventually consistent

replication.

I developed Consistent Unordered Replication Protocol (CURP) [63], which avoids the perfor-

mance overhead of consistent replication. By leveraging the commutativity of concurrent operations,

CURP allows clients to replicate each operation to backups in parallel with sending the request to the

execution server. Since replication is overlapped with the execution of the operation, CURP mostly

eliminated the cost of replication (i.e., client operations complete in 1 RTT). On RAMCloud, CURP

cuts latency in half (14 µs ! 7.1 µs; 1 µs overhead compared to no replication) and quadrupled

throughput.

1.4 Approaches to Avoid Harming Latency or Scalability

When designing the three distributed systems primitives, I used the following approaches to mini-

mize their impacts on scalability or latency.

1. Minimize the use of a single coordinator. For scalability, we must refrain from using a

single server for common operations. Either splitting the coordination work among multiple

servers or delegating the coordination to clients can improve scalability.

2. Minimize message delays by using client-driven protocols. Having a coordinator server as

a middleman between a client and data servers incurs extra one rount-trip time (RTT) delay

for relaying client requests to the coordination server. This extra 1 RTT can be cut if clients

directly drive consistency protocols such as a transaction commit protocol or replication pro-

tocol.
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Approach How each approach is applied
Exactly-once RPC
(RIFL)

Distributed Transaction
(RIFL-TX)

Replication (CURP)

1. Avoding single
coordinator

Instead of using a single
server for assigning the
globally unique IDs, RIFL
delegates the ID
assignment to each client.
(§2.2)

No single transaction
coordinator server.
(§2.5.3)

Instead of sending data
from a single primary
server to all backups, each
client sends the data to all
servers. (§4.2.2.1)

2. Client-driven protocol N/A Two phase commit is
driven by each client.
(§2.5.3)

Data replication is driven
by each client. (§4.2.2.1)

3. RIFL as a building
block

N/A RIFL is used to prevent
races between slow clients
and the servers
coordinating recovery.
(§2.5.5)

Exactly-once semantics
are used to prevent
recovering the same
operation twice (first time
from a witness and second
time from a backup).
(§4.2.3)

4. Moving work from
critical path

N/A The decision phase (2nd)
of two phase commit
happens asynchronously.
(§2.5.3)

A primary server
replicates ordered
operations to backups
asynchronously in
batches. (§4.4.4)

Table 1.1: Examples of how each approach is used.
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3. RIFL as a building block. Delegating coordination to stateless clients significantly compli-

cates crash recovery; a protocol must handle client crashes by cleaning up the unfinished work

(e.g., aborting an unfinished transaction). However, servers cannot distinguish if a protocol is

hanging because the client is crashed or just slow. Preventing the race between a slow client

and the recovering server requires extra mechanisms. Fortunately, if RIFL is used for RPCs

for consistency protocols (e.g., transaction prepare RPCs), both the recovering server and the

slow client can issue RPC requests without worrying about the race between them. RPCs will

be executed only once and both the client and server will receive the execution results so that

they can proceed on executing the consistency protocol.

4. Move work from the critical path. Inside consistency mechanisms such as transaction com-

mits and replication, some steps don’t need to be finished before returning to the application.

Returning the execution result to an application before completing the steps can improve la-

tency (it may also improve throughput by batching).

Table 1.1 summaries how the approaches mentioned above are applied to my work.

1.5 Dissertation Outline

Chapter 2 describes RIFL and RIFL-TX, which make remote operations linearizable when servers

are internally linearizable (e.g., using consistent replication). Chapter 3 discusses some possible

design simplifications if RIFL is implemented on other systems. Chapter 4 describes CURP, which

removes the performance overhead of consistent primary-backup replication, which is a must-have

for large-scale systems for availability. Chapter 5 discusses two extensions of CURP to different

underlying systems, such as quorum-based consensus protocols.



Chapter 2

Making Remote Operations
Linearizable

Consistency is one of the most important issues in the design of large-scale storage systems; it repre-

sents the degree to which a system’s behavior is predictable, particularly in the face of concurrency

and failures. Stronger forms of consistency make it easier to develop applications and reason about

their correctness, but they may impact performance or scalability and they generally require greater

degrees of fault tolerance. The strongest possible form of consistency in a concurrent system is

linearizability, which was originally defined by Herlihy and Wing [34]. However, few large-scale

storage systems implement linearizability today.

Almost all large-scale systems contain mechanisms that contribute to stronger consistency, such

as reliable network protocols, automatic retry of failed operations, idempotent semantics for opera-

tions, and two-phase commit protocols. However, these techniques are not sufficient by themselves

to ensure linearizability. They typically result in “at-least-once semantics,” which means that a re-

mote operation may be executed multiple times if a crash occurs during its execution. Re-execution

of operations, even seemingly benign ones such as simple writes, violates linearizability and makes

the system’s behavior harder for developers to predict and manage.

In this chapter, we describe RIFL (Reusable Infrastructure for Linearizability), which is a mech-

anism for ensuring “exactly-once semantics” in large-scale systems. RIFL records the results of

completed remote procedure calls (RPCs) durably; if an RPC is retried after it has completed, RIFL

ensures that the original result is returned without re-executing the RPC. RIFL guarantees safety

even in the face of server crashes and system reconfigurations such as data migration. As a result,

RIFL makes it easy to turn non-linearizable operations into linearizable ones.

9
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RIFL may fail to achieve exactly-once semantics under two circumstances. First, when a client

crashes (without recovery later), some of its operations may be left not executed (§2.8). Second,

when the network delays a client’s messages extraordinarily long (e.g., more than 24 hours), then

the RIFL’s garbage collection mechanism may consider the client to be crashed and discard all

metadata necessary for ensuring exactly-once semantics (§2.2).

RIFL is novel in several ways:

• Reusable mechanism for exactly-once semantics: RIFL is implemented as a general-purpose

package, independent of any specific remote operation. As a result, it can be used in many

different situations, and existing RPCs can be made linearizable with only a few additional

lines of code. RIFL’s architecture and most of its implementation are system-independent.

• Reconfiguration tolerance: large-scale systems migrate data from one server to another,

either during crash recovery (to redistribute the possessions of a dead server) or during normal

operation (to balance load). RIFL handles reconfiguration by associating RIFL metadata with

particular objects and arranging for the metadata to migrate with the objects; this ensures that

the appropriate metadata is available in the correct place to handle RPC retries.

• Low latency: RIFL is lightweight enough to be used even in ultra-low-latency systems such

as RAMCloud [62] and FaRM [25], which have end-to-end RPC times as low as 5 µs.

• Scalable: RIFL has been designed to support clusters with tens of thousands of servers and

one million or more clients. Scalability impacted the design of RIFL in several ways, in-

cluding the mechanisms for generating unique RPC identifiers and for garbage-collecting

metadata.

We have implemented RIFL in the RAMCloud storage system in order to evaluate its architec-

ture and performance. Using RIFL, we were able to make existing operations such as writes and

atomic increments linearizable with less than 20 additional lines of code per operation. We also

used RIFL to construct a new multi-object transaction mechanism in RAMCloud; the use of RIFL

significantly reduced the amount of mechanism that had to be built for transactions. The RAMCloud

implementation of RIFL exhibits high performance: it adds less than 4% to the 13.5 µs base cost

for writes, and simple distributed transactions execute in about 20 µs. RAMCloud transactions out-

perform H-Store [40] on the TPC-C benchmark, providing at least 10x lower latency and 1.35x–7x

as much throughput.
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A:
W(0) R(1) W(0)

B:
W(1) R(0)

(a) Linearizable History

A:
W(0) R(1) W(0)

B:
W(1) R(1)

(b) Non-Linearizable History

Figure 2.1: Examples of linearizable (a) and non-linearizable (b) histories for concurrent
clients performing reads ( R() ) and writes ( W() ) on a single object, taken from [34]. Each row
corresponds to a single client’s history with time increasing to the right. The notation “W(1)”
means that client B wrote the value 1 into the object, and “R(0)” means that client B read the
value 0 of the object. Horizontal bars indicate the time duration of each operation.

2.1 Background and Goals

Linearizability is a safety property concerning the behavior of operations in a concurrent system.

An operation is linearizable if it appears to occur instantaneously and exactly once at some point in

time between its invocation and its completion. “Appears” means that it must not be possible for any

client of the system, either the one initiating an operation or other clients operating concurrently,

to observe contradictory behavior. Figure 2.1 shows examples of linearizable and non-linearizable

operation histories. Linearizability is the strongest form of consistency for concurrent systems.

Early large-scale storage systems settled for weak consistency models in order to focus on scala-

bility or partition-tolerance [67, 28, 23, 43], but newer systems have begun providing stronger forms

of consistency [50, 8, 22]. They employ a variety of techniques, such as:

• Network protocols that ensure reliable delivery of request and response messages.

• Automatic retry of operations after server crashes, so that all operations are eventually com-

pleted.

• Operations with idempotent semantics, so that repeated executions of an operation produce

the same result as a single execution.
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1 2 3 2
Object value
in server

Client A:
R(2) W(3) R(2)

Client B:
W(2)

Figure 2.2: Non-linearizable behavior caused by crash recovery. In this example, the server
completes a write from Client B but crashes before responding. “...” indicates that the server is
unavailable due to a crash. After the server restarts, Client B reissues the write, but meanwhile
Client A has written a different value. As a result, Client A observes the value 2 being written
twice.

• Two-phase commit and/or consensus protocols [32, 44], which ensure atomic updates of data

on different servers.

However, few large-scale systems actually implement linearizability, and the above techniques

are insufficient by themselves. For example, Figure 2.2 shows how retrying an idempotent operation

after a server crash can result in non-linearizable behavior. The problem with most distributed sys-

tems is that they implement at-least-once semantics. If a client issues a request but fails to receive

a response, it retries the operation. However, it is possible that the first request actually completed

and the server crashed before sending a response. In this situation the retry causes the operation to

be performed twice, which violates linearizability.

In order for a system to provide linearizable behavior, it must implement exactly-once semantics.

To do this, the system must detect when an incoming request is a retry of a request that already

completed. When this occurs, the server must not re-execute the operation. However, it must still

return whatever results were generated by the earlier execution, since the client has not yet received

them.

Some storage systems, such as H-Store [40] and FaRM [25], implement strongly consistent

operations in the servers but they don’t provide exactly-once semantics for clients: after a server

crash, a client may not be able to determine whether a transaction completed. As a result, these sys-

tems do not guarantee linearizability (linearizability must be implemented on top of the transaction

mechanism, as discussed in Section 2.7).

The overall goal for RIFL is to implement exactly-once semantics, thereby filling in the missing
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piece for linearizability. Furthermore, we designed RIFL as general-purpose infrastructure, inde-

pendent of any particular linearizable operation. Our hope in doing this was to make it easy to

implement a variety of linearizable operations, ranging from complex transactions down to simple

operations such as writes or atomic increments. Although we implemented RIFL in a single system,

we designed the mechanism to be applicable for a variety of systems.

We designed RIFL for use in the most demanding datacenter applications, which created two

additional goals: scalability and low latency. Large-scale Web applications today can include tens

of thousands of storage servers and an even larger number of clients, which are typically servers in

the same datacenter that handle incoming Web requests. We can envision applications in the near

future with one million or more client threads, each communicating with all of the servers. This

means that the per-client state stored on each server must be small. Large-scale systems reconfig-

ure themselves frequently, such as migrating data after server crashes; this means that saved results

must migrate as well. We also wanted RIFL to be suitable for high-performance applications such

as RAMCloud [62] and FaRM [25], which keep their data in DRAM. These systems offer latencies

as low as 5 µs end-to-end for remote operations; the overheads introduced by RIFL must not signifi-

cantly impact these latencies. For example, RIFL must piggyback its metadata on existing messages

whenever possible, so as not to introduce additional communication.

RIFL assumes the existence of a remote procedure call (RPC) mechanism in the underlying

system. Linearizability requires a request-response protocol of some sort, rather than asynchronous

messages, since there is no way of knowing that an operation completed without receiving a re-

sponse. RIFL also assumes automatic retries in the RPC system, to produce at-least-once semantics.

An RPC must not abort and return an error to higher-level software after a server crash, since it will

then be indeterminate whether the operation has completed.

Given these underlying mechanisms, RIFL ensures that RPCs will be executed exactly once as

long as clients don’t crash (see Section 2.8) and servers can store RIFL’s metadata reliably.

2.2 RIFL Architecture

In order to implement exactly-once semantics, RIFL must solve four overall problems: RPC iden-

tification, completion record durability, retry rendezvous, and garbage collection. This section dis-

cusses these issues and introduces the key techniques RIFL uses to deal with them; Section 2.3

describes the mechanisms in more detail.

In order to detect redundant RPCs, each RPC must have a unique identifier, which is present
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in all invocations of that RPC. In RIFL, RPC identifiers are assigned by clients and they consist

of two parts: a 64-bit unique identifier for the client and a 64-bit sequence number allocated by

that client. This requires a system-wide mechanism for allocating unique client identifiers. RIFL

manages client identifiers with a lease mechanism described later in this section.

The second overall problem is completion record durability. Whenever an operation completes,

a record of its completion must be stored durably. This completion record must include the RPC

identifier as well as any results that are returned to the client. Furthermore, the completion record

must be created atomically with the mutations of the operation, and it must have similar durability

properties. It must not be possible for an operation to complete without a visible completion record,

or vice versa. RIFL assumes that the underlying system provides durable storage for completion

records.

The third problem is retry rendezvous: if an RPC completes and is then retried at a later time,

the retries must find the completion record to avoid re-executing the operation. However, in a large-

scale system the retry may not be sent to the same server as the original request. For example,

many systems migrate data after a server crash, transferring ownership of the crashed server’s data

to one or more other servers; once crash recovery completes, RPCs will be reissued to whichever

server now stores the relevant data. RIFL must ensure that the completion record finds its way to

the server that handles retries and that the server receives the completion record before any retries

arrive. Retry rendezvous also creates issues for distributed operations that involve multiple servers,

such as multi-object transactions: which server(s) should store the completion record?

RIFL uses a single principle to handle both migration and distributed operations. Each operation

is associated with a particular object in the underlying system, and the completion record is stored

wherever that object is stored. If the object migrates, then the completion record must move with it.

All retries must necessarily involve the same object(s), so they will discover the completion record.

If an operation involves more than one object, one of them is chosen as a distinguished object for

that operation, and the completion record is stored with that object. The distinguished object must be

chosen in an unambiguous fashion, so that retries use the same distinguished object as the original

request.

The fourth overall problem for RIFL is garbage collection: eventually, RIFL must reclaim the

storage used for completion records. A completion record cannot be reclaimed until it is certain that

the corresponding request will never be retried. This can happen in two ways. First, once the client

has received a response, it will never retry the request. Clients provide acknowledgments to the

servers about which requests have successfully completed, and RIFL uses the acknowledgments to
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newSequenceNum()! sequenceNumber
Assigns and returns a unique 64-bit sequence number for a new RPC. Sequence num-
bers are assigned in increasing integer order.

firstIncomplete()! sequenceNumber
Returns the lowest sequence number for which an RPC response has not yet been
received.

rpcCompleted(sequenceNumber)
Invoked when a response has been received for sequenceNumber.

Figure 2.3: The API of the RequestTracker module, which manages sequence numbers for a
given client machine.

delete completion records. Completion records can also be garbage collected when a client crashes.

In this situation the client will not provide acknowledgments, so RIFL must detect the client’s crash

in order to clean up its completion records.

Detecting and handling client crashes creates additional complications for garbage collection.

One possible approach is to associate an expiration time with each completion record and delete the

completion record if it still exists when the time expires; presumably the client must have crashed

if it hasn’t completed the RPC by then. However, this approach could result in undetectable double-

execution if a client is partitioned or disabled for a period longer than the expiration time and then

retries a completed RPC.

We chose to use a different approach to client crashes, which ensures that the system will de-

tect any situation where linearizability is at risk, no matter how rare. RIFL’s solution is based on

leases [31]: each client has a private lease that it must renew regularly, and the identifier for the

lease serves as the client’s unique identifier in RPCs. If a client fails to renew the lease, then RIFL

assumes the client has crashed and garbage-collects its completion records. RIFL checks the lease

validity during each RPC, which ensures that a client cannot retry an RPC after its completion

record has been deleted. If a live client fails to renew its lease for some reason (e.g., a prolonged

network partition), the client will not be able to figure out the completion of the RPCs issued before

the network partition. However, the lease mechanism can notify the client of the potential duplicate

executions (attempts by the client to reissue RPCs will fail with a special error code).

Managing leases for a large number of clients introduces additional scalability issues. For ex-

ample, one million clients could create a significant amount of lease renewal traffic for a centralized

lease manager. In addition, lease information must be durable so that it survives server failure; this

increases the cost of managing leases. The lease timeout must be relatively long, in order to reduce
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getClientId()! clientId
Returns a unique 64-bit identifier for this client; if a lease does not already exist, ini-
tializes a new one. Used only on clients.

checkAlive(clientId)! {ALIVE or EXPIRED}
Returns an indication of whether the given client’s lease has expired. Used only on
servers.

Figure 2.4: The API of the LeaseManager module, which runs on both clients and servers and
communicates with the lease server to keep track of leases. On the client side, LeaseManager
automatically creates a lease on the first call to getClientId and renews it in the back-
ground. The unique identifier for each client is determined by its lease and is valid only as long
as the lease is alive.

checkDuplicate(clientId, sequenceNumber)! {NEW, COMPLETED, IN PROGRESS, or
STALE}, completionRecord

Returns the state of the RPC given by clientId and sequenceNumber. NEW means that
this is the first time this RPC has been seen; internal state is updated to indicate that the
RPC is now in progress. COMPLETED means that the RPC has already completed; a
reference to the completion record is also returned. IN PROGRESS means that another
execution of the RPC is already underway but not yet completed. STALE means that
the RPC has already completed, and furthermore the client has acknowledged receiving
the result; there may no longer be a completion record available.

recordCompletion(clientId, sequenceNumber, completionRecord)
This method is invoked just before responding to an RPC; completionRecord is a ref-
erence to the completion record for this RPC, which will be returned by future calls to
checkDuplicate for the RPC.

processAck(clientId, firstIncomplete)
Called to indicate that clientId has received responses for all RPCs with sequence num-
bers less than firstIncomplete. Completion records and other state information for those
RPCs will be discarded.

recoverRecord(clientId, sequenceNumber, completionRecord)
This method is a variant of recordCompletion method and invoked during the recovery
or migration. It reconstructs the mapping from RPC identifiers to completionRecords.

Figure 2.5: The API of the ResultTracker module, which runs on servers to keep track of all
RPCs for which results are not known to have been received by clients.
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the likelihood of lease expiration due to temporary disruptions in communication, but this increases

the amount of state that servers need to retain.

2.3 Design Details

The previous section introduced the major problems that RIFL must solve and described some of

the key elements of RIFL’s solutions. This section fills in the details of the RIFL design, focusing

on the aspects that will be the same in any system using RIFL. System-specific details are discussed

in Section 2.4.

RIFL appears to the rest of the system as three modules. The first, RequestTracker, runs on

client machines to manage sequence numbers for outstanding RPCs (Figure 2.3). The second mod-

ule, LeaseManager, runs on both clients and servers to manage client leases (Figure 2.4). On clients,

LeaseManager creates and renews the client’s lease, which also yields a unique identifier for the

client. On servers, LeaseManager detects the expiration of client leases. The third module, Result-

Tracker, runs only on servers: it keeps track of currently executing RPCs and manages the comple-

tion records for RPCs that have finished (Figure 2.5).

2.3.1 Lifetime of an RPC

When a client initiates a new RPC, it forms a unique identifier for that RPC by combining the

client’s unique identifier with a new sequence number provided by RequestTracker. It includes this

identifier in the RPC and must record the identifier so that it can use the same identifier in any

subsequent retries of the RPC.

When a server receives an RPC, it must check to see if the RPC represents a retry of a previously

completed RPC. To do this, it calls ResultTracker’s checkDuplicate method and does one of

four things based on the result:

• In the normal case, this is a new RPC (one whose identifier has never been seen previously);

checkDuplicate records that the RPC is underway and returns NEW. The server then

proceeds to execute the RPC.

• If this RPC has already completed previously, then checkDuplicate returns COMPLETED.

It also returns a reference to the RPC’s completion record; the server uses this to return a re-

sponse to the client without re-executing the RPC.
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• Is also possible that the RPC is currently being executed but has not completed. In this case,

checkDuplicate returns IN PROGRESS; depending on the underlying RPC system, the

server may discard the incoming request or respond to the client with an indication that exe-

cution is still in progress.

• Finally, it is possible for a stale retry to arrive even after a client has received a response

to the RPC and acknowledged receipt to the server, and the server has garbage-collected

the completion record. This indicates either a client error or a long-delayed network packet

arriving out of order. In this case checkDuplicate returns STALE and the server returns

an error indication to the client.

In the normal case of a new RPC, the server executes the operation(s) indicated in the RPC. In

addition, it must create a completion record containing the following information:

• The unique identifier for the RPC.

• An object identifier, which uniquely identifies the storage location for a particular object in the

underlying system, such as a key in a key-value store. The specific format of this identifier will

vary from system to system. This field is used to ensure that the completion record migrates

along with the specified object.

• The result that should be returned to the client for this RPC. The result will vary from opera-

tion to operation: a write operation might return a version number for the new version of the

object; an atomic increment operation might return the new value; some operations may have

no result.

The underlying system must provide a mechanism for storing completion records. The completion

record must be made durable in an atomic fashion along with any side effects of the operation, and

durability must be assured before the RPC returns. The exact mechanism for doing this will vary

from system to system, but many large-scale storage systems include a log of some sort; in this case,

the operation side effects and completion record can be appended to the log atomically.

Once the completion record has been made durable, the server invokes the recordCompletion

method of ResultTracker and passes it a reference to the completion record. The format of the refer-

ence is system-specific and opaque to the ResultTracker module. The reference must provide enough

information to locate the completion record later, such as a location in the log. ResultTracker as-

sociates this reference with the RPC identifier, so that it can return the reference in future calls to
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checkDuplicate. Once recordCompletion has returned, the server can return the RPC’s

result to the client.

When the client receives a response to an RPC, it invokes the rpcCompleted method of

RequestTracker. This allows RequestTracker to maintain accurate information about which RPCs

are still in progress.

If a client fails to receive a response to an RPC or detects a server crash via some other mech-

anism, then it is free to reissue the RPC. If data has migrated, the reissued RPC may be sent to a

different server than the original attempt (the mechanisms for managing and detecting migration are

implemented by the underlying system). However, the client must use the same unique identifier

for the reissued RPC that it used for the original attempt. When the server receives this RPC, it will

invoke checkDuplicate as described above and either execute the RPC or return the result of a

previous execution.

2.3.2 Garbage collection

RIFL uses sequence numbers to detect when completion records can be safely reclaimed. The Re-

questTracker module in each client keeps track of that client’s “active” RPC sequence numbers

(those that have been returned by newSequenceNum but have not yet been passed to rpcCompleted).

The firstIncomplete method of RequestTracker returns the smallest of these active sequence

numbers, and this value is included in every outgoing RPC. When an RPC arrives on a server,

the server passes that sequence number to the ResultTracker module’s processAck method,

which then deletes all of its internal state for RPCs from that client with smaller sequence num-

bers. ProcessAck also invokes the underlying system to reclaim the durable storage occupied by

the completion records.

Using a single sequence number to pass garbage collection information between clients and

servers is convenient because the sequence number occupies a small fixed-size space in outgoing

RPCs and it can be processed quickly on servers. However, it forces a trade-off between RPC con-

currency on clients and space utilization on servers. If a client issues an RPC that takes a long time

to complete, then concurrently issues other RPCs, the completion records for the later RPCs cannot

be garbage collected until the stalled RPC completes. This could result in an unbounded amount of

state accumulating on servers.

In order to limit the amount of state on servers, which is important for scalability, RIFL sets an

upper limit on the number of non-garbage-collectible RPCs a given client may have at one time.

This number is currently set at 512. Once this limit is reached, no additional RPCs may be issued
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until the oldest outstanding RPC has completed. The limit is high enough to allow considerable

concurrency of RPCs by a single client, while also limiting worst-case server memory utilization.

The garbage collection mechanism could be implemented using a more granular approach that

allows information for newer sequence numbers to be deleted while retaining information for older

sequence numbers that have not completed. However, we were concerned that this might create ad-

ditional complexity that impacts the latency of RPCs; as a result, we have deferred such an approach

until there is evidence that it is needed.

2.3.3 Lease management

RIFL uses leases to allocate unique client identifiers and detect client crashes. Leases are managed

by a centralized lease server, which records information about active leases on a stable storage

system such as ZooKeeper [35] so it can be recovered after crashes. When a client issues its first RPC

and invokes the getClientId method of LeaseManager (Figure 2.4), LeaseManager contacts the

lease server to allocate a new lease. LeaseManager automatically renews the lease. The identifier

for this lease serves as the unique identifier for the client.

The lease mechanism presents two challenges for RIFL’s scalability and latency: renewal over-

head and validation overhead. The first challenge is the overhead for lease renewal on the lease

server, especially if the system approaches our target size of one million clients; the problem be-

comes even more severe if each renewal requires operations on stable storage. To reduce the renewal

overhead, the lease server keeps all of the lease expiration times in memory, and it does not update

stable storage when leases are renewed. Only the existence of leases is recorded durably, not their

expiration times. To compensate for the lack of durable lease expiration times, the lease server au-

tomatically renews all leases whenever it reconstructs its in-memory data from stable storage after

a restart.

The second problem with leases is that a server must validate a client’s lease during the execution

of each RPC, so it can reject RPCs with expired leases. The simplest way to implement this is for

the server to contact the lease server during each request in order to validate the lease, but this would

create unacceptable overheads both for the lease server and for the RPC’s server.

Instead, RIFL implements a fast validation mechanism that allows servers to validate leases

quickly using information received from clients during normal RPCs; a server only needs to contact

the lease server if a fast validation fails. The lease server implements a cluster clock, which is a time

value that increases monotonically at the rate of the lease server’s real-time clock and is durable

across lease server crashes. Neither clients nor servers estimate the current value of the cluster clock
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at the lease server; they only keep the maximum of the observed cluster clock values. Clients get

new cluster clock values from the lease server during lease creation or renewal. Every client request

incorporates the last observed cluster clock value and the current lease expiration time. For each

request, a server updates its cluster clock value if the one from the client is more recent, and the

server checks if the given lease expiration time is past its cluster clock value. If the expiration time

is not past the cluster clock value, the server assumes that the lease has not expired and executes the

client request. This fast validation is efficient since it solely uses the information given with client

requests.

However, fast validation must deal with two potential problems. The first problem is that a sig-

nificantly delayed client request may fail fast validation even if the client’s lease is live at the lease

server. To prevent discarding completion records for a live lease, servers must contact the lease man-

ager to validate any lease that failed the fast validation. If the lease server confirms that the lease

has expired, then the server returns an error to the client without executing the operation. During

garbage collection, servers must also confirm with the lease server before discarding completion

records for clients whose leases failed the fast validations. The second problem is that, during re-

covery or migration, the new server may accept requests from a client whose completion records

were discarded due to the lease expiration. This problem can occur when the new server’s cluster

clock value is staler than the original server’s value so that the client request with an expired lease

can pass the fast validation at the new server. To prevent this scenario, a new server must obtain the

up-to-date cluster clock value from the lease server before finishing recovery or migration.

2.3.4 Migration

As discussed in Section 2.2, a large-scale system may migrate data from one server to another, either

to balance load during normal operation or during crash recovery. The details of this are system-

specific, but in order for RIFL to function correctly, the system must always migrate each completion

record to the same machine that stores the object identified by that completion record. When a

completion record arrives on a new server, the underlying system must call the recoverRecord

method of ResultTracker so that it can reconstruct its in-memory metadata that maps from RPC

identifiers to completion records.
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2.4 Implementation

In order to evaluate RIFL, we have implemented it in RAMCloud [62], a key-value store that keeps

all data in DRAM. RAMCloud has several properties that make it an attractive target for RIFL. It is

already designed for large scale and it offers low latency (small remote reads take 4.7 µs end to end,

small durable writes take 13.5 µs); the RAMCloud implementation allows us to evaluate whether

RIFL can be used for large-scale low-latency applications. In addition, RAMCloud already imple-

mented at-least-once semantics, so RIFL provides everything needed to achieve full linearizability.

Finally, RAMCloud is available in open-source form [3].

Previous sections have described the system-independent aspects of RIFL; this section describes

the RAMCloud-specific facilities that had to be created as part of implementing RIFL. All of the

changes to RAMCloud were localized and small.

RAMCloud uses a unified log-structured approach for managing data both in DRAM and on

secondary storage [62], and it uses small amounts of nonvolatile memory to perform durable repli-

cation quickly. RIFL stores its completion records as a new type of entry in the RAMCloud log; we

extended the logging mechanism to ensure that completion records can be written atomically with

other records such as new values for objects. A reference to a completion record (as passed to and

from ResultTracker) consists of its address in the in-memory copy of the log.

Garbage collection of completion records is handled by the log cleaner using its normal mecha-

nism. The cleaner operates by scanning a region of log entries and calling a type-specific method for

each entry to determine whether the entry is still live; live entries are copied forward in the log, then

the entire region is reclaimed. A log entry containing a completion record is live if ResultTracker

still retains the mapping from the completion record’s RPC id to the completion record.

In RAMCloud, each object is assigned to a server based on its table identifier and a hash of

its key; RIFL uses these two 64-bit values as the object identifier in completion records. We made

two small modifications to RAMCloud’s migration and crash recovery code so that (a) completion

records are sent to the correct server during crash recovery (b) when a completion record arrives

on a new server, the recoverRecord method of ResultTracker is invoked to incorporate that

completion record into its metadata.

In RAMCloud the lease server is integrated into the cluster coordinator and uses the same

ZooKeeper instance for storing lease information that the coordinator uses for its other metadata.

Once RIFL was implemented in RAMCloud, we used it to create a variety of linearizable op-

erations. We first converted a few simple operations such as write, conditional write, and atomic
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read(tableId, key)! value
Returns the value of the object for tableId and key.

write(tableId, key, value)
Updates the value of the object for tableId and key.

delete(tableId, key)
Removes the object for tableId and key.

commit()! {COMMITTED or ABORTED}
Tries to commit the current transaction and returns the outcome. After this method is
invoked, calling read, write or delete methods is not allowed.

Figure 2.6: The API of the transaction object, which is created by clients for every transaction.
Clients can optimistically perform operations and then attempt to commit the transaction by
invoking commit. Each Transaction object represents a single transaction attempt. Transaction
objects should be discarded after the transaction commits or aborts.

increment to be linearizable. Each of these operations affects only a single object on a single server,

so the code modifications followed naturally from the description in Section 2.3.

We also used RIFL to implement a new multi-object transaction mechanism that was not previ-

ously present in RAMCloud. This mechanism is described in the following section.

2.5 Implementing Transactions with RIFL

This section describes RIFL-TX, which is a new RIFL-based distributed transaction mechanism

in RAMCloud. RIFL-TX is a more complex use case for RIFL, since transactions involve multi-

ple objects on different servers. We found that RIFL significantly simplified the implementation

of transactions, and the resulting mechanism offers high performance, both in absolute terms and

relative to other systems.

The two-phase commit protocol for RIFL-TX is based on Sinfonia [6]; we chose this approach

because Sinfonia offers the lowest possible latency for distributed transactions. However, we did not

need to implement all of Sinfonia’s mechanisms because RIFL made some of them unnecessary. The

description below focuses on the overall mechanism and its use of RIFL.

2.5.1 APIs

The application-visible API for RIFL-TX is based on a new Transaction class. To use the transaction

mechanism, an application creates a Transaction object, uses it to read, write, and delete RAMCloud
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objects, then invokes a commit operation, which will succeed or abort (APIs are in Figure 2.6). If the

commit succeeds, it means that all of the operations were executed atomically as a single linearizable

operation. If the commit aborts, then none of the transaction’s mutations were applied to the key-

value store or were in any way visible to other clients. The system may abort the commit for a

variety of reasons, including data conflicts, busy locks, and client crashes. If an application wishes

to ensure that a transaction succeeds, it must retry aborted transactions. With this API, RAMCloud

provides ACID transactions with strict serializability [74] using optimistic concurrency control [42].

2.5.2 The commit operation

The Transaction object defers all updates to the key-value store until commit is invoked. When reads

are requested, the Transaction reads from the key-value store and caches the values along with the

version number for each RAMCloud object, which is incremented every time the object’s value

changes. When writes and deletes are requested, the Transaction records them for execution later,

without modifying the key-value store. When commit is invoked, the Transaction applies all of the

accumulated mutations in an atomic fashion.

The Transaction object implements its commit method using a single internal operation that is

similar to a Sinfonia mini-transaction; we will use the term “Commit” for this operation. Commit is

a distributed operation involving one or more objects, each of which could be stored on a different

server. The arguments to Commit consist of a list of objects, with the following information for each

object:

• The table identifier and key for the object.

• The operation to execute on the object: read, write, or delete.

• A new value for the object, in the case of writes.

• The expected version number for the object (or “any”).

Commit must atomically verify that each object has the required version number, then apply all of

the write and delete operations. If any of the version checks fail, it means there has been a conflicting

write to the object, so the commit aborts and no updates occur.

2.5.3 Client-driven two-phase commit

Commit is implemented using a two-phase protocol where the client serves as coordinator. In the

first phase, the client issues one prepare RPC for each object involved in the transaction (see
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prepare(tableId, key, version, operation(READ, WRITE, DELETE), newValue, rpcId, firstIncom-
plete, leaseInfo, allObjects)! {PREPARED, ABORT, COMMITTED},

Sent from clients to participants for the first stage of commit: verifies that the object given by
tableId and key is not already locked by another transaction and has a version number matching
version; if so, locks the object, writes a durable record describing the lock as well as operation
and newValue, and returns PREPARED; otherwise returns ABORT. On a special occasion where
all objects involved in the transaction reside in a single server, the server may process the de-
cision phase and return COMMITTED. operation specifies the operation that will eventually be
performed on the object and newValue is the new object value for writes. rpcId, firstIncomplete,
and leaseInfo are used by RIFL for at-most-once semantics. allObjects describes all of the objects
in the transaction (tableId, keyHash, and rpcId for each).

decision(rpcId, action(COMMIT, ABORT))
Sent from clients or recovery coordinators to participants for the second stage of two-stage com-
mit; rpcId indicates a particular object (must match the rpcId of a previous prepare). If action
is COMMIT, then the operation specified in the corresponding prepare is performed. In any
case, the lock is removed and the durable lock record is deleted.

startRecovery(allObjects)
Sent from participants to the recovery coordinator to start recovery. allObjects specifies all of the
objects of the transaction (same format as for prepare).

requestAbort(rpcId)! {PREPARED, ABORT},
Sent from the recovery coordinator to participants during the first phase of crash recovery. Returns
PREPARED if a completion record indicates a prior PREPARED response for rpcId, otherwise
returns ABORT.

Figure 2.7: The APIs for the RPCs used to implement the commit protocol for RIFL-TX.
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Figure 2.7). The server storing the object (called a participant) locks the object and checks its

version number. If it doesn’t match the desired version then the participant unlocks the object and

returns ABORT; it also returns ABORT if the object was already locked by another transaction.

Otherwise the participant stores information about the lock in a transaction lock table and creates a

durable record of the lock in its log. It then returns PREPARED to the client. The client issues all of

the prepare RPCs concurrently and it batches requests to the same participant.

If all of the prepare RPCs return PREPARED, then the commit will succeed; if any of the

prepare RPCs return ABORT, then the transaction will abort. In either case, the client then enters

the second phase, where it issues a decision RPC for each object. The participant for each object

checks whether the RPC indicates “commit” or “abort”. If the decision was to commit, it applies

the mutation for that object, if any. Then, whether committing or aborting, it removes the lock table

entry and adds a RAMCloud log record that indicates the lock record is no longer valid and should

be ignored during recovery or migration.

The transaction is effectively committed once a durable lock record has been written for each of

the objects. At this point, regardless of the client’s actions, the mutations will eventually be applied

(the details will be discussed below). The Transaction object’s commit method can return as soon as

positive responses have been received from all of the servers; the decision RPCs can be issued in

the background. Thus, the latency for Commit consists of one round-trip RPC time (more precisely,

the time for a concurrent collection of RPCs to all of the participants) plus the time for a durable

write on each participant. In RAMCloud, a durable write is implemented with concurrent RPCs

that replicate log records in nonvolatile memory on three backup servers. Chapter 4 will present a

new replication mechanism that avoids the latency increase caused by the durable write. Except for

the durable write latency (which is avoidable), the RAMCloud transaction has the lowest possible

time for a transaction commit; we chose the client-driven approach because it is at least one half

round-trip faster than approaches that use a server as the transaction coordinator.

The commit protocol is optimized for two special cases. The first consists of transactions whose

objects all reside on a single participant. When a participant receives a prepare request, it checks

to see if it owns all of the objects in the transaction. If so, it executes both the prepare and decision

operations and returns a special COMMITTED status to the client; the client then skips its decision

phase and doesn’t send decision RPCs. The server propagates log records to backups only once,

after the decision phase. Since the optimized form does not return to the client until after the decision

operation has completed, its latency is slightly higher than it would be without the optimization, but

the optimization improves throughput significantly and eliminates the need for clients to invoke
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decision RPCs. (see Section 2.6).

The second optimization is for read-only transactions. If a transaction does not modify any

objects, the client indicates this in each prepare RPC. In this case, the participant simply checks

to make sure the object is not locked and then verifies its version number; there is no need to

acquire a lock or record any durable data. As with single-server transactions, clients need not issue

decision RPCs.

2.5.4 Client crashes

If the client crashes before completing all of the decision RPCs, then a server must complete the

process on its behalf. RIFL-TX uses a mechanism similar to Sinfonia for this. If the client is sus-

pected to have crashed, the participant for the transaction’s first object acts as recovery coordinator.

The recovery coordinator executes a two-phase protocol similar to that of the client, except that its

goal is to abort the transaction unless it has already committed (in general, there may not be enough

information to complete an incomplete transaction, since the client may have crashed before issuing

all of the prepare RPCs). In the first phase the recovery coordinator issues a requestAbort

RPC for each object, whose participant will agree to abort unless it has already accepted a prepare

for the object. If requestAbort returns PREPARED for every object in the transaction, then the

transaction has already committed. Otherwise, the recovery coordinator will abort the transaction.

In either case, the recovery coordinator then sends decision RPCs for each object.

Transaction recovery is initiated using a timeout mechanism. Whenever a participant creates

an entry in its lock table, it starts a timer. If the timer expires before the participant has received a

decision, then the participant sends a startRecovery RPC to the recovery coordinator.

In order to provide enough information for crash recovery, the client includes identifiers for

all objects in the transaction as part of each prepare. This information serves two purposes.

First, it allows each participant to identify the recovery coordinator (the server for the first object

in the list). Second, the object list is needed by the recovery coordinator to identify participants

for its requestAbort and decision RPCs. The recovery coordinator may not have received

a prepare if the client crashed, so when a participant invokes startRecovery it includes the

list of objects that it received in its prepare.
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2.5.5 RIFL’s role in transactions

The issue of exactly-once semantics arises in several places in the RAMCloud transaction mech-

anism. For example, a server may crash after completing a prepare but before responding; its

objects and lock table will migrate to another server during crash recovery, and the client will even-

tually retry with that server. In addition, a client that is presumed dead may not actually be dead, so it

could send prepare RPCs at the same time the recovery coordinator is sending requestAbort

RPCs for the same objects: once one of these RPCs has reached a decision for an object, the other

RPC must see the same decision. Finally, a “dead” client may wake up after recovery is complete

and go through its two-phase protocol; participants must not re-execute prepare RPCs for which

requestAbort RPCs were executed during recovery, and the client must reach the same overall

decision about whether the transaction committed.

All of these situations are handled by using RIFL for the prepare and requestAbort

RPCs. Each prepare is treated as a separate linearizable operation. For example, when a client

begins the Commit process it uses RIFL to assign a unique identifier for each prepare, and the

participant logs a completion record for the RPC atomically with the lock record. If the version

check fails, the participant will not create a lock record, but it will still create a completion record

indicating that it rejected the RPC. The participant also uses the RPC identifier in its lock table as a

unique identifier for a particular object participating in a particular transaction. If a client retries a

prepare (e.g. because of a participant crash), the completion record ensures exactly-once seman-

tics. Each object can potentially migrate independently during crash recovery, but the per-object

completion records will follow them.

When a requestAbort is issued during client crash recovery, the recovery coordinator uses

the same RPC identifier that was used by the corresponding prepare (the identifiers are included

in prepare RPCs along with object identifiers, and they are passed to the recovery coordinator

in startRecovery RPCs). This allows a participant handling a requestAbort to determine

whether it already processed a prepare for that object; if there is no pre-existing completion

record, then the server creates a new one indicating that it has agreed to abort the transaction. The

shared RPC identifier ensures that races are resolved properly: if a prepare arrives from the client

later, it will find the requestAbort completion record and return ABORT to the client.

Completion records are not needed for decision RPCs, since redundant executions can be

detected using the lock table. If a decision is retried, there will no longer exist a lock table entry

for the object. This indicates that the current decision is redundant, so the participant returns

immediately without taking any action.
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2.5.6 Garbage collection

Garbage collection is more complex for distributed transactions than for single-object operations

because it requires knowledge of distributed state. In Sinfonia this complexity is reflected in two

additional protocols: a special mechanism to collect ids for completed transactions and exchange

them among servers in batches, and a separate epoch-based mechanism for garbage-collecting in-

formation about transaction aborts induced during crash recovery. Our use of RIFL in RIFL-TX

allowed us to avoid both of these additional protocols and ensure proper garbage collection with

only a few small additions.

In a distributed transaction, none of the completion records for the prepare RPCs can be

deleted until the decision RPCs have been processed for all of the transaction’s objects (other-

wise the transaction could be re-executed with a different result). This problem led to the transaction

id exchange mechanism in Sinfonia. Our transaction mechanism uses a much simpler solution: a

client does not call rpcCompleted for any of its prepare RPCs until it has received responses

for all of the decision RPCs.

The epoch mechanism in Sinfonia was required to garbage-collect transactions aborted during

client crash recovery; in RAMCloud transactions the client leases already handle this situation. If a

client crashes during a transaction, then it will never call rpcCompleted for its prepare RPCs,

so servers will retain completion records until the client lease expires. The timers for transaction re-

covery are considerably shorter than the lease timeout; this ensures that the completion records will

still be available for the recovery mechanism described in Section 2.5.4. If the client has not really

crashed and finishes executing the transaction protocol after recovery has occurred, the completion

records will still be available, so the client will observe the commit/abort decision made during re-

covery. It will then call rpcCompleted and the completion records can be deleted without waiting

for lease expiration.

RIFL’s completion records provide a clean separation of information with different lifetimes, so

different kinds of information can be garbage-collected independently. For example, the completion

record for a prepare is distinct from the lock record created by that RPC. The lock record’s

lifetime is determined by the transaction (the record is deleted as soon as a decision RPC is

received), but the completion record must be retained until the client acknowledges receipt of the

prepare result or its lease expires, which could be considerably later.
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CPU Xeon X3470 (4x2.93 GHz cores, 3.6 GHz Turbo)
RAM 24 GB DDR3 at 800 MHz
Flash 2x Samsung 850 PRO SSDs
Disks (256 GB)
NIC Mellanox ConnectX-2 Infiniband HCA

Switch Mellanox SX6036 (4X FDR)

Table 2.1: The server hardware configuration used for benchmarking. All nodes ran Linux
2.6.32 and were connected to a two-level Infiniband fabric with full bisection bandwidth; the
NICs support kernel-bypass. The Infiniband fabric supports 32 Gbps bandwidth, but PCI Ex-
press limits the nodes to about 24 Gbps.

2.5.7 Server crash recovery

If a server crashes during the transaction commit protocol, its objects will be reconstructed on one or

more other servers. The log records for locks and prepare completions will migrate with the cor-

responding objects and the new servers will use this data to populate lock tables and ResultTrackers,

so the two-phase commit protocol can be completed in the normal way.

If the recovery coordinator crashes during transaction recovery, its data will be reconstructed on

another server and transaction recovery will eventually start again. The completion records ensure

that any past decisions are visible to future recovery coordinators.

2.6 Evaluation

We evaluated the RAMCloud implementation of RIFL to answer the following questions:

• What is RIFL’s impact on latency and throughput?

• Does RIFL limit scalability?

• How hard is it to use RIFL to implement linearizability?

• How does the performance of transactions implemented with RIFL compare to other state-of-

the-art systems?

All performance evaluations were conducted on a cluster of machines with the specifications shown

in Table 2.1. All measurements were made using Infinband networking. Unless otherwise indicated,

all RAMCloud measurements were made using RAMCloud’s fastest transport, which bypasses the

kernel to communicate directly with NICs. In a few cases we used a different transport based on
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Figure 2.8: Complementary cumulative distribution of latency for 100B random RAMCloud
write operations with and without RIFL. Writes were issued sequentially by a single client to
a single server in a 4-server cluster. A point (x,y) indicates that y of the 1M measured writes
took at least x µs to complete. “Original Write” refers to the base RAMCloud system before
adding RIFL. The median latency for linearizable writes was 14.0 µs vs. 13.5 µs for the original
system.
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Figure 2.9: The aggregate throughput for one server serving 100B RAMCloud writes with and
without RIFL, as a function of the number of clients. Each client repeatedly issued random
writes back to back to a single server in a 4-server cluster. “Original Write” refers to the base
RAMCloud system before adding RIFL. Each experiment was run 5 times. The data points
show the median values; error bars show min and max.

TCP implemented in the kernel (packets were still delivered via Infiniband). RAMCloud servers

were configured to use 3-way replication. The log cleaner did not run in any of these experiments;

in a production system cleaning overheads could reduce throughput by as much as 25% from the

numbers reported here, depending on memory utilization and workload (see Figure 6 in [62] for

details).

2.6.1 Performance Impact of RIFL

Performance is often used as an argument for weak consistency in large-scale systems. However,

we found that RIFL is able to add full linearizable semantics to RAMCloud with negligible impact

on performance.

Figure 2.8 shows the latency of RAMCloud write operations before and after adding RIFL.

RIFL increases the median write latencies by less than 4% (530 ns). More generally, the overall

shape of the latency distribution did not change with the addition of linearizability.
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Figure 2.10: Latency of linearizable writes as a function of the amount of client state managed
by the server. A single client application simulated many virtual clients, each with its own
RequestTracker and client id. The client issued a series of random 100B write requests, with
each write request using a randomly chosen virtual client. All requests targeted a single server
in a 4-server cluster. The graph displays the median write latency as well as a number of tail
latencies (”99%” refers to 99th-percentile latency). The median latency increased by less than
5% from 14.0 µs with 1 active client to 14.6 µs with 1M active clients.

Figure 2.9 shows the throughput of write operations for a single server, before and after intro-

ducing RIFL. Overall, RIFL had no measurable impact on throughput (experimental error is greater

than the differences between the curves).

2.6.2 Scalability Impact of RIFL

RIFL creates three potential scalability issues. The first is memory space required on servers for

completion records and client lease information. RIFL uses 40B per client for overall client state,

plus roughly 76B for each completion record, or a total of 116B per client (assuming one active

completion record per client per server). If a server has 1M active clients, the total memory require-

ments for RIFL data will be 160MB per server; given current server capacities of 256GB or more,

this represents less than 0.1% of server memory.

The second scalability risk is the possibility of performance degradation if a server must manage
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state for a large number of clients (for example, this could result in additional cache misses). To

evaluate this risk, we used a single client executable to simulate up to one million active clients, all

issuing linearizable write requests to the same server (Figure 2.10). Ideally, the write latency should

be constant as amount of client state on the server increases. Instead, we found a 5% increase in

latency when scaling from one active client to one million. While the overhead does increase with

the number of clients, the overhead is small enough that it doesn’t limit system scalability.

The third scalability issue is the lease renewal traffic that the lease server must process; the

number of active clients is limited by the rate at which the lease server can serve lease renewal

requests. We measured the lease server’s maximum throughput to be 750k renewals per second.

Lease terms are currently set at 30 min with renewals issued after half the term has elapsed. At this

rate, 1M active clients will consume less than 0.2% of a lease server’s capacity.

2.6.3 Is Implementing Linearizability with RIFL Hard?

Given RIFL, which consists of about 1200 lines of C++ code, we were able to add linearizability

support to existing RAMCloud operations with only few additional lines of code. We did this for

write, conditional write, increment, and delete operations. On the client side, RAMCloud RPCs are

implemented using wrapper objects that implement core functionality common to a set of RPCs. As

part of our RIFL implementation, we created a new linearizable RPC wrapper with 109 lines of code.

Using this wrapper, each operation’s client-side code required only 4 lines of code modification.

Each operation’s server-side code needed 13 lines of code modification. In all, we were able to add

full linearizability support for all 4 operations in 68 lines of code, or 177 lines including the new

wrapper.

RIFL also significantly simplified the implementation of distributed transactions in RAMCloud.

This was discussed in detail in section 2.5.5.

2.6.4 Evaluating RIFL-based Transactions

Figure 2.11 shows the latency for simple transactions with 1–5 objects, each on a different par-

ticipant server. A transaction with only a single object commits in 17.8 µs at the median while a

transaction with 5 objects commits in 27.3 µs. Figure 2.12 shows the transaction commit latencies

for larger transactions up to 300 objects on 60 participants; latency increases roughly linearly with

the number of participants. This scaling behavior is expected as the client must issue a separate RPC

for each additional participant.
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Figure 2.11: Complementary cumulative distribution of transaction commit latency measured
from the beginning of the commit process to the completion of all prepare RPCs. Each
transaction reads and writes one randomly chosen object per participant; the cluster contained
10 servers. A point (x,y) indicates that y of the 1M measured transaction commits took at least
x µs to complete. The median latency for 1, 2, 3, 4, and 5 participants is 17.8 µs, 19.2 µs,
21.8 µs, 24.8 µs, and 27.3 µs respectively.
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Figure 2.13: Aggregate transaction throughput for a cluster of 10 servers as a function of
the number of clients. Each client repeatedly creates and commits transactions back to back
where each transaction reads and writes one 100-byte object per participant; participants were
chosen at random for each transaction. Each experiment was run 5 times; the figure shows the
median measured throughput. The “unoptimized” case shows throughput with the single-server
optimization disabled.

Figure 2.13 graphs the throughput of RIFL-based transactions. For transactions involving a sin-

gle participant, a cluster with 10 servers can support about 440k transactions per second. With more

participants per transaction, throughput drops roughly in proportion to the number of participants:

with five participants in each transaction, the cluster throughput is about 70k transactions per sec-

ond. Figure 2.13 also shows that the single-server optimization described in Section 2.5 improves

throughput by about 40%.

2.6.5 Comparing Transaction Performance with H-Store

We implemented the TPC-C benchmark [80] with RAMCloud transactions and used it to compare

performance between RAMCloud and H-Store [40], a main-memory DBMS for OLTP applications.

TPC-C simulates an order fulfillment system with a workload consisting of five transaction types

(see Table 2.2). Data is logically partitioned into warehouses, and most transactions only manip-

ulate data within a single warehouse. The primary metric for TPC-C is the number of committed
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Type Mix Working Set (DB rows) Multi-
Read Set Write Set warehouse

NewOrder 45% 23 rows 23 rows 9.5%
Payment 43% 4 rows 4 rows 15%
OrderStatus 4% 13 rows 0 rows 0%
Delivery 4% 130 rows 130 rows 0%
StockLevel 4% 390 rows 0 rows 0%

Table 2.2: The five transaction types used by the TPC-C benchmark. “Mix” gives the frequency
for each transaction type. “Working Set” indicates how many database records are read and
written by each transaction type, on average. “Multi-warehouse” indicates the fraction of each
transaction type that involves multiple warehouses.

NewOrder transactions per minute (TpmC).

Our implementation of the TPC-C benchmark for RIFL-TX differs slightly from the standard in

that we removed wait time and keying time in clients (this allowed us to generate a higher workload

with fewer clients). We modeled each table row in TPC-C as an object in RAMCloud and simulated

secondary indexes using auxiliary RAMCloud tables. For instance, we used an auxiliary table to

map from each customer last name to a list of matching customer IDs. Updates to the auxiliary

tables are included in the TPC-C transactions.

H-Store provides many parameters to tune the system’s performance. With help from the H-

Store developers [64] and to the best of our ability, we tuned two H-Store configurations for mea-

surement: one for best latency and one for best throughput. In some experiments we disabled dura-

bility in the H-Store configuration optimized for latency. RAMCloud does not provide any tuning

parameters so RIFL-based transactions on RAMCloud were measured as-is (we view RAMCloud’s

lack of parameters as an advantage).

Figure 2.14 shows TPC-C latency with a single client and a single warehouse. Warehouses

are relatively small, so TPC-C normally runs with each warehouse located entirely on a single

server; this is the leftmost point in Figure 2.14. In this configuration H-Store’s latency is more than

8x higher than RAMCloud’s when durability is enabled in H-Store, and 23% higher even when

durability is disabled in H-Store. Furthermore, RAMCloud achieves its low latency while providing

3-way distributed replication of all data, whereas H-Store does not perform replication. H-Store is

exceptionally efficient for single-server transactions because it uses pre-defined stored procedures

for all transactions. In the single-server case the server can execute all reads and writes locally and

no data needs to be transferred either to clients or other servers.
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Figure 2.14: Average latency of TPC-C NewOrder transactions with a single warehouse, as a
function of the degree of sharding for the warehouse. “Server Span” of 10 indicates that the
data of a single warehouse is sharded across 10 servers. H-Store was tuned for low latency and
measured with durability both enabled and disabled. RIFL-based transactions were measured
on both RAMCloud’s standard kernel-bypassing transport as well as over kernel TCP.
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Figure 2.14 also shows the latency for a modified TPC-C benchmark configuration where the

warehouse dataset is sharded across multiple servers. This evaluates how the systems will perform

on datasets too large to fit on a single server. RIFL-based transactions execute faster with sharding,

because they issue RPCs concurrently to all the participants. In H-Store, performance degrades with

sharding: RAMCloud latencies are 1–2 orders of magnitude less than H-Store.

RAMCloud’s kernel-bypass transport is significantly faster than TCP, which is used by H-Store.

To level the playing field, Figure 2.14 also contains measurements of RAMCloud using TCP. Even

with TCP, RAMCloud is still significantly faster than H-Store except in the single-server case. The

gap in latency between H-Store and RAMCloud over TCP indicates that H-Store’s latency is not

limited by network speed, so H-Store’s latency would not improve much if it used kernel-bypass.

Figure 2.15 shows latency and throughput for the TPC-C benchmark with the standard mix

detailed in Table 2.2, with each warehouse on a separate server. The measurements for H-Store

tuned for throughput overstate its throughput because we were not able to run the benchmark long

enough for H-Store to reach steady state (the servers crashed). During the shortened runs, H-Store

completed only about half as many distributed transactions as required by the mix; the others were

still in progress when the runs ended. In the steady state, the more expensive distributed transactions

would have limited performance.

RIFL-TX outperforms H-Store for TPC-C both in latency and throughput. RIFL-TX’s advantage

is smallest when comparing throughput between RAMCloud over TCP and H-Store optimized for

throughput; even so, RIFL-TX’s throughput is 35% higher at 16 servers, even though RAMCloud

is performing 3x replication and H-Store is not executing the full TPC-C transaction mix. When

RAMCloud over TCP is compared with H-Store optimized for latency, RAMCloud’s throughput is

3.6x that of H-Store. When RAMCloud runs with kernel-bypass, its throughput is 2.8–7.6x that of

H-Store. RAMCloud latency is at least 10x smaller than H-Store when H-Store is tuned for latency,

and 1000x smaller when H-Store is tuned for throughput.

2.6.6 RAMCloud Throughput Limitations

The RAMCloud architecture was optimized for latency, not throughput; as a result, RIFL’s through-

put is lower than it could be with a different underlying architecture. In particular, RAMCloud does

almost no batching of requests; this approach improves latency under low load, but hurts throughput

under high load. The primary bottleneck for transaction throughput is the pipeline for replicating

new data to backups. A single RAMCloud server can maintain only about 1.5 outstanding replica-

tion operations at a time, on average, where a “replication operation” consists of all of the mutations
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Figure 2.15: Latency and aggregate throughput of NewOrder transactions in the TPC-C bench-
mark, as a function of the system scale. The benchmark used the transaction mix in Table 2.2,
with each warehouse stored on a single server. Increasing the number of servers also increased
the number of warehouses. Roughly 90% of NewOrder transactions involved only one ware-
house. RIFL-based transactions were tested on both RAMCloud’s standard kernel-bypassing
Infiniband transport as well as kernel TCP.
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associated with one incoming RPC (such as an individual write or a prepare RPC describing one

or more objects for a single transaction). This serialization is particularly harmful in high-latency

environments such as when RAMCloud uses TCP.

In Chapter 4, we will present CURP, which solves this throughput limitation by moving replica-

tion out of the critical path and thereby enabling more aggresive batching of replication operations.

2.7 Related Work

Numerous distributed storage systems have been proposed or implemented in recent years, with

a variety of approaches to consistency. Many of the early systems intentionally sacrificed consis-

tency to enhance scalability or partition tolerance [67, 28, 23, 43]. Linearizability is impossible

for these systems since they do not maintain consistency between replicas. The difficulties of pro-

gramming weakly consistent systems have been widely discussed, so recent systems have tended

towards stronger forms of consistency [50, 8, 22]. Some of these systems offer semantics close to

linearizability, but it is difficult to tell whether any are truly linearizable. For example, Spanner [22]

claims to provide consistency that is equivalent to linearizability, and it performs retries internally

for certain transactions, but it does not appear to extend exactly-once semantics all the way out to

clients.

Many traditional databases provide exactly-once semantics for transactions using queued trans-

action processing [13], but this technique is fairly heavyweight compared to RIFL. Queued trans-

action processing separates the execution of a single logical user defined transaction into 3 phases:

request submission, request execution, and reply processing. To ensure exactly-once semantics in

the face of server crashes, each phase is performed as a transaction. The overhead of turning each

request into 3 transactions is especially noticeable for single-object requests.

Many systems provide strong internal consistency guarantees, but most of these systems do not

provide exactly-once semantics for clients. For example, H-Store [40], Spanner [22], and FaRM [25]

implement distributed transactions, but an untimely server crash can leave clients without a clear

indication whether a transaction committed. A client can implement linearizability in these systems

by including an additional object in the transaction with a unique identifier, which it can check

later to determine if the transaction committed. However, this requires clients to create their own

mechanisms for managing transaction ids.

The distributed transaction mechanism implemented by Sinfonia [6] is linearizable because

clients serve as transaction coordinators: this guarantees that they see exactly-once semantics for
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transaction commits. However, Sinfonia does not describe how to implement unique transaction ids,

nor does it handle situations where data migrates (transactions hang until crashed servers restart).

Consensus-based systems such as ZooKeeper [35] and Raft [58] provide strongly consistent

replication. ZooKeeper claims to provide “asynchronous linearizability” but does not describe what

this means or how the various issues addressed by RIFL are handled. Raft outlines how to implement

linearizability but does not describe how to allocate unique identifiers, and Raft does not address

the migration issue, since all data is replicated on every server.

The techniques used by RIFL for ensuring exactly-once semantics share several features with

network transport protocols such as TCP [36], including sequence numbers, acknowledgments, re-

tries, and limits on outstanding operations. RIFL differs in that its protocol must survive server

crashes and migration of the communication end-points.

Some Network File System (NFS) servers implement a mechanism called reply cache [37]

which detects duplicate requests and replies with the response from the original execution. However,

a reply cache doesn’t guarantee linearizability since it may lose responses in case of server crashes

or cache overflows. Highly Available NFS [14] persists the reply cache entries, but it uses the reply

cache only to prevent false exceptions, not to provide full linearizability; when an exception occurs

during an execution (such as trying to create a directory that already exists), the server checks if the

request was previously successful and ignores the exception.

2.8 Client Failures and the Ultimate Client

RIFL only guarantees exactly-once semantics for an operation if the client is reliable. If a client

crashes and loses its state, then its operations in progress may or may not complete. We assume

this behavior is acceptable, since the timing of the crash could already cause some operations not to

complete.

However, the client may itself be a server for some higher-level client. For example, in a large-

scale Web application the lowest-level client is typically a front-end server that responds to HTTP

requests from Web browsers; it issues requests to other servers in the datacenter and generates

HTTP responses. Even if the interactions between the front-end server and back-end servers are

implemented in an exactly-once fashion, the front-end server could crash before responding to the

Web browser. If this happens, the browser may retry the operation, resulting in the same problems

that RIFL was designed to eliminate.

One way to handle these multi-layer situations is to implement RIFL at each layer. For example,
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browsers could generate a unique identifier for each HTTP request, which can be recorded on front-

end servers and used to ensure that requests are carried out exactly once.

However, the ultimate client is a human, and humans are not likely to implement RIFL. For

example, what happens if a user invokes an operation in his/her browser and the browser (or the ma-

chine running it) crashes during the operation? Once again, the operation may or may not complete.

The only way to ensure true end-to-end exactly-once semantics is for systems to provide users

with clues of potential duplicates, so that users can avoid requesting already completed requests

again. For example, when an Amazon.com user clicks “Place your order,” the Amazon server checks

if the user previously ordered the same item. If so, instead of completing the order right away, the

server redirects the user to a confirmation page to verify if it’s a valid new order.

Even though final responsibility for exactly-once semantics must lie with the user, it is still

important for the underlying system to support linearizability in its implementation. This allows the

system to be constructed in layers while avoiding internal duplication of operations, so that a user-

recognizable operation occurs either exactly as specified or not at all. As a counter-example, if an

order were partially filled, it might be difficult for the user to recognize that it needs to be (partially)

reissued.

2.9 Linearizability and Transactions

One interesting question for system design is the relationship between linearizability and trans-

actions. Ultimately, distributed systems often must provide both transactions and exactly-once se-

mantics. In the traditional approach, transactions are implemented first (a relatively thick layer).

Exactly-once behavior is then implemented on top of transactions using one of the approaches dis-

cussed in Section 2.7, such as queued transactions. In RIFL we first implemented linearizability as

a distinct layer, then built transactions on top of it.

The RIFL approach has two advantages. First, the linearizability layer can also be used for

simple operations that do not require distributed transactions, such as writes and increments. This

results in lower latency and higher throughput for these operations.

The second advantage of a separate linearizability layer is that it provides a better modular

decomposition. It encapsulates a significant fraction of the complexity of distributed transactions

into a separate layer, which can be implemented and validated independently. The existence of a

linearizability layer then makes transactions easier to implement, and it eliminates the need for an

exactly-once layer on top of transactions.
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2.10 Summary

This chapter has described RIFL, a mechanism for achieving exactly-once RPC semantics for large-

scale distributed systems. RIFL is a general-purpose mechanism, independent of any particular op-

eration or system. We have implemented RIFL in the RAMCloud storage system to demonstrate its

versatility and performance. RIFL allowed us to make basic operations such as writes and atomic

increments linearizable with only a few additional lines of code, and it significantly simplified the

implementation of a high-performance distributed transaction mechanism.



Chapter 3

Implementing RIFL on Other Systems

Chapter 2 discussed how to implement RIFL on a large-scale distributed storage system, RAMCloud.

The generality and complexity of RAMCloud made RIFL’s design a little more complicated than it

needs to be when implemented on some other systems.

Implementing RIFL is challenging particularly because of these two key requirements (out of 4

requirements in §2.2):

• Atomic durability of the execution results with the mutated objects. To implement this, RIFL

needs to directly use the persistence layer deep in each RPC’s execution code, so RIFL cannot

be deployed as a feature of an RPC package such as gRPC [27] or Apache Thrift [77].

• Finding completion records after reconfiguration (retry rendezvous). To implement this, RIFL

needs to modify a system’s migration and recovery implementation.

The rest of this chapter discusses a situation when the two features can be simplified and how

to implement them easily.

3.1 RIFL on systems that replicate client requests

There are two ways to make an operation durable: the first way is saving the outcome of executions

such as the new value of mutated objects (used by RAMCloud), and the second way is saving

the client requests for replay during recovery (used by Redis, MySQL). Systems using the second

mechanism can recover from a server crash by replaying the saved client requests (they assume

operations are deterministic). Both mechanisms to ensure the durability of operations are widely

used, and some systems such as MySQL support both mechanisms.

46
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Implementing RIFL can be much simpler for systems that save the client requests for durability.

The key difference is that such systems don’t need to save completion records durably but only

need to keep execution results in memory. When a server crashes and a new server reconstructs

the pre-crash state by replaying the saved client requests, RIFL can naturally reobtain the execution

results without the help of completion records. The metadata for RIFL such as the RPC ID and

acknowledgment ID are already part of client requests themselves, so replaying client requests also

automatically reconstructs the pre-crash state of ResultTracker as well. For proper crash recovery,

RIFL merely has to ensure that the replays of client requests go through the normal execution paths

so that RIFL methods can be invoked as in the original executions. In conclusion, RIFL only needs

to save the execution results in memory; for convenience, we will assume execution results are saved

inside ResultTracker.

3.1.1 Benefits

Keeping execution results only in memory simplifies the RIFL architecture in many ways. First,

RIFL no longer needs to be aware of the durability/replication system. One of the prerequisites for

implementing RIFL on a system is that its durability/replication mechanism should support atomic

commitment of a completion record along with the effects of its execution. Without the need for

durable completion records, implementing RIFL doesn’t need to touch the durability/replication

layer at all.

Second, RIFL no longer has to worry about retry rendezvous. If an object is recovered at a

different server after a crash, the object must be reconstructed by replaying client requests. The

execution results of replays can be saved in ResultTracker. Without durable completion records,

RIFL no longer needs to associate each RPC with a specific object or modify migration code for

handling completion records; RIFL can just rely on the underlying system to migrate client requests

accordingly.

Third, RIFL’s performance overhead is reduced as well. Since a system no longer has to save

the execution results as durable completion records, a system can save disk bandwidth (durability)

or network bandwidth (replication). Thus, RIFL can stay efficient even for operations with large

responses such as compare-and-swap or read-and-replace.
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3.1.2 Accommodating snapshots

Systems that save client requests for durability use snapshotting to limit the size of redo logs. Af-

ter snapshotting the current system state, systems drop all client requests before the time of the

snapshot. When a system crashes, it can recover first from the snapshot and then replay the client

requests that were executed after the snapshot.

The removal of client requests can be a problem since RIFL relies on client requests for re-

covering RIFL’s internal data structure, ResultTracker (which now incorporates execution results).

To accommodate snapshotting, the state of ResultTracker must be snapshotted as well. This can be

done by scanning the table in ResultTracker and saving RPC IDs and execution results.

If a system blocks normal operations while snapshotting, snapshotting its data and ResultTracker

is trivial. However, practical systems must not stop normal operation during snapshotting. They

usually achieve the snapshot in background with two approaches: storing data in immutable data

structures and relying on the operating system’s copy-on-write such as fork.

For systems that fork their processors for snapshotting, RIFL adds no complexity. A fork makes

a copy of the server’s entire virtual address space including ResultTracker and in-memory comple-

tion records. Thus, the child process can write out both the server’s state and RIFL’s data, while the

parent process continues servicing normal operations.

For systems using immutable data structures, a snapshotting task takes a reference to the im-

mutable data structure. All client requests up until this time point should be discarded after the

snapshot task is completed. In this case, RIFL can achieve the immutable-during-snapshot effect by

using two lookup tables for ResultTracker. When a snapshot is taken, RIFL can freeze the currently

used lookup table so that it can be scanned and snapshotted consistently. At the same time, the data

in the immutable table can be copied to the new table. While copying the lookup table, RIFL checks

incoming requests against both the new table and the old table. Once the new table incorporates all

completion records of the old table, the old table resets for the next snapshotting.



Chapter 4

Removing Overheads of Consistent
Replication

Fault-tolerant systems rely on replication to mask individual failures. To ensure that an operation is

durable, it cannot be considered complete until it has been properly replicated. Replication intro-

duces a significant overhead because it requires round-trip communication to one or more additional

servers. Within a datacenter, replication can easily double the latency for operations in comparison

to an unreplicated system; in geo-replicated environments the cost of replication can be even greater.

In principle, the cost of replication could be reduced or eliminated if replication could be over-

lapped with the execution of the operation. In practice, however, this is difficult to do. Executing an

operation typically establishes an ordering between that operation and other concurrent operations,

and the order must survive crashes if the system is to provide consistent behavior. If replication

happens in parallel with execution, different replicas may record different orders for the operations,

which can result in inconsistent behavior after crashes. As a result, most systems perform ordering

before replication: a client first sends an operation to a server that orders the operation (and usually

executes it as well); then that server issues replication requests to other servers, ensuring a consis-

tent ordering among replicas. As a result, the minimum latency for an operation is two round-trip

times (RTTs). This problem affects all systems that provide consistency and replication, including

both primary-backup approaches and consensus approaches.

Consistent Unordered Replication Protocol (CURP) reduces the overhead for replication by tak-

ing advantage of the fact that most operations are commutative, so their order of execution doesn’t

matter. CURP supplements a system’s existing replication mechanism with a lightweight form of

replication without ordering based on witnesses. A client replicates each operation to one or more

49
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witnesses in parallel with sending the request to the primary server; the primary can then exe-

cute the operation and return to the client without waiting for normal replication, which happens

asynchronously. This allows operations to complete in 1 RTT, as long as all witnessed-but-not-

yet-replicated operations are commutative. Non-commutative operations still require 2 RTTs. If the

primary crashes, information from witnesses is combined with that from the normal replicas to

re-create a consistent server state.

CURP can be easily applied to most existing systems using primary-backup replication. Changes

required by CURP are not intrusive, and it works with any kind of backup mechanism (e.g. state

machine replication [73], file writes to network replicated drives [4], or scattered replication [59]).

This is important since most high-performance systems optimize their backup mechanisms, and we

don’t want to lose those optimizations (e.g. CURP can be used with RAMCloud without sacrificing

its fast crash recovery [59]).

To show its performance benefits and applicability, I implemented CURP in two NoSQL storage

systems: Redis [72] and RAMCloud [62]. Redis is generally used as a non-durable cache due to its

very expensive durability mechanism. When CURP was applied to Redis, it provided durability and

consistency with similar performance to the non-durable Redis. For RAMCloud, CURP reduced

write latency by half (only a 1 µs penalty relative to RAMCloud without replication) and increased

throughput by 3.8x without compromising consistency.

Overall, CURP is the first replication protocol that completes linearizable deterministic update

operations within 1 RTT without special networking. Instead of relying on special network devices

or properties for fast replication [49, 68, 54, 26, 9], CURP exploits commutativity, and it can be

used for any system where commutativity of client requests can be checked just from operation

parameters (CURP cannot use state-dependent commutativity). Even when compared to Speculative

Paxos or NOPaxos (which require a special network topology and special network switches), CURP

is faster since client request packets do not need to detour to get ordered by a networking device

(NOPaxos has an overhead of 16 µs, but CURP only increased latency by 1 µs).

4.1 Separating Durability from Ordering

Replication protocols supporting concurrent clients have traditionally combined the job of ordering

client requests consistently among replicas and the job of ensuring the durability of operations. This

entanglement causes update operations to take 2 RTTs.

Replication protocols must typically guarantee the following two properties:
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• Consistent Ordering: if a replica completes operation a before b, no client in the system

should see the effects of b without the effects of a.

• Durability: once its completion has been externalized to an application, an executed operation

must survive crashes.

To achieve both consistent ordering and durability, current replication protocols need 2 RTTs.

For example, in master-backup (a.k.a. primary-backup) replication, client requests are always routed

to a master replica, which serializes requests from different clients. As part of executing an oper-

ation, the master replicates either the client request itself or the result of the execution to backup

replicas; then the master responds back to clients. This entire process takes 2 RTTs total: 1 from

clients to masters and another RTT for masters to replicate data to one or more backups in parallel.

Consensus protocols with strong leaders (e.g. Multi-Paxos [44] or Raft [58]) also require 2 RTTs

for update operations. Clients route their requests to the current leader replica, which serializes the

requests into its operation log. To ensure durability and consistent ordering of the client requests,

the leader replicates its operation log to a majority of replicas, and then it executes the operation and

replies back to clients with the results. In consequence, consensus protocols with strong leaders also

require 2 RTTs for updates: 1 RTT from clients to leaders and another RTT for leaders to replicate

the operation log to other replicas.

Fast Paxos [46] and Generalized Paxos [45] reduced the latency of replicated updates from 2

RTTs to 1.5 RTT by allowing clients to optimistically replicate requests with presumed ordering.

Although their leaders don’t serialize client requests by themselves, leaders must still wait for a

majority of replicas to durably agree on the ordering of the requests before executing them. This

extra waiting adds 0.5 RTT overhead. (See §A.1 for a detailed explanation on why they cannot

achieve 1 RTT.)

Network-Ordered Paxos [49] and Speculative Paxos [68] achieve near 1 RTT latency for updates

by using special networking to ensure that all replicas receive requests in the same order. However,

since they require special networking hardware, it is difficult to deploy them in practice. Also, they

can’t achieve the minimum possible latency since client requests detour to a common root-layer

switch (or a middlebox).

The key idea of CURP is to separate durability and consistent ordering, so update operations

can be done in 1 RTT in the normal case. Instead of replicating totally ordered operations in 2

RTTs, CURP achieves durability without ordering and uses the commutativity of operations to defer

agreement on operation order.

To achieve durability in 1 RTT, CURP clients directly record their requests in temporary storage,
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Figure 4.1: CURP clients directly replicate to witnesses. Witnesses only guarantee durability
without ordering. Backups hold data that includes ordering information. Witnesses are tempo-
rary storage to ensure durability until operations are replicated to backups.

called a witness, without serializing them through masters. As shown in Figure 4.1, witnesses do not

carry ordering information, so clients can directly record operations into witnesses in parallel with

sending operations to masters so that all requests will finish in 1 RTT. In addition to the unordered

replication to witnesses, masters still replicate ordered data to backups, but do so asynchronously

after sending the execution results back to the clients. Since clients directly make their operations

durable through witnesses, masters can reply to clients as soon as they execute the operations with-

out waiting for permanent replication to backups. If a master crashes, the client requests recorded

in witnesses are replayed to recover any operations that were not replicated to backups. Overall, a

client can complete an update operation and reveal the result returned from the master if it success-

fully recorded the request in witnesses (optimistic fast path: 1 RTT), or after waiting for the master

to replicate to backups (slow path: 2 RTT).

CURP’s approach introduces two threats to consistency: ordering and duplication. The first

problem is that the order in which requests are replayed after a server crash may not match the

order in which the master processed those requests. CURP uses commutativity to solve this prob-

lem: all of the unsynced requests (those that a client considers complete, but which have not been

replicated to backups) must be commutative. Given this restriction, the order of replay will have no

visible impact on system behavior. Specifically, a witness only accepts and saves an operation if it

is commutative with every other operation currently stored by that witness (e.g., writes to different
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objects). In addition, a master will only execute client operations speculatively (by responding be-

fore replication is complete), if that operation is commutative with every other unsynced operation.

If either a witness or master finds that a new operation is not commutative, the client must ask the

master to sync with backups. This adds an extra RTT of latency, but it flushes all of the speculative

operations.

The second problem introduced by CURP is duplication. When a master crashes, it may have

completed the replication of one or more operations that are recorded by witnesses. Any completed

operations will be re-executed during replay from witnesses. Thus there must be a mechanism to

detect and filter out these re-executions. The problem of re-executions is not unique to CURP, and

Chapter 2 presented a general solution, RIFL. CURP reuses RIFL to avoid duplicate executions

during recovery.

We can apply the idea of separating ordering and durability to both consensus-based replicated

state machines (RSM) and primary-backup, but this chapter focuses on primary-backup since it is

more critical for application performance. Fault-tolerant large-scale high-performance systems are

mostly configured with a single cluster coordinator replicated by consensus and many data servers

using primary-backup (e.g. Chubby [17], ZooKeeper [35], Raft [58] are used for cluster coordinators

in GFS [30], HDFS [75], and RAMCloud [62]). The cluster coordinators are used to prevent split-

brains for data servers, and operations to the cluster coordinators (e.g. change of master node during

recovery) are infrequent and less latency sensitive. On the other hand, operations to data servers

(e.g. insert, replace, etc) directly impact application performance, so the rest of this chapter will

focus on the CURP protocol for primary-backup, which is the main replication technique for data

servers. In §5.2, we sketch how the same technique can be used for consensus.

4.2 CURP Protocol

CURP is a new replication protocol that allows clients to complete linearizable updates within 1

RTT. Masters in CURP speculatively execute and respond to clients before the replication to back-

ups has completed. To ensure the durability of the speculatively completed updates, clients multicast

update operations to witnesses. To preserve linearizability, witnesses and masters enforce commu-

tativity among operations that are not fully replicated to backups.
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Figure 4.2: CURP architecture for f = 3 fault tolerance.

4.2.1 Architecture and Model

CURP provides the same guarantee as current primary-backup protocols: it provides linearizability

to client requests in spite of failures. CURP assumes a fail-stop model and does not handle byzantine

faults. As in typical primary-backup replications, it uses a total of f + 1 replicas composed of 1

master and f backups, where f is the number of replicas that can fail without loss of availability.

In addition to that, it uses f witnesses to ensure durability of updates even before replications to

backups are completed. As shown in Figure 4.2, witnesses may fail independently and may be

co-hosted with backups. CURP remains available (i.e. immediately recoverable) despite up to f

failures, but will still be strongly consistent even if all replicas fail.

Throughout this chapter, we assume that witnesses are separate from backups. This allows

CURP to be applied to a wide range of existing replicated systems without modifying their special-

ized backup mechanisms. For example, CURP can be applied to a system which uses file writes to

network replicated drives as a backup mechanism, where the use of witnesses will improve latency

while retaining its special backup mechanism. However, when designing new systems, witnesses

may be combined with backups for extra performance benefits. (See §5.1 for details.)

CURP makes no assumptions about the network. It operates correctly even with networks that

are asynchronous (no bound on message delay) and unreliable (messages can be dropped). Thus,

it can achieve 1 RTT updates on replicated systems in any environment, unlike other alternative

solutions. (For example, Speculative Paxos [68] and Network-Ordered Paxos [49] require special

networking hardware and cannot be used for geo-replication.)
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4.2.2 Normal Operation

4.2.2.1 Client

Client interaction with masters is generally the same as it would be without CURP. Clients send

update RPC requests to masters. If a client cannot receive a response, it retries the update RPC. If

the master crashes, the client may retry the RPC with a different server.

For 1 RTT updates, masters return to clients before replication to backups. To ensure durability,

clients directly record their requests to witnesses concurrently while waiting for responses from

masters. Once all f witnesses have accepted the requests, clients are assured that the requests will

survive master crashes, so clients complete the operations with the results returned from masters.

If a client cannot record in all f witnesses (due to failures or rejections by witnesses), the client

cannot complete an update operation in 1 RTT. To ensure the durability of the operation, the client

must wait for replication to backups by sending a sync RPC to the master. Upon receiving sync
RPCs, the master ensures the operation is replicated to backups before returning to the client. This

waiting for sync increases the operation latency to 2 RTTs in most cases and up to 3 RTT in the

worst case where the master hasn’t started syncing until it receives a sync RPC from a client. If

there is no response to the sync RPC (indicating the master might have crashed), the client restarts

the entire process; it resends the update RPC to a (potentially new) master and tries to record the

RPC request in witnesses of the new master.

4.2.2.2 Witness

Witnesses support 3 basic operations: they record operations in response to client requests, hold the

operations until explicitly told to drop by masters, and provide the saved operations during recovery.

Once a witness accepts a record RPC for an operation, it guarantees the durability of the opera-

tion until told that the operation is safe to drop. To be safe from power failures, witnesses store their

data in non-volatile memory (such as flash-backed DRAM). This is feasible since a witness needs

only a small amount of space to temporarily hold recent client requests. Similar techniques are used

in strongly-consistent low-latency storage systems, such as RAMCloud [62].

A witness accepts a new record RPC from a client only if the new operation is commutative

with all operations that are currently saved in the witness. If the new request doesn’t commute with

one of the existing requests, the witness must reject the record RPC since the witness has no way

to order the two noncommutative operations consistent with the execution order in masters. For

example, if a witness already accepted “x 1”, it cannot accept “x 5”.
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Witnesses must be able to determine whether operations are commutative or not just from the

operation parameters. For example, in key-value stores, witnesses can exploit the fact that op-

erations on different keys are commutative. In some cases, it is difficult to determine whether

two operations commute each other. SQL UPDATE is an example; it is impossible to determine

the commutativity of “UPDATE T SET rate = 40 WHERE level = 3” and “UPDATE T

SET rate = rate + 10 WHERE dept = SDE” just from the requests themselves. To de-

termine the commutativity of the two updates, we must run them with real data. Thus, witnesses

cannot be used for operations whose commutativity depends on the system state. In addition to

the case explained, determining commutativity can be more subtle for complex systems, such as a

DBMS with triggers and views.

Each of f witnesses operates independently; witnesses need not agree on either ordering or

durability of operations. In an asynchronous network, record RPCs may arrive at witnesses in dif-

ferent orders, which can cause witnesses to accept and reject different sets of operations. However,

this does not endanger consistency. First, as mentioned in §4.2.2.1, a client can proceed without

waiting for sync to backups only if all f witnesses accepted its record RPCs. Second, requests in

each witness are required to be commutative independently, and only one witness is selected and

used during recovery (described in §4.2.3).

4.2.2.3 Master

The role of masters in CURP is similar to their role in traditional primary-backup replications.

Masters in CURP receive, serialize, and execute all update RPC requests from clients. If an executed

operation updates the system state, the master synchronizes (syncs) its current state with backups

by replicating the updated value or the log of ordered operations.

Unlike traditional primary-backup replication, masters in CURP generally respond back to

clients before syncing to backups, so that clients can receive the results of update RPCs within

1 RTT. We call this speculative execution since the execution may be lost if masters crash. Also,

we call the operations that were speculatively executed but not yet replicated to backups unsynced

operations. As shown in Figure 4.3, all unsynced operations are contiguous at the tail of the masters’

execution history.

To prevent inconsistency, a master must sync before responding if the operation is not commu-

tative with any existing unsynced operation. If a master responds for a noncommutative operation

before syncing, the result returned to the client may become inconsistent if the master crashes. This

is because the later operation might complete and its result could be externalized (because it was
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Figure 4.3: Sequence of executed operations in the crashed master.

recorded to witnesses) while the earlier operation might not survive the crash (because, for example,

its client crashed before recording it to witnesses). For example, if a master speculatively executes

“x 2” and “read x”, the returned read value, 2, will not be valid if the master crashes and loses

“x 2”. To prevent such unsafe dependencies, masters enforce commutativity among unsynced

operations; this ensures that all results returned to clients will be valid as long as they are recorded

in witnesses. In the read vs. write case above, the master will sync the write before returning from

the read.

If an operation is synced because of a conflict, the master tags its result as “synced” in the

response; so, even if the witnesses rejected the operation, the client doesn’t need to send a sync
RPC and can complete the operation in 2 RTTs.

4.2.3 Recovery

CURP recovers from a master’s crash in two phases: (1) restoration from backups and (2) replay

from witnesses. First, the new master restores data from one of the backups, using the same mech-

anism it would have used in the absence of CURP.

Once all data from backups have been restored, the new master replays the requests recorded

in witnesses. The new master picks any available witness. If none of the f witnesses are reachable,

the new master must wait. After picking the witness to recover from, the new master first asks it to

stop accepting more operations; this prevents clients from erroneously completing update operations

after recording them in a stale witness whose requests will not be retried anymore. After making the

selected witness immutable, the new master retrieves the requests recorded in the witness. Since all

requests in a single witness are guaranteed to be commutative, the new master can execute them in

any order. After replaying all requests recorded in the selected witness, the new master finalizes the

recovery by syncing to backups and resetting witnesses for the new master (or assigning a new set

of witnesses). Then the new master can start accepting client requests again.

Some of the requests in the selected witness may have been executed and replicated to backups

before the master crashed, so the replay of such requests will result in re-execution of already
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executed operations. Duplicate executions of the requests can violate linearizability [47].

To avoid duplicate executions of the requests that are already replicated to backups, CURP relies

on exactly-once semantics provided by RIFL [47], which detects already executed client requests

and avoids their re-execution. Such mechanisms for exactly-once semantics are already necessary to

achieve linearizability for distributed systems [47], so CURP does not introduce a new requirement.

In RIFL, clients assign a unique ID to each RPC; servers save the IDs and results of completed

requests and use them to detect and answer duplicate requests. The IDs and results are durably

preserved with updated objects in an atomic fashion. (If a system replicates client requests to back-

ups instead of just updated values, providing atomic durability becomes trivial since each request

already contains its ID and its result can be obtained from its replay during recovery.)

4.3 Informal Proof of Correctness

With the normal operation behaviors described in §4.2.2, the recovery protocol in §4.2.3 guarantees

the following correctness properties.

• Durability: if a client completes an operation, it survives server crashes.

• Consistency: if a client completes an operation, its result returned to an application remains

consistent after server crash recoveries.

• Linearizability: an operation appears to be executed exactly once between start and comple-

tion.

Before presenting proofs, we reiterate some key behaviors of the CURP protocol.

(Rule 1) from §4.2.2.1, a client only completes an update operation if (1) it is recorded in all f

witnesses or (2) it is replicated to f backups.

(Rule 2) a completed unsynced operation must be individually commutative with all preceding

operations that are not synced yet. This is the behavior described in §4.2.2.3; a master must sync

before responding if the current operation is not commutative with any other existing (preceding)

unsynced operations.

Now, we present proof sketches for the properties.

Durability: recovery of a master only completes after recovery from 1 backup and 1 witness,

and the completed operation must exist in the backup or the witness by (Rule 1); thus, the completed

operation must be recovered when the recovery is completed. ⇤
Consistency: Consider an individual completed operation a and its consistency. To prove that
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a’s result doesn’t change even after crash recovery, we will think about the ordered list of all oper-

ations that were executed at the master before a was executed, which we will call history of a (or

Ha ).

Case 1: the operation a has been synced to the backup used for recovery. This operation will be

recovered from the backup (phase 1) and any replay from witnesses (phase 2) will be ignored (by

RIFL). Since backup syncs preserve the execution order of operations, the Ha didn’t change; so the

post-recovery execution sequence should regenerate the original execution result of a .

Case 2: the operation a has not been synced to the backup used for recovery. a must have been

recorded in all witnesses by (Rule 1) and will be recovered during phase 2. We can split the original

execution history of a into two parts as in Figure 4.3: hsyncedi followed by hunsyncedi. The 1st

phase of recovery will recover the exactly same execution history for the hsyncedi part. By (Rule 2),

we know that losing any hunsyncedi part of history after crash will not change the execution result

of a . During phase 2 of recovery (from a witness), we may replay some other operations before

replaying a , but the result of a doesn’t change since all operations recorded in the witness must be

commutative. ⇤
Linearizability: we assume that the underlying system before applying CURP guarantees lin-

earizability for operations that are replicated to backups. It might seem that CURP could break the

linearizability of the underlying system since masters in CURP return before syncing to backups.

So, we will reason about how CURP recovers from master crashes without breaking linearizability.

The definition of linearizability can be reworded as following: if the execution of an operation is

observed by the issuing client or other clients, no contrary observation can occur afterwards (i.e. it

should not appear to revert or be reordered). Since we only care about what happens after recovery,

we prove the following proposition: if the execution of an individual operation a is observed before

crash, no contrary observation can occur after recovery.

Case 1: the execution of a was observed by other dependent operations (e.g. reads). By (Rule

2), the master must have synced a to backups since dependent operations don’t commute with a .

Since it was replicated to backups, a will be linearizable as long as the underlying system is.

Case 2: the execution was observed only by the completion of a . a must be recovered because

of the Durability property. The only observation about a before crash was the returned execution

result, and it must be still consistent even after recovery because of the Consistency property.

Case 3: no observation was made before crash. a may be lost if it didn’t reach either the backup

or witness used for recovery. In CURP, the client keeps retrying until it can complete a . Regardless

of whether a was recovered or not, RIFL ensures the retry will only execute a at-most once and
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return the result of the sole execution. ⇤

4.3.1 Garbage Collection

To limit memory usage in witnesses and reduce possible rejections due to commutativity violations,

witnesses must discard requests as soon as possible. Witnesses can drop the recorded client requests

after masters make their outcomes durable in backups. In CURP, masters send garbage collection

RPCs for the synced updates to their witnesses. The garbage collection RPCs are batched: each RPC

lists several operations that are now durable (using RPC IDs provided by RIFL [47]).

4.3.2 Reconfigurations

This section discusses three cases of reconfiguration: recovery of a crashed backup, recovery of

a crashed witness, and data migration for load balancing. First, CURP doesn’t change the way to

handle backup failures, so a system can just recover a failed backup as it would without CURP.

Second, if a witness crashes or becomes non-responsive, the system configuration manager (the

owner of all cluster configurations) decommissions the crashed witness and assigns a new witness

for the master; then it notifies the master of the new witness list. When the master receives the

notification, it syncs to backups to ensure f -fault tolerance and responds back to the configuration

manager that it is now safe to recover from the new witness. After this point, clients can use f

witnesses again to record operations. However, CURP does not push the new list of witnesses to

clients. Since clients cache the list of witnesses, clients may still use the decommissioned witness

(if it was temporarily disconnected, the witness will continue to accept record RPCs from clients).

This endangers consistency since requests recorded in the old witnesses will not be replayed during

recovery.

To prevent clients from completing an unsynced update operation with just recording to old

witnesses, CURP maintains a monotonically increasing integer, WitnessListVersion, for each master.

A master’s WitnessListVersion is incremented every time the witness configuration for the master is

updated, and the master is notified of the new version along with the new witness list. Clients obtain

the WitnessListVersion when they fetch the witness list from the configuration manager. On all

update requests, clients include the WitnessListVersion, so that masters can detect and return errors

if the clients used wrong witnesses; if they receive errors, the clients fetch new witness lists and

retry the updates. This ensures that clients’ update operations can never complete without syncing

to backups or recording to current witnesses.
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Third, for load balancing, a master can split its data into two partitions and migrate a partition

to a different master. Migrations usually happen in two steps: a prepare step of copying data while

servicing requests and a final step which stops servicing (to ensure that all recent operations are

copied) and changes configuration. To simplify the protocol changes from the base primary-backup

protocol, CURP masters sync to backups and reset witnesses before the final step of migration, so

witnesses are completely ruled out of migration protocols. After the migration is completed, some

clients may send updates on the migrated partition to the old master and old witnesses; the old

master will reject and tell the client to fetch the new master information (this is the same as without

CURP); then the client will fetch the new master and its witness information and retry the update.

Meanwhile, the requests on the migrated partition can be accidentally recorded in the old witness,

but this does not cause safety issues; masters will ignore such requests during the replay phase of

recovery by the filtering mechanism used to reject requests on not owned partitions during normal

operations.

4.3.3 Read Operations

CURP handles read operations in a fashion similar to that of primary-backup replication. Since such

operations don’t modify system state, clients can directly read from masters, and neither clients nor

masters replicate read-only operations to witnesses or backups.

However, even for read operations, a master must check whether a read operation commutes

with all currently unsynced operations as discussed in §4.2.2.3. If the read operation conflicts with

some unsynced update operations, the master must sync the unsynced updates to backups before

responding for the read.

4.3.4 Consistent Reads from Backups

In primary-backup replication, clients normally issue all read operations to the master. However,

some systems allow reading from backups because it reduces the load on masters and can provide

better latency in a geo-replicated environment (clients can read from a backup in the same region

to avoid wide-area RTTs). However, naively reading from backups can violate linearizability since

updates in CURP can complete before syncing to backups.

To avoid reading stale values, clients in CURP use a nearby witness (possibly colocated with a

backup) to check whether the value read from a nearby backup is up to date. To perform a consistent

read, a client must first ask a witness whether the read operation commutes with the operations
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Figure 4.4: Three cases of reading the value of x from a backup replica while another client
is changing the value of x from 0 to 1: (a) client R first confirms that a nearby witness has
no request that is not commutative with “read x,” so the client directly reads the value of x
from a nearby backup. (b) Just after client W completes “x 1”, client R starts another read.
Client R finds that there is a non-commutative request saved in a nearby witness, so it must
read from a remote master to guarantee consistency. (c) After syncing “x 1” to the backup,
the master garbage collected the update request from witnesses and acknowledged the full sync
to backups. Now, client R sees no non-commutative requests in the witness and can complete
read operation by reading from the nearby backup.
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currently saved in the witness (as shown in Figure 4.4). If it commutes, the client is assured that the

value read from a backup will be up to date. If it doesn’t commute (i.e. the witness retains a write

request on the key being read), the value read from a backup might be stale. In this case, the client

must read from the master.

In addition, we assume that the underlying primary-backup replication mechanism prevents

backups from returning new values that are not yet fully synced to all backups. Such mechanism

is neccessary even before applying CURP since returning a new value prematurely can cause in-

consistency; even if a value is replicated to some of backups, the value may get lost if the master

crashes and a new master recovers from a backup that didn’t receive the new value. A simple so-

lution for this problem is that backups don’t allow reading values that are not yet fully replicated

to all backups. For backups to track which values are fully replicated and ok to be read, a master

can piggyback the acknowlegements for successful previous syncs when it sends sync requests to

backups. When a client tries to read a value that is not known to be yet fully replicated, the backup

can wait for full replication or ask the client to retry.

Thanks to the safety mechanisms discussed above, CURP still guarantees linearizability. With

a concurrent update, reading from backups could violate linearizability in two ways: (1) a read

sees the old value after the completion of the update operation and (2) a read sees the old value

after another read returned the new value. The first issue is prevented by checking a witness before

reading from a backup. Since clients can complete an update operation only if it is synced to all

backups or recorded in all witnesses, a reader will either see a noncommutative update request in

the witness being checked or find the new value from the backup; thus, it is impossible for a read

after an update to return the old value. For the second issue, since both a master and backups delay

reads of a new value until it is fully replicated to all backups, it is impossible to read an older value

after another client reads the new value.

4.4 Implementation on NoSQL Storage

This section describes how to implement CURP on low-latency NoSQL storage systems that use

primary-backup replication. With the emergence of large-scale Web services, NoSQL storage sys-

tems became very popular (e.g. Redis [72], RAMCloud [62], DynamoDB [76] and MongoDB [2]),

and they range from simple key-value stores to more fully featured stores supporting secondary in-

dexing and multi-object transactions; so, improving their performance using CURP is an important
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CLIENT TO WITNESS:
record(masterID, list of keyHash, rpcId, request)! {ACCEPTED or REJECTED}

Saves the client request (with rpcId) of an update on keyHashes. Returns whether the
witness could accomodate and save the request.

MASTER TO WITNESS:
gc(list of {keyHash, rpcId})! list of request

Drops the saved requests with the given keyHashes and rpcIds. Returns stale requests that
haven’t been garbage collected for a long time.

getRecoveryData()! list of request
Returns all requests saved for a particular crashed master.

CLUSTER COORDINATOR TO WITNESS:
start(masterId)! {SUCCESS or FAIL}

Start a witness instance for the given master, and return SUCCESS. If the server fails to
create the instance, FAIL is returned.

end()! NULL
This witness is decommissioned. Destruct itself.

Figure 4.5: The APIs of witnesses.

problem with a broad impact.

The most important piece missing from §4.2 to implement CURP is how to efficiently detect

commutativity violations. Fortunately for NoSQL systems, CURP can use primary keys to effi-

ciently check the commutativity of operations. NoSQL systems store data as a collection of objects,

which are identified by primary keys. Most update operations in NoSQL specify the affected ob-

ject with its primary key (or a list of primary keys), and update operations are commutative if they

modify disjoint sets of objects. The rest of this section describes an implementation of CURP that

exploits this efficient commutativity check.

4.4.1 Life of a Witness

Witnesses have two modes of operation: normal and recovery. In each mode, witnesses service a

subset of operations listed in Figure 4.5. When it receives a start RPC, a witness starts its life

for a master in normal mode, in which the witness is allowed to mutate its collection of saved

requests. In normal mode, the witness services record RPCs for client requests targeted to the

master for which the witness was configured by start; by accepting only requests for the correct

master, CURP prevents clients from recording to incorrect witnesses. Also, witnesses drop their

saved client requests as they receive gc RPCs from masters.
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A witness irreversibly switches to a recovery mode once it receives a getRecoveryData RPC.

In recovery mode, mutations on the saved requests are prohibited; witnesses reject all record RPCs

and only service getRecoveryData or end. As a recovery is completed and the witness becomes

useless, the cluster coordinator sends end to free up the resources, so that the witness server can

start another life for a different master.

4.4.2 Data Structure of Witnesses

Witnesses are designed to minimize the CPU cycles spent for handling record RPCs. For client

requests mutating a single object, recording to a witness is similar to inserting in a set-associative

cache; a record operation finds a set of slots using a hash of the object’s primary key and writes

the given request to an available slot in the set. To enforce commutativity, the witness searches

the occupied slots in the set and rejects if there is another request with the same primary key (for

performance, we compare 64-bit hashes of primary keys instead of full keys). If there is no slot

available in the set for the key, the record operation is rejected as well.

We initially used a direct-mapped cache instead of set-associative cache, but this resulted in a

high rate of rejections because of conflicts (i.e. no slot is available for the mapped set). Figure 4.6

shows the expected number of recordings before a conflict occurs on a witness slot. Using a direct

mapping and 4096 total slots, it is expected to have a false conflict after about 80 insertions. Thus,
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we switched to 4-way associative cache, to reduce witness rejections. We didn’t need 8-way asso-

ciativity (a bit slower than 4-way) since the number of requests in witnesses is already limited by

commutativity. (Once a master hits a non-commutative operation and syncs to backups, all saved

requests in the witness are garbage collected.)

For client requests mutating multiple objects, witnesses perform the commutativity and space

check for every affected object; to accept an update affecting n objects, a witness must ensure that

(1) no existing client request mutates any of the n objects and (2) there is an available slot in each set

for all n objects. If the update is commutative and space is available, the witness writes the update

request n times as if recording n different requests on each object.

4.4.3 Commutativity Checks in Masters

Every NoSQL update operation changes the values of one or more objects. To enforce commuta-

tivity, a master can check if the objects touched (either updated or just read) by an operation are

unsynced at the time of its execution. If an operation touches any unsynced value, it is not commu-

tative and the master must sync all unsynced operations to backups before responding back to the

client.

If the object values are stored in a log, masters can determine if an object value is synced or not

by comparing its position in the log against the last synced position.

If the object values are not stored in a log, masters can use monotonically increasing timestamps.

Whenever a master updates the value of an object, it tags the new value with a current timestamp.

Also, the master keeps the timestamp of when the last backup sync started. By comparing the

timestamp of an object against the start time of the last successfully completed backup sync, a

master can tell whether the value of the object has been synced to backups.

4.4.4 Improving Throughput of Masters

Masters in primary-backup replication are usually the bottlenecks of systems since they drive repli-

cation to backups. Since masters in CURP can respond to clients before syncing to backups, they

can delay and batch syncs without impacting latency. This batching of syncs improves masters’

throughput in two ways.

First, by batching replication RPCs, CURP reduces the number of RPCs a master must handle

per client request. With 3-way primary-backup replication, a master must process 4 RPCs per client

request (1 update RPC and 3 replication RPCs). If the master batches replication and syncs every
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10 client requests, it handles 1.3 RPCs on average. On NoSQL storage systems, sending and receiv-

ing RPCs takes a significant portion of the total processing time since NoSQL operations are not

compute-heavy.

Second, CURP eliminates wasted resources and other inefficiencies that arise when masters

wait for syncs. For example, in the RAMCloud [62] storage system, request handlers use a polling

loop to wait for completion of backup syncs. The syncs complete too quickly to context-switch to a

different activity, but the polling still wastes more than half of the CPU cycles of the polling thread.

With CURP, a master can complete a request without waiting for syncing and move on to the next

request immediately, which results in higher throughput.

The batch size of syncs is limited in CURP to reduce witness rejections. Delaying syncs in-

creases the chance of finding non-commutative operations in witnesses and masters, causing extra

rejections in witnesses and more blocking syncs in masters. A simple way to limit the batching

would be for masters to issue a sync immediately after responding to a client if there is no outstand-

ing sync; this strategy gives a reasonable throughput improvement since at most one CPU core will

be used for syncing, and it also reduces witness rejections by syncing aggresively. However, to find

the optimal batch size, an experiment with a system and real workload is necessary since each work-

load has a different sensitivity to larger batch sizes. For example, workloads which randomly access

large numbers of keys uniformly can use a very large batch size without increasing the chance of

commutativity conflicts.

4.4.5 Garbage Collection

As discussed in §4.3.1, masters send garbage collection RPCs for synced updates to their witnesses.

Right after syncing to backups, masters send gc RPCs (in Figure 4.5), so the witnesses can discard

data for the operations that were just synced.

To identify client requests for removal, CURP uses 64-bit key hashes and RPC IDs assigned by

RIFL [47]. Upon receiving a gc RPC, a witness locates the sets of slots using the keyHashes and

resets the slots whose occupying requests have the matching RPC IDs. Witnesses ignore keyHashes

and rpcIds that are not found since the record RPCs might have been rejected. For client requests that

mutate multiple objects, gc RPCs include multiple hkeyHash, rpcIdsi pairs for all affected objects,

so that witnesses can clear all slots occupied by the request.

Although the described garbage collection can clean up most records, some slots may be left

uncollected: if a client crashes before sending the update request to the master, or if the record
RPC is delayed significantly and arrives after the master finished garbage collection for the update.
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Uncollected garbage will cause witnesses to indefinitely reject requests with the same keys.

Witnesses detect such uncollected records and ask masters to retry garbage collection for them.

When a witness rejects a record RPC due to a conflict, it marks the existing noncommutative request

as uncollected garbage if there have been many garbage collections since the request was recorded

(three is a good number if a master performs only one gc RPC at a time). Witnesses notify masters

of the requests that are suspected as uncollected garbage through the response messages of gc RPCs;

then the masters execute the uncollected requests (most likely filtered by RIFL) as if they were sent

from clients so that the regular garbage collection mechanism will include the uncollected requests

in the next gc request.

4.4.6 Recovery Steps

To recover a crashed master, CURP first restores data from backups and then replays requests from

a witness. To fetch the requests to replay, the new master sends a getRecoveryData RPC (in Fig-

ure 4.5), which has two effects: (1) it irreversibly sets the witness into recovery mode, so that the

data in the witness will never change, (2) it provides the entire list of client requests saved in the

witness.

With the provided requests, the new master replays all of them. Since operations already recov-

ered from backups will be filtered out by RIFL [47], the replay step finishes very quickly. In total,

CURP increases recovery time by the execution time for a few requests plus 2 RTT (1 RTT for

getRecoveryData and another RTT for backup sync after replay).

4.4.7 Zombies

For a fault-tolerant system to be consistent, it must neutralize zombies. A zombie is a server that has

been determined to have crashed, so some other server has taken over its functions, but the server

has not actually crashed (e.g., it may have suffered temporary network connectivity problems).

Clients may continue to communicate with zombies; reads or updates accepted by a zombie may be

inconsistent with the state of the replacement server.

CURP assumes that the underlying system already has mechanisms to neutralize zombies (e.g.,

by asking backups to reject replication requests from a crashed master [62]). The witness mecha-

nism provides additional safeguards. If a zombie responds to a client request without waiting for

replication, then the client must communicate with all witnesses before completing the request. If it

succeeds before the witness data has been replayed during recovery, then the update will be reflected
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in the new master. If the client contacts a witness after its data has been replayed, the witness will

reject the request; the client will then discover that the old master has crashed and reissue its request

to the new master. Thus, the witness mechanism does not create new safety issues with respect to

zombies.

4.4.8 Modifications to RIFL

In order to work with CURP, the garbage collection mechanisms of RIFL in §2.3.2 and §2.3.3 must

be modified. RIFL has two mechanisms for garbage collecting completion records: (1) on RPC

requests, clients piggyback acknowledgments of the results of their previous requests (so servers

can safely delete these completion records), and (2) clients maintain leases in a central server; if a

client’s lease expires, masters can delete all completion records for that client. Both of these must

be modified to work with CURP.

Since both garbage collection mechanisms assume that retries always come from the same client

that made the original request, RIFL must be modified to accommodate retries from witnesses.

Firstly, once clients acknowledge the receipts of results, masters remove their completion records

and start to ignore (not returning results) the duplicate requests. Since replays from witnesses hap-

pen in random order, acknowledgements piggybacked on later requests can make masters ignore

the replay of earlier requests. Thus, clients’ acknowledgments included in RPC requests must be

ignored during recovery from witnesses.

Secondly, if a client crashes and its lease expires, masters remove all of the completion records

for the client; then any requests from the expired client are ignored. This can be a problem in CURP

since the replay of the expired client’s requests will be ignored during witness-based recovery. To

prevent this, masters must sync all operations to backups before expiring a client lease. In practice,

the period of syncs is much smaller than the grace period between the time of a client crash and the

time of its lease expiration; so, most systems are safe automatically.

4.5 Evaluation

I evaluated CURP by implementing it in the RAMCloud and Redis storage systems, which have very

different backup mechanisms. First, using the RAMCloud implementation, we show that CURP im-

proves the performance of consistently replicated systems. Second, with the Redis implementation,

we demonstrate that CURP can make strong consistency affordable in a system where it had previ-

ously been too expensive for practical use.
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RAMCloud cluster Redis cluster
CPU Xeon X3470 (4x2.93 GHz) Xeon D-1548 (8x2.0 GHz)
RAM 24 GB DDR3 at 800 MHz 64 GB DDR4
Flash 2x Samsung 850 PRO SSDs Toshiba NVMe flash

NIC Mellanox ConnectX-2 Mellanox ConnectX-3
InfiniBand HCA (PCIe 2.0) 10 Gbps NIC (PCIe 3.0)

Switch Mellanox SX6036 (2 level) HPE 45XGc
OS Linux 3.16.0-4-amd64 Linux 3.13.0-100-generic

Table 4.1: The server hardware configuration for benchmarks.

4.5.1 RAMCloud Performance Improvements

RAMCloud [62] is a large-scale low latency distributed key-value store, which primarily focuses

on reducing latency. Small read operations take 5 µs, and small writes take 14 µs. By default,

RAMCloud replicates each new write to 3 backups, which asynchronously flush data into local

drives. Although replicated data are stored in slow disk (for cost saving), RAMCloud features a

technique to allow fast recovery from a master crash (it recovers within a few seconds) [59].

With the RAMCloud implementation of CURP, we answered the following questions:

• How does CURP improve RAMCloud’s latency and throughput?

• How many resources do witness servers consume?

• Will CURP be performant under highly-skewed workloads with hot keys?

Our evaluations using the RAMCloud implementation were conducted on a cluster of machines

with the specifications shown in Table 4.1. All measurements used InfiniBand networking and

RAMCloud’s fastest transport, which bypasses the kernel and communicates directly with Infini-

Band NICs. Our CURP implementation kept RAMCloud’s fast crash recovery [59], which recovers

from master crashes within a few seconds using data stored on backup disks. Servers were config-

ured to replicate data to 1–3 different backups (and 1–3 witnesses for CURP results), indicated as a

replication factor f . The log cleaner of RAMCloud did not run in any measurements; in a production

system, the log cleaner can reduce the throughput.

For RAMCloud, CURP moved backup syncs out of the critical path of write operations. This

decoupling not only improved latency but also improved the throughput of RAMCloud writes.

Figure 4.7 shows the latency of RAMCloud write operations before and after applying CURP.

CURP cuts the median write latencies in half. Even the tail latencies are improved overall. When

compared to unreplicated RAMCloud, each additional replica with CURP adds 0.3 µs to median

latency.
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Figure 4.8 shows the single server throughput of write operations with and without CURP as

the number of clients varies. The server batches 50 writes before starting a sync. By batching backup

syncs, CURP improves throughput by about 4x. When compared to unreplicated RAMCloud, adding

an additional CURP replica drops throughput by ⇠6%.

To illustrate the overhead of CURP on throughput (e.g. sending gc RPCs to witnesses), we

measured RAMCloud with asynchronous replication to 3 backups, which is identical to CURP

( f =3) except that it does not record information on witnesses. Achieving strong consistency with

CURP reduces throughput by 10%. In all configurations except the original RAMCloud, masters

are bottlenecked by a dispatch thread which handles network communications for both incoming

and outgoing RPCs. Sending witness gc RPCs burdens the already bottlenecked dispatch thread and

reduces throughput.

I also measured the latency and throughput of RAMCloud read operations before and after

applying CURP, and there were no differences.

4.5.2 Resource Consumption by Witness Servers

Each witness server implemented in RAMCloud can handle 1270k record requests per second with

occasional garbage collection requests (1 every 50 writes) from master servers. A witness server

runs on a single thread and consumes 1 hyper-thread core at max throughput. Considering that

each RAMCloud master server uses 8 hyper-thread cores to achieve 728k writes per second, adding

1 witness increases the total CPU resources consumed by RAMCloud by 7%. However, CURP

reduces the number of distinct backup operations performed by masters, because it enables batching;

this offsets most of the cost of the witness requests (both backup and witness operations are so

simple that most of their cost is the fixed cost of handling an RPC; a batched replication request

costs about the same as a simple one).

The second resource overhead is memory usage. Each witness server allocates 4096 request

storage slots for each associated master, and each storage slot is 2KB (any request over 2KB are

rejected and must take the slow path). With additional metadata, the total memory overhead per

master-witness pair is around 9MB.

The third issue is network traffic amplification. In CURP, each update request is replicated

both to witnesses and backups. With 3-way replication, CURP increases network bandwidth use

for update operations by 75% (in the original RAMCloud, a client request is transferred over the

network to a master and 3 backups).
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Figure 4.9: Throughput of a single RAMCloud server for YCSB-A and YCSB-B workloads
with CURP at different Zipfian skewness levels. Each experiment was run 5 times, and median
values are displayed with errorlines for min and max.

4.5.3 Impact of Highly-Skewed Workloads

CURP may lose its performance benefits when used with highly-skewed workloads with hot keys;

in CURP, an unsynced update on a key causes conflicts on all following updates or reads on the

same key until the sync completes. To measure the impact of hot keys, we measured RAMCloud’s

performance with CURP using a highly-skewed Zipfian distribution [33] with 1M objects. Specif-

ically, we used two different workloads similar to YCSB-A and YCSB-B [21]; since RAMCloud

is a key-value store and doesn’t support 100B field writes in 1k objects, we modified the YCSB

benchmark to read and write 100B objects with 30B keys.

Figure 4.9 shows the impact of workload skew (defined in [33]) on the throughput of a single

server. For YCSB-A (write-heavy workload), the server throughput with CURP is similar to an un-

replicated server when skew is low, but it drops as the workload gets more heavily skewed. For

YCSB-B, since most operations are reads, the throughput is less affected by skew. CURP’s through-

put benefit degrades starting at a Zipfian parameter q = 0.8 (about 3% of accesses are on hot keys)

and almost disappears at q = 0.99.

Figure 4.10 shows the impact of skew on CURP’s latency; unlike the throughput benefits, CURP

retains its latency benefits even with extremely skewed workloads. We measured latencies under

load since an unloaded system will not experience conflicts even with extremely skewed workloads.

For YCSB-A, the latency of CURP increases starting at q = 0.85, but CURP still reduces latency by

42% even at q = 0.99. For YCSB-B, only 5% of operations are writes, so the latency improvements

are not as dramatic as YCSB-A.
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Figure 4.10: Average RAMCloud client request latency for YCSB-A and YCSB-B workloads
with CURP at different Zipfian skewness levels. 10 clients issued requests to maintain a certain
throughput level (250 kops for YCSB-A and 700 kops for YCSB-B). Each experiment was run
5 times, and median values are displayed with errorlines for min and max. Latency values are
averaged over both read and write operations.

Figure 4.11 shows the latency distributions of reads and writes separately at q = 0.95 under

the same loaded conditions as Figure 4.10. For YCSB-A, CURP increases the tail latency for read

operations slightly since reads occasionally conflict with unsynced writes on the same keys. CURP

reduces write latency by 2–4x: write latency with CURP is almost as low as for unreplicated writes

until the 50th percentile, where conflicts begins to cause blocking on syncs. Overall, the improve-

ment of write latency by CURP more than compensates for the degradation of read latency.

For YCSB-B, operation conflicts are more rare since all reads (which compose 95% of all oper-

ations) are commutative with each other. In this workload, CURP actually improved the overall read

latency; this is because, by batching replication, CURP makes CPU cores more readily available for

incoming read requests (which is also why unreplicated reads have lower latency). For YCSB-A,

CURP doesn’t improve read latency much since frequent conflicts limit batching replication. In

general, read-heavy workloads experience fewer conflicts and are less affected by hot keys.

4.5.4 Making Redis Consistent and Durable

Redis [72] is another low-latency in-memory key-value store, where values are data structures, such

as lists, sets, etc. For Redis, the only way to achieve durability and consistency after crashes is to log

client requests to an append-only file and invoke fsync before responding to clients. However, fsyncs

can take several milliseconds, which is a 10–100x performance penalty. As a result, most Redis
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Figure 4.11: Complementary cumulative distribution of read and write latencies with CURP
on a loaded server (250 kops for YCSB-A and 700 kops for YCSB-B). 10 clients issued read
and write operations (using the read / write mix ratio of YCSB) for 1 min to a single server.
The workloads used a Zipfian distribution with q = 0.95, which means 16% of operations are
on keys that were accessed within the last 100 executed operations.
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applications do not use synchronous mode; they use Redis as a cache with no durability guarantees.

Redis also offers replication to multiple servers, but the replication mechanism is asynchronous, so

updates can be lost after crashes; as a result, this feature is not widely used either.

For this experiment, we used CURP to hide the cost of Redis’ logging mechanism: we modified

Redis to record operations on witnesses, so that operations can return without waiting for log syncs.

Log data is then written asynchronously in the background. The result is a system with durability

and consistency, but with performance equivalent to a system lacking both of these properties. In

this experiment the log data is not replicated, but the same mechanism could be used to replicate the

log data as well.

With the Redis implementation of CURP, we answered the following questions:

• Can CURP transform a fast in-memory cache into a strongly-consistent durable storage sys-

tem without degrading performance?

• How wide a range of operations can CURP support?

Measurements of the Redis implementation were conducted on a cluster of machines in Cloud-

Lab [71], whose specifications are in Table 4.1. All measurements were collected using 10 Gbps

networking and NVMe SSDs for Redis backup files. Linux fsync on the NVMe SSDs takes around

50–100 µs; systems with SATA3 SSDs will perform worse with the fsync-always option.

For the Redis implementation, we used Redis 3.2.8 for servers and “C++ Client” [78] for clients.

We modified “C++ Client” to construct Redis requests more quickly.

Figure 4.12 shows the performance of Redis before and after adding CURP to its local logging

mechanism; it graphs the cumulative distribution of latencies for Redis SET operations. After apply-

ing CURP (using 1 witness server), the median latency increased by 3 µs (12%). The additional cost

is caused primarily by the extra syscalls for send and recv on the TCP socket used to communicate

with the witness; each syscall took around 2.5 µs.

When a second witness server is added in Figure 4.12, latency increases significantly. This

occurs because the Redis RPC system has relatively high tail latency. Even for the non-durable

original Redis system, which makes only a single RPC request per operation, latency degrades

rapidly above the 80th percentile. With two witnesses, CURP must wait for three RPCs to finish

(the original to the server, plus two witness RPCs). At least one of these is likely to experience high

tail latency and slow down the overall completion. We didn’t see a similar effect in RAMCloud

because its latency is consistent out to the 99th percentile: when issuing three concurrent RPCs, it

is unlikely that any of them will experience high latency.

Figure 4.13 shows the throughput of Redis SET operations for a single Redis server with varying
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CURP, as a function of the number of clients. Each client repeatedly issued random writes back
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but configured to invoke fsync before replying to clients.
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from multiple clients, fsyncs once per eventloop, and replies to all clients.

numbers of clients. Applying CURP reduced the throughput of Redis with 60 clients about 17%.

With a large number of clients, the original synchronous form of Redis can offer throughput ap-

proaching non-durable Redis. The reason for this is that Redis batches fsyncs in synchronous mode:

in each cycle through its event loop, it processes all of the requests waiting on its incoming sockets,

issues a single fsync, then responds to all of those requests. The disadvantage of this approach is

that it results in very high latency for clients.

Figure 4.14 shows the observed latency during the throughput benchmark. Both CURP and non-

durable Redis maintain latency low until it reaches 80% of max throughput. The latency of durable

Redis increases almost linearly due to batching mentioned in the previous paragraph. The batching

amortizes the cost of fsync, and throughput of durable Redis approaches that of non-durable Redis

as the number of clients increases. However, this batching adds extra delays before responding back

to clients, so latency increases almost linearly.

4.5.5 Applicability of CURP

CURP can be applied to a variety of operations, not just write operations in key-value stores. Redis

supports many data structures, such as strings, hashmaps, lists, counters, and so on. All of these

update operations (including ones that are non-idempotent or return read values) can benefit from
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CURP. Since each data structure is assigned to a specific key, CURP can execute many update

operations on different keys without blocking on syncs.

Figure 4.15 shows the median latency with and without CURP on three different Redis com-

mands: SET, which writes ASCII data to a string data structure; HMSET, which writes data to

a member of a hashmap; and INCR, which increments an integer counter and returns its current

value. For all three operations, latency overheads were small for CURP with 1 witness. CURP with

2 witnesses increased latency about 10 µs because of tail latency issues. We believe that the TCP

transport library used by the C++ client is inefficient for waiting for multiple responses concurrently,

and we will continue to investigate this.

4.6 Related work

Table 4.2 summarizes the performance of CURP and other fast replication protocols. The paragraphs

below explain these numbers in detail. We present analytical performance instead of emprical results

since empirical performance depends too much on implementation and underlying systems (e.g.

CURP on RAMCloud and CURP on Redis have very different absolute performance).

Generalized Paxos [45] allows clients to complete operations (i.e. receive execution results) in

1.5 RTTs and supersedes Fast Paxos [46]. Both protocols allow clients to send requests directly

to replicas and reduce latency from 2 RTTs to 1.5 RTT. Fast Paxos has a contention problem and

performs well only at low throughput. Generalized Paxos resolves the contention problem by using
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CURP Gen.Paxos EPaxos NOPaxos
La

te
nc

y
LA

N read 1 RTT 1.5 RTTs 2 RTTs 1 RTT + a
write 1 RTT 1.5 RTTs 2 RTTs 1 RTT + a

W
A

N read ⇠0 WAN RTT 1.5 WAN RTTs ⇠1 WAN RTT Not Avail.
write 1 WAN RTT 1.5 WAN RTTs ⇠1 WAN RTT Not Avail.

load on read <1 RPC ⇠ n RPCs ⇠2 RPCs 1 RPC
leader write 1 RPC ⇠ n RPCs ⇠2 RPCs 1 RPC

Table 4.2: Performance comparisons of replication protocols. “LAN” means intra-datacenter
replications. “WAN” means geo-replication and assumes that all clients have a local replica;
clients in a datacenter without local replicas must send requests to a remote replica and experi-
ence the WAN RTTs same as in “LAN”. In a geo-replicated setting, CURP clients can read from
local replicas, requiring only one local RTT which is much smaller than WAN RTT. NOPaxos’s
RTT is longer than usual since network packets must detour through a sequencer; “a” denotes
the detour delay. All latency numbers omitted the time to make data persistent, which is same
for all protocols (1 persistence time per request) and insignificant with the use of modern fast
storage technologies. “Load on leader” shows how many RPCs a leader (or master) processes
per client request. “n” denotes the number of replicas.

commutativity; it groups commutative requests from concurrent clients into an unordered set, and

it only orders between sets. Although Generalized Paxos allows a leader replica to learn that opera-

tions are committed in 1 RTT, clients need to wait another half RTT to receive the execution results

from the leader; so its end-to-end latency becomes 1.5 RTTs, as opposed to 1 RTT for CURP. (See

§A.1 for a detailed explanation why they cannot achieve 1 RTT.)

Egalitarian Paxos (EPaxos) [54] relies on commutativity to allow multiple leaders to propose

and execute operations concurrently. This approach improves throughput. In geo-replicated envi-

ronments, EPaxos allows clients to choose a nearby replica as leader, so operations can complete in

1 wide-area RTT. However, in LAN environments, EPaxos clients cannot hide the message delay

to a leader, so operations take 2 RTT. Also, since EPaxos does not have a strong leader, read oper-

ations must run through full consensus and be written to replicated command logs; for read-heavy

workloads, EPaxos will perform worse than traditional 2 RTT protocols with read leases, such as

Raft [58]. On the other hand, CURP can directly execute read operations in masters or even in

backups with the help of witnesses. Another limitation of EPaxos is that clients in a datacenter that

doesn’t host a replica must use a remote leader, increasing its latency to 2 wide-area RTTs.

Speculative Paxos [68] and Network-Ordered Paxos (NOPaxos) [49] reduce latency almost to

1 RTT by serializing client requests within network so that all of the consensus servers receive re-

quests in the same order. Both protocols use SDNs to detour requests from all clients through a single
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network device (a root layer switch or middlebox); thus, they can be deployed only in specialized

environments (e.g. a privately-owned datacenter). Also, due to detouring of packets, they actually

add latency overhead over unreplicated systems; Speculative Paxos (⇠25 µs) or NOPaxos(⇠16 µs)

have higher latency overhead compared to CURP (⇠1 µs).

TAPIR [83], Janus [55], and MDCC [41] commit distributed transactions in 1 wide-area RTT;

before them, transaction commits took 2 RTTs: 1 for transaction prepares and 1 for geo-replicating

the data of prepare. They flattened out these serial steps by replicating data before the prepare is

executed. They modified concurrency control protocols to fix inconsistencies in replications. They

also require commutativity of workloads for 1 RTT commits.

To avoid the performance penalty of consistent replications, eventual consistency [81] has been

widely adopted in industry [23, 20, 16]. Systems using eventual consistency return from updates

before replication is complete, and replications happen asynchronously; since nearby replicas may

miss up-to-date updates, clients must read from far-away masters for consistency. Pileus [79] and

Tuba [7] allow applications to declare their consistency and latency priorities, and they dynamically

select replicas to read from.

Broadcast-broadcast (BB) protocols [15, 9, 26, 38] for total order broadcasts [24] have similari-

ties to CURP. Senders in BB protocols broadcast a message to all destinations (replicated processes)

plus a sequencer before ordering, followed by a second broadcast from the sequencer about the or-

dering information. Some variants of BB protocols [9, 26] exploit the fact that broadcasts are mostly

delivered in-order in small LAN environments and let processes optimistically consume messages

without waiting for the ordering information from the sequencer. If the suspected order turned out

to be different from the order determined by the sequencer, the process must rollback to correct the

inconsistency. On the other hand, in CURP, replicas wait for the ordered replication from a mas-

ter instead of executing operations with a presumed ordering, so CURP doesn’t require rollbacks,

which is expensive and difficult to implement. Furthermore, even if client requests arrive in a mas-

ter and witnesses out of order, CURP still achieves 1 RTT as long as the reordered requests are

commutative.

4.7 CURP limitations for geo-replication

Altough CURP can be used for geo-replication since it doesn’t rely on any special networking, the

benefits of CURP may diminish with high message delays in a WAN. Most fast replication protocols

(including CURP, Generalized Paxos, Egalitarian Paxos) rely on commutativity, and they all suffer
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the same problem.

With much higher message delays in a WAN, CURP requires many more requests to be com-

mutative for 1 RTT completion of a client operation; this increases the chance of commutativity

conflicts. We can quantify how many more requests need to be commutative; a new request should

be commutative with any requests in witnesses and any unsynced operation in the master. A request

stays in a witness for 1.5 RTT (explanation in Figure 5.3), and it takes 1 RTT for the operation to

get synced in the master; the greater time is 1.5 RTT. During the 1.5 RTT, 1.5⇥RTT⇥Throughput

requests are processed by the system, and they must be checked for commutativity (it may be higher

with batched backup syncs). We will call 1.5⇥RTT⇥Throughput the commutativity window. When

used for geo-replication, CURP will suffer from a large commutativity window, which linearly in-

creases with the message delay.

When combined with a skewed workload (generally considered realistic), the increased commu-

tativity window dramatically raises the chance of commutativity conflicts, possibly enough to nullify

the benefits of CURP. Figure 4.16 shows that simulated conflict rate increases in sublinear fashion as

the commutativity window increases. For example, with a Zipfian distribution of q = 0.99, a 100x

increase of commutativity window (20! 2000) incurs a 4.7x increase of the conflict rate (7.4%!
34.5%); a commutativity window value of 20 corresponds to a typical Redis server in a datacenter

with 100 µs RTT and 133 kops throughput, and a commutativity window value of 2000 corresponds

to a situation when we geo-replicate the same Redis server in 10 ms RTT network.
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4.8 Summary

In this chapter, we have uncovered an opportunity for introducing concurrency into mechanisms for

consistent replication. By exploiting the commutativity of operations, replication without ordering

can be performed in parallel with sending requests to an execution server. This general approach can

be applied to improve a variety of replication mechanisms, including primary-backup approaches

and consensus protocols with strong leaders. We presented Consistent Unordered Replication Proto-

col (CURP), which supplements standard primary-backup replication mechanisms. CURP reduces

the latency to complete operations from 2 RTTs to 1 RTT while retaining strong consistency. We

implemented CURP in RAMCloud and Redis to demonstrate its benefits.



Chapter 5

Alternative Designs for CURP

Chapter 4 presented a design of CURP that is appropriate for augmenting existing primary-backup

replication systems. In this chapter, we represent two slightly different designs of CURP: one suit-

able for building systems from scratch, and one for augmenting quorum-based consensus systems.

These are paper designs and not implemented or tested.

5.1 CURP-H: Combining Witnesses with Backups into Hybrids

The CURP design in Chapter 4 has witnesses separated from backups. Thanks to this design de-

cision, CURP requires fewer changes to existing systems and is more applicable to many wildly

different backup mechanisms. Both of the implementations in Chapter 4 leveraged this flexibility:

in RAMCloud, a master keeps changing backups to which it replicates (to spread data over the

entire cluster), so clients don’t know which backups are currently used by the master; in Redis, op-

eration logs are stored in local disks to ensure durability, so there are no separate backup servers to

which CURP clients can record inputs. Thus, separating witnesses from backups improves CURPs

applicability to many existing primary-backup systems.

However, for systems whose clients can be aware of the backup servers for each master, combin-

ing witnesses and backups can bring extra performance benefits such as lower network bandwidth

use. When witnesses and backups are combined, clients directly send requests to a master and

backups. In each backup, there is a “witness module” which saves requests sent from clients (see

Figure 5.1).

Combining witnesses and backups enables a performance optimization. The key change is that

84
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Figure 5.1: CURP-H clients directly replicate requests to backups, and the requests are saved
in the “witness module” of each backup. Masters send only ordering information to backups
instead of full client requests. The “backup module” retrieves full client requests from the wit-
ness module in the same backup. By serializing client requests from witness modules according
to the ordering information from master, backup modules can replicate the data in a master.

masters now sync with backups by sending operation orders (by listing RPC IDs as in witness

gc RPCs) instead of full client requests; then backups lookup the matching requests from their

witness modules and move them to backup modules. This approach will lower network bandwidth

consumption since RPC IDs are much smaller than full client requests.

To clarify the benefit of this design change, this section presents CURP-H, which is a modi-

fied design of CURP. The rest of this section discusses how CURP-H is different from CURP in

Chapter 4.

5.1.1 Architecture and Failure Model

As shown in Figure 5.1, CURP-H uses one master and f backups to tolerate f failures. In this

section, we assume a fail-stop model where either a master or a backup fails entirely (i.e., when a

backup fails, both witness module and backup module fail and stop). There are no other changes

except those mentioned above.
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serialize(list of {keyHash, rpcId, seqNum})! OK or REJECTED, list of request
Syncs a backup with the state of master by applying client requests with the given key-
Hashes and rpcIds as the seqNum’th operation. Returns two values: whether the sync was
successful, and stale requests that haven’t been garbage collected for a long time.

Figure 5.2: A possible request signature of the CURP-H’s serialize RPC (for an implementation
on NoSQL storage as in §4.4).

5.1.2 Normal Operation

Clients in CURP-H directly send their requests to backups in parallel with sending the requests to a

master. To do that, clients must know which backups are used by each master; this could potentially

be implemented in the same way that CURP clients track witnesses.

Witnesses no longer exist as separate servers; rather, they are incorporated in backups as “wit-

ness modules”. The role of witness modules is the same as the witness servers in Chapter 4. They

handle all record RPCs arriving at backups.

As the first optimization, masters now sync with backups by sending serialize requests that

convey the serialization orders of client requests, instead of full client requests (an example of a

serialize request signature is in Figure 5.2). For serialize requests, backups retrieve the full client

requests from their witness modules. This change saves network bandwidth since RPC IDs are much

smaller than full client requests. Under certain unfortunate circumstances, a witness module may

not have the client request whose serialization order is sent from the master; this can happen if the

client is slow at sending the request to the backup or if the witness module previously rejected the

request. For such requests, backups should reject the serialize request and ask the master to retry by

performing regular syncs with full requests. To avoid this extra step, backups may save the client

requests that are rejected from witness modules in some temporary cache.

As the second optimization, masters no longer send gc RPCs to witnesses. While handling the

serialize requests from masters, backups move the requests in the witness module to the backup

module. Essentially, sync requests from masters also function as a garbage collection of witness

modules. This saving of gc RPCs will improve masters’ throughput. As shown in Figure 5.3, the

changed garbage collection also reduces the retention period of client requests in witness modules

by 1 RTT; this helps to reduce commutativity conflicts.

There may be uncollected records in some occasions; for example, they can be created when a

record RPC is delayed significantly and arrives after a backup had already processed the serialize
requests for them. CURP-H can remove the uncollected records in a way similar to how CURP
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Figure 5.3: Comparison of how long client requests stay in witnesses before being garbage
collected. Text in boxes indicates the state of servers. (a) shows that the original CURP takes
1.5 RTT to garbage collect. On the other hand, (b) shows that CURP-H takes only 0.5 RTT to
garbage collect. CURP-H cut 1 RTT from CURP by removing the one-way delay for notifying
master after syncing and another one-way delay for sending gc RPCs.

removes them (described in §4.4.5). The change is that the uncollected requests are reported back

to masters through the response messages of serialize RPCs instead of gc RPCs since CURP-H

uses serialize RPCs for regular garbage collection. As masters are notified of uncollected requests,

the masters retry the requests (most likely filtered by RIFL), and include them in the next serialize

requests.

5.1.3 Master Crash Recovery

The recovery process is very similar to the process in Chapter 4. The only difference is that a new

master has to pick a single backup and use it for both backup data recovery and witness replay. If we

mix a backup module and a witness module from two different backups, recovery may lose some

operations. This can occur because witness modules are now allowed to garbage collect before all

backup modules are synced (each backup individually move client requests from its witness module

to its backup module).
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5.1.4 Summary

In this section, we presented how to combine witnesses with backups, which is appropriate if clients

can be aware of the backups for each master. This approach can bring many performance bene-

fits: reduced network bandwidth use and fewer commutativity conflicts. Unfortunately, masters in

RAMCloud keep changes their backups, so RAMCloud cannot use CURP-H.

5.2 CURP-Q: Making Quorum-based Consensus Protocols Faster

This section introduces CURP-Q, which is an extension of CURP in Chapter 4 to reduce the latency

of quorum-based consensus protocols. CURP-Q can be integrated into most consensus protocols

with strong leaders such as Raft [58] or Viewstamped Replication [57]. In such protocols, clients

send requests to the current leader, which serializes the requests into its command log. The leader

then replicates its command log to a majority of replicas before executing the requests and replying

back to clients with the results. This process takes 2 RTTs, and CURP-Q can reduce it to 1 RTT.

Similarly to CURP, CURP-Q allows clients to replicate requests to witnesses in parallel with

sending requests to the leader; the leader then speculatively executes the requests and responds to

clients before committing the requests to a quorum of replicas. A client can complete an operation

if it is accepted by a superquorum of witnesses or committed in a quorum of replicas.

CURP-Q must deal with two additional problems not present in CURP because of the difference

between quorum-based consensus protocols and primary-backup protocols.

• CURP-Q must be available for normal operation even before the recovery of failed replicas.

This requirement is a key property/benefit of quorum-based consensus over primary-backup

protocols which block normal operation during recovery. §5.2.1 defines the precise guarantee.

• CURP-Q must clean up the speculatively executed operations at decommissioned leaders

since they may diverge from the committed operation sequences. This was not a problem in

CURP since primary-backup replication does not reuse crashed masters, and new masters are

always reconstructed from the data in backups.

The rest of this section illustrates how to modify CURP in Chapter 4 to deal with the two

problems introduced by quorum-based consensus protocols.
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Figure 5.4: In CURP-Q, there are 2 f + 1 replicas to tolerate f failures. Each replica has a
witness component, a command log, and a state machine. The leader replica determines the
order of commands and syncs the order to followers. As in CURP, followers first try to retrieve
full client commands from witnesses. If this fails, followers fetch the full requests from the
leader.

5.2.1 Architecture and Model

To mask f failures, consensus protocols use 2 f +1 replicas, and systems stay available with up to f

failed replicas. For the same guarantee, CURP-Q also uses 2 f +1 replicas, but each replica also has

a witness component in addition to existing components for consensus (see Figure 5.4). Although

CURP can proceed with f +1 available replicas, it needs f +d f/2e+1 replicas (a superquorum of

witnesses) to use 1 RTT operations. With less than f + d f/2e+1 replicas, clients must ask masters

to commit operations in f +1 replicas before returning results (2 RTTs).

5.2.2 Normal Operation

5.2.2.1 Client

Like clients in CURP, clients in CURP-Q multicast their requests to all replicas in parallel. Leader

replicas return execution results in 1 RTT, and follower replicas respond to indicate whether their

witnesses accepted or rejected the requests.

With acceptances from f + d f/2e or more witnesses, clients can return the execution results

from leaders to applications without waiting for them to be committed. Thus, client operations can

complete in 1 RTT. §5.2.3.1 will explain why clients need acceptances from f + d f/2e witnesses.
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Without enough acceptances, clients must send explicit commit requests (similar to sync in

CURP) to the leader, which returns after committing the operations to a majority (1 leader and f

followers) of replicas.

5.2.2.2 Leader Replica

Like masters in CURP, leader replicas execute operations speculatively if they are commutative

with existing unsynced operations; for an incoming client request, the leader serializes it into its

command log, executes it, and responds to the client before committing it in a majority of replicas.

Witnesses in leaders are inactive, and all client requests are serialized and logged in their com-

mand logs directly.

We can apply the optimizations discussed in §5.1 since witnesses are components of each

replica. The optimizations help to minimize network bandwidth use and commutativity conflicts.

We omit how to apply them here since it’s no different from the description in §5.1.

5.2.2.3 Follower Replica

In addition to the standard role of follower replicas in consensus, followers in CURP-Q incorporate

witnesses. For requests multicasted by clients, followers serve as witnesses. Witnesses in followers

generally behave the same as in CURP (§4.2.2.2). A witness is assigned to a particular leadership,

and it rejects all recording requests targeted to prior leaderships. Witnesses in CURP-Q also become

immutable during recovery and can be reset to new leaderships.

5.2.3 Recovery (Leader Change)

The recovery of CURP-Q is different from that of CURP in that CURP-Q’s recovery considers

the information in multiple witnesses, not just one witness. This change allows clients to complete

operations after recording to a superquorum of witnesses instead of all witnesses in CURP.

5.2.3.1 Why Superquorum?

For a client to complete an operation in 1 RTT, it must be recorded in a superquorum of replicas (1

leader and f + d f/2e witnesses in followers).

First, let’s reason about why it’s okay to complete an operation before it is recorded to all replicas

as in CURP. The reason is that CURP-Q uses more servers (2 f + 1 for tolerating f failures) than

CURP uses ( f + 1). Thus, there are still f + 1 witnesses available even after f failures, and some
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Figure 5.5: Illustration of why clients must wait for a superquorum of replicas. This figure
shows the case of 5 replicas ( f = 2), and it omits irrelevant components in each replica. A
superquorum of 5 replicas is 4 of them. Two replicas (the leader and a follower) became un-
available after the top client completed “x 2”. In (a), the top client completed “x 2” merely
after recording to a majority of replicas (2 witnesses in addition to the leader). In (b), the top
client completed “x 2” after recording to a superquorum of replicas (3 witnesses in addition
to the leader).

of those available witnesses will have the completed operation; on the other hand, CURP needs to

recover even when there are only 1 backup and 1 witness available.

Now, let’s reason about why a completed operation must be recorded to a superquorum (a.k.a.

fast quorum) of replicas, not just f + 1 which is enough to ensure that at least one of the available

servers has the completed operation. The reason is that there are many clients concurrently compet-

ing to record requests, and these requests may not commute with each other. During recovery, it must

be possible to recognize 1 correct (completed speculatively) record out of many non-commutative

records. This is similar to other client-driven consensus protocols such as Fast Paxos [46] or Spec-

ulative Paxos [68]; they also require clients to wait for a superquorum of replicas so that the future

recovery can figure out which command is committed for a particular command slot.

Figure 5.5 illustrates why f + d f/2e witnesses are the minimum to distinguish the completed

request from other requests that don’t commute with it. The key idea is ensuring that any completed

operation will always outnumber other non-commutative operations during a leadership change.
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To ensure that, a client must guarantee the completed request will always appear in a majority of

available witnesses during recovery; since each witness doesn’t accept multiple non-commutative

operations, other non-commutative operations must appear in less than the majority of available

witnesses. In the worst case when a leader and f �1 witnesses fail, f +1 witnesses will be available.

The minimum number to become a majority of f +1 witnesses is d f/2e+1. Considering that f �1

witnesses may be unavailable during a leadership change, a client must wait for acceptances from

(d f/2e+1)+( f �1) = f + d f/2e witnesses.

5.2.3.2 Preparing New Leader

When a leader becomes unavailable, consensus protocols perform leadership changes to recover

availability (e.g., leader election in Raft [58] or view change in Viewstamped Replication [57]).

With CURP, leadership changes happen in the following steps: (1) a new leader is elected by a

standard leadership change process, (2) the leader collects all saved requests from all witnesses, and

(3) the new leader selectively picks among the saved requests and replays the selected ones.

When the underlying consensus protocol detects the unavailability of a leader, it should initiate

the leadership change protocol. CURP doesn’t interfere with this process. However, even after the

standard leadership change process, the new leader is not ready to resume servicing normal requests.

Since the new leader’s command log may miss the last few operations that the previous leader

executed speculatively, the new leader must replay them from witnesses before serving normal

requests.

For recovery from witnesses, new leaders must first collect saved requests from at least f + 1

witnesses. Before returning records, each witness must be set to immutable state, just as in CURP;

this prevents clients from completing an operation by recording it in a witness whose data won’t be

checked during future recoveries.

After collecting from witnesses, a new leader counts the appearance of each client request and

replays it if it appears in more than d f/2e+1 witnesses. This selective replay is required to ensure

commutativity among replayed requests as mentioned in §5.2.3.1.

Once replaying from witnesses is completed, the leadership change process is completed, and

the new leader can resume servicing normal requests. As follower replicas notice the completion

of the leadership change, they should reset their witnesses for the new leadership. For tracking

leaderships, witnesses and clients may use the existing identifiers such as a term number in Raft or

a view-number in Viewstamped Replication.
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5.2.3.3 Cleaning Up Old Leader

After the leadership change, the state machine of the decommissioned leader could have diverged

from other replicas since the leader could have speculatively executed some operations that couldn’t

be recorded to enough number of witnesses or committed to a majority of replicas.

To fix this, a leader replica has to periodically make a checkpoint by snapshotting its state

machine (this is a common practice in consensus), and the decommissoned leader must reload from

a checkpoint that does not have any speculative executions (i.e., any operations executed for the

checkpoint were committed eventually). However, reloading from a checkpoint is an expensive

operation. We can avoid reloading from checkpoints if the leadership change was not caused by a

crash or disconnect of the old leader; Instead of requiring the old leader to reload from a checkpoint,

the new leader can fetch and commit all uncommitted operations in the old leader’s command log

to prevent the divergence of state machines.

5.2.3.4 Safety

For correctness, the client requests replayed from witnesses during recovery must

• include all completed operations (i.e., operations whose executions are observed by any

client) that are not yet committed in a majority of replicas’ command logs. Otherwise, re-

covery may lose the completed operations.

• commute with each other. Otherwise, recovery may result in an inconsistent state.

Since clients complete operations with speculative results only after recording to f + d f/2e
witnesses, all completed-but-not-yet-committed operations are guaranteed to exist in a majority

(d f/2e+ 1) of any combination of f + 1 witnesses. Thus, if a client could complete an operation,

it must be replayed during recovery since it is guaranteed to appear more than d f/2e+1 available

witnesses.

Also, any client requests that don’t commute with the completed operations cannot exist in

more than b f/2c (less than the majority of any quorum). The reason is that a completed operation

is already in f + d f/2e witnesses (out of 2 f witnesses), and those witnesses must have rejected the

non-commutative request. Thus, during recovery, all requests that appear in a majority (d f/2e+1)

from any combination of f +1 witnesses are guaranteed to be commutative.

The two properties can replace (Rule 1) and (Rule 2) in the informal proof of CURP in §4.3.
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5.2.4 Zombies

The last problem introduced by speculative execution is that clients may use old zombie leaders

(which believe they are current leaders). Zombie leaders were not possible before applying CURP-

Q since an operation must be committed in a majority before being executed and at least one replica

would know the leadership has been changed. To prevent clients from completing operations with

a zombie leader, they tag record RPCs with a term number (e.g. a Raft term or a view-number

in Viewstamped Replication), which increments every time when leadership changes. A witness

checks the term number against the term used by its replica (recall that a witness is a part of a

consensus replica); if the record RPC has an old term number, the witness rejects the request and

tells the client to fetch new leader information.

5.2.5 Read Optimization

CURP-Q can use read leases like many consensus protocols so that read operations can be executed

solely by leaders within 1 RTT without recording to witnesses. Optimizing read operations using

read leases is common for consensus protocols with strong leaders. A leader replica with a valid read

lease can safely execute read operations without committing the read operations through consensus.

For the optimization, each replica grants the read lease to the current leader, promising not to agree

on a leader change for a lease period. With valid leases from a majority of replicas, the leader knows

that no operations can be committed from other replicas, so it can safely execute read operations

without consulting with other replicas. CURP-Q does not interfere with this read lease mechanism.
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Future Work

6.1 Replication on Programmable Data-plane

New networking hardware opens up opportunities for improving the performance of distributed

systems. In the last few years, researchers have started putting more functionality in networking

devices, most notably in programmable NICs (a.k.a. SmartNICs).

I suspect that SmartNICs can be used to offload the job of replication. As a preliminary investi-

gation, Sean Choi and I implemented CURP’s witness on programmable NICs to offload CPU cores

and avoid costly PCI-E crossings [19]. Our prototype on ASIC-based SmartNICs from Netronome [5]

showed a performance comparable to running witnesses on CPU (Figure 6.1). Although the through-

put on SmartNIC isn’t as good as the witness throughput on RAMCloud (which uses kernel bypass

and avoids serialization), the newer SmartNICs have ⇠2x more cores at ⇠2x higher frequency than

the one we used. Considering that the computation power of SmartNICs is improving rapidly, there

is a great chance that we can completly offload the entire replication stack (including client-side and

master-side) to the programmable dataplane on NICs. One concern is that we found the TCP round-

trip time of SmartNICs are generally higher than that of latency-optimized NICs from Mellanox.

We are not sure if the high latency is a fundamental limitation of SmartNICs or not.

6.2 Fast Geo-replication with Synchronized Clocks

Fast replication protocols can be categorized into two types: those that rely on commutativity (e.g.,

CURP, Generalized Paxos, Egalitarian Paxos), and those that rely on special networking to deliver

request packets to replicas almost in the same order (e.g., Speculative Paxos, Network-Ordered
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On SmartNIC On CPU RAMCloud in §4.5

Latency (µs) Avg 30.91 61.28 7
p99 36.72 80.63 7

Throughput (kops) 758 113 1270

Table 6.1: Performance of witnesses on SmartNICs. We measured latency and throughput of
witness record RPCs. Our test servers equipped with two Intel Xeon 5117 14-core processors
operating at 2.0 GHz, 32 GB DDR4 2,666 MT/s Dual-Ranked RAM and 120 GB SATA SSD.
Both client and witnesses used Netronome Agilio CX 2x10Gb SmartNICs [5] with 56 RISC
cores running at 633 MHz with 2 GB of on-NIC RAM. All servers are connected via a 10 Gbps
Arista DCS-7124S switch. “RAMCloud” shows the performance of the witness implementation
on RAMCloud, which we already showed in §4.5; it uses low-latency NICs with kernel-bypass
and binary protocols to avoid the serialization overhead.

Paxos). Unfortunately, I believe that none of them work well for geo-replication; commutativity

conflicts will happen too often (as seen in §4.7) for the protocols relying on commutativity, and it’s

challenging to use special networking on wide-area networks for the protocols relying on in-order

message deliveries [68, 49, 9, 26].

Mostly in-order message deliveries have been used for fast replication [68, 9, 26], typically with

special networking hardware or settings (e.g., software-defined networking, small LANs with sym-

metric message delays). They assume that broadcasts of requests from clients are delivered mostly

in-order and let state machines optimistically handle requests without waiting for the ordering infor-

mation from the leader. Clients check if their requests are delivered in-order by comparing the hash

values of the ordered lists of all operations executed at each server; if a superquorum of replicas re-

turn the same hash values, the client can complete the operation by returning the execution result to

the application. However, if the suspected order turns out to be different from the order determined

by the leader, the state machine must rollback to correct the inconsistency. Unfortunately, on WANs,

there will be more out-of-order deliveries since message reordering and asymmetric message delays

are common, and it is difficult, on WANs, to install special networking devices that enforce in-order

deliveries. Thus, most client requests will not be able to complete in 1 RTT.

Recently, accurately synchronizing clocks of network-connected machines became possible [29].

I suspect that synchronized clocks can be used for enabling mostly-in-order message deliveries even

on WANs. With synchronized clocks, each client can now measure and track one-way latency to

each replica, which may be quite different from the half of measured RTTs (which were available

even before synchronized clocks) because of asymmetric message delays on WANs. More accurate

one-way delay measurements can be used for atomic broadcast; when a client broadcasts its request,
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it asks replicas to delay the delivery of the request to state machines until the time when all repli-

cas are expected to receive the request, which can be calculated by the client’s broadcast time plus

the maximum of measured one-way delays from the client to any replica. Thus, we can achieve

mostly-in-order delivery to all replicas, even on WANs.

There are some drawbacks and challenges of this approach. The first challenge is the message

delay may change continuously. If the variation of message delay within 1 RTT is larger than the

gap between request arrivals at each replica, the requests may get delivered out of order. We can

mitigate this problem in two ways: (1) adding a delay in addition to the maximum of measured

one-way delays to each replica (2) relying on commutativity to decrease the effective request arrival

rate (now, delivery order only matters among noncommutative requests). The second challenge is

avoiding state machine rollback, which is known to be very expensive. Instead of letting each replica

to execute client requests immediately, we can leverage the idea of witnesses in CURP, saving client

request without executing until the serialization order arrives from the leader.

In summary, synchronized clocks enable cherry-picking benefits of the two types of fast repli-

cation: no rollback from those relying on commutativity and tolerance to skewed workloads from

those relying on in-order message deliveries. I suspect that the hybrid of these technologies can birth

a fast replication protocol which works well with any network and workloads.



Chapter 7

Conclusion

In this dissertation, I presented three consistency mechanisms for large-scale and low-latency dis-

tributed systems. All of them provide the strongest form of consistency, called linearizability, with

a minimal impact on either latency or scalability. RIFL provides a general-purpose mechanism for

converting at-least-once RPC semantics to exactly-once semantics. RIFL-TX is a distributed trans-

action mechanism with linearizability (a.k.a. strict serializability in the database community). CURP

allows clients to complete update operations on replicated data in 1 RTT instead of the traditional

2 RTTs. With these results, we could bring consistency to systems that demand large scale (⇠1

million nodes) and low latency (⇠10 µs).

In addition to scalability and latency, avoiding complexity in systems often becomes a reason

for settling with weak consistency. However, the burden of achieving consistency doesn’t disappear;

rather, it will be amplified and given to application developers. For example, Facebook’s social graph

database doesn’t support distributed transactions; when a person (say, Alice) accepts a friend request

from Bob, two edges are inserted (an edge from Bob to Alice, and another edge from Alice to Bob).

Without distributed transaction support, one of the insertions may fail, and one-sided friendship is

possible. To fix this anomaly, Facebook created a separate infrastructure that scans all friendship

data and fixes any inconsistencies. In this example, a simple operation (becoming friends) ended

up with an additional complex mechanism to deal with the weakly-consistent system. As a general

principle, system designers should try to encapsulate complexity within lower levels of system soft-

ware, so that application developers are not exposed to it [61]. Providing consistency should be a

job of systems.
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Appendix A

Additional Materials

A.1 Why Do Fast / Generalized Paxos require 1.5 RTTs?

There is a widespread misunderstanding that both Fast Paxos and Generalized Paxos already achieve

1 RTT operations. The confusion probably stems from the fact that both Fast and Generalized Paxos

allow Paxos learners to know about acceptance of an operation in 1 RTT.

However, 1 RTT is sufficient to know only that an operation is committed but not enough to

know the result: that requires another 0.5 RTT. The abstract for Generalized Paxos says that a server

can execute the command in two message delays; however, it take an additional message delay for

the result to reach a client, for a total of three message delays (1.5 RTT). It doesn’t help for the client

to be a Paxos learner, because even learners don’t know the result after 1 RTT.

For most operations, results are not trivial and clients must wait for the results from real execu-

tions before completing operations. Many writes, such as conditional writes or read-modify-writes,

have results that clients cannot know before executions. Blind writes (those that don’t return results)

could potentially complete in 1 RTT. However, truly blind writes are rarely feasible because they

can return exceptions, such as “table no longer on this server” or “permission denied”; clients must

be aware of these exceptions.

As a result, Fast/Generalized Paxos are generally considered to have 1.5 RTT latency for clients

to complete operations. [49, 68, 84]
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