
DESIGNING DATACENTER TRANSPORTS FOR

LOW LATENCY AND HIGH THROUGHPUT

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

BEHNAM MONTAZERI NAJAFABADI

JUNE 2019



 

 

 

 

 

 

 

 

 

 

 

 

 

                                                      http://creativecommons.org/licenses/by/3.0/us/

 

 

 

This dissertation is online at: http://purl.stanford.edu/sp122ms2496

 

© 2019 by Behnam Montazeri Najafabadi. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
3.0 United States License.

ii

http://creativecommons.org/licenses/by/3.0/us/
http://creativecommons.org/licenses/by/3.0/us/
http://purl.stanford.edu/sp122ms2496


I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Ousterhout, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in 
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii



Abstract

Recent trends in datacenter computing have created new operating conditions for network transport

protocols. One of these trends is applications that operate at extreme low latency. Modern datacenter

networking hardware offers the potential for very low latency communication; round-trip times of

5µs or less are now possible for short messages. A variety of applications have arisen that can utilize

this low latency because their workloads are dominated by very short messages (a few hundred bytes

or less); Facebook’s Memcached [21] and RAMCloud [27] storage system are two instances of such

low latency applications.

Transport protocols, however, are traditionally designed to achieve high throughput rather than

low latency. They sometimes even sacrifice low latency for the sake of achieving high throughput;

TCP and TCP-like transports, which are the de facto transports used in most applications today

are examples of high throughput transports. These transports are known to impose high latency for

short messages when the network load is high. That’s because their sender driven congestion control

mechanism creates large queues in the network and short messages can experience long head-of-

line blocking delays in these queues. So even though these large queues can bring high throughput

and bandwidth utilization, they can extremely hurt short message latencies.

In this thesis we postulate that low latency and high throughput are not mutually exclusive goals

for transport protocols. In fact we design a new transport protocol named Homa that can achieve

both of these goals in datacenter networks. Homa [23] is a transport protocol for datacenter networks

that provides exceptionally low latency, especially for workloads with a high volume of very short

messages, and it also supports large messages and high network bandwidth utilization.

Homa uses in-network priority queues to ensure low latency for short messages; priority allo-

cation is managed dynamically by each receiver and integrated with a receiver-driven flow control

mechanism. Homa also uses controlled overcommitment of receiver downlinks to ensure efficient

bandwidth utilization at high load. We evaluate Homa in both simulations and a real system im-

plementation. Our implementation of Homa delivers 99th percentile round-trip latencies less than

iv



15 µs for short messages on a 10 Gbps network running at 80% network load. These latencies are

almost 100x lower than the best published measurements of an implementation in prior works. In

simulations, Homa’s latency is roughly equal to pFabric [5] and significantly better than pHost [14],

PIAS [7], and NDP [16] for almost all message sizes and workloads. Homa can also sustain higher

network loads than pFabric, pHost, or PIAS.

v



Preface

The simulator used to evaluate Homa for this dissertation is available at https://github.

com/PlatformLab/HomaSimulation. Homa’s implementation in RAMCloud is available

at https://github.com/PlatformLab/RAMCloud.

vi

https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/HomaSimulation
https://github.com/PlatformLab/RAMCloud


Acknowledgments

Getting through the PhD program would have been a lot more difficult for me if there wasn’t the

support and friendship I received from many people. The pages of my appreciation and gratefulness

for these individuals can itself turn into a large book. But here I have no choice but to try and

condensate my appreciation in the next few paragraphs.

I’ve been truly privileged to have the opportunity to do my PhD at Stanford University and

spend time with some of the most talented and hardworking individuals in the world. I’d like to

acknowledge some of these individuals here for the help and support they provided to me.

First I like to express my gratitude to my PhD adviser, John Ousterhout. John is probably the

most on time, well organized, and curious person I know. He is an outstanding character with im-

mense enthusiasm about high quality research. His dissatisfaction with superficial research made me

a better researcher. So many times when I presented the results of my work to him, he asked me to

dig deeper and measure many layers below the surface to truly understand why and how the system

behaves the way it does. I learned from John to look for the ways that I can redesign and improve

a system to the extent that it can’t be improved any further with today’s technology; he taught me

to not just shoot for the better, but for the best in my research. John’s method of leadership in the

RAMCloud group and his hands-on style of advising made my PhD experience a pleasant one. I’d

like to thank John for believing in me and supporting me to grow during my PhD and become the

researcher and the person I am today. I hope I can continue to use his guidance and advice to even

further grow in the future.

I like to thank the past and present members of the RAMCloud group. The previous genera-

tion of the group: Ankita Kejriwal, Diego Ongaro, Ryan Stutsman, and Steve Rumble. They built

many critical parts of RAMCloud version 1.0 and paved the way for me and the rest of the sec-

ond generation students in the group to find interesting research problems through experimentation

with RAMCloud. The second generation of the RAMCloud group, they are my partners in crime

throughout my PhD and I like to formally thank them: Jonathan Ellithorpe, Collin Lee, Yilong Li,

vii



Seo Jin Park, Stephen Yang, and Henry Qin. Thanks for endless number of hours that they spent

thinking about my problems, helping me to debug my programs when I was stuck, and listening to

me presenting my research. Among all the RAMCloud group’s students, I like to specially thank

Yilong Li. While I was busy designing and implementing my ideas in the simulator, he helped me

by spearheading the implementation of my design in the RAMCloud’s code base and evaluating it.

Without his help, the quality of my research would have significantly reduced.

Thanks to Mohammad Alizadeh for the time he spent with me both as a mentor and more

importantly as a close friend. Mohammad was like a co-adviser to me during my PhD work. His

deep understanding of datacenter networks was a great source of learning for me throughout my

PhD. I thank him for all the support, friendship and help that he provided me throughout my PhD at

Stanford. It’s been a great pleasure for me to know him and become a friend with him.

I also like to thank my PhD examination committee: Mendel Rosenblum, Nick McKeown,

Christos Kozyrakis and my committee chair Amin Savafi-Naeini. Their sound advice and feedback

on my dissertation work made it a better work. Mendel with all of his spontaneous and incredibly

thought provoking questions he asks, Christos with his extensive views on the top to bottom of the

software stack, and Nick with his ability to find different ways that a system can fail and not perform

well, they all made me think deeper about my work and shape it to more robust work. I should also

thank Amir for making time for me to be the chair of my PhD oral examination committee.

I want to thank various organizations, agencies and companies that directly or indirectly funded

my research. This dissertation was made possible by supports from C-FAR (one of six centers of

STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA)

and by the industrial affiliates of the Stanford Platform Laboratory, including VMWare, Google,

Huawei, NEC, Cisco, etc.

Finally, I’d like to thank my family for their unconditional love and support that they provided

me. My family has always been the most important part my life and I’m ethereally grateful to them

and appreciate them beyond any measures. First my mother, my father, my sister Behnaz, and my

brothers Behshad and Behrad. They always believed in me no matter what, they put the courage in

me to pursue my dreams, they stood behind me whenever I felt the pressure is surmounting me. And

last but not least, my beloved wife and the love of my life Azar, and my cute little daughter Kimiya.

Thank you Azar for being with me during all my PhD years. You have fueled my courage and my

ambition and I cannot imagine a better partner to navigate the life with. Kimiya, you are the joy of

life and I hope I can be a great dad to you. To my family, I love you all with my heart.

viii



To my wife Azar and my daughter Kimiya.

To my parents Bahram and Mahin, my sister Behnaz, and

my brothers Behshad and Behrad.

ix



Contents

Abstract iv

Preface vi

Acknowledgments vii

1 Introduction 1

2 Motivation and Key Ideas 5
2.1 Motivation: Tiny Latency for Tiny Messages . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Design Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Putting It All Together: Homa Overview . . . . . . . . . . . . . . . . . . . . . . . 13

3 Single Receiver Design 16
3.1 Congestion: Where Does It Happen In Networks? . . . . . . . . . . . . . . . . . . 17

3.2 Homa’s Congestion Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Receiver Driven Packet Scheduling . . . . . . . . . . . . . . . . . . . . . 20

3.2.2 Receiver Side Congestion Control . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Receivers Use SRPT Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Priorities For Preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.5 Priority Assignment Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5.1 Priority Allocation: Scheduled vs. Unscheduled . . . . . . . . . . . . . . . 30

3.5.2 Priority Assignment For Unscheduled Packets . . . . . . . . . . . . . . . . 32

3.5.3 Priorities For Scheduled Traffic . . . . . . . . . . . . . . . . . . . . . . . 34

3.6 Senders Also Use SRPT Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . 37

x



4 Single Receiver Evaluation 39
4.1 Homa Simulator Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Message Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1.3 Homa Transport Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Workload Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Homa Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Slowdown: Latency Metric of Our Choice . . . . . . . . . . . . . . . . . . 48

4.3.2 Homa’s Slowdown Performance . . . . . . . . . . . . . . . . . . . . . . . 51

4.3.3 Unscheduled Priority Allocation Scheme . . . . . . . . . . . . . . . . . . 54

4.3.4 Varying Number of Unscheduled Priorities . . . . . . . . . . . . . . . . . 59

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 Multi Receiver Design 63
5.1 Single Receiver Design: Good and Bad . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Overcommitment To Avoid Wasting Bandwidth . . . . . . . . . . . . . . . . . . . 66

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Simulation Evaluation 73
6.1 Comparison Transports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Homa’s Latency vs. pFabric, pHost, PIAS, and NDP . . . . . . . . . . . . . . . . 79

6.3 Bandwidth Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Measuring Deeper Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.1 Causes of Remaining Delay . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.2 Queue Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.4.3 Senders’ SRPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.4 Priority Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4.5 Configuration Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Mean and Median Latency: Homa vs. Other Protocols . . . . . . . . . . . . . . . . 95

6.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7 System Implementation And Evaluation 102
7.1 Implementing Transports For RPCs . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1.1 Homa: Transport For RPCs, Not Connections . . . . . . . . . . . . . . . . 103

xi



7.1.2 Retransmission of Lost Packets . . . . . . . . . . . . . . . . . . . . . . . 105

7.1.3 Controlling Incast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.4 At-least-once Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2 Implementation Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.2.1 Homa Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2.2 Homa vs. Infiniband . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.3 Homa vs. TCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7.4 Homa vs. Other Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.1 Homa Performance Under Incast . . . . . . . . . . . . . . . . . . . . . . . 116

7.4.2 Homa Under Lower Loads . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Related Work 125

9 Limitations And Future Work 127

10 Conclusion 129

Bibliography 131

xii



List of figures

2.1 The workloads used to design and evaluate Homa . . . . . . . . . . . . . . . . . . 7

2.2 Overview of the Homa protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 A small but practical datacenter network topology. . . . . . . . . . . . . . . . . . 19

3.2 The Homa scheduler for a scenario with one sender and one receiver. . . . . . . . . 20

3.3 Homa scheduler with request packet . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Homa scheduler with RTTBytes of unscheduled packets. . . . . . . . . . . . . . . 23

3.5 Homa’s SRPT scheduling with grants and no priorities. . . . . . . . . . . . . . . . 24

3.6 Homa’s perfect SRPT scheduling with network priorities . . . . . . . . . . . . . . 28

3.7 Homa’s unscheduled priority assignment based on the workload CDF . . . . . . . 35

3.8 Homa’s dynamic assignment of scheduled priorities. . . . . . . . . . . . . . . . . 36

4.1 The network topology used in Homa’s simulations . . . . . . . . . . . . . . . . . 41

4.2 The workloads used to design and evaluate Homa. . . . . . . . . . . . . . . . . . . 46

4.3 Cumulative distribution of unscheduled bytes for all workloads. . . . . . . . . . . 49

4.4 A sample slowdown spectrum plot. . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 Evaluation of Homa’s unscheduled priority assignment at 80% load . . . . . . . . 52

4.6 Evaluation of Homa’s unscheduled priority assignment at 50% load . . . . . . . . 53

4.7 Comparison of three unscheduled priority assignment schemes for Homa . . . . . 56

4.8 Aggregate tail slowdown for three unscheduled priority assignment scheme . . . . 58

4.9 Effect of number of unscheduled priority levels on tail slowdown . . . . . . . . . . 61

5.1 How Homa’s monogamous design wastes bandwidth . . . . . . . . . . . . . . . . 65

5.2 Wasted bandwidth plot for the Homa’s monogamous design . . . . . . . . . . . . . 67

5.3 Overcommitment mechanism allows Homa to avoid wasting bandwidth . . . . . . 69

5.4 Wasted bandwidth versus degree of overcommitment for different workloads. . . . 71

xiii



6.1 99th-percentile size spectrums at 80% network load for various transports . . . . . 80

6.2 99th-percentile size spectrums at 50% network load for various transports . . . . . 81

6.3 Network utilization limits for various transports . . . . . . . . . . . . . . . . . . . 86

6.4 Sources of tail delay for short messages in Homa . . . . . . . . . . . . . . . . . . 87

6.5 Impact of senders’ traffic pacers on tail slowdown . . . . . . . . . . . . . . . . . . 90

6.6 Homa Homa uses priority levels for W3 under different loads . . . . . . . . . . . . 91

6.7 Impact of the number of unscheduled priority levels on workload W1 . . . . . . . 92

6.8 The impact of the cutoff point between unscheduled priorities . . . . . . . . . . . . 93

6.9 The impact of the number of scheduled priority levels on slowdown . . . . . . . . 94

6.10 The impact of the number of unscheduled bytes on slowdown . . . . . . . . . . . . 95

6.11 The impact of the balance between unscheduled and scheduled priorities . . . . . . 96

6.12 Mean size spectrums at 80% network load for various transports . . . . . . . . . . 98

6.13 Mean size spectrums at 50% network load for various transports . . . . . . . . . . 99

6.14 Median size spectrums at 80% network load for various transports . . . . . . . . . 100

6.15 Median size spectrums at 50% network load for various transports . . . . . . . . . 101

7.1 Packet types used in Homa’s RAMCloud implementation . . . . . . . . . . . . . . 103

7.2 Hardware configurations used in experiments with Homa’s implementation . . . . 108

7.3 Tail latency of Homa implementation in RAMCloud at 80% load . . . . . . . . . . 110

7.4 Median latency of Homa implementation in ramcloud at 80% load . . . . . . . . . 111

7.5 Mean latency of Homa implementation in ramcloud at 80% load . . . . . . . . . . 112

7.6 Tail and Median latency of Homa vs Infiniband and TCP . . . . . . . . . . . . . . 115

7.7 Homa’s performance under incast. . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.8 Tail latency of Homa implementation in ramcloud at 50% load . . . . . . . . . . . 119

7.9 Median latency of Homa implementation in ramcloud at 50% load . . . . . . . . . 120

7.10 Mean latency of Homa implementation in ramcloud at 50% load . . . . . . . . . . 121

7.11 Tail latency of Homa implementation in ramcloud at 35% load . . . . . . . . . . . 122

7.12 Median latency of Homa implementation in ramcloud at 35% load . . . . . . . . . 123

7.13 Mean latency of Homa implementation in ramcloud at 35% load . . . . . . . . . . 124

xiv



Chapter 1

Introduction

The rise of datacenter computing over the last decade has created new opportunities and challenges

for network protocols. On one hand, modern datacenter networking hardware offers the potential

for very low latency communication. Round-trip times of 5 µs or less are now possible for short

messages, and a variety of applications have arisen that can take advantage of this latency [21, 30,

27]. In addition, many datacenter applications use request-response protocols that are dominated by

very short messages (a few hundred bytes or less).

On the other hand, existing transport protocols are ill-suited to these conditions, so the latency

they provide for short messages is far higher than the hardware potential, particularly under high

network loads. Almost all existing applications rely on the TCP protocol for network transport, and

TCP was not designed for this environment. For example, it cannot identify messages within a flow,

so it cannot give priority to smaller messages, and it depends on buffer occupancy for congestion

control, which increases latency under load. As a result, most applications today cannot reap the full

benefits of low latency datacenter networks.

Recent years have seen numerous proposals for better transport protocols, including improve-

ments to TCP [3, 4, 35] and a variety of new protocols [36, 18, 5, 28, 15, 7, 16]. However, each

of these proposals suffers from limitations. For example, pFabric [5] offers near-optimal latency

by prioritizing small messages, but it requires specialized networking hardware, which limits its

adoption. Fastpass [15] eliminates queuing by scheduling messages centrally, but it adds an extra

round-trip delay, which is a severe penalty for short messages.

Moreover, none of these designs considers today’s small message sizes; they are based on heavy-

tailed workloads where 100 Kbyte messages are considered “small,” and latencies are often mea-

sured in milliseconds, not microseconds. As a result, there is still no practical solution that provides

1



CHAPTER 1. INTRODUCTION 2

near-hardware latencies for short messages under high network loads. For example, we know of no

existing implementation with tail latencies of 100 µs or less at high network load (within 20x of the

hardware potential).

In this dissertation we revisit the challenge of creating a low latency transport for datacenters.

Our assumptions differ from previous work in two key respects: first, we assume that workloads are

dominated by very short messages (a few hundred bytes or less); and second, we assume the avail-

ability of ultra-low-latency networks (5 µs round trip times). Each of these assumptions creates new

challenges. For example, we will show that a high volume of short messages precludes centralized

solutions and requires the use of network priorities for preemption. The 5 µs end-to-end latency

means that seemingly small inefficiencies such as the non-preemptibility of partially transmitted

packets can have a significant impact on performance.

Homa is the name of a new transport protocol we designed to achieve low latency for small

messages in datacenter environments, even in the presence of high network loads and competing

large messages. Our implementation of Homa achieves 99th percentile round trip latencies less than

15 µs for small messages at 80% network load with 10 Gbps link speeds, and it does this even in

the presence of competing large messages. Across a wide range of message sizes and workloads,

Homa achieves 99th percentile latencies at 80% network load that are within a factor of 2–3.5x of

the minimum possible latency on an unloaded network. Although Homa favors small messages, it

also improves the performance of large messages in comparison to TCP-like approaches based on

fair sharing.

In our simulations, across various workloads and even at 80% network load, Homa provides

99th-percentile tail latencies for short messages within a factor of 2.2x of an unloaded network.

pFabric’s performance is considered near-optimal, and at high loads Homa’s short message laten-

cies are equal or sometimes up to 30% lower than pFabric on heavy-tailed workloads. Homa can

also sustain 2–17% higher network loads than pFabric, and it can be implemented without any

modifications to networking hardware.

Homa uses three key innovations to achieve its performance:

1. Priorities. Homa makes aggressive use of the priority queues that are provided by modern

network switches. The number of these priority queues is typically limited in commodity

network fabrics. So in order to make the most of this limited number, Homa assigns packet

priorities dynamically at receivers. Homa takes advantage of these priorities to implement

SRPT (shortest remaining processing time first). Priorities allows shorter messages to pre-

empt longer ones quickly, thereby improving latency. In Homa, each receiver independently



CHAPTER 1. INTRODUCTION 3

determines the priorities for its incoming packets.

2. Receiver-based scheduling. Unlike TCP which uses a sender-driven congestion control mech-

anism, Homa implements a receiver-driven flow control mechanism like pHost [14] and

NDP [16]. In datacenter networks, we expect congestion to occur primarily at the downlinks

from the top-of-rack switches to the receivers. Therefore, Homa manages congestion from the

receiver since the receiver is the closest end-point to the congestion; receivers schedule in-

coming traffic on a packet-by-packet basis. The priority assignment mechanism is integrated

with the congestion control mechanism to achieve optimal low latency for short messages.

Homa improves tail latency by 2–16x compared to previous receiver-driven approaches. In

comparison to sender-driven priority mechanisms such as PIAS [7], Homa provides a better

approximation to SRPT; this reduces tail latency by 0–3x over PIAS.

3. Controlled overcommitment. Homa’s third contribution is its use of Controlled Overcommit-

ment, where a receiver allows a few senders to transmit simultaneously. Slightly overcom-

mitting receiver downlinks in this way allows Homa to use network bandwidth efficiently:

Homa can sustain network loads 2–33% higher than pFabric [5], PIAS, pHost, and NDP.

Homa limits the overcommitment and integrates it with the priority mechanism. The priority

mechanism is key to Homa’s ability to operate at high network loads; it allows receivers to

overcommit their downlinks, which is necessary to achieve high bandwidth utilization, while

still ensuring low latency for short messages; the priority mechanism prevents queuing of

short messages.

Homa has several other unusual features that contribute to its high performance. It uses a

message-based architecture rather than a streaming approach; this eliminates head-of-line blocking

at senders and reduces tail latency by 100x over streaming transports such as TCP. Homa is con-

nectionless, which reduces connection state in large-scale applications. It has no explicit acknowl-

edgments, which reduces overheads for small messages, and it implements at-least-once semantics

rather than at-most-once.

The rest of this dissertation is organized as follows: In Chapter 2, we present the motivation and

rationale for the design of Homa and describe the key ideas behind our design. In Chapter 3, we

focus on a simplified many-to-one (i.e. many senders, single receiver) traffic pattern and discuss the

design of Homa’s receiver-driven congestion control and priority assigns scheme. In Chapter 4, we

evaluate the design of Chapter 3, using a packet simulator; this chapter is heavily focused on the

evaluation of the priority assignment mechanism. In Chapter 5, we arrive at the complete design of



CHAPTER 1. INTRODUCTION 4

Homa’s transport scheme under many-to-many traffic patterns; we discuss the shortcomings of the

transport we designed and evaluated in the previous two chapters, then we extend that design with

the overcommitment mechanism to address those shortcomings. In Chapter 6, we evaluate the com-

plete design of Homa; we compare Homa against state of the art transports using packet-level simu-

lators and demonstrate how Homa outperforms other practical low latency transports. We present a

system implementation of Homa in Chapter 7 and evaluate it under realistic workloads in datacenter

environments. We discuss related works in Chapter 8 and Homa’s limitations in Chapter 9. Finally,

we close the dissertation with a few concluding remarks in Chapter 10.



Chapter 2

Motivation and Key Ideas

The primary goal of Homa is to provide the lowest possible latency for short messages at high

network load using commodity networking hardware. In the course of this dissertaion, we focus

on tail message latency (99th percentile), as it is the most important metric for datacenter applica-

tions [3, 37]. A large body of work has focused on low latency datacenter transport in recent years.

However, as our results show, existing designs are sub-optimal for tail latency at high network load,

particularly in networks with raw hardware latency in the single-digit microseconds [32, 10, 38, 22].

In this chapter, we discuss the challenges that arise in such networks and we derive Homa’s key de-

sign features. These features include dynamic allocation of in-network priorities, receiver-driven

congestion control, and limited use of blind transmissions.

2.1 Motivation: Tiny Latency for Tiny Messages

State-of-the-art cut-through switches have latencies of at most a few hundred nanoseconds [34]. Low

latency network interface cards and software stacks (e.g., DPDK [10]) have also become common

in the last few years. These advances have made it possible to achieve one-way latencies of a few

microseconds in the absence of queuing, even across a large network with thousands of servers (e.g.,

a 3-level fat-tree network).

We focus on message latency (not packet latency) since it reflects application performance. A

message is a block of bytes of any length transmitted from a single sender to a single receiver. The

sender must specify the size of a message when presenting its first byte to the transport, and the

receiver cannot act on a message until it has been received in its entirety. Knowledge of message

sizes is particularly valuable because it allows transports to prioritize shorter messages. We assert

5



CHAPTER 2. MOTIVATION AND KEY IDEAS 6

that a message-based transport can be used to implement streams like those provided by traditional

sockets, and it can also be implemented underneath a socket interface (e.g. by guessing message

boundaries), but we leave the details to future work.

Many datacenter applications rely on request-response protocols with tiny messages of a few

hundred bytes or less. In typical remote procedure call (RPC) use cases, it is almost always the case

that either the request or the response is tiny, since data usually flows in only one direction. The

data itself is often very short as well. Figure 2.1 shows a collection of workloads that we used to

design and evaluate Homa, most of which were measured from datacenter applications at Google,

Facebook, and Microsoft. In three of these workloads, more than 85% of messages were less than

1000 bytes. In the most extreme case (W1), more than 70% of all network traffic, measured in bytes,

was in messages less than 1000 bytes.

To our knowledge, almost all prior work has focused on workloads with very large messages.

For example, in the Web Search workload used to evaluate DCTCP [3] and pFabric [5] (W7 in

Figure 2.1), messages longer than 1 Mbyte account for 95% of transmitted bytes, and any mes-

sage shorter than 100 Kbytes was considered “short”. Most subsequent work has used the same

workloads. Unfortunately, the method used to measure these workloads, significantly overestimates

message sizes: to obtain these workloads, message sizes were estimated from packet captures based

on inactivity of TCP connections; connections are distinguished by 5-tuple descriptors in the packet

headers and a message (i.e. flow in previous works) and its size is identified if a connection remains

silent beyond a threshold (e.g. 50 ms). Since application-level message boundaries aren’t defined in

a TCP connection, a TCP flow can contain many (sometimes up to tens of) closely-spaced messages.

Our definition of a message (given previously in this section) is very different from a traditional 5-

tuple flow, in the sense that a message is measured from application-level traces and is a much

finer grain boundary between blocks of transmitted data. In Figure 2.1, workloads W1–W4 were

measured explicitly in terms of application-level messages, and they show much smaller sizes than

workloads W5–W7, which were extracted from packet captures.

Almost all existing and proposed transport protocols follow TCP’s example and implement

connection-oriented byte streams. Unfortunately this results in head-of-line-blocking, where a short

message for a given destination is queued behind a long message for the same destination. Chapter 7

shows that this increases tail latency by 100x for short messages. Most recent proposals, such as

DCTCP, pFabric, and PIAS, assume dozens of connections between each source-target pair, so

that each message has a dedicated connection. However, this approach results in an explosion of



CHAPTER 2. MOTIVATION AND KEY IDEAS 7

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

20

40

60

80

100

1 10 100 1000 10000 105 106 107

Message/Flow Size (Bytes)

C
um

ul
at

iv
e 

%
 o

f M
es

sa
ge

s

WorkLoad

W1
W2
W3
W4
W5
W6
W7

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

20

40

60

80

100

1 10 100 1000 10000 105 106 107

Message/Flow Size (Bytes)

C
um

ul
at

iv
e 

%
 o

f B
yt

es

WorkLoad

W1
W2
W3
W4
W5
W6
W7

(b)
W1 Accesses to a collection of Memcached servers at Facebook, as approximated by the statistical

model of the ETC workload in Section 5 and Table 5 of [6].
W2 Measured from the search application workload at Google [33].
W3 A synthesized workload.
W4 Aggregated workload from all applications running in a Google datacenter [33].
W5 Measured from intra cluster traffic of Web Server applications at Facebook [31].
W6 Aggregated workload from all Hadoop traffic at Facebook [31].
W7 Web search workload used for DCTCP, pFabric, pHost, NDP, PIAS, etc. [3], [5], [16], [14], [7].

(c)

Figure 2.1: The workloads used to design and evaluate Homa. The upper graph shows the cumulative
distribution of message sizes weighted by number of messages. The bottom graph is a cumulative dis-
tribution of messages weighted by bytes. The workload names W1 to W7 are lexicographically ordered
by average message size: W1 has the smallest average message size, and W7 has the largest average
message size (i.e. the most heavy-tailed workload)



CHAPTER 2. MOTIVATION AND KEY IDEAS 8

connection state. Even a single connection for each application-server pair is problematic for large-

scale applications ([24] §3.1, [12] §3.1), so it is not realistic to use multiple connections. Homa

solves these problems with a lightweight message-oriented mechanism.

Unfortunately, existing datacenter transport designs cannot achieve the lowest possible latency

for tiny messages at high network load. We explore the design space in the next section, but consider,

for example, designs that do not take advantage of in-network priorities (e.g., HULL [4], PDQ [18],

NDP [16]). These designs attempt to limit queue buildup, but none of them can eliminate queuing

altogether. The state-of-the-art approach, NDP [16], strictly limits queues to 8 packets, equivalent to

roughly 10 µs of latency at 10 Gbps. While this queuing latency has negligible impact in a network

with moderate latency (e.g., RTTs greater than 50 µs) or for moderately-sized messages (e.g., 100

KBytes), it increases by 5x the completion time of a 200-byte message in a network with 5 µs RTT.

2.2 The Design Space

We now present a walk through the design space of low latency datacenter transport protocols.

We derive Homa’s four key design principles: (i) transmitting short messages blindly, (ii) using in-

network priorities, (iii) allocating priorities dynamically at receivers in conjunction with receiver-

driven rate control, and (iv) controlled overcommitment of receiver downlinks. While some past

designs use the first two of these techniques, in this dissertation, we show that combining all four

techniques is crucial to deliver the lowest levels of latency at high network load.

The key challenge in delivering short messages with low latency is to eliminate queuing delays.

Similar to prior work, we assume that bandwidth in the network core is sufficient to accommo-

date the offered load, and that the network supports efficient load-balancing [11, 17, 2], so that

packets are distributed evenly across the available paths (we assume simple randomized per-packet

spraying in our design). As a result, queueing occurs primarily in the downlinks from top-of-rack

switches (TORs) to machines. This happens when multiple senders transmit simultaneously to the

same receiver. The worst-case scenario is incast, where an application initiates RPCs to many servers

concurrently and the responses all arrive at the same time.

Before we dive into the design principles that we derived Homa from, let’s take a step back and

describe the transport problem, At a high level, a datacenter can be modeled as a bunch of servers

that are connected to a big switch. Each server can act as a sender of some messages and/or a re-

ceiver for a some other messages. In general, multiple senders have messages to transmit to multiple

receivers. The message is presented to the sending transport in its entirety (i.e., its size is known),



CHAPTER 2. MOTIVATION AND KEY IDEAS 9

and the receiver cannot act on the message until it has been received in its entirety. We assume that

messages are transmitted as part of an ongoing connection that can maintain state; but we do not

include the cost of connection setup in the message latency.

There is no time to schedule every packet. An ideal scheme might attempt to schedule every

packet at a central arbiter, as in Fastpass [28]. Such an arbiter could take into account all the mes-

sages and make a global scheduling decision about which packet to transmit from each sender and

when to transmit it. The arbiter could in theory avoid queues in the network altogether. However,

this approach triples the latency for short messages: a tiny, single-packet message takes at least 1.5

RTTs if it needs to wait for a scheduling decision, whereas it could finish within 0.5 RTT if transmit-

ted immediately. Receiver-based scheduling mechanisms such as ExpressPass [9] suffer the same

penalty.

In order to achieve the lowest possible latency, short messages must be transmitted blindly,

without considering potential congestion. In general, a sender must transmit enough bytes blindly

to cover the round-trip time to the receiver (including software overheads on both ends); during this

time the receiver can return explicit scheduling information to control future transmissions, without

introducing additional delays. We refer to this amount of data as RTTbytes; it is about 10 KB in our

implementation of Homa for 10 Gbps networks.

Buffering is a necessary evil. Blind transmissions mean that buffering can occur when multiple

senders transmit to the same receiver. No protocol can achieve minimum latency without incurring

some buffering. But, ironically, when buffering occurs, it increases latency. Many previous designs

have attempted to reduce buffering, e.g., with carefully-engineered rate control schemes [3, 38, 22],

reserving bandwidth headroom [4], or even strictly limiting the buffer size to a small value [16].

However, none of these approaches can completely eliminate the latency penalty of buffering.

NDP [16] reduces queue lengths significantly, to a maximum of eight jumbo packets per queue,

but this still leaves queueing delays of almost 60 µs on a 10 Gbps network, a greater than 10x

penalty in a network with a 5 µs round-trip time.

In-network priorities are a must. Given the inevitability of buffering, the only way to achieve

the lowest possible latency is to use in-network priorities. Each output port in a modern switch

supports a small number of priority levels (typically 8), with one queue for each priority. Each in-

coming packet indicates which queue to use for that packet, and output ports service higher priority



CHAPTER 2. MOTIVATION AND KEY IDEAS 10

queues before lower priority ones. The key to low latency is assigning packet priorities so that short

messages bypass queued packets for longer messages.

This observation is not new; starting with pFabric [5], several schemes have shown that switch-

based priorities can be used to improve message latency [15, 14, 7, 8]. These schemes use priorities

to implement various message-size-based scheduling policies. The most common of these policies

is SRPT (shortest remaining processing time first), which prioritizes packets from messages with

the fewest bytes remaining to transmit. SRPT provides near-optimal average message latency, and

as shown in prior work [18, 5], it also provides very good tail latency for short messages. Homa

implements an approximation of SRPT (though the design can support other policies as well): if

there are multiple packets ready to transmit on a link, Homa favors the packet whose message has

the fewest bytes remaining to transmit. Our evaluation shows that this produces very good results

for short messages, and that it outperforms other approaches that do not use SRPT, such as PIAS

and NDP.

Unfortunately, in practice, no existing scheme can deliver the near-optimal latency of SRPT at

high network load. pFabric approximates SRPT accurately, but it requires too many priority lev-

els to implement with today’s switches. PIAS [7] works with a limited number of priorities, but

it assigns priorities on senders, which limits its ability to approximate SRPT. In addition, it works

without message sizes, so it uses a “multi-level queue” scheduling policy. As a result, PIAS has high

tail latency both for short messages and long ones. QJUMP [15] requires priorities to be allocated

manually on a per-application basis, which is too inflexible to produce optimal latencies.

Making best use of limited priorities requires receiver control. The next question is how to

allocate the limited priorities to packets of different messages. For heavy-tailed workloads, this is

a relatively easy task, because one or two priorities are usually sufficient to isolate short messages

from the very large messages that contribute the majority of the load. For example, in the Web

Search workload (W5 in Figure 2.1), messages smaller than 100 Kbytes represent less than 1% of all

transmitted bytes; we can schedule all these messages in a single high priority queue, dramatically

reducing their latency. Hence performance is relatively insensitive to the priority scheme for such

workloads, and prior work has demonstrated good results with few priorities and simple priority

schemes [5, 15, 7, 8].

However, for workloads with very short message sizes, it becomes crucial to make the best use of

available priorities. In particular, these workloads do not include huge, easily-identifiable messages

which we can easily isolate from the short messages; instead, we must deal with a continuum of



CHAPTER 2. MOTIVATION AND KEY IDEAS 11

message sizes. Small changes to the priority assignments can have a large impact on latency for

short messages. Implementing an accurate approximataion of SRPT can be a hard challenge when

we have a limitted number of priorities.

To produce the best approximation of SRPT with only a small number of priority levels, the

priorities should be determined by the receiver. Except for blind transmissions, the receiver knows

the exact set of messages vying for bandwidth on its downlink from the TOR switch. As a result, the

receiver can best decide which priority to use for each incoming packet. In addition, the receiver can

amplify the effectiveness of the priorities by integrating them with a packet scheduling mechanism.

pHost [14], the closest prior scheme to Homa, is an example of using a receiver-driven approach

to approximate SRPT. Its primary mechanism is packet scheduling: senders transmit the first RT-

Tbytes of each message blindly, but packets after that are transmitted only in response to explicit

grants from the receiver. Receivers schedule the grants to implement SRPT while controlling the

influx of packets to match the downlink speed.

However, pHost makes only limited use of priorities: it statically assigns one high priority for

all blind transmissions and one lower priority for all scheduled packets. This impacts its ability to

approximate SRPT in two ways. First, it bundles all blind transmissions into a single priority. While

this is reasonable for workloads where most bytes are from large messages (W5-W7 in Figure 2.1),

it is problematic for workloads where a large fraction of bytes are transmitted blindly (W1-W4).

Second, for messages longer than RTTbytes, pHost cannot preempt a larger message immediately

for a shorter one. Once again, the root of the problem is that pHost bundles all such messages into a

single priority, which results in queueing delays. We show in Chapter 3 that this creates preemption

lag, which hurts latency, particularly for medium-sized messages that last a few RTTs.

Receivers must allocate priorities dynamically. Homa addresses pHost’s limitations by dynam-

ically allocating multiple priorities at the receivers. Homa uses a novel priority allocation scheme

where each receiver dynamically controls the priorities of its incoming packets based on its observed

workload and the exact set of messages destined to that receiver. Each receiver allocates priorities

for its own downlink using two mechanisms. For messages larger than RTTbytes, the receiver com-

municates a priority for each scheduled packet to its sender dynamically based on the exact set of

inbound messages. This eliminates almost all preemption lag. For short messages sent blindly, the

sender cannot know about other messages inbound for the receiver. Even so, the receiver can provide

guidance in advance to senders based on its recent workload. Our experiments show that dynamic

priority management reduces tail latency considerably in comparison to static priority allocation



CHAPTER 2. MOTIVATION AND KEY IDEAS 12

schemes such as those in pHost or PIAS.

Receivers must overcommit their downlink in a controlled manner. Scheduling packet trans-

missions with grants from receivers reduces buffer occupancy, but it introduces a new challenge: a

receiver may send grants to a sender that does not transmit to it in a timely manner. This problem

occurs, for instance, when a sender has messages for multiple receivers; if more than one receiver

decides to send it grants, the sender cannot transmit packets to all such receivers at full speed. This

wastes bandwidth at the receiver downlinks and can significantly hurt performance at high network

load. For example, we find that the maximum network load that pHost can support ranges between

58% and 73% depending on the workload, despite using a timeout mechanism to mitigate the im-

pact of unresponsive senders. In contrast, Homa can support much larger maximum network loads

between 89% and 92% depending on the workload (details in Chapter 6). NDP [16] also schedules

incoming packets to avoid buffer buildup, and it suffers from a similar wasted bandwidth problem

as in pHost.

To address this challenge, Homa’s receivers intentionally overcommit their downlinks by grant-

ing simultaneously to a small number of senders; this results in controlled packet queuing at the

receiver’s TOR but is crucial to achieve high network utilization and the best message latency at

high load (Chapter 5).

Senders need SRPT also. Queues can build up at senders as well as receivers, and this can result

in long delays for short messages. For example, FIFO packet transmit queues in the NIC can result

in head-of-line blocking and high tail latency for short messages. In Chapter 6 we demonstrate that

this increases tail latency by 100x for short messages. In addition, most existing protocols imple-

ment byte streams, and an application typically uses a single stream for each destination. However,

this can result in head-of-line-blocking, where a short message for a given destination is queued

in the byte stream behind a long message for the same destination. In Chapter 7 we that this can

also increases tail latency by 100x for short messages. For low tail latency, senders must ensure that

short outgoing messages are not delayed by long ones, neither in FIFO transmit queues in the NIC

nor within the streams of packets to the same destination.

Run-to-completion is essential for low latency. Most existing protocols, such as TCP and NDP [16],



CHAPTER 2. MOTIVATION AND KEY IDEAS 13

implement some form of fair sharing: if there are multiple messages inbound to a receiver, the re-

ceiver shares its downlink bandwidth among them so they all progress at the same rate. Unfortu-

nately, this causes all of the messages to finish slowly. To minimize latency, the receiver should pick

one message at a time and allocate the entire downlink bandwidth to that message until it completes.

SRPT is an example of a run-to-completion protocol; as bytes of a message are received, its priority

increases, so the message runs to completion unless a new shorter message appears.

SRPT scheduling is good for large messages as well as small ones. A potential concern with

SRPT is that it might penalize large messages. However, we show that in comparison to other ap-

proaches, SRPT actually improves performance for large messages due to the “run-to-completion”

behavior; once a message becomes highest priority, it tends to stay that way and grabs all the band-

width until it completes. In contrast, approaches that produce fair sharing behavior, such as TCP,

complete all messages slowly.

Thus, SRPT benefits all messages except a very small number of the largest messages under

high network load; these messages can suffer long delays during bursts of activity. We hypothesize

that there are simple techniques for mitigating these delays. One possibility is to dedicate a small

fraction of the link bandwidth to the oldest message; eventually the remaining bytes of that message

is going to drop to the point where SRPT gives it the full link bandwidth. We leave a full exploration

of these techniques to future work.

2.3 Putting It All Together: Homa Overview

Figure 2.2 shows an overview of the Homa protocol. Homa delegates congestion control and priority

allocation decisions to the receiver; since congestion occurs mostly on the receiver’s downlink, the

receiver is in the best position to make decisions (e.g., packet scheduling and priority allocations)

for its own traffic based on the observed workload.

When a message arrives at a sender’s transport module, Homa divides messages into two parts:

an initial unscheduled portion followed by a scheduled portion. The sender transmits the unsched-

uled packets (RTTbytes of data) immediately, but it does not transmit any scheduled packets until

instructed by the receiver. The arrival of an unscheduled packet makes the receiver aware of the mes-

sage; the receiver then requests the transmission of scheduled packets by sending one grant packet

for each scheduled packet. When the sender receives a grant, it transmits the packet indicated in the

grant.



CHAPTER 2. MOTIVATION AND KEY IDEAS 14

Figure 2.2: Overview of the Homa protocol. Sender1 is transmitting scheduled packets of message m1,
while Sender2 is transmitting unscheduled packets of m2 Unscheduled packets have higher priority, so
packets of m1 get queued in the TOR egress port.

Homa’s receivers dynamically set priorities for scheduled packets and periodically notify senders

of a set of thresholds for setting priorities for unscheduled packets. Each receiver decides indepen-

dently how to use the available priorities in the TOR for unscheduled and scheduled packets; higher

priorities are used for unscheduled packets and lower priorities for scheduled packets. The receiver

computes a set of threshold values based on the workload and sends them to the sender to use to

set priorities for unscheduled packets. For scheduled packets, the receiver dynamically decides a

priority based on the real-time set of active messages for that receiver; it informs the sender about

these priority decisions in grants for scheduled packets.

The priority in a packet is used not just for the final downlink, but throughout the lifetime of the

packet as it traverses the network core. Since different receivers may assign priorities differently, it

is possible that their priorities conflict in the core switches. The best way to handle this problem is to

disable priorities for all ports except leaf downlinks. However, even if this isn’t possible, queueing



CHAPTER 2. MOTIVATION AND KEY IDEAS 15

is rare in the core, so we don’t expect priority conflicts to affect overall performance. We leave a

detailed analysis of this issue to future work.

Finally, a receiver sometimes intentionally overcommits its downlink by granting simultane-

ously to multiple senders; this results in controlled packet queuing at the receiver’s TOR but is

crucial to achieve high network utilization (Chapter 5). The receivers implement controlled over-

commitment to sustain high utilization in the presence of unresponsive senders.

Overall, the receiver uses a combination of grants and priority assignments (for unscheduled and

scheduled packets). The net effect is a close approximation of the SRPT scheduling policy using a

small number of priority queues. We demonstrate that SRPT provides excellent message latency and

yields this excellent performance across a broad range of workloads and traffic conditions. Although

we focus on SRPT for this thesis, Homa’s receiver-driven approach is flexible enough to support a

variety of other policies, including FIFO, round-robin, or fixed priorities for particular applications.

We leave an exploration of alternative policies to future work.



Chapter 3

Single Receiver Design

The two primary objectives of Homa are low latency for short messages and high utilization of

the network bandwidth when the offered load to the network is high. In the context of Homa, low

latency means that tail latency for short messages (i.e. a few hundred bytes or less) is as close as

possible to the latency that the hardware can offer in a unloaded datacenter network. In addition, the

implications of the high bandwidth utilization goal is that large messages get the bandwidth they

require to finish in a timely manner; even though Homa always tries to deliver short messages as

quickly as the networking hardware allows, it does this quick delivery in a way that completion of

large messages is minimally affected. To achieve the low latency goal, Homa’s transport mechanism

must act very efficiently in transmitting short messages while not wasting the network bandwidth

that larger messages are striving for.

In this dissertation, we present the design of Homa in two phases. In the first phase, which is the

focus of this chapter, we discuss how Homa achieves low latency through its receiver-driven packet

scheduling and priority allocation mechanism. In the second phase of the design, which is the topic

of Chapter 5, we extend and complete the design of this chapter, to support our second goal of high

bandwidth utilization.

In order to focus on the low latency goal, the design in this chapter is restricted to a simpli-

fied many-to-one traffic pattern. In this simplified traffic scenario, there is only a single receiver

in the network, and many senders are transmitting to this receiver. Later in Chapter 5, we extend

this design to support a generalized many-to-many traffic pattern where we have many senders and

many receivers in the network simultaneously. In the later chapter, we will explain how the over-

commitment mechanism enables us to avoid wasted bandwidth and achieve high throughput goal in

a network with arbitrary traffic patterns.

16



CHAPTER 3. SINGLE RECEIVER DESIGN 17

We emphasize that the restricted design in this chapter should not be taken as the complete and

final design of Homa. This design helps us to explain many of Homa features and properties, but

more detail and features will be added to this design in the later chapters.

3.1 Congestion: Where Does It Happen In Networks?

Congestion can theoretically happen at any output port of any switch in the network. Figure 3.1(a)

shows an example of a two tier full-bisection leaf-spine datacenter network topology. Categorically,

we divide the switch output ports in this network into two groups: 1) TOR (top-of-rack) downlink

ports: the ports in the leaf switches at the link from the switch down to the individual host machines.

2) Core ports: any other output port in the switches which includes ports at uplinks from leaf to

spine switches and downlinks from spine to leaf switches in the figure. In a datacenter network,

congestion can theoretically happen in both TOR downlinks or at the output ports in the core of the

network.

In datacenter networks congestion primarily happens at the TOR downlinks to the individual

host machines; i.e. the first category of the ports in Figure 3.1(a). When multiple sender hosts si-

multaneously transmit messages at high rate to the same receiver host, they can easily oversubscribe

the TOR downlink to the receiver. This overload on the link leads to packet build up at the top of the

rack (TOR) queue near the receiver. Therefore the primary point of buffer congestion in the network

is at the TOR downlink queues to the receivers. Homa’s transport mechanism needs to manage this

TOR buffer build up to avoid persistent congestion at the downlink. We note that this congestion

can happen regardless of how much aggregated bandwidth the core has or how load balanced the

core is.

We postulate that congestion is rare in the second group of the ports; i.e. the core of the datacen-

ter networks. This is particularly a valid assumption if the following two conditions hold true in the

network fabric: 1) The core of the network has packet level load balancing (e.g. packet spraying).

2) The core of the network has sufficient bandwidth to accommodate the offered load. As a result

of these two conditions, we can safely claim that there will be no persistent congestion at the core

of the network. To help understand why this claim is valid and the conditions are practical, we pro-

vide an example scenario that satisfies the two conditions. In the example of Figure 3.1(a), to route

each packet from a source host to a destination host, the packet has to first travel upward toward

the spine switches and then travel downward to the destination host. If at any hop on the packet’s



CHAPTER 3. SINGLE RECEIVER DESIGN 18

path toward the spine switches, we route the packet on a random uplink, the load balancing condi-

tion is satisfied. Moreover, because the core has a full bisection bandwidth fabric, none of the links

in the network’s core can become persistently oversubscribed with more load than it can transmit.

Therefore, persistent congestion never happens in the core.

One caveat with these assumptions is that most datacenter operators don’t build full bisection

bandwidth networks because of financial considerations and cost limitations. They typically create

oversubscribed networks with oversubscription ratios between 1
2 and 1

3 . This ratio is computed as

the fraction of aggregated bandwidth between leaf and spine switches, over aggregated bandwidth

between leaf switches and host machines. In a full bisection topology like in Figure 3.1(a), this ratio

is 1.

We note that a full-bisection bandwidth network is not a requirement for a congestion free

network core; even in presence of an oversubscribed network, there are many ways to ensure that

the core is congestion free. For example, in practice in datacenter networks, the host links typically

run at less than 50% bandwidth utilization. Furthermore, some traffic is local within the rack and

doesn’t traverse through the network core at all. Therefore, we claim that an oversubscription ratio

of 1/2 is sufficient to avoid persistent congestion in the core. This claim holds true if we have

optimal packet level load balancing available in the core. A large body of prior works has focused

on the problem of fine-grained and efficient load balancing in the core of the network [11, 17, 2].

Utilizing ideas from these prior works in this domain, should enable us to fulfill a congestion free

network core.

While fine-grained load balancing can be problematic for traditional transports (e.g. TCP), we

designed Homa to be invulnerable to it and to take advantage of it. With traditional transports,

fine-grained load balancing can cause difficulties in recovering from packet drops which increases

latency. Let’s explain why: an important job of a transports is to detect packet drops in the network

as quick as possible and retransmit them; failure to retransmit them quickly, increases latency of the

messages that experience packet drops. Meanwhile, traditional transports in order to detect packet

drops, heavily rely on in-order delivery of the packets within a flow by the network. However, fine-

grained load balancing schemes, like packet spraying, cause a lot of out of order packet deliveries

within flows which interferes with packet drop detection and as a result increases message latencies.

To mitigate these issues, we designed Homa to be invulnerable to out-of-order packet delivery by

using reordering message buffers. Chapter7 elaborates on the details of this design and how Homa

handles out-of-order packet deliveries.



CHAPTER 3. SINGLE RECEIVER DESIGN 19

(a) A schematic of a small but practical datacenter network topology that connects 16 host machines. The topology in
this example is a two tier leaf-spine with edge links running at 10Gbps speed and core links running at 20 Gbps speed.

Host’s TX Delay Link Propagation Delay Switching Delay Host’s RX Delay
1.0µs 0.1µs 0.25µs 0.5µs

(b) Fixed delays that a packet encounters while traversing the network of figure 3.1(a). The delays are measured from real
packet traces in our experiments with RAMCloud [27] storage system and we use them as delay parameters in network
simulations of Homa. “Host’s TX delay” models the minimum delay a packet experiences in the host’s software and
hardware, from when it’s sent in the transport until NIC starts transmitting it on the link. “Host’s RX delay” models the
minimum delay for a packet from when it’s received in the NIC until it’s delivered to the transport. With these delays,
RTT in the network is computed to 8.2µs. RTT is computed as the delay of a full size 1538-byte Ethernet packet in one
direction, plus an 84-byte acknowledgment packet in the other direction.

Figure 3.1

3.2 Homa’s Congestion Control

To minimize buffer build up at the TOR downlink queues, Homa uses a receiver-driven congestion

control mechanism; i.e. most of the congestion control logic resides in the receiver. The goal of

Homa’s congestion control is to manage buffer build up at the TOR downlink queue to the receiver

host, when multiple sender hosts are transmitting packets to the receiver host. To realize this ob-

jective, a receiver-driven approach makes perfect sense because: among the receiver end-hosts and

the sender end-hosts (the only two types of end-hosts in the network), receivers are the closest ones



CHAPTER 3. SINGLE RECEIVER DESIGN 20

Figure 3.2: The Homa scheduler for a scenario with one sender and one receiver. The receiver paces the
traffic from the sender by sending explicit grant packets. The sender sends a scheduled data packet for
every grant packet it receives. The receiver sends a new grant packet every time it receives a data packet
from the sender.

to the points of congestion at the TOR downlink queues. Therefore, they can have the appropriate

context and information to control the congestion. This is in contrast to the TCP congestion control

mechanism that is mainly driven by the sender hosts.

Before explaining how the receiver scheduler controls the congestion, let’s take a step back and

explain how exactly the scheduler behaves in the next subsection. Later in this section, we’ll explain

how packet scheduling allows Homa to control the congestion.

3.2.1 Receiver Driven Packet Scheduling

The behavior of a receiver scheduler is as follows: Each receiver host schedules the incoming traffic

on its downlink, on a packet by packet basis. This behavior is illustrated in Figure 3.2 for a scenario

with one sender host and one receiver host. As shown in the figure, for every data packet that

the sender wants to transmit, the receiver explicitly sends a grant packet that allows transmission

of the data packet. The data packets that are transmitted in response to grant packets, are called

“scheduled data packets”. Each grant packet specifies the number of data bytes the sender is allowed

to encapsulate in a scheduled data packet. The receiver sends a new grant packet every time a new

data packet is received from the sender. This allows the receiver to space the grants in time so that

the incoming traffic rate matches the speed of the TOR’s downlink to the receiver.

The receiver schedules the data packets as a part of a message. As we explained in Chapter 2,

a message is defined as a block of data bytes that an application hands over to the transport in its

entirety for transmission and the size of the block is known prior to transmission. For example in an

RPC, the request part and the corresponding response part, each is a message.

The receiver scheduler has a bootstrapping problem: how does the receiver know when to start



CHAPTER 3. SINGLE RECEIVER DESIGN 21

Figure 3.3: How does the receiver know how many grant packets it should send to the sender and when
to start sending these grants? One approach is that each sender sends one Request packet and notifies
the receiver. This approach, unfortunately, adds one RTT to the latency for the message.

sending grant packets to the sender and how many grants it must send? The receiver has to know that

the sender wants to transmit a message, and it has to know the size of that message. One approach to

communicate this information with the receiver is to have the sender notify the receiver by sending

a tiny request packet. That packet includes the number data bytes in the message. The receiver then

starts sending grant packets after it receives this request packet. Figure 3.3 shows this approach for

solving the bootstrapping problem.

The problem with the approach of Figure 3.3 is that it adds one round trip time (RTT) of latency

for every single message; it takes one round trip time from when the sender sends the request packet

until it can send the first data packet (i.e. until the first grant packet from the receiver arrives at

the sender). This latency overhead is particularly unacceptable for short messages. For example, a

100-byte message finishes with a latency of 3RTT/2 under this approach. However this message

could have been transmitted with a latency of RTT/2 if it was blindly transmitted without any wait

for grant packets. In this particular case, the scheduling approach has tripled the latency of the

message, compared to the minimum possible latency for that message.

To avoid the latency overhead from scheduling, Homa allows each sender to blindly transmit a

few data packets for each of its messages. These packets are called “unscheduled data packets” be-

cause the sender doesn’t need to wait for permission from the receiver (i.e. grant packets) to transmit

these data packets. Each sender, for each of its messages, is allowed to send enough unscheduled

data packets to cover the RTT latency overhead depicted in Figure 3.3. These unscheduled packets

also carry the size of the message, which informs the receiver about how many grants it needs to

send to the sender. Figure 3.4 shows how sending the unscheduled packets allows Homa to avoid the

one RTT latency overhead from scheduling and achieve the lowest possible latency for the sender’s



CHAPTER 3. SINGLE RECEIVER DESIGN 22

message. As shown in Figure 3.4, the number of data bytes in unscheduled packets is equal to RT-

TBytes. RTTBytes is defined as RT T × r where r is the host link speed in the network and RTT

is computed as the sum of the transmission delays of a full-size 1538-byte Ethernet packet in one

direction and an 84-byte acknowledgment packet in the other direction.

3.2.2 Receiver Side Congestion Control

With the restricted many-to-one traffic pattern of this chapter, Homa’s receiver-driven scheduler

can be leveraged to manage buffer build up at the TOR’s downlink, by scheduling a single sender at

time. As we discussed earlier in this chapter, when multiple distinct senders simultaneously transmit

packets to the same receiver, they can oversubscribe the TOR’s downlink to the receiver and build up

congestion at the downlink. In Homa, the receiver has no control over unscheduled packets and they

can create congestion when multiple senders simultaneously transmit them. However, the receiver

has total control over the scheduled packets and it can prevent the congestion from further blowing

up, by sending grants to a single sender at a time; the receiver can pace its inbound scheduled

traffic rate and ensures that its downlink does not remain oversubscribed from arrival of scheduled

data packets from multiple senders. So, each sender sends RTTBytes of unscheduled data packets

and then waits for grant packets from the receiver. The receiver sends a grant to a single sender,

whenever a data packet arrives from any of the senders. The net effect is that the receiver prevents

persistent growth of the queue size at its downlink and controls the congestion; congestion is capped

at RTTBytes times the number of senders (i.e. total unscheduled bytes from the senders). We call this

type of scheduling, “monogamous scheduling” where the receiver only schedules a single sender at

a time.

3.3 Receivers Use SRPT Scheduling

With the monogamous scheduling, each receiver has a decision to make: among all senders waiting

for grants, which sender should be granted first? The scheduling order in Homa is determined based

on SRPT policy. SRPT stands for Shortest Remaining Processing Time first; it refers to a type of

policy that focuses on the job with the shortest remaining time to complete and finishes that job first,

before any other job (in the context of network transports, transmission of each message from its

sender to its receiver is a job). SRPT schedulers are a subtype of preemptive schedulers. Specifically,

if an SRPT scheduler is currently serving a job J1 that has the shortest remaining size to complete

and a new job J2 arrives at the scheduler that is even shorter than the remaining size of J1, the



CHAPTER 3. SINGLE RECEIVER DESIGN 23

Figure 3.4: To avoid the latency overhead of receiver-driven scheduling, each sender is allowed to
transmit RTTBytes of unscheduled data packets for each of its messages. This allows the messages to
finish in minimum possible latency in an unloaded network. As an example, in a datacenter network
where RTT is 10µs and host links run at 10Gbps, RTTBytes is 12500Bytes.

scheduler stops serving (or preempts) J1 in favor of J2 and starts serving J2.

An important property of SRPT is that it leads to very low latency for short messages, thus

Homa adopts SRPT as its scheduling policy. The example in Figure 3.5-a illustrates how a Homa

receiver scheduler implements SRPT to favor scheduling the shorter message, when two messages

from different senders are waiting for grants. In this figure, initially the receiver is only receiving

packets from a large message from Sender 1 and therefore it sends a new grant packet for that

message, each time it receives a data packet from that sender. But, at time T4 the first packet from

Sender 2 arrives at the receiver and the receiver now has a decision to make: among the two senders

waiting for grant packets, in what order should the receiver scheduler send grants to them? Since low

latency for short messages is one our most important goals, the receiver scheduler tries to dedicate

its bandwidth to the shorter message. To that end, the receiver stops sending grant packets to the

long message from Sender 1 (i.e. preempts it) and starts sending grant packets to shorter message

from Sender 2. One the shorter message has been fully granted, the receiver resumes granting the

larger message from sender 1.

Homa’s scheduling policy as depicted in Figure 3.5-a can be generalized to more than two

senders. When multiple messages from different senders are waiting for grant packets, Homa chooses

the message with the shortest remaining bytes to receive and schedules that message first; every time

a grant packet can be sent, the receiver sends the grant to the message that is nearest to completion.

If the receiver has been sending grant packets to a message and all of sudden another message ar-

rives with a shorter remaining bytes to receive, the scheduler preempts the larger one in favor of the

shorter message, and starts sending grant packets to the shorter message.



CHAPTER 3. SINGLE RECEIVER DESIGN 24

Figure 3.5: Congestion control and SRPT scheduling when two senders are transmitting packets to one
receiver. Time is increasing from left to right and the timelines of Sender 1, Sender 2, and the Receiver
are shown. The other two timelines represent the ingress ports of the Receiver’s TOR on which packets
from sender 1 and sender 2 arrive. RTTBytes in this hypothetical network is 5 packets. TOR queues are
FIFO, no priority queue is used.
a) In this scenario, Sender 1 starts transmitting unscheduled packets at T0. The Receiver begins granting
Sender 1 at T1. Sender 2 starts sending unscheduled packets at T2 and packets of both Sender 1 and
Sender 2 arrive at the TOR at T3. The receiver preempts Sender 1 and starts granting the shorter message
from Sender 2 until it’s fully granted at T4. After this time, the Receiver resumes granting Sender 1 again.
b) Preemption lag occurs if packets of a shorter message are delayed by packets of larger messages in
the queue. Packets from senders pass through the TOR queues, and are transmitted to the receiver at the
bottom. The interleaving packets from Sender 1 increase the latency of Sender 2’s message by one RTT.
The bins show how the TOR queue length grows in time, as new packets arrive at the TOR’s ingress
ports. The queue starts to build up at T3 when the packets from both Sender 1 and Sender 2 arrive at the
TOR ingress ports. The queue size grows to as large as RTTBytes, from a mixture of packets from both
senders. RTTBytes of packets from Sender 1 are delivered to the Receiver, interleaving the packets from
Sender 2. This increase Sender 2’s message latency by one RTT.



CHAPTER 3. SINGLE RECEIVER DESIGN 25

One of the desirable properties of SRPT schedulers is “run to completion” behavior. Run to

completion means that the scheduler favors the message that has transmitted more bytes than oth-

ers. Therefore, run to completion leads to low latency for the messages that keep making the most

progress. This behavior is automatically realized with Homa’s SRPT scheduler. Run to completion

behavior is not fair for transmission of messages, but it yields to a better end-to-end system design

and performance. In contrast to round-robin schedulers that lead to fairness among messages, SRPT

schedulers lead to run to completion behavior which improves the latency of messages. The impor-

tance of run to completion in improving latencies can be better understood when we’re scheduling

messages of equal sizes; once the SRPT scheduler chooses one of the messages of equal sizes and

schedules one packet from it, the scheduler consequently favors that message and dedicates its band-

width to completely transmit it. Not only this minimizes the latency of the message that sent more

bytes, but also compared to a fair scheduler, it reduces mean, median, and tail latencies among those

messages (with a fair scheduler all of the messages would have completed slowly).

The grant mechanism of Homa’s receiver schedulers allows them to preempt the larger mes-

sages for the shorter messages. Hence, we call this type of preemption, ”preemption by grants”.

Although ”preemption by grants” allows Homa receivers to achieve lower latency for shorter mes-

sages, unfortunately it does not lead to the smallest possible latency for short messages. This is a

problem that we discuss in the next section and we’ll resolve it by utilizing network priority queues.

We should note that the monogamous scheduler is not the final design of Homa’s scheduler.

We’ll show later in simulations that this scheduler accurately controls the congestion and closely

implements SRPT under the many-to-one traffic pattern of this chapter. But as we discussed earlier,

the main benefit of the monogamous scheduler and many-to-one traffic patterns is that they allow us

to pay our undivided attention to the design and analysis of Homa’s priority assignment mechanism

which is the topic of the rest of this chapter. That said, this scheduler has other issues that would

surface up under many-to-many traffic patterns and we need to address them. In Chapter 5, we will

extend Homa’s scheduler with the concept of controlled overcommitment to fix those issues. We will

demonstrate that with the controlled overcommitment mechanism, Homa is still able to manage the

congestion and implement SRPT, but the queue sizes increase in the TORs.

3.4 Priorities For Preemption

The ”preemption by grants” mechanism has a problem that we call “preemption lag” which in-

creases the latency of shorter messages. “Preemption lag” means that preemption does not happen



CHAPTER 3. SINGLE RECEIVER DESIGN 26

immediately; a few packets from the larger message, which were already in flight, arrive at the re-

ceiver before those from the shorter message. In other words, the receiver scheduler cannot fully

preempt all packets of the larger message, when it stops sending grant packets to it and starts grant-

ing the shorter message. ”Preemption lag” happens as a result of temporary buffer build up at the

FIFO queue of TOR downlink to the receiver.

Figure 3.5-b illustrates why preemption lag occurs in our example of two senders and one re-

ceiver. The packets in the bins in this figure show how the TOR’s queue length changes as new

packets arrive at the TOR. In the figure, when the receiver preempts Sender 1 at T3 and starts grant-

ing Sender 2, there are already RTTBytes in packets in-flight from Sender 1 that were previously

scheduled by the receiver. These packets from Sender 1 arrive at the TOR simultaneously with the

packets from Sender 2. The simultaneous arrival of packets from the two senders results in a short-

lived over-subscription of TOR’s downlink for one RTT time. This oversubscription in turn causes

a small queue of size RTTBytes to build up at the TOR’s downlink to the receiver. This means

RTTBytes worth of packets from Sender 1 are interfering with the packets from Sender 2 and the

TOR’s FIFO queue delivers the Sender 1’s packets among the packets from Sender 2, according to

the order they arrive at the TOR ingress ports. Hence, completion of sender 2’s message is delayed

by one RTT.

When we design for low latency, transmission of packets from shorter messages must always be

prioritized over transmission of packets from larger messages. So the transport should be designed

in a way that prevents packets of large messages from blocking packets of shorter messages. To

motivate why this is a necessary design decision, let’s consider a practical scenario in the network

of Figure 3.1(a). Table 3.1(b) shows a breakdown of different fixed delays in the network (these

delays are measured from real packet traces in our experiments with RAMCloud storage system).

According to these delays, a short 100-byte message can be delivered in less than 1.7µs on the

longest path in the network that passes through three switches. However, serialization of a full-size

1500-byte packet can take 1.23µs, about 72% of the short message latency; if the short message

is blocked by one full packet, even at one hop in the network, the latency of the shorter packet

increases by 72%. At tail, the latency of the short message could be even worse since it could be

blocked multiple times by full packets on different hops in the network. This is a form of preemption

lag at packet level granularity which causes the latency of short messages to increase. One the key

ideas we pursue in Homa’s design is to prevent preemption lag at packet level granularity, in order

to achieve low latency for short messages.

Fortunately commodity network switches, through network priority queues, provide the means



CHAPTER 3. SINGLE RECEIVER DESIGN 27

by which we can eliminate preemption lag. Network physical layers such as Ethernet, have long

standardized these priority queues (in Ethernet they’re also referred to as Quality of Service or QoS

levels). For instance, in Ethernet switches and routers, each egress port of the switch/router contains

eight priority queues, one queue per priority level. Every Ethernet packet, prior to transmission at

the sender transport, can be tagged with a priority level. When the packet is transmitted and the

switch receives it, the switch arbiter inspects the priority level of the packet, then forwards it to

the appropriate egress port and buffers the packet in the queue that matches the priority tag of the

packet (refer to IEEE 802.1Q for the details on priority levels in Ethernet Layer). Whenever the

switch wants to send a packet out at that output port, it always strictly favors packets in the higher

priority queues to lower priority queues. Throughout this dissertation, we assume at most eight

priority queues P1 to P8 per switch port, and we always have P1 as the lowest priority queue and P8

as the highest priority queue (switch always forwards packets from P8 before any other queue; if P8

is empty, then it forwards from P7 and so on).

Figure 3.6 shows how utilizing priorities can help us to achieve packet level preemption of

larger messages and optimum latency for shorter messages. In this example, suppose that in order to

allow fast and unblocked delivery of unscheduled packets from Sender 2’s message (i.e. the shorter

message), Sender 2 knew that it had to tag its unscheduled packets with a priority level higher

than Sender 1’s packets. Therefore, as the packets from the two senders arrive at the TOR buffer,

Sender 2’s unscheduled packets preempt the packets of Sender 1. A queue of size RTTBytes forms

at the TOR downlink buffer to the receiver, however, that buffer is strictly from the Sender 1’s lower

priority packets. After the Receiver receives the first packet of Sender 2, it preempts Sender 1 (i.e.

stops sending grant packets to it) and starts sending grant packets to Sender 2. In order to ensure

that scheduled packets of Sender 2 are not blocked by the packets of the Sender 1 message, the

scheduled packets of Sender 2 must also be higher priority than the scheduled packets of Sender 1.

In such case, the scheduled packets of Sender 2 also preempt the scheduled packets from Sender 1

at the TOR queue and the entire message of Sender 2 can be delivered to the Receiver without any

interruption. Hence, the packet level preemption using priority queues and QoS levels allows us to

achieve optimum latency for the shorter message. That said, the question remaining to be answered

is how does Sender 1 knows what priority level it should use, that is the topic of the next section.



CHAPTER 3. SINGLE RECEIVER DESIGN 28

Figure 3.6: Congestion control when two senders are transmitting packets to one receiver. Time is
increasing from left to right and the timelines of Sender 1, Sender 2, and the Receiver are shown. The
two other timelines represent the ingress ports of the Receiver’s TOR on which packets from sender 1
and sender 2 arrive. RTTBytes in this hypothetical network is 5 packets.
a) In this scenario, Sender 1 starts transmitting unscheduled packets at T0. The receiver starts sending
grants to Sender 1 at T1. Sender 2 starts sending unscheduled packets at T2 and the packets of both
senders arrive at TOR at T3. Since the unscheduled packets of Sender 2 are tagged with a higher priority
level, they preempt Sender 1’s packets. The receiver preempts Sender 1 and starts granting the shorter
message from Sender 2 until it’s fully granted at T4. Since the packets of Sender 2 are all tagged with a
higher priority level than Sender 1’s packets, they all arrive back to back without any interruption from
Sender 1’s packets. The receiver resumes granting Sender 1’s message again when Sender 2 is fully
granted.
b) Shows how the packet queue builds up in time up at the TOR’s buffer near the receiver. The queue
starts to build at T3 when the packets from both Sender 1 and Sender 2 arrive at the TOR buffer. Higher
priority packets from Sender 2 preempt Sender 1’s packets, so the queue forms solely from packets of
Sender 1. Higher priority for Sender 2’s packets allow them to immediately get delivered to the receiver
as soon as they arrive at the TOR; the net effect is optimal latency for the short message from Sender 2.



CHAPTER 3. SINGLE RECEIVER DESIGN 29

3.5 Priority Assignment Mechanism

The example in Figure 3.6 is a simple scenario that demonstrates how utilizing network priority

queues can lead to perfect preemption in packet level granularity and low latency for the shorter

message. However, the question that remains to be answered is: How can we generalize this example

to a more concrete and crisp mechanism for allocating priority levels among packets of various

message sizes?

Network priority queues are the corner stone of Homa’s transport mechanism; they are the most

novel feature in Homa, and the key to its performance. But before jumping into the details of how we

use them, we need to discuss several limitations and considerations about them. Below we present

at high level, some of these limitations and consideration of priority queues and we explain in what

ways we should use them in Homa.

Priorities Are Limited

Homa is designed to be a practical transport scheme for datacenters and it must perform within the

limitations of the network fabric. That means, Homa should only rely on the features and capabilities

provided by commodity network hardware. Priority queues have been a feature of the commodity

network hardware for many years but with one caveat: the number of priority levels is limited. For

example, as we discussed earlier Ethernet switches and NICs only standardize and provide eight

priority levels. Therefore, priorities are precious and scarce resources and Homa should be designed

to work efficiently with a limited number of priority levels.

Priorities To Implement SRPT

As we discussed in the previous section, Homa tries to approximate the SRPT scheduling policy to

achieve low latency for short messages. Homa’s priority assignment scheme is also designed to get

a closer approximation of the SRPT policy. This means, as the message gets closer to completion,

the remaining packets should receive a higher priority than earlier packets.

Receivers Allocate Priorities

As we discussed earlier, the primary point of congestion in the network is TOR downlinks to re-

ceivers and Homa’s goal is to implement SRPT by assuring that packets of short messages can

preempt packets from larger ones at the congested queues. This implies that the receivers are the

right place to assign priority levels for packets; each receiver knows which senders are transmitting



CHAPTER 3. SINGLE RECEIVER DESIGN 30

to it and it also knows the sizes of the messages from the senders. Each receiver determines the

priorities for all of its incoming data packets in order to approximate the SRPT policy; the receiver

allocates higher priorities for packets from shorter messages.

Priorities For Both Scheduled and Unscheduled Packets

As we discussed earlier, Homa’s data traffic is divided into two categories of unscheduled and

scheduled packets, and priorities must be used for both of these packet types. To find a suitable

priority allocation for each of the packet types, Homa’ priority assignment scheme needs to address

the two issues below:

1. Receivers need to use separate priority allocation schemes for unscheduled and scheduled

packets. That’s because unscheduled packets are transmitted blindly without the receiver’s

prior knowledge and receiver has no instant control to set priorities of these packets. Whereas,

the scheduled packets are transmitted with the permission of the receiver and the receiver has

full control over the priority level that should be used for each scheduled packet.

2. Because the number of priority levels are limited and Homa has separate priority allocation

mechanisms for scheduled and unscheduled packets, then Homa needs to decide how many of

the priorities are used for unscheduled packets and how many of them are used for scheduled

packets.

In the rest of this section, we present Homa’s priority allocation schemes and discuss how they

address the above limitations and considerations.

3.5.1 Priority Allocation: Scheduled vs. Unscheduled

The first question that we need to answer is how should the receiver divide the priority levels be-

tween scheduled and unscheduled packet? More specifically, the receiver needs to decide that:

1. From a limited number of priority levels, how many of them need to be used for unscheduled

packets and how many of them need to be used for scheduled packets?

2. Should unscheduled packets have strictly higher priority than scheduled packets? Or, should

scheduled packets have strictly higher priority than unscheduled packets? Or, should a mixture

of higher and lower priority levels to be used for both scheduled packets and unscheduled

packets?



CHAPTER 3. SINGLE RECEIVER DESIGN 31

Homa allocates the higher priority levels for unscheduled packets. For example, suppose that

P1, P2, ..., P8 are the total available priority levels, with P8 being the highest and P1 being the lowest

priority level. Homa chooses to allocate P1, ..., Pk for scheduled packets and Pk+1, ..., P8 for unsched-

uled traffic, with 1 < k < 8. k is the index of the highest scheduled priority and later in this section

we will explain how it is computed.

There are two reasons for why Homa chooses higher priority levels for unscheduled traffic. The

first and primary reason is the fact that datacenter applications have lots of short messages that can

be fully transmitted in unscheduled packets and we expect to transmit them at the lowest possible

latency. When we study practical message size distributions in the datacenter networks, we find

that many of these workloads have lots and lots of messages with sizes that are equal or smaller

than RTTBytes. For example, RTTBytes (i.e. unscheduled limit for each message) in the network

topology of Figure 3.1(a) is equal to 10 kbytes and when we inspect the workload distributions of

Figure 2.1(a), we see that in W1 to W6 (6 out of 7 workloads), messages smaller than 10 kbytes are

at least 62% of all messages. Allocating higher priority levels for unscheduled packets allows this

high volume of short messages to preempt larger ones in the network and finish quickly with low

latency.

The second reason for having unscheduled packets at higher priority is to let receivers know

about the incoming messages as quickly as possible. Remember that unscheduled packets play the

important role of letting the receiver know about a message and its bytes size. When the first un-

scheduled packet arrives at the receiver, the receiver inserts this message into its list of the outstand-

ing messages that require grant packets from the receiver. The sooner the unscheduled packets are

delivered, the better the receiver can make a decision for granting them. Allocating higher prior-

ity levels for unscheduled packets allows these packets to get delivered with low latency through

the network. Therefore the receiver can make more informed scheduling decisions. Furthermore

by having all of them at high priority, we better protect against unscheduled packet drops; even if

all except one is dropped in the network, the receiver gets information gets required information

for scheduling that message. In the evaluation Chapter 4 we will return to this design decision and

inspect it in more detail.

The next question is how should a Homa receiver choose the number of priority levels for

scheduled versus unscheduled packets (i.e. k, the index of highest scheduled priority)? Homa di-

vides priority levels between unscheduled and scheduled packets to balance bytes proportionally

between the two priority types. Each Homa receiver measures the incoming traffic on its down-

link and computes the fraction of all incoming bytes that are unscheduled (i.e. the fraction of bytes



CHAPTER 3. SINGLE RECEIVER DESIGN 32

delivered only in unscheduled packets over all delivered bytes in both scheduled and unscheduled

packets). It then divides priority levels between scheduled and unscheduled packets according to

this fraction; it allocates this fraction of the available priorities (the highest ones) for unscheduled

packets, and reserves the remaining (lower) priority levels for scheduled packets. For example if a

receiver measures that 80% of bytes are received in unscheduled packets and the remaining 20%

in scheduled packets, it then uses 80% of higher priority levels for unscheduled packets and 20%

lower priorities for scheduled priorities (rounded off to the nearest integer). In this example, if there

are 8 priority levels, then the receiver allocates P1, P2 for scheduled packets and the remaining pri-

ority levels for unscheduled packets. If this scheme results in zero priorities for scheduled packets

(or unscheduled packets), then we override this allocation scheme and assign one priority level for

scheduled packets (or unscheduled packets). This allocation scheme is purely an empirical design

that we will evaluate in more detail in Chapter 3, and we’ll compare it against a few other possible

designs.

3.5.2 Priority Assignment For Unscheduled Packets

Each Homa receiver allocates priorities in advance for unscheduled packets. It uses recent traffic

patterns to choose priority allocations, and it disseminates that information to senders by piggy-

backing it on other packets. Each sender retains the most recent allocations for each receiver (a

few dozen bytes per receiver) and uses that information when transmitting unscheduled packets.

If the receiver’s incoming traffic changes, it disseminates new priority allocations the next time it

communicates with each sender.

To get a close approximation of the SRPT policy, the priority level for unscheduled packets of a

message should increase as the remaining size of the messages decreases. A Homa sender needs to

elevate the priority level assigned to unscheduled packets of a message as the message sends more

and more unscheduled packets and the message gets closer to completion. For example, imagine

two messages from two senders that each consist of five unscheduled packets. When Sender 1 trans-

mits the first unscheduled packet, the remaining size of the message from the sender’s perspective

is four packets and shorter than the five packets message from the other sender. Therefore, in order

to realize the run to completion behavior for Sender 1’s message, Sender 1 needs to send its second

unscheduled packet at a higher priority level to ensure this packet will not be blocked by the un-

scheduled packets from Sender 2. However, the number of priority levels are limited and we can’t

always guarantee a higher priority as we send more unscheduled packet. Therefore, the challenge

is to assign priorities for unscheduled packets such that as a message sends more packets and gets



CHAPTER 3. SINGLE RECEIVER DESIGN 33

closer to completion, it has a chance to get a higher priority level for its unscheduled packets, subject

to the constraint that priorities are limited.

To assign unscheduled priority levels, Homa divides messages into several groups and messages

in the same group use the same priority level for their unscheduled packets. Messages are grouped

based on their remaining sizes at the sender side. Groups are identified by consecutive ranges of

message remaining sizes. The number of groups is equal to the number of priority levels for un-

scheduled packets (since each group is assigned a single priority level). Each message depending

on its remaining size at the sender falls into a group. However, the message may switch group as it

sends more unscheduled packets; as the message sends more unscheduled packets (i.e. the remain-

ing size of the message decrease), it is moved to the next group that is associated with the higher

priority level and it uses the new priority level for its remaining unscheduled packets. This allows

Homa to approximate SRPT with limited number unscheduled priority levels.

The interesting question to ask is how should we find the message groups? Homa computes

message groups for unscheduled priority assignments so that each priority level is used for about

the same number of transmitted bytes. As we discussed earlier, our goal is to compute consecu-

tive ranges of remaining message sizes such that smaller ranges get higher priority level and we

can approximate SRPT with limited priorities. This can be achieved by computing the CDF of the

workload at the receivers. To determine the groups, each receiver records statistics about the sizes

of its incoming messages and uses the CDF of workload message sizes to compute a transformation

of the workload’s CDF; Figure 3.7(a) shows an example of the transformed plot computed directly

from a workload’s CDF. The x-axis on this figure shows the remaining size of a message after send-

ing a certain number of packets and the y-axis shows the cumulative percent of bytes in the network

that are transmitted in the unscheduled packets. Using this plot, the receiver then chooses the groups

so that each priority level is used for an equal number of unscheduled bytes and shorter messages

use higher priorities. Figure 3.7(b) shows how groups are computed and unscheduled priorities are

assigned to each group. In this example, we assumed that a total of six unscheduled priority levels

are available: P1 to P6 with P1 being the lowest priority level and P6 the highest priority level. Homa

chooses groups (i.e. ranges of message remaining sizes) on the x axis such the y axis is divided

into equal ranges (i.e. equally spaced lines on the y axis equal amount of bytes per priority level).

Messages with remaining sizes of larger than 1500 bytes are in the first group, and they send un-

scheduled packets at priority P1 and messages with remaining sizes between 900 and 1500 bytes are

the second group and they use priority level P2 for their unscheduled packets and so on. In Homa,



CHAPTER 3. SINGLE RECEIVER DESIGN 34

the group upper and lower bounds (e.g. 1500B, 900B, etc. in this example) are called priority cut-

offs. This scheme of computing the groups and priority cutoffs guarantees that with limited priority

levels, as a message sends more unscheduled bytes and the message’s remaining size decreases, the

message can fall into a new group with higher priority level and assign the higher priority level for

its next unscheduled packets. Therefore, SRPT is approximated using limited number of priority

levels.

Each receiver in Homa, periodically and independently from other receivers, computes the pri-

ority cutoffs and communicates them to its senders. The receiver collects statistics of the message

sizes transmitted to it and computes the CDF of message sizes from the history of the sizes. From

the computed CDF, the receiver can then find the plot of 3.7(a) and respectively the priority cutoffs

as depicted in Figure 3.7(b). The receiver occasionally transmits these cutoffs to its active senders

and the senders use these priority cutoff sizes for unscheduled packets they transmit to that receiver

in the future. Since we do not expect the receiver workloads to change very frequently, the receiver

periodically recomputes the priority cutoffs every tens of minutes and retransmits the updated prior-

ity cutoff sizes to its active senders. If a sender is new to the receiver or the receiver has not received

a message from that sender for a long time, the receiver transmits the priority cutoff sizes to that

sender, immediately after getting the first packet from it. The senders have to keep separate priority

cutoffs for distinct receivers.

3.5.3 Priorities For Scheduled Traffic

In Homa, priorities for scheduled packets are assigned by receivers. Each receiver, independently

from other receivers, sets the priority levels for its inbound scheduled packets. The receiver assigns

the priority level for scheduled packets in each grant it sends for each packet. The sender of a

scheduled packet, uses the priority level specified in the grant for the granted bytes.

A receiver dynamically adjusts the priority allocation, based on the precise set of messages

being received, such that a higher priority level is used for scheduled packets of shorter messages.

The receiver initially grants at the lowest scheduled priority level when it starts scheduling the first

message. When it learns about a new message that has a shorter remaining size than the one currently

being granted, it uses the next higher priority level in grants for the shorter message. This ensures

that scheduled packets of the shorter message preempt the packets of the larger one (allows Homa

to avoid preemption lag) and produces a better approximation of SRPT. When the higher priority

message is fully granted, the receiver resumes granting the previously preempted larger message at

the lower priority level. So the receiver can adapt to the changes in the inbound traffic using this



CHAPTER 3. SINGLE RECEIVER DESIGN 35

(a) The CDF of unscheduled bytes across messages of dif-
ferent remaining sizes for a given workload (i.e. W2 in Fig-
ure 2.1). 100% on the y-axis corresponds to all network traf-
fic, both scheduled and unscheduled; about 80% of all bytes
are unscheduled. The blue dot on the figure shows that 60%
of total bytes in the network are transmitted in the unsched-
uled packets of messages that have a remaining size of 1000
bytes or less. This figure can be computed directly from the
message size CDF.

(b) The unscheduled bytes CDF is used to determine the
message groups (i.e. ranges of remaining message sizes or
priority cutoffs) for each priority level so that traffic is evenly
distributed between the priority levels (equally spaced lines
on the y axis). For example, P6 (the highest priority level)
will be used for unscheduled bytes for messages with re-
maining size 1-280 bytes and P1 (the lowest priority level)
is for messages with remaining size larger than 1500 bytes.

Figure 3.7: Homa receivers allocate unscheduled priorities based on traffic patterns.

dynamic priority assignment based on the current set of ungranted messages, and it can achieve a

closer implementation of the SRPT policy.

Figure 3.8 illustrates this mechanism. In this figure, the receiver time line is shown as the blue

arrow. Over time the receiver receives packets from 4 different messages with sizes 200KB, 150KB,

50KB, and 100KB. The figure shows the packets of the messages as they arrive at the receiver.

Each packet that arrives triggers a new grant to the highest priority message. The grant packets are

shown as GPi where i is the scheduled priority level assigned by the receiver. In the figure, the first

packet arrives at time T1, from the first message with size 200KB. Immediately after delivery of the

first packet, the receiver starts granting this message at the lowest scheduled priority possible P1. At

time T2, the first packet from a 150KB message arrives. Since this message has a shorter remaining

size than the previous message, the receiver grants this message at the next higher priority level P2.

This ensures a perfect preemption for this message as the scheduled packets of this message wont

get blocked by the previous message. The same behavior happens at T3 when the receiver learns

about 50KB message that has a shorter remaining size than both of the previous messages. At this

point the receiver uses the higher scheduled priority P3 and grants the new message at this priority

level. Therefore, the receiver can avoid the preemption lag every time a new high priority message



CHAPTER 3. SINGLE RECEIVER DESIGN 36

Figure 3.8: Receivers dynamically assign higher priorities for scheduled packets of shorter messages.
The time line of a Homa receiver is depicted and the diagram illustrates the transmission of four mes-
sages to the receiver over time. The sizes of the messages are shown on the left y axis of the figure.
Each message is packetized: U packets are unscheduled data packets and S packets are scheduled data
packets. Whenever a data packet is received, it triggers transmission of a grant packet to the message
with shortest remaining size; ↑ shows when the grant is sent. Each grant is subscribed by the priority for
the scheduled packet (e.g. GP2 means a grant packet for scheduled packet at priority P2). When the first
packet of a shorter message arrives, the receiver uses a higher priority level.

is presented to it. Once the 50KB messages is fully granted at time T4, the receiver resumes granting

the 150KB message at priority P2 again.

Note that a receiver only needs to use a higher priority level if a message arrives that is shorter

than all ungranted messages. It is an acceptable behavior for the receiver to schedule two messages

with different sizes on the same priority level when the packets of the two messages can’t interfere

with each other. This behavior is shown in the figure 3.8 at time T5, when the receiver learns about

a message with size 100KB. The receiver grants this message at priority P3 that was previously

used for scheduled packets of the 50KB message. The receiver reuses P3 without running the risk of

preemption lag for the shorter 50KB messages because the shorter 50KB message is fully granted

and completed when the 100KB message arrives. At that point the 100KB is the highest priority

message among the messages that needs to be granted packets. This ensures that the packets of this

100KB message can preempt the packets of the 150KB and 200KB messages while the packets of

100KB can’t interfere with the packets of 50KB message. Finally at T6 when the 100KB is fully

granted, the receiver starts granting 150KB message again at the same priority P2 it was granted in

that past.

If there are fewer messages than scheduled priority levels, then Homa uses the lowest of the

available priorities; this leaves higher priority levels free for new higher priority messages. If Homa



CHAPTER 3. SINGLE RECEIVER DESIGN 37

always used the highest scheduled priorities, it would result in preemption lag: when a new higher

priority message arrived, its scheduled packets would be delayed by 1 RTT because of buffered

packets from the previous high priority message (see Figure 3.5-b).

One issue with this dynamic scheme is that the number of preemptions is limited by the total

number of available scheduled priority levels; when all scheduled priorities are in use (i.e. the num-

ber of ungranted messages is equal or larger than the number of the priorities), then two or more

messages (the shortest ones) share the same priority level. This means the shortest message experi-

ences preemption lag. For example, suppose that there are three total priority levels available for the

scheduled packets. If four messages with sizes 250KB, 200KB, 150KB, and 100KB consecutively

arrive at the receiver, the receiver can achieve perfect preemption among the first three messages

by scheduling the 250KB message at P1, the 200KB message at P2, and the 150KB message at P3.

However, when the 100KB message arrives, the receiver has already exhausted all of the available

priority levels. Therefore this message has to be scheduled at P3 and share this priority level with

RTTBytes packet of the 150KB message. The limited number of priority levels means limited num-

ber of perfect consecutive preemptions. This in turn means there is still possibility of preemption

lag and less efficient approximation of the SRPT policy. We will study this limitation in more detail

in evaluations of Chapter 4.

3.6 Senders Also Use SRPT Scheduling

Earlier in this chapter we described the behavior of senders. Here, we summarize that behavior

again: when a message arrives at the sender’s transport module, Homa divides the message into two

parts: an initial unscheduled portion (the first RTTbytes bytes), followed by a scheduled portion. The

sender transmits the unscheduled data bytes immediately in one or more packets. The scheduled data

bytes are not transmitted until requested explicitly by the receiver using grant packets. Each data

packet has a priority, which is determined by the receiver as described in previous sections.

To avoid head of line blocking for short messages at senders’ uplinks, the senders also imple-

ment SRPT for their outgoing packets: if data packets from several messages are ready to be sent,

packets for the message with the fewest remaining bytes are transmitted first. Control packets such

as grants are always transmitted a head of all data packets. To implement SRPT, senders do not

consider the priorities in the data packets when they transmit packets. That’s because the priorities

in the packets reflect the receivers’ priorities (i.e. priorities in packets are intended to achieve SRPT

for the final downlinks from TORs to the receivers); a sender’s priority for an outgoing packet is



CHAPTER 3. SINGLE RECEIVER DESIGN 38

different from to the receivers’ priority for that packet.

For a sender to implement SRPT precisely, it must keep the transmit queue in the NIC as short

as possible. That’s because The NIC’s transmit queue is FIFO (it does not use packet priorities) and

if a queue builds up in the NIC, then the packets of short messages may have to wait for packets

of larger messages that were queued previously. To keep the NIC’s transmit queue short, Homa’s

transport mechanism has an unusual feature which limits buffer buildup in the NIC transmit queue.

Homa keeps a running estimate of the total number of untransmitted bytes in the NIC, and it only

hands off a packet to the NIC if the number of untransmitted bytes (including the new packet) is less

than two full-size packets. This allows the sender to reorder outgoing packets when new messages

arrive for transmission. In evaluations of Chapter 7, we show that if we disable this feature of Homa,

short messages’ tail latencies may increase by 100x.

We maintain a non-empty packet queue in NIC (i.e. less that two full-size packets) to avoid

wasting bandwidth at the NIC’s uplink. Ideally, we’d like to keep the NIC’s transmit queue empty

to avoid any head of line blocking; i.e. hand off a new packet to the NIC, exactly when the NIC has

transmitted the last byte of the previous packet. But while we were designing Homa, we realized

that keeping the queue empty is not practical because of the variability in packet hand off delays in

software. In our experience, some times it may take up to one microsecond longer than usual for the

software to hand off a new packet to the NIC. If transport hands off a new packet to the NIC one

microsecond after the previous packet has been fully serialized, then the NIC’s uplink remains idle

during that time and uplink bandwidth is wasted. We found out that if we hand off a new packet to

NIC when the NIC’s queue length is less than two full-size packets (including the new packet), then

this allows us to avoid wasting bandwidth at the uplink, without incurring any significant head of

line blocking in the queue.



Chapter 4

Single Receiver Evaluation

In this chapter we evaluate latency performance of the Homa transport design using a network sim-

ulator. We focus on the evaluation of the single receiver scenario and the monogamous scheduling

as presented in Chapter 3. This allows us to separate out the evaluation of the low latency goal from

the high bandwidth utilization goal (which is a topic of later chapters). Hence, we can focus on

the effectiveness of the priority assignment and the receiver-driven packet scheduling in achieving

preemption at the receiver’s TOR queue and ultimately achieving low latency for short messages.

Here we summarize our key findings in this chapter: Homa can achieve 99%-ile tail latency

for short messages at about 1.8 times the minimum latency for these messages; this translates to

4µs, 99%-ile latency (one way transmission) for these messages. Homa achieves this latency per-

formance even when the receiver’s downlink is 90% loaded. The latency performance of Homa is

near optimal; with a limited number of priority levels, Homa achieves very similar tail latency to an

ideal SRPT scheduler with an unlimited number of priority levels.

4.1 Homa Simulator Structure

We simulate Homa and evaluate its performance using the OMNeT++ simulator. OMNeT++ is a

general purpose, discrete event simulator that has been used in a variety of applications, includ-

ing wired/wireless network simulations, modeling of queuing networks, modeling of multiproces-

sors and distributed hardware systems, validating hardware architectures, etc. The simulator’s event

queue and processing core are written in the C++ programming language. The user, though, can

create simulation scenarios, topologies, and configuration inputs either in C++ or a domain specific

language called NED. The NED specification is eventually compiled down to C++ source code.

39



CHAPTER 4. SINGLE RECEIVER EVALUATION 40

Since the primary use of OMNeT++ simulations is in network simulations, OMNeT++ provides

a framework called INET to facilitate network simulations. INET can be considered as the stan-

dard network protocol model library of OMNeT++; it contains models for the internet stack (IP,

TCP, UDP, etc.), wired and wireless link layer protocols (Ethernet, PPP, IEEE 802.11, etc.), and so

on. We built the Homa simulator using OMNeT++ and the INET framework. The Homa simulator

consists of several components that we discuss in the following subsections.

4.1.1 Network Topology

Figure 4.1 shows the network topology used for simulations. The network has a full bisection band-

width topology. It consists of 144 hosts divided among 9 racks with a 2-level switching fabric.

For the purpose of experiments in this chapter, one host is the receiver of packets and all other

hosts in the network are senders that transmit packets to the receiver. Host links operate at 10 Gbps

and TOR-aggregation links operate at 40 Gbps. The simulated switches do not support cut-through

routing. Speed-of-light propagation delays are assumed to be 0. The simulations assume that host

software has unlimited throughput (it can process any number of messages per second), but with

a delay of 1.5 µs from when a packet arrives at a host until it has been processed by software and

transmission of a response packet can begin. We chose this delay based on measurements of the

Homa implementation. The total round-trip time for a receiver to send a small grant packet and re-

ceive the corresponding full-size data packet is thus about 7.8 µs and RTTBytes is about 9.7 Kbytes

(this assumes the two hosts are on different TORs, so each packet must traverse four links).

Network traffic is load-balanced at the packet level to minimize queueing in the core of the

network in this topology; the switches implement packet spraying [11], so that packets from a given

host are distributed randomly across the uplinks to the core switches. Each packet traverses through

the network from the sender host to the sender’s TOR switch, then transmitted on a random uplink

to an aggregation switch. The packet then travels on the only available path from the aggregation

switch down to the receiver’s TOR and then the receiver host. The only place where packet spraying

load balancing happens in this topology is when choosing an uplink from the sender’s host to and

aggregation switch.

The network provides eight priority queues at each port, which is the same number as the QoS

levels that Ethernet infrastructure provides according to the IEEE 802.1Q standard. The ports that

haver priority queues include the host NICs’ transmit queues, the TOR switches’ egress ports, and

the aggregation switches’s egress ports. The source hosts tag each sent packet with a priority level.

The packet is then placed in the priority queue corresponding to the packet’s priority tag when it



CHAPTER 4. SINGLE RECEIVER EVALUATION 41

Figure 4.1: A schematic of the network topology used in the simulations. The topology is a two tier,
leaf-spine, clos network that provides full bisection bandwidth. The edge links run at 10Gbps and the
aggregation links run at 40 Gbps.
The topology also models the realistic delays we have observed in our experimental clusters: 1) Each
switch in this topology adds an internal per-packet fixed delay of 250ns before forwarding the packet.
2) Each host models software turn-around times as a delay of 500ns in both of the transmit and receive
paths of packets to and from NIC. 3) Each host NIC adds 500ns of fixed delay in the transmit path for
each packet before serializing it onto its outbound link.
The RTT in this network is 7.8µs, computed for a full 1538-byte Ethernet data frame that travels through
3 switches in one direction and a 96-byte grant packet that travels in the reverse direction.

arrives at a port. The arbiter logic at each port always prefers forwarding packets from the highest

non-empty priority queue; it uses a strict priority policy to schedule packets from the queues for

transmission on that port. As in real network switches a packet cannot be preempted once it has

begun transmission on a link. As we discussed in Chapter 3, Homa relies on these priority queues

to achieve preemption and precisely implement the SRPT policy.

4.1.2 Message Generator

The Message Generator is a component of the simulator that is responsible for creating messages

at the sender hosts for a given message rate and also manages the state for generated messages.

The message generator accomplishes these responsibilities through two submodules: Application

submodule and Workload Synthesizer submodule. Each host in the network has an instance of these

two submodules. The Aplication submodule handles the creation of new messages for transmission



CHAPTER 4. SINGLE RECEIVER EVALUATION 42

at the sender host and maintains the state for each new message until it’s completely received at

the Application’s counterpart submodule on the receiver host. Each Application submodule is as-

sociated with a Workload Synthesizer submodule that is responsible for generating message sizes

and interarrival times between messages. This submodule samples message sizes from a workload

distribution measured in real datacenters. It also generates the inter arrival times between consecu-

tive messages from a user specified probability distribution like exponential, Pareto, etc. Given the

average message size from the workload distribution, this module scales the interarrival times such

that a user-specified average load factor for the sender’s NIC link is satisfied.

The Message Generator produces messages in an open loop fashion such that there is no de-

pendency between the generation of two consecutive messages at each sender host; a new message

can be generated at a sender host without waiting for the completion of the previous ones. This

open loop behavior is different from most application behaviors where there’s a kind of application

level closed feedback loop (or flow control) that prevents generation of new messages until previous

ones are completed and responded by the receiver hosts. In an open loop message generator, there

is no limit on the number of active messages from a single sender if the network and the transport

can’t keep up with transmitting the generated messages (in which case the active message queue

at the sender keeps growing without bound). The benefit of an open loop message generator is that

it’s capable of maintaining an average load on the sender’s link to the TOR switch. Therefore we

can focus on evaluating the network and the transport mechanism under different network loads,

regardless of how the applications behave.

4.1.3 Homa Transport Module

This module is the primary component of the simulator; it implements congestion control logic and

packet scheduling, priority assignment, and the scheduling policy. This module is also responsible

for the reliable transmission of messages from a sender host to a receiver host. When a sender

application wants to transmit a message to a receiver counterpart, it hands over the message in

its entirety to the transport module. The transport then packetizes the message and transmits the

message over the network to the its receiver counter part. When the transmission is complete and

the message is received in its entirety at the receiver transport, it hands the received message over

to the Application module on the receiver host.

The transport module consists of two main submodules: The SendController and the ReceiveSched-

uler.



CHAPTER 4. SINGLE RECEIVER EVALUATION 43

SendController submodule

The SendController submodule manages the transmission path of the messages from sender appli-

cations. Every time a new message is presented from a sender application, this submodule adds the

message to the list of the outstanding messages for transmission. This submodule then controls the

transmission of the messages in this list. It is responsible for enforcing the transmission policy at the

send path, packetization of the messages, and handing the packets over to the NIC for serialization

onto the network.

The Send Controller manages several important aspects of the Homa transport that we discuss

here:

1. It prepares the unscheduled packets. When a new message is presented to the transport by the

sender application, SendController allocates unscheduled packets and encapsulates the first

RTTBytes of the message in them. It packetizes the first RTTBytes for sending to the NIC’s

send queue, but it doesn’t send them immediately. Items 5 and 6 below describe the order and

the times at which the packets are handed over to the NIC’s send queue.

2. It assigns priority levels for unscheduled packets. SendController fills out the priority level

field in each unscheduled packet header, based on the priority cutoff sizes advertised by the

receiver of a message.

3. It prepares the scheduled packets. When a grant packet arrives for a message, this submodule

creates a new scheduled data packet for that message. It uses the priority level that the receiver

specified in the grant to set the priority field in the scheduled packet’s header. However, similar

to the unscheduled packets, the time and the order in which the scheduled packets are handed

over to the NIC is determined by items 5-6 below.

4. It Implements a line-rate packet pacer for outgoing packets. This submodule paces packet

handover to the NIC transmit queue at line rate; it only sends a new packet to the queue,

when the previous packet is fully serialized onto the outbound NIC link (this approach only

works in the simulations; in real systems we need to maintain a small queue to avoid bubbles

on NIC’s outbound link). Keeping the NIC queue short reduces preemption lag and ensures

no head of line blocking happens for packets of short messages. This pacer functionality is

crucial for a precise implementation of the SRPT policy.

5. It enforces SRPT among all of the outstanding messages. Homa uses the SRPT policy to



CHAPTER 4. SINGLE RECEIVER EVALUATION 44

schedule transmission of messages over the network (refer to Chapter 3 for detailed discussion

about SRPT). As described in the previous item on this list, to avoid head of line blocking at

NIC’s transmit queue, the SendController’s pacer only sends a packet to the NIC when the

queue has just gone empty. When multiple outstanding messages have packets ready to be

transmitted, SendController first checks if the pacer allows a new packet to be sent. When the

pacer allows, SendController sends the packet from the message with the shortest remaining

bytes to the NIC’s send queue. This ensures that SRPT policy is enforced by senders.

6. It manages and prioritizes transmission of control packets. In addition to the unscheduled and

scheduled data packets, each transport sends a few types of control packets. An example of

these control packets is the high priority grant packets that the transport sends in the receive

path for incoming scheduled data packets from other senders in the network. SendController

manages transmission of these control packets and prioritizes them over all data packets.

ReceiveScheduler submodule

This submodule handles reception of data packets. It is capable of handling out-of-order arrivals

of data packets, packing them into full messages, and transferring the messages to the application

modules.

The ReceiveScheduler submodule implements the majority of the transport mechanisms and

logic; it implements Homa’s receiver-driven congestion/rate control scheme and the scheduling pol-

icy among the incoming messages. The list below covers the specific roles of this submodule in

more detail.

1. It implements the rate control mechanism. The grant mechanism that is key to Homa’s con-

gestion control scheme is implemented by this submodule. This submodule achieves the rate

control by sending timely grants for scheduled packets as described in Chapter 3.

The grant mechanism ensures that the inbound bit rate from scheduled packets of the mes-

sages doesn’t exceed the receiver’s inbound link rate. Hence, it can carefully manage the

buffer buildup at the TOR’s inbound link to the receivers. Buffers can still build up from the

concurrent arrival of unscheduled packets from multiple messages destined to the same re-

ceiver. But as we discussed in Chapter 3, this buffer is small and comprised of packets that

are preemptable by priorities.

2. It enforces the SRPT scheduling policy. The rate control mechanism determines when a new

grant can be sent, but SRPT policy determines the order in which inbound messages of the



CHAPTER 4. SINGLE RECEIVER EVALUATION 45

receiver should be granted. Based on this policy, the ReceiveScheduler chooses the message

with the shortest remaining bytes to receive and sends a grant packet for that message when

the rate control mechanism allows transmission of a new grant.

3. It records the message size distribution of the current workload. Using the set of message

sizes that has arrived at this receiver in the past, ReceiveScheduler generates a cumulative

distribution function (CDF) of message sizes of the incoming traffic. This CDF can then be

used to devise the priority cutoffs for unscheduled packets as described in Chapter 3.

4. It allocates priorities for scheduled packets. Homa receivers utilize priority queues in the

network to ensure a precise enforcement of the SRPT policy. For scheduled packets, the Re-

ceiveScheduler adaptively changes the packets’ priority levels based on the current set of in-

bound messages to implement SRPT; the details of this scheduled priority assignment scheme

were explained in Chapter 3. In summary, whenever a new message is added to the set that

becomes the new highest priority message, ReceiveScheduler uses the next higher priority

level (if one is available) for the scheduled packets of that messages and grants that message

on the higher priority level.

5. It calculates the priority cutoffs for unscheduled packets. ReceiveScheduler uses the mea-

sured CDF of the traffic workload and computes priority cutoffs to enforce SRPT policy. In a

nutshell, ReceiveScheduler allocates unscheduled priorities among the messages of different

sizes in a way that shorter messages receive higher unscheduled priority levels. ReceiveSched-

uler then transmits the computed cutoffs back to the senders by piggy backing them on grant

packets. The senders use these cutoffs to set priority of unscheduled packets. The details of

this scheme were explained in Chapter 3.

4.2 Workload Distributions

For evaluating Homa, we used a set of seven workloads, most of which were measured in real

datacenters. These workloads were briefly discussed in Chapter 2 but we represent them here again

and explain them in more detail. Table 4.2(a) contains descriptions for these workloads. All the

workloads in this set, except W3, are measured from production traffic in Google, Facebook, and

Microsoft datacenters.



CHAPTER 4. SINGLE RECEIVER EVALUATION 46

W1 Accesses to a collection of memcached servers at Facebook, as approximated by the statistical
model of the ETC workload in Section 5 and Table 5 of [6].

W2 Measured from a search application workload at Google [33].
W3 A synthesized workload.
W4 Aggregated workload from all applications running in a Google datacenter [33].
W5 Measured from intra cluster traffic of Web Server applications at Facebook [31].
W6 Aggregated workload from all Hadoop traffic at Facebook[31].
W7 Web search workload used for DCTCP [3].

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

20

40

60

80

100

1 10 100 1000 10000 105 106 107

Message/Flow Size (Bytes)

C
um

ul
at

iv
e 

%
 o

f M
es

sa
ge

s

WorkLoad

W1
W2
W3
W4
W5
W6
W7

(b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

20

40

60

80

100

1 10 100 1000 10000 105 106 107

Message/Flow Size (Bytes)

C
um

ul
at

iv
e 

%
 o

f B
yt

es

WorkLoad

W1
W2
W3
W4
W5
W6
W7

(c)

Figure 4.2:
a) The workloads used to design and evaluate Homa.
b) The upper graph depicts the cumulative distribution of message sizes weighted by number of mes-
sages. The blue point on the upper graph means that messages that are smaller than 100Bytes account
for 63% of all messages in W1.
c) The bottom graph shows the cumulative distribution of messages weighted by transmitted bytes. The
black point on the bottom graph shows that in workload W1, messages smaller than 1000Bytes, account
for 75% of the traffic bytes transmitted over the network.
Workloads W1, W2, W4 were measured from application-level logs of message sizes; message sizes for
W5, W6, and W7 were estimated from packet traces. For the sake of completeness, W3 is synthesized to
cover the gap between W2 and W4 in the bottom graph. The workloads are ordered by average message
size: W1 is the smallest (i.e. the most heavy-head), and W7 is the most heavy-tailed workload.



CHAPTER 4. SINGLE RECEIVER EVALUATION 47

We simulated the performance of Homa under each of these seven workloads. In a single simu-

lation run, we choose one of these workloads. Each sender host then generates message sizes that are

sampled from the probability distribution function of message sizes for that workload. Figure 4.2(b)

shows the cumulative distribution function of message sizes for each of these seven workloads.

We picked these seven distributions to be representative of the whole traffic spectrum of possible

workloads in datacenter networks. Figure 4.2(c) shows the cumulative percent of bytes transmitted

for different message size of each workload. The plots in this figure illustrate the distribution of

network traffic bytes over different ranges of message sizes for each workload. The plots of the

seven workloads in the figure span a large area from far left to the far right of the plot. For example,

on one extreme of the spectrum is the heavy-tailed W7 workload, the rightmost plot on the figure.

For W7 the vast majority of network traffic bytes are transmitted in very large messages (98% of the

traffic is in messages larger than one megabyte). On the other hand, the W1 plot is located on the

other extreme of the spectrum to the left of the figure and most of the network traffic bytes of this

workload are transmitted in short messages (less than 100bytes); about 80% of network traffic bytes

in workload W1 are transmitted in messages that are shorter than 1000 bytes in size. The other six

workloads cover the space between the two extremes of W1 and W7 on the figure to span the full

spectrum of possible realistic workloads in modern datacenters. In later sections we show how well

Homa achieves its design goals for all these workloads.

For the purpose of this thesis, we refer to workloads similar to W1 as heavy-head workloads. In

the literature, workloads like W7 on the right side of the spectrum in Figure 4.2(c) are commonly re-

ferred to as heavy-tailed workloads. That’s because most of the network traffic bytes are transmitted

in large messages at the tail of the spectrum. Both W6 and W7 are considered to be heavy-tailed. In

contrast, we refer to workloads W1, W2, and W3 as heavy-head workloads to make the distinctions

that most of traffic bytes are transmitted in short messages (i.e. less than one full packet). We’ll

show how different mechanisms in the design of Homa benefit both heavy-head and heavy-tailed

workloads and any other workload in between.

4.3 Homa Performance Evaluation

In this section our goal is to evaluate the unscheduled priority mechanism of Homa and see how

it performs under heavy unscheduled load. To examine this mechanism, we focus on the single

receiver, “monogamous design” of Homa as presented in Chapter 3. Given the network topology

of Figure 4.1, where hosts are indexed from 0 to 143, we assume that one of the hosts (e.g. host 0)



CHAPTER 4. SINGLE RECEIVER EVALUATION 48

is the single receiver in the network and the other 143 hosts send messages to that receiver. Since

low latency at the tail is the main goal for Homa, this chapter uses the tail latency as the main

metric to evaluate Homa’s unscheduled priority assignment scheme. We’d like to show that the

combination of Homa’s unscheduled priority assignment and the receiver-driven congestion control

scheme achieves very low tail latency.

In each simulation experiment, our goal is to sustain an average network load on the receiver’s

downlink. In any individual experiment, we choose one of the workloads and each sender generates

messages that are randomly sampled from the CDF of message sizes for that workload. Each sender

then generates interarrival times between messages from a Poisson distribution, with average inter-

arrival times set to maintain a specific network load on the link to the receiver. For example, if the

goal of the experiment is to maintain the receiver’s downlink at 80% network load, then each of the

143 senders generate interarrival times from a Poisson distribution such that each sender’s uplink is
80%
143 loaded.

In order to evaluate Homa’s unscheduled priority assignment scheme, in this chapter we only use

the subset of workloads that can create significant unscheduled traffic. We use Figure 4.3 to choose

which workloads belong to this subset. On this figure, we can see that only W1 to W4 can generate

significant unscheduled traffic; from W1 where almost 98% of the traffic comes from unscheduled

packets, to W4 where about 30% of the total traffic on the network is from unscheduled bytes. In

the other 3 workloads, the unscheduled traffic is insignificant. Hence, in this chapter we focus on

evaluating unscheduled priority assignment scheme for W1 to W4. The remaining 3 workloads will

be considered in the future chapters where we evaluate other aspects of Homa’s design that are

related to scheduled packets.

4.3.1 Slowdown: Latency Metric of Our Choice

The interesting latency question to ask is, how much slower is a message transmitted under a mod-

erate or high network load, compared to when the message is transmitted in a completely unloaded

network? The answer to this question is the definition for the slowdown metric. Slowdown of a mes-

sage with a certain size is defined as the measured latency of the message in a simulation, divided

by the minimum latency for that message in an unloaded network. For any message, the optimal

slowdown is one and higher slowdown values are worse because higher slowdown means the mes-

sage has experienced higher latency compared to its minimum latency. For all simulations results in

this dissertation, latency is measured one-way for a message from when the message is handed to



CHAPTER 4. SINGLE RECEIVER EVALUATION 49

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0

20

40

60

80

100

1 10 100 1000 10000 105 106 107

Message/Flow Size (Bytes)

C
um

ul
at

iv
e 

%
 o

f U
ns

ch
ed

. B
yt

es WorkLoad

W1
W2
W3
W4
W5
W6
W7

Figure 4.3: Cumulative distribution of unscheduled bytes as a function of message sizes for each work-
load. Each distribution is normalized as a fraction of total bytes transmitted over the network. 100% on
the y-axis corresponds to all network traffic, both scheduled and unscheduled; in W2 about 80% of all
traffic is from unscheduled bytes. For example, the red point on the plot shows that unscheduled bytes
for messages shorter than 10Kbytes, account for 30% of the total bytes transmitted over the network in
workload W3.

the sender’s transport until it is fully received at the receiver’s transport. Throughout this disserta-

tion, we use median, mean, and tail slowdown instead of raw latency numbers in our performance

measurements.

In order to study the slowdown of messages under Homa, we introduce a new kind of plot

that we call ”slowdown spectrum”. This type of plot depicts a metric of slowdown such as tail

slowdown for different message sizes of a specific workload, and at the same time, allows us to

focus our attention on the performance of the messages that are the most frequent in the workload

distribution. Figure 4.4 shows an example of a slowdown spectrum plot. This figure plots 99%-ile

tail slowdown on the y axis vs message sizes for workload W4 on the x axis. However, the x axis

is linear in quantiles of the messages in W4; i.e. the axis is scaled by the CDF of message sizes for

W4, with each x tick corresponding to to 10% of all messages. For example, the blue dot at the 4th

x-tick on the plot shows that messages smaller than 158 bytes account for 40% of all messages in

W4 and 99%-ile tail latency for a 158-byte message is at most 1.7 times the minimum latency for

that message.

The scaled x-axis on a spectrum plot allows us to focus on the performance of Homa for the

most important messages of each workload; i.e. messages that are the most frequent. Each work-

load can have any message size ranging from a few bytes to tens of megabytes. However, based on



CHAPTER 4. SINGLE RECEIVER EVALUATION 50

1

2

3

4

5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Sizes (Bytes, SizeCDF scaled)

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa

Workload: W4, Network Load: 80

Figure 4.4: A sample slowdown spectrum plot, the primary type of latency plots that we use throughout
this dissertation. This figure shows the latency results of a Homa simulation with workload W4, at 80%
load on the receiver’s downlink. The x axis shows message sizes in workload W4 and the y axis shows
99-%ile tail slowdown (i.e. normalized latency) for different message sizes. The x axis is is scaled by
the CDF of message sizes for W4 (i.e. it is linear in the number of messages transmitted), with each x
tick corresponding to 10% of all messages. The benefit of this scaling of the x axis is that, for example
we can see that for more than 90% of all messages in W4 (i.e. 1755-byte and less on the x axis), the 99%
tail latency is less than two times the minimum latency for each message.

the CDF of message sizes for a workload, messages of a certain size might be more common than

other messages in that workload and therefore they deserve more attention in protocol design and

performance evaluation. The benefit of scaling the x axis with message quantiles is that it presents

information about how frequent various message sizes are in the workload and highlights the slow-

down results for the most frequent messages. For example, in Figure 4.4 we can see that messages

smaller than 1755-byte, are highly frequent as they account for 90% of all of messages in W4.

Moreover, the 99%-ile slowdown for all these messages is less than 2 which, as we see later in this

chapter, is very close to optimal tail latency.

Note that in a slowdown spectrum plot, the x axis can either be linear in the number of messages

or be linear in the number of transmitted bytes in the network. In Figure 4.4, the x axis is scaled

by the CDF of message sizes (i.e. CDFs of Figure 4.2(b)) and the axis ticks represent quantiles of

message counts. So, we refer to this spectrum plot as ”count spectrum”. Conversely, the x axis may

be scaled by the CDF of bytes transmitted (i.e. CDFs of Figure 4.2(c)). In this case the x axis ticks

represent quantiles of transmitted bytes for the workload. Based on the CDF of bytes for a workload,



CHAPTER 4. SINGLE RECEIVER EVALUATION 51

messages of a certain size might be responsible for carrying more traffic bytes compared to the other

messages and therefore they might deserve more attention. Scaling the x-axis by the CDF of bytes

transmitted, allows us to turn the focus of our evaluation to the message that carry majority of traffic

bytes in the network. We refer to this type of spectrum plot as ”byte spectrum”. Throughout this

dissertation we use both of these spectrum plots to explain the latency performance of Homa.

4.3.2 Homa’s Slowdown Performance

In the first set of performance evaluations, we study the tail slowdown when the receiver’s down-

link is highly loaded in simulations. Figure 4.5 shows 99%-ile tail slowdown vs message sizes for

workloads W1 to W4 when the receiver’s downlink is 80% utilized. The plots on the left column of

the figure represent the count spectrums for the workloads and the ones on the right show the byte

spectrums. The red curves on the plots show Homa results. In all plots, regardless of the workload

type, tail slowdown increases as the message size increases. This behavior is a result of the SRPT

policy implementation for Homa; when congestion happens at the TOR, the high priority packets

that belong to shorter messages are favored over the low priority packets of larger messages and

short messages experience lower latency.

On the plots of Figure 4.5, we compare Homa’s simulation performance against a ”PseudoIdeal”

transport that can achieve near optimal latency for short messages in our single receiver network.

However this transport is impractical because it requires an infinite number of priority levels from

the network fabric, with queues having infinite capacity. In this PseudoIdeal transport, each sender

transmits packets at line rate. Each packet is tagged with the size of the message it belongs to. At

each queue in the network, the packets are ordered based on the size of the message it belongs

to, with packets of shorter messages closer to the head of the queue. Queues are assumed to have

infinite capacity and ordering ties in the queues are broken with the arrival times of the messages at

the senders. Since the network traffic matrix is n to 1 (i.e. 143 senders to 1 receiver), the primary

congestion point in the network is TOR queue at the receiver’s link, and in this queue, packets

of shorter messages are always prioritized. Hence, in an n to 1 network, absolute low latency is

achieved for short messages with this PseudoIdeal transport.

From Figure 4.5, we see that Homa can achieve tail latency close to the near optimal perfor-

mance of the PseudoIdeal transport, but Homa does that with a limited number of priority levels.

While the PseudoIdeal transport relies on an infinite number of priority queues in the network, Homa

(depending on the workload type) in these evaluations only requires up to 6 priority queues from the

network switches. The count spectrum plots show that the majority of the transmitted messages are



CHAPTER 4. SINGLE RECEIVER EVALUATION 52

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W1

1

2

3
4
5

1010

5 49 14
9

26
0

40
6

56
8

79
4

12
40

21
66

29
31

73

Homa
PseudoIdeal

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W2

1

2

3
4
5

1010

17
1

30
1

34
1

42
7

51
2

13
65

31
51

40
96

0

13
79

71

35
29

90
4

Homa
PseudoIdeal

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W3

1

2

3
4
5

1010

16
44

72
45

10
13

5

15
18

0

21
64

5

30
22

6

50
08

3

31
62

28

31
62

28

31
62

28

Homa
PseudoIdeal

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Sizes (Bytes) −− Scaled by message size CDF

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W4

1

2

3
4
5

1010

13
17

90
78

25
17

0

85
48

2

16
02

75

35
02

88

70
11

72

51
14

69
5

10
66

89
01

2e
+0

7

Message Sizes (Bytes) −− Scaled by CDF of bytes

Homa
PseudoIdeal

Workload: W4, Network Load: 80

Figure 4.5: Performance of Homa’s unscheduled priority assignment scheme for workloads W1-W4
when receiver’s link is 80% loaded. The two plots on each row show 99%-ile tail slowdown vs. message
sizes for one of the workloads. The count spectrum plots are in the left column and the byte spectrum
plots are in the right column. Regardless of the workload, Homa achieves tail slowdown of less than
two for more than 90% of all messages. Each plot, in addition to Homa’s results, also shows the results
for the PseudoIdeal scheme as a reference for the best possible performance. In general, Homa achieves
near optimal performance even at this high 80% load.



CHAPTER 4. SINGLE RECEIVER EVALUATION 53

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W1

1

2

3
4
5

1010

5 49 14
9

26
0

40
6

56
8

88
7

12
40

21
66

29
31

73

Homa
PseudoIdeal

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W2

1

2

3
4
5

1010

17
1

28
4

34
1

42
7

51
2

13
65

31
51

29
78

9

11
91

56

35
29

90
4

Homa
PseudoIdeal

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W3

1

2

3
4
5

1010

16
44

72
45

10
13

5

15
18

0

21
64

5

30
22

6

50
08

3

31
62

28

31
62

28

31
62

28

Homa
PseudoIdeal

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Sizes (Bytes) −− Scaled by message size CDF

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

Homa
PseudoIdeal

Workload: W4

1

2

3
4
5

1010

12
71

90
78

25
17

0

80
24

8

15
01

60

35
02

88

60
33

13

51
14

69
5

10
66

89
01

2e
+0

7

Message Sizes (Bytes) −− Scaled by CDF of bytes

Homa
PseudoIdeal

Workload: W4

Figure 4.6: Similar to the plots of Figure 4.5 but at medium 50% load on the receiver’s downlink. Both
Homa and PseudoIdeal scheme achieve lower (i.e. better) tail slowdown at lower load factors.

experiencing tail latencies that are close to the PseudoIdeal’s performance within a few percent. The

byte spectrum plots similarly reveal that messages that carry the majority of traffic on the network,

also experience near optimal tail latencies within a few percent of the PseudoIdeal performance.

When we approximate SRPT with a limited number of priority levels, the largest slowdown de-

viation from PseudoIdeal happens for the group of messages with the lowest priority. Furthermore,



CHAPTER 4. SINGLE RECEIVER EVALUATION 54

among all messages in that group, the ones with the shortest size experience the highest deviation.

This slowdown deviation from PseudoIdeal manifests itself on the byte spectrum plots of Figure 4.5,

around message size 1240 bytes for W1 and 21645 bytes for W3; the jumps on the Homa curves

around these message sizes happens because these message sizes correspond to unscheduled priority

cutoffs associated with the lowest unscheduled priority levels. Specifically, all messages larger than

1240 bytes in W1 and all messages larger than 21645 bytes in W3 are sending unscheduled packets

at the lowest unscheduled priority level. Among all of these low unscheduled priority messages, the

shortest of them experience the highest slowdown overhead. It is important to note that from count

spectrum plots, it’s clear that these high slowdown messages account for a tiny fraction (less than

2%) of all messages in W1 and W2.

Reducing the load on the receiver downlink from 80% to a lower load reduces the tail slowdown.

Figure 4.6 is similar to Figure 4.5, but uses a moderate 50% load rather than 80%. The figure shows

that regardless of the workload type, the tail latencies have reduced over the whole spectrum of

message sizes in comparison to the plots at 80% network load. At 50% load there is shorter queues

in the network compared to the 80% load and packets will experience less queuing delay, hence

lower tail latency. Moreover, at lower loads, Homa achieves performance that is closer to optimal

performance; the difference in performance between Homa and PseudoIdeal reduces at lower loads.

4.3.3 Unscheduled Priority Allocation Scheme

One of the important questions we need to address is how did we arrive at the design for Homa’s

unscheduled priority scheme as described in Chapter 3? When we were developing Homa’s priority

allocation scheme we considered several designs. We empirically evaluated these designs and ar-

rived at the solution that we discussed in Chapter 3 because it achieved the lowest latency for short

messages over various workloads. In this section, we discuss three of the schemes we considered and

empirically show that Homa’s scheme achieves better latency compared to the other two schemes.

We use the empirical approach for comparison because we are not aware of any analytical or theo-

retical tools to analyze the optimality of Homa’s design. Below we briefly explain Homa’s scheme

and the other two approaches, then we present and analyze the performance of each approach.

Unscheduled priority assignment scheme in Homa approximates SRPT with a limited number of

unscheduled priority levels. To that end, this scheme tries to balance the unscheduled bytes between

priority levels and assigns priority levels to the unscheduled packets of a message such that the later

packets of the message receive higher priority levels than the earlier ones (there are fewer bytes

remaining to be transmitted). Furthermore, this scheme applies to both the first RTTBytes of the



CHAPTER 4. SINGLE RECEIVER EVALUATION 55

message and the last RTTBytes of the message. The scheme is explained in detail in Chapter 3

and depicted in Figure 3.7(b). For the purpose of this section, we name Homa’s scheme “graduated”

priority allocation mode since the unscheduled packets of a single message gradually receive higher

priority levels as the remaining bytes of the message decreases.

In the first unscheduled priority allocation scheme we compare against, all unscheduled packets

of an individual message uniformly receive the same priority level. So we call this scheme “uniform”

allocation mode. This is in contrast to the graduated scheme where the later unscheduled packets

of a message receive higher priority level. This uniform scheme uses the CDF of transmitted bytes

to assign unscheduled packet priority levels such that an equal number of bytes is transmitted over

each priority level and the packets of shorter messages receive higher unscheduled priority levels.

The second scheme we compare against allocates an equal number of messages per unscheduled

priority level; this is in contrast to the previous schemes that allocated an equal number of bytes

per priority level. Suppose that there are k priority levels available for the unscheduled packets.

This scheme uses the CDF of message sizes to divide the whole message size range into k size

ranges, such that each range holds equal fraction ( 1
k ) of all messages. This scheme then uses the

highest unscheduled priority level for the range with the shortest message sizes and respectively

lower priority levels for the larger size ranges. We call this scheme “CDF Uniform” because all

unscheduled packets of a given message uniformly receive the same priority level and priorities are

allocated based on the CDF of message sizes.

Figure 4.7 shows the count spectrum plots for the three allocation modes we discussed, along

with the PseudoIdeal plot as the ground reference. All plots were generated at 80% network load

on the receiver’s downlink. The left column in the figure shows W1 to W4 results when there are

two priorities available for unscheduled packets and the right column plots in the figure shows the

comparison when four unscheduled priorities are available. We restricted the number of priority

levels to two and four in this experiment since the difference in the performance is more observable

when have fewer priorities.

In Figure 4.7, we see that the CDF uniform scheme has the largest deviation from the Pseu-

doIdeal for the largest fraction of messages and it’s the least suitable among the three schemes.

Regardless of the priority assignment scheme, when we have two unscheduled priorities, there’s a

sudden increase in the tail slowdown plots for all workloads and schemes. This sudden jump in tail

slowdown happens because messages before the jump use the higher priority level and messages

after the jump use the lower priority level and incur a high tail latency hit. In particular for the CDF

uniform scheme, this sudden jump happens at 50%-ile of message sizes of workload. This causes



CHAPTER 4. SINGLE RECEIVER EVALUATION 56

1

2

3

4
5

9

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W1, #Prios: 2

1

2

3

4
5

9

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W1, #Prios: 4

1

2

3
4
5

9

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W2, #Prios: 2

1

2

3
4
5

9

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W2, #Prios: 4

1

2

3
4
5

9

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W3, #Prios: 2

1

2

3
4
5

9

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W3, #Prios: 4

1

2

3
4
5

9

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Sizes (Bytes) −− Scaled by message size CDF

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W4, #Prios: 2

1

2

3
4
5

9

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Sizes (Bytes) −− Scaled by message size CDF

CBF graduated
CBF uniform
CDF uniform
PseudoIdeal

Workload: W4, #Prios: 4

Figure 4.7: Comparison of three unscheduled priority assignment schemes for Homa at 80% network
load on the receiver downlink for workloads W1-W4. The plots on the left show the results when there
are two unscheduled priority levels, while the plots on the right are for four unscheduled priority levels.
The plots show that CDF Uniform is not suitable; compared to the other two allocation schemes, it
yields a larger 99% tail slowdown over a large fraction of message sizes for all workloads. This large
tail slowdown happens for either two or four priority levels.
CBF Uniform achieves performance close to the graduated scheme in most cases. With two priority
levels, the uniform scheme leads to slightly higher slowdown for some messages, but slightly lower
slowdown for others.



CHAPTER 4. SINGLE RECEIVER EVALUATION 57

the CDF uniform scheme to have the largest deviation from the near optimal tail slowdown of Pseu-

doIdeal. Increasing unscheduled priorities to four improves the tail latency of messages by pushing

the sudden jump more to the right of the plot at 75%-ile of message sizes in each workload. This

sudden jump happens because the largest 25% of message sizes are assigned the lowest priority

level among the four available priority therefore they sustain the largest hit on the tail latency.

The spectrum plots of Figure 4.7 are not conclusive which of the two other schemes (graduated

or uniform) is better. Over the majority of message sizes for various workloads, the two schemes lead

to very similar tail slowdown, with occasional differences where sometimes for a specific message

size, one scheme or the other has better tail slowdown. For example, with workload W3 and two

unscheduled priorities, the graduated scheme has lower tail slowdown for message sizes shorter than

7245 bytes, while for messages slightly larger than 7245 bytes, the CBF uniform scheme has lower

tail slowdown. Hence we need a way to aggregate the results in more compact form to more easily

evaluate them against each other.

In order to better understand the similarities between the graduated and CBF uniform schemes,

we use a simplified aggregated metric over broader message size ranges. For each workload, we

divide the entire spectrum of message sizes into five ranges and compute the aggregated tail slow-

down for each range by computing the area under each curve of the Figure 4.7 for each of the five

ranges. Figure 4.8 shows the aggregated slowdown metric over the five message size ranges for all

workloads and three priority allocation schemes, computed from figure 4.7. Below, we introduce

the five message size ranges on Figure 4.8 and explain what motivated us to treat each range as a

separate aggregation group. We define the aggregated slowdown for each message size range as the

area under the slowdown spectrum for that message size range; i.e. sum of all tail slowdown in the

range but weighted by the probability of the message sizes in that range.

1. Super short messages that are smaller than 300B in size. We separate these messages into

their own category because on a realistic 10Gbps network topology, the serialization delay

for these messages is negligible comparing to the fixed switching and forwarding delays in

the network. So the total delay for transmitting these message over the network is dominated

by fixed transmission delays rather than serialization delay. This category of short message

sizes comprise 60% to 82% of all messages in the W1 to W4 workloads.

2. Short messages that are larger than 300B and no longer than one full packet. In Homa’s

context, these messages are also considered short messages but the serialization time for these

messages is comparable to the network fixed delays.



CHAPTER 4. SINGLE RECEIVER EVALUATION 58

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

A
gg

re
ga

te
 9

9%
 S

lo
w

do
w

n

CBF graduated
CBF uniform
CDF uniform

Workload: W1, UnschedPrio: 2

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

CBF graduated
CBF uniform
CDF uniform

Workload: W1, UnschedPrio: 4

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

A
gg

re
ga

te
 9

9%
 S

lo
w

do
w

n

CBF graduated
CBF uniform
CDF uniform

Workload: W2, UnschedPrio: 2

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

CBF graduated
CBF uniform
CDF uniform

Workload: W2, UnschedPrio: 4

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

A
gg

re
ga

te
 9

9%
 S

lo
w

do
w

n

CBF graduated
CBF uniform
CDF uniform

Workload: W3, UnschedPrio: 2

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size

CBF graduated
CBF uniform
CDF uniform

Workload: W3, UnschedPrio: 4

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size
Message Sizes Ranges

A
gg

re
ga

te
 9

9%
 S

lo
w

do
w

n

CBF graduated
CBF uniform
CDF uniform

Workload: W4, UnschedPrio: 2

0

1

2

3

Size < 300B Size < MTU Size < RTTBytes Size < 5RTTBytes 5RTTBytes < Size
Message Sizes Ranges

CBF graduated
CBF uniform
CDF uniform

Workload: W4, UnschedPrio: 4

Figure 4.8: Aggregate tail slowdown for ranges of message sizes for three unscheduled priority as-
signment schemes. Each graph on this figure corresponds to one of the graphs of Figure 4.7. Aggregated
slowdown for each message size range is the sum of tail slowdowns for that range in Figure 4.7, weighted
by the probability of messages for that range; the aggregated values can be smaller than one if the prob-
ability of the range is too small. The probability weighting reflects the importance of the messages
in the range; the more frequent messages in the workload are more important to be considered in the
evaluation.



CHAPTER 4. SINGLE RECEIVER EVALUATION 59

3. Medium size messages, longer than one MTU and shorter than one RTTBytes. These mes-

sages are distinct in their own group because no scheduling is required for them (they com-

pletely fit in unscheduled packets).

4. Large messages longer than one RTTBytes and shorter than 5×RTTBytes. These are consid-

ered large scheduled messages that have significant unscheduled portions as well.

5. Super large messages that are larger than 5×RTTBytes in size and the unscheduled portion

of these messages is practically negligible compared to the total length of the message.

From Figure 4.8 we can infer that the difference between the graduated and uniform schemes

is small and one may argue that the uniform scheme can be used for Homa without significant

performance loss. The graduated scheme of Homa has better slowdown for short messages, espe-

cially for W3 with two priorities for super short messages. But for most of the other message size

ranges and workloads, there’s virtually no difference between the results from the two schemes.

The difference is even less significant when we have four unscheduled priority levels. Since Homa

expects at least four unscheduled priorities for W1 to W4 for the best performance, we argue that in

Homa’s implementation we may choose to use the CBF uniform scheme instead of the near optimal

graduated scheme. This choice of the uniform scheme immediately simplifies the implementation

of the unscheduled priority allocation scheme. This is because the CBF uniform scheme only relies

on computing the CDF of the received bytes. In contrast, the graduated scheme implementation

requires computation of a transformation of the CDF and this computation may cost a lot of cpu

time. As a matter of fact and for the sake of simplicity, we use the CBF uniform scheme in our own

system implementation of Homa.

4.3.4 Varying Number of Unscheduled Priorities

A question that we should answer is how does the number of available unscheduled priorities af-

fect Homa’s performance under different workloads and load factors? Or in other words, how many

unscheduled priority levels does Homa require for each workload at various load factors, in order

to achieve close to optimal performance? To answer this question we ran simulations at different

network loads/workloads and investigated how the slowdown changes as the number of priorities

varies. Figure 4.9 shows the results of the simulations. Each plot on this figure shows the count spec-

trum for either workloads W1 or W3 at one of three receiver’s downlink loads: low (30%), medium

(55%), and high (80%). We show the two workloads for which the spectrum plots seem to be the



CHAPTER 4. SINGLE RECEIVER EVALUATION 60

most sensitive to the number of unscheduled priorities. On each plot, we have varied the number

of available unscheduled priorities from 1, to 2, 4, and 6 and we compare against the PseudoIdeal

reference curve. The unscheduled priorities in these plots are in addition to the scheduled priorities.

For W1, we use one extra priority level for scheduled packets, and for W3 we use three extra sched-

uled priorities where the unscheduled traffic is transmitted over the higher priority levels, and the

scheduled traffic is transmitted on the lower one.

If we compare one priority curve to the PseudoIdeal curve on each of the plots of figure 4.9, it’s

immediately obvious that one unscheduled priority is not enough for near optimal tail slowdown.

Regardless of the loadfactor on the network, and the workload type, the one priority curves have 1.3–

5 times worse slowdown compared to the PseudoIdeal curve. Therefore, it is important to allocate

more than one unscheduled priority level for workloads with high volume of unscheduled traffic

(i.e. W1-W4), even at low network loads.

Two unscheduled priorities seems to be enough for low network loads, but not for moderate to

high network loads. With two unscheduled priorities the tail slowdown is 0.8–3 times lower than

one unscheduled priority curves, for most of the message sizes. More specifically at 30% network

load, two unscheduled priority levels brings the tail slowdown close to the PseudoIdeal performance

on W1 plot and within 20% of the PseudoIdeal on W3 plot. Therefore one may argue that even two

unscheduled priorities would be enough to achieve close to optimal tail slowdown for almost all

practical workloads.

Figure 4.9 shows that at medium to high network load, four or more unscheduled priorities is

enough to achieve close to optimal tail slowdown for all workloads. With four priorities and at 50%

network load, Homa’s performance is almost indistinguishable from PseudoIdeal tail slowdown.

Even at 80%, with four unscheduled priority levels, the tail slowdown is very close to optimal

PseudoIdeal performance except for a small fraction of messages around 10Kbytes in W1. With 6

unscheduled priority levels, Homa’s performance is almost indistinguishable from PseudoIdeal even

at 80% network load. That said, one may argue that with four unscheduled priority levels, Homa’s

performance is close enough to the PseudoIdeal’s performance even at 80% network load.

4.4 Chapter Summary

In this chapter we introduced the Homa simulator and its different modules and we discussed the

structure of our simulation experiments in details. We also introduced the network topology and

workloads that we use in our simulations throughout this dissertation.



CHAPTER 4. SINGLE RECEIVER EVALUATION 61

1.0

2.0

3.0

3.5

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W1, LoadFactor: 30%

1.0

2.0

3.0

3.5

58 68 82 10
4

14
1

22
0

49
9

13
89

72
45

31
62

28

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W3, LoadFactor: 30%

1

2

3

4

5

6

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W1, LoadFactor: 50%

1

2

3

4

5
6

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W3, LoadFactor: 50%

1

2

3

4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Sizes (Bytes, SizeCDF scaled)

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W1, LoadFactor: 80%

1

2

3

4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

72
45

31
62

28

Message Sizes (Bytes, SizeCDF scaled)

Ta
ilS

lo
w

do
w

n 
(L

og
 S

ca
le

)

1 2 4 6 PseudoIdeal

Workload: W3, LoadFactor: 80%

Figure 4.9: Effect of number of unscheduled priority levels on tail slowdown for workloads W1, and W3
at 30%, 55% and 80% load factors. The figure shows that low 30% load factor, Homa needs at least two
unscheduled priority levels (in addition to scheduled priority levels) to achieve close PseudoIdeal tail
slowdown. At moderate to high load factor (i.e. 50% to 80%), Homa requires four unscheduled priority
levels to achieve close to PseudoIdeal tail slowdown.



CHAPTER 4. SINGLE RECEIVER EVALUATION 62

We introduced the slowdown spectrum plots and discussed how nicely we can depict the latency

for different messages and at the same time target our focus on the most important and most frequent

messages in the workload.

We evaluated Homa’s unscheduled priority assignment scheme and showed that Homa can

closely approximate near optimal SRPT performance of the PseudoIdeal scheduler. Homa is able to

achieve single digit tail latency for short messages; in our simulations 99%-ile tail latency for short

messages is about 4 µs, which is at most 1.8 times the minimum latency for these messages.

We empirically compared Homa’s unscheduled priority allocation scheme against two other

designs (CBF uniform and CDF uniform). We showed that even though Homa’s scheme has better

performance, the difference between Homa’s scheme and CBF uniform is small. Therefore, one may

choose to use the CBF uniform for unscheduled priority assignment since it is easier to compute.

We also showed that one unscheduled priority is not enough to achieve near optimal latency

with Homa, even at low network load. However, at low network load, two priority levels should

be enough to achieve tail latency within 20% of the optimum for short messages in heavy-head

workloads. At higher network load, four priority levels is enough for unscheduled packets to achieve

near optimal latency.



Chapter 5

Multi Receiver Design

5.1 Single Receiver Design: Good and Bad

In chapters 3 and 4, we discussed the monogamous design and evaluation of Homa. In those chap-

ters, one of the primary assumptions was that there are many sender hosts and only one receiver

host in the network. So, any message from the senders was destined to the single receiver.

We referred to the design in previous chapters as the monogamous design of Homa because each

receiver allows only one active message at a time, by scheduling packets from that single message.

If a receiver has multiple partially-received incoming messages from various senders, it sends grants

only to the highest priority message among them; once it has granted all bytes of the highest priority

message, it begins granting the next highest priority message, and so on.

The advantage of the single receiver assumption was that it relaxed the throughput constraint

in our design. Under this assumption, the only contention point in the network is the downlink to

the receiver from its TOR (top of the rack) switch. Therefore, our throughput goal was simplified

to achieving high bandwidth utilization on that link alone. Furthermore, this simplified goal was

trivially achieved through the receiver-driven flow control and packet scheduling we discussed in

the previous two chapters.

As we relaxed the throughput constraint in previous chapters, we focused our design to achieve

our primary goal: single-digit microseconds tail latency for short messages. By keeping one active

message at a time at the receiver, the monogamous design minimizes the buffer occupancy and

implements run-to-completion rather than round-robin scheduling. Both of these help to reduce

message latencies. Furthermore, our low latency goal was achieved via implementation of the SRPT

policy through a combination of receiver-driven packet scheduling and Homa’s priority assignment

63



CHAPTER 5. MULTI RECEIVER DESIGN 64

scheme. We showed that this design can achieve near optimal tail latency for short messages while

the receiver’s downlink bandwidth is up to 80% utilized.

The issue with the monogamous design of Homa is that it cannot achieve high bandwidth uti-

lization under many-to-many traffic patterns in datacenter networks. With realistic datacenter work-

loads, it’s often the case that a large subset of servers in the network are transmitting flows to each

other most of the time. So, not only there are many sender hosts in the network, but there are many

receiver hosts in the network too. Unfortunately, the monogamous design of Homa from the pre-

vious chapters cannot utilize network bandwidth efficiently when we have a many-to-many traffic

pattern. Our simulations showed that allowing only one active message with the monogamous de-

sign resulted in poor network utilization under high load. For example, in our simulations with

workload W6 from Figure 4.2(a), Homa could not use more than 63% of the network bandwidth,

regardless of how much load was offered by the senders.

The network remains underutilized because senders can not always respond immediately to

grants when they receive them from multiple receivers. It happens very often that a sender wants to

send messages to multiple receivers (e.g. N receivers). So the sender transmits unscheduled packets

to all of them. Consequently, it receives grant packets from all of the receivers at the same time. But

the sender is only able to transmit scheduled packets to one of the receivers at a time. This causes

the downlinks for the other N-1 receivers to remain idle. Hence the downlink bandwidth for those

receivers is wasted since no packets are received for the grants they sent. Figure 5.1 illustrates how

this can happen.

We ran a set of simulation experiments with the topology of Figure 4.1 to measure the wasted

bandwidth on the receiver downlinks. In a single experiment, each host acts as both sender and

receiver. Each sender generates messages in an open loop fashion: the sender produces a series of

messages that are sampled from one the workloads’ message size CDF and each generated message

is destined to a randomly chosen receiver. The interarrival time between messages follows a Poisson

distribution, with the mean of the distribution set to achieve a certain offered network load on each

sender’s uplink. We then measured the wasted bandwidth on the receivers’ downlinks as follows:

a receiver wastes bandwidth when the downlink to the receiver is idle, but the receiver has more

than one sender to schedule; i.e. the receiver doesn’t receiver any packets on its downlink because it

didn’t schedule more than one sender. We measure the wasted bandwidth as the fraction of all total

idle times for all receivers, divided the simulation times for all receivers.

Figure 5.2 depicts the wasted bandwidth for W6 under Homa’s monogamous design. To com-

pute this figure, we performed a set of simulations where each simulation was ran under a certain



CHAPTER 5. MULTI RECEIVER DESIGN 65

Figure 5.1: Bandwidth can be wasted if each receiver grants to a single sender at a time.
a) In this example, S1 has message m1 for receiver R1, S2 has messages m2 and m3 for R1 and R2
respectively, and S3 has message m4 for R2. In this scenario, R1 and R2 each grant to only one message
at a time; R1 chooses m2, which is shorter than m1, and R2 chooses m3, which is shorter than m4.
However, S1 can only send one packet at a time and it chooses to transmit m2, since it is shorter than
m1. As a result, R2’s downlink will be idle even though it could be used to receive m4.
b) The figure shows the time line of R1 and R2, starting when R2 sends the first grant packet for m3.
RTTBytes is three packets in this example. At the top of the lines, the times at which grant packets are
sent out are marked as Gi, with i for the message mi. Under each line, it shows the scheduled packets of
the messages as they arrive at the receiver. Initially R1 and R2 both are granting m2 and m3 for the same
sender S2. However, S2 only sends scheduled packets to R1. Consequently R2’s downlink is idle, not
receiving any packets for the grants it sent to S2 which leads to wasted bandwidth (the amount of time
that R2’s link remains idle is marked as ”wasted bw” on the figure). Eventually R2 starts granting m4 at
the 4’th time tick, after it had granted m3 for a full RTTBytes. But, by then it’s already too late and R2
has wasted its bandwidth for one RTT.



CHAPTER 5. MULTI RECEIVER DESIGN 66

network load. We increased the offered network load from 5% to higher loads and measured the

wasted bandwidth on the receivers downlinks for each network load. The figure depicts the wasted

bandwidth on the y-axis, as a function of the offered network load on the x axis. The black curve on

the figure shows that as the offered load increases on the x axis, Homa’s monogamous design wastes

more and more bandwidth. At high network loads, the wasted bandwidth is significantly large un-

der many-to-many traffic pattern for the heavy-tailed W6. That’s because at higher loads there’s a

higher chance that the receiver sends a grant to a sender and the sender wont respond because it’s

busy transmitting to other receivers.

The slanted pink line on the figure shows the available surplus bandwidth, for each given offered

network load on the x axis. For example, if the offered network load on the x axis is 25% of the total

available bandwidth capacity, then the surplus bandwidth is 75% and wasted bandwidth on the y axis

cannot exceed 75% on the pink line; i.e. the transport can’t possibly waste more bandwidth than the

total available surplus bandwidth. For a given network load, the transport may waste bandwidth at

most up to the available surplus bandwidth.

From the figure, we can measured that the maximum achievable throughput for workload W6

with Homa’s monogamous design is at most 63% of the host link bandwidth. The black curve on the

figure shows that as the offered load increases on the x axis, Homa’s monogamous design wastes

higher bandwidth until the curve hits the pink surplus bandwidth line; wasted bandwidth increases

as the network load increases and eventually it consumes all of the available surplus bandwidth.

The offered load on the x axis at the intersection of the black curve and the pink line, defines

the maximum achievable throughput with Homa’s monogamous design under workload W6. If the

offered load is higher than the maximum achievable throughput, then simulations becomes unstable

and message queues grow without bound. Later in this chapter, we’ll present the wasted bandwidth

results for other workloads as well.

5.2 Overcommitment To Avoid Wasting Bandwidth

To avoid wasting bandwidth the receivers need to hedge their bet and grant to multiple receivers. The

monogamous design wastes bandwidth because there is no way for a receiver to predict whether a

particular sender will respond to grants or not. So the only way to keep the downlink highly utilized

is to overcommit. Overcommitment means that a receiver must grant to more than one sender at

a time, even though its downlink can only support one of the transmissions. With this approach,

if one sender does not respond, then the downlink can be used for some other sender. However,



CHAPTER 5. MULTI RECEIVER DESIGN 67

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

Single Sx Design
Surplus BW.

Workload: W6

Figure 5.2: With Homa’s monogamous design at most 63% of the receiver bandwidth can be utilized
for workload W6 under many-to-many traffic pattern. The black curve show that as the offered load
increases, Homa’s monogamous design wastes more and more bandwidth. The offered load on the x
axis at the intersection of the black curve and pink line, defines the maximum bandwidth that can be
utilized with Homa’s monogamous design.

overcommitment can also cause queuing at the TOR downlink to the receivers if multiple senders

responds to the grants at the same time.

To ensure that buffer buildup (because of overcommitment) does not hurt the latency of the short

messages, we utilize the priority mechanism in Homa, with shorter messages’ packets at higher

priorities. The priority mechanism ensures that the shortest message is delivered first and packets

from the other messages will be buffered in the TOR. Figure 5.3 illustrates how the combination of

the overcommitment and priority scheme of Homa achieves optimal performance: minimum latency

for short messages along with maximum bandwidth utilization.

We use the term active to describe the messages for which the receiver is willing to send grants;

the others are inactive. A receiver can stop transmission of a message and make it inactive by

withholding grants; once all of the previously-granted data arrives, the sender will not transmit

any more data for that message until the receiver starts sending grants again. Hence the message

becomes inactive.

One of the important design decisions for Homa is how many active messages a receiver should

allow at any given time. One possible approach is to keep all incoming messages active at all times.

This is the approach used by TCP and most other existing protocols. However, if many senders

respond at once this approach results in high buffer occupancy at the TOR near the receiver and

round-robin scheduling between messages, both of which contribute to high tail latency.

We use the term degree of overcommitment to refer to the maximum number of messages that



CHAPTER 5. MULTI RECEIVER DESIGN 68

may be active (i.e. receive grants) at once on a given receiver. If there are more than this many

scheduled messages expecting grants, only the highest priority ones are active. A higher degree of

overcommitment reduces the likelihood of wasted bandwidth; with higher degree of overcommit-

ment there’s a higher chance that at least one of the active messages respond to grants. But it also

leads to consuming more buffer space in the TOR (up to RTTbytes for each active message) when

all active messages respond to grants at the same time. This results in more round-robin scheduling

between messages, which increases average completion time.

Homa currently sets the degree of overcommitment to the number of scheduled priority levels:

a receiver will grant to at most one message for each available scheduled priority level. This means

that depending on the characteristics of the workload that the receiver measures, the degree of

overcommitment will be different (in Section 3.5.1, we described how the receiver measures the

workload of the incoming messages to allocate scheduled priority levels). Therefore, if for example

a receiver determines that from a total of eight priority levels P0 to P7, the lower three priority levels

P0 to P2 are to be used for scheduled packets, then the receiver sets the degree of overcommitment

to three. It then grants the three shortest scheduled messages at these priority levels with the shortest

message among them at better priority level P2 and the longest one among them at P0.

We chose to tie the degree of overcommitment to the number of scheduled priority levels be-

cause of the simplicity and effectiveness of this scheme in achieving both low latency and high

throughput. Our approach to tie the degree of overcommitment to the available scheduled prior-

ity levels resulted in high network utilization in our simulations, but there are other plausible ap-

proaches. For example, a receiver might use a fixed degree of overcommitment, independent of

available priority levels (if necessary, several messages could share the lowest priority level); or, it

might adjust the degree of overcommitment dynamically based on sender response rates. We leave

an exploration of these alternatives to future work. In the rest of this section we’ll demonstrate and

discuss the effectiveness of our scheme in more detail.

Figure 5.4 illustrates the effectiveness of the overcommitment mechanism in increasing network

bandwidth utilization under different workloads. The figure shows the receivers’ wasted bandwidth

versus the offered load for six of the workloads we introduced in Figure 4.2(a). Each plot shows

the simulation results as we increase the degree of overcommitment by increasing the number of

available scheduled priority levels. For example, ”1 Sched. Prio.” curve on each plot corresponds

to no overcommitment (i.e. single active scheduled message) and ”2 Sched. Prio.” corresponds to

overcommitment degree of one (i.e. two active messages at a time). Regardless of the workload

type, when the number of scheduled priorities increases, the wasted bandwidth decreases for the



CHAPTER 5. MULTI RECEIVER DESIGN 69

Figure 5.3: To achieve low latency and high bandwidth utilization, receivers overcommit by sending
grants to multiple senders at the same time but at different priority levels. Shorter messages are granted
at higher priority levels.
a) In the top left subfigure, R1 grants both m1 (from S1) and m2 (from S2). The higher priority packets
from shorter message m2 are quickly delivered to R1 while lower priority packets from larger m1 will
be buffered; this guarantees low latency delivery of shorter message m1. Meanwhile, R2 grants both
m3 (from S2) and m4 (from S3). S2 transmits m2 not m3, but S3 transmits m4 and uses R2’s downlink
which ensures high bandwidth utilization at the R2’s downlink. In the top right subfigure, S2 has finished
transmitting m2 so it uses its grants to transmit m3’s packets to R2 while S3 is also transmitting m4’s
packets to R2. This means the high priority packets from m3 will be delivered, while the lower priority
packets from m4 will be buffered which again results in low latency delivery of the shorter message m3.
b) The time lines for R1 and R2 show how the overcommitment mechanism has avoided wasted band-
width at R2’s downlink (the downlinks to the receivers are always kept busy receiving data packets). On
the top of each time line, grant packets are shown when they leave the granting receiver. Each grant is
subscripted by the message number it’s sent for and the scheduled priority level it carries for that mes-
sage. Every time a new data packet arrives, it triggers the receiver to send a new grant for the messages.
Each receiver sends enough grants to each message such that it keeps one RTTBytes (e.g. three packets
in this example) of outstanding packets for each message.

same offered network load. This allows Homa to utilize more of the network bandwidth.

To achieve high bandwidth utilization, heavy-tailed workloads require higher degrees of over-

commitment. Homa automatically assigns a degree of overcommitment that can achieve more than

90% network bandwidth utilization. For workload W1, only one scheduled priority is enough to

achieve 90% network bandwidth utilization. However, for workloads W6 and W7, seven scheduled

priorities are required to achieve close to 90% network bandwidth utilization. Network fabrics like



CHAPTER 5. MULTI RECEIVER DESIGN 70

Ethernet typically provide eight priority levels. Homa dynamically assigns the appropriate number

of scheduled priority levels based on the workload type to achieve 90% utilization of the network

bandwidth. This dynamic assignment was explained in details in 3.5.1; in summary, each Homa

receiver adaptively measures its incoming traffic and divide priorities between scheduled and un-

scheduled traffic to balance bytes between the two priority types. This mechanism would assign

seven scheduled priorities for W6 and W7, one scheduled priority for W1, and so on for the rest

of the workloads. Therefore it ensures up to 90% network bandwidth utilization for all workloads

when eight priorities are provided by the fabric.

Here is how the overcommit mechanism works in Homa: each receiver dynamically assigns

some number of priority levels for scheduled packets as we explained in Section 3.5.1. For instance,

imagine that the receiver decided to allocate k priority levels (P1 to Pk) for the scheduled packets. It

then grants the k′th shortest scheduled messages at these priority levels, with the shortest message

among them at better priority level Pk and the longest one among them at P1. Every time a new data

packet arrives, it triggers the receiver to send a new grant for these messages at the correct priority

level we just explained. The receiver sends enough grants to each message such that it keeps one

RTTBytes of outstanding packets for each of these high priority messages. Every time a message is

fully granted the receiver replaces it with the next shortest message in rank.

Unfortunately, Homa is unable to achieve 100% bandwidth because it still wastes network band-

width under some conditions. Homa wastes bandwidth because it has a limited number of scheduled

priority levels: there can be times when (a) all of the scheduled priority levels are allocated, (b) none

of the senders that are granted is responding, so the receiver’s downlink is idle and (c) there are ad-

ditional messages for which the receiver could send grants if it had more priority levels. That said,

we are not aware of any transport mechanism that can reach higher than 90% bandwith utilization

on an arbitrary network topology and workload with an all to all random traffic matrix. In Chapter 6

we discuss the maximum bandwidth utilization of some of these transports.

The need for overcommitment provides illustrates why it isn’t practical to completely eliminate

buffering in a transport protocol; if we eliminate the buffers in the network, we run the risk of

wasting the receivers’ link bandwidths when the senders don’t transmit their packets in a timely

manner. In particular, Homa’s monogamous design was our effort to eliminate buffering on the TOR

downlinks but it turned out that the design could only support up to 63% link bandwidth utilization

for heavy-tailed workloads. Homa introduces just enough buffering to ensure good link utilization;

it then uses priorities to make sure that the buffering doesn’t impact latency.



CHAPTER 5. MULTI RECEIVER DESIGN 71

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

1 Sched. Prio.
Surplus BW.

Workload: W1

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

1 Sched. Prio.
2 Sched. Prio.
Surplus BW.

Workload: W2

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

1 Sched. Prio.
2 Sched. Prio.
3 Sched. Prio.
4 Sched. Prio.
Surplus BW.

Workload: W3

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

1 Sched. Prio.
2 Sched. Prio.
3 Sched. Prio.
4 Sched. Prio.
Surplus BW.

Workload: W4

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
) 1 Sched. Prio.

2 Sched. Prio.
3 Sched. Prio.
4 Sched. Prio.
5 Sched. Prio.
7 Sched. Prio.
Surplus BW.

Workload: W6

0

25

50

75

100

0 25 50 75 100
Network Load (%)

R
ec

ei
ve

rs
 W

as
te

d 
B

W
 (

%
)

1 Sched. Prio.
2 Sched. Prio.
3 Sched. Prio.
4 Sched. Prio.
5 Sched. Prio.
6 Sched. Prio.
7 Sched. Prio.
Surplus BW.

Workload: W7

Figure 5.4: Increasing the degree of overcommitment increases the network bandwidth utilization for
most of the workloads. For heavy-tailed workloads like W6 and W7, a higher degree of overcommit-
ment is required to achieve 90% bandwidth utilization. Plots show the receiver’s wasted bandwidth as
a function of offered network load with different curves for different degrees of overcommitment. As
we increase the number of scheduled priority levels, and hence the degree of overcommitment, less
bandwidth is wasted for W2–W7. Wasting less bandwidth on the network translates to higher bandwidth
utilization. This shows the importance of overcommitment: For example for W6, if receivers grant to
only one message at a time, Homa can only support a network load of about 63%, versus 90% with an
overcommitment level of 7. If the goal is to achieve close to 90% network bandwidth utilization, then
workloads W1 and W2 require no overcommitment (i.e. one scheduled priorities), W3 requires over-
commitment of two (i.e. three scheduled priorities), W4 requires overcommitment of three, and W6 and
W7 require overcommitment of six. W5 is removed from the figure to keep the figure in one page (W5’s
results is very similar to W4’s).



CHAPTER 5. MULTI RECEIVER DESIGN 72

5.3 Chapter Summary

In this chapter we introduced the concept of overcommitment. We discussed the shortcomings of

Homa’s monogamous design in achieving high bandwidth utilization and we explained how the

overcommit mechanism extends Homa’s design to achieve high bandwidth utilization as well as

low latency.

The overcommitment mechanism allows Homa to achieve up to 90% network bandwidth uti-

lization for various workloads when the fabric provides eight priorities. Without overcommitment

for heavy-tailed workloads, the bandwidth utilization on receivers’ downlinks can be as low as 63%.

In the current design of Homa, the degree of overcommitment is tied to the number of scheduled

priorities. Homa receiver automatically assign enough scheduled priorities based on the measured

workload such that high bandwidth utilization is achieved.



Chapter 6

Simulation Evaluation

This chapter is dedicated to the evaluation of the full design of Homa in a packet level simulator. The

simulations allows us to explore more workloads, measure behavior at a deeper level, and compare

with simulations of state of the art approaches like pFabric [5], pHost [14], NDP [16], and PIAS [7].

For Homa simulations, we used the packet-level simulator based on the OMNeT++ simulation

framework [26]. The details of the simulator were discussed in §4.1 and we also added the over-

commitment mechanism to the simulator. We measured pFabric, pHost, NDP, and PIAS using the

original simulators developed by their authors. The pFabric simulator is based on ns-2 [25], and the

PIAS simulator is based on the pFabric simulator. The pHost and NDP simulators were built from

scratch without an underlying framework. We modified the simulators for pFabric, pHost, NDP, and

PIAS to use the same workloads and network configuration as the Homa simulator. To the best of

our abilities, we tuned each simulator to produce the best possible performance. The NDP simula-

tor does not support less-than-full-size packets, so we used it only for workload W7, in which all

packets are full-MTU-size datagrams.

Our simulations used an all-to-all communication pattern; each host was both a sender and a

receiver, and the workload consisted of one-way messages transmitted from a sender to a receiver.

New messages are created at senders according to a Poisson arrival process; the size of each message

is chosen from one of the workloads W1 to W7 in Figure 4.2(a), and the destination for the message

is chosen uniformly at random. For each simulation we selected a message arrival rate to produce a

desired network load, which we define as the percentage of available network bandwidth consumed

by goodput packets; this includes application-level data plus the minimum overhead (packet head-

ers, inter-packet gaps, and control packets) required by the protocol; it does not include retransmitted

packets.

73



CHAPTER 6. SIMULATION EVALUATION 74

The simulations do not model software queuing delays during packet processing in end-host

stack. These kinds of software queuing delays occur when an incoming packet cannot be imme-

diately processed because the receiver is still processing an earlier packet or the receiver is busy

performing some other task unrelated to the network processing. Software delays are only modeled

as fixed delays in the simulations for both transmit and receive paths of packets. The implications

of fixed delays is that software can process packets with infinite throughput so no packet queuing

happens in the software. The simulations only model the queuing effect in the network fabric.

Our goal with Homa simulations is to answer the following questions:

1. Does Homa provide low latency for short messages even at high network load and in the

presence of long messages?

2. How efficiently does Homa use network bandwidth?

3. How does Homa compare to existing state-of-the-art approaches?

4. How important are Homa’s novel features to its performance?

6.1 Comparison Transports

Before getting to the quantitative measurement of Homa’s performance against prior designs, we

discuss the details of these designs here.

pFabric

pFabric is a priority enabled transport mechanism that achieves near optimal latency for short mes-

sages while maintaining high network bandwidth utilization. pFabric was first to observe that smart

usage of priority queues in the network fabric can significantly reduce flow completion times or

message latencies. pFabric showed that it can achieve very low average and tail latency for various

message sizes and its low latency performance is believed to be near-optimal. Therefore, it has been

used as a comparison point for all of the low latency transport designs that came after. We also chose

pFabric for comparison.

pFabric, like Homa, tries to approximate SRPT. The sender end-hosts, prior to transmission of

each packet of a message, tag the packet with a priority level. The tagging takes place by writing

the priority level in a designated field in the packet’s header. The priority of the packet is set as the

remaining size of the message that packet belongs to, at the transmission time of the packet. So for

each packet the priority is computed independently.



CHAPTER 6. SIMULATION EVALUATION 75

The switches in the network are priority forwarding switches, giving forwarding preference to

packets with lower priority tag. Each switch has a shallow output buffer per each output port. The

packets in the buffer are sorted based on their priority tags and packets with lower priority levels are

closer to the head of the queue. The switch forwards packets on the egress ports from the head of

the queue. Because the value of the priority tag for each packet can range anywhere from 0 to the

maximum message size in the workload (e.g. 100s of millions), the switches are required to support

an infinite number of priority levels.

pFabric uses DCTCP [3] for the rate control mechanism. So, unlike Homa which uses a receiver

side scheduler, pFabric uses a TCP-like sender-driven congestion control mechanism. A sender end-

host initially transmits each message at the full rate that the NIC interface allows. The sender then

reduces the transmission rate of the message, in reaction to Explicit Congestion Notification that

network feeds back to it (following the DCTCP scheme).

Unlike Homa, pFabric requires modifications to switch hardware to support an infinite number

of priority levels. pFabric makes heavy use of priority levels; in theory, the number of priority levels

that pFabric requires is equal to the size of the largest message that is transmitted in the network.

For example, if the largest message size in the workload is one megabyte or 1×106 bytes, then the

number of distinct priority level that a packet can carry is 106. So network switches should support

this many priority levels. This is a practical limitation of pFabric as this many priority levels are not

available in commodity network fabrics. This means pFabric cannot be used in today’s commodity

network fabrics.

pHost

pHost, similar to Homa, uses a receiver-driven flow control mechanism and therefore, it’s the clos-

est related work to Homa. Under the pHost scheme, every time a new message arrives at a sender

for transmission, the sender transmits an RTS (request-to-send) packet to the receiver for that mes-

sage. The RTS packet carries information about size of the message, the sender address, etc. to

the receiver. The receiver gathers this information from all messages pending for transmission and

schedules them based on SRPT policy or any other policy of choice. The receiver schedules the

messages by sending a token every MTU-sized packet time to one of the senders. Upon arrival of

a token at the sender-host, the sender transmits one data packet from one its messages to the re-

ceiver that issued the token. Tokens in pHost play a similar role as grants in Homa. Furthermore, if

a sender is presented with multiple messages to transmit at once, the sender is allowed to transmit

RTS packets for all of the messages in parallel.



CHAPTER 6. SIMULATION EVALUATION 76

pHost introduces the concept of free tokens, which have the same functionality and goal as

unscheduled packets in Homa; pHost tries to achieve low latency and high bandwidth utilization

at the senders’ links through free tokens per message. Each sender in pHost is granted one BDP

(Bandwidth Delay Product, same as RTTbytes in Homa) worth of free tokens upon arrival of each

message. The sender uses these free tokens to blindly transmit the first portion of the message. The

combination of the free tokens and the receiver-driven scheduling leads to optimal message latency

when there’s a single receiver and single sender in an unloaded network.

Unlike Homa, pHost doesn’t have any overcommitment mechanism; pHost tries to reduce the

wasted bandwidth at the receivers’ downlinks through a timeout mechanism on tokens. pHost argues

that to avoid wasting bandwidth at receiver, the receiver has to detect nonresponsive senders and

stop sending tokens to them and only send tokens to the responsive ones. To find the nonresponsive

senders at the receiver, each token is augmented with a timeout value; upon the arrival of the token

at the sender, the sender sets the timeout value to 1.5× MTU-size packet transmission time. If the

sender doesn’t use the token within this time, the token is considered expired and sender won’t be

able to use it anymore. On the other end, the receiver tracks the number of expired tokens per sender

(i.e. the difference between the number of tokens assigned and the number of packets received). If

this number exceeds one BDP worth of tokens for a sender, then the receiver downgrades the sender

by refusing to send any further tokens to the sender; the receiver instead sends tokens to the next

sender in the pending message list. The receiver upgrades the sender again if it either receives a new

packet from the sender or if the sender has remained downgraded for 3×BDP .

The other difference between Homa and pHost is the usage of priorities; pHost only makes

limited use of priority levels while Homa uses priorities extensively. pHost only uses two priority

levels (high and low). Control packets like tokens and acknowledgment packets are transmitted at

the high priority level. All other packets are transmitted at the low priority level. Additionally, pHost

has the option to set high priority for the first BDP of packets of all messages as well.

Later in this chapter, we’ll show how the differences between Homa and pHost lead to signifi-

cant performance penalties for pHost; pHost cannot achieve optimal tail latency because of not using

priorities extensively and is unable to maximize network bandwidth utilization because it wastes a

lot of bandwidth.

NDP

NDP, similar to Homa and pHost, is a receiver-driven flow control mechanism. NDP makes the same

observation as Homa that majority of the congestion in the network happens at the TOR’s downlink



CHAPTER 6. SIMULATION EVALUATION 77

to the receivers. When a new message arrives at an NDP sender, the sender transmits the first BDP

bytes of the message at the full NIC transmit rate. This is crucial to achieve low latency for short

messages. Beyond that first BDP bytes of the message, the sender wont send any more packets for

that message until instructed by the receiver; that’s to avoid additional congestion at TOR downlink

to the receiver. The sender waits for arrival of pull packets (similar to tokens in pHost or grants

in Homa) from the receiver that allow transmission of new packets at sender. On the other end, the

receiver controls the rate of new packet arrivals by sending a new pull packet for every data packet it

receives. In other words, the receiver paces the arrival of packets on its downlink to avoid congestion

at the TOR switch.

Unlike Homa, lost packets are not rare in NDP; that’s because NDP is designed to work with

shallow buffers in the network that can frequently drop packets. To achieve low latency, NDP tries to

minimize packet queuing in the network at all times; small buffers means less head of line blocking

in the queues and therefore low latency for short messages. NDP’s design sets the size of buffers to

as small as eight packets per port. But the downside to small buffers is that packets can be routinely

dropped because the queue fills up very quickly when multiple messages are transmitted at the same

time to the same receiver.

Since packet loss is common in NDP, the key to achieving good latency is fast retransmission

of dropped packets. But NDP observes that detecting lost packets and distinguishing between lost

packets and late packets is a difficult task for the transport. This becomes even more difficult for

NDP compared to other transport schemes, because lost packets are not rare in NDP. To detect lost

packets quickly, NDP augments the switches with cut payload feature. With cut payload, when a

packet arrives at a switch’s queue and the queue is full, the switch doesn’t drop the packet in its

entirety; instead the switch cuts the payload of the packet and discards it and only keeps the header

of the packet. The switch then priority-forwards the header of the trimmed packet, ahead of all

data packets in the queue. The fast arrival of the priority-forwarded headers at the receiver allows

the receiver to quickly detect the dropped packets. The receiver then requests a fast retransmission

of the dropped packets by sending pull packets to the senders. This allows NDP to achieve good

latency for messages even when packets are dropping frequently.

The main differences between Homa and NDP are: NDP doesn’t use overcommitment, only

makes limited use of priorities in the network, and uses fair-sharing scheduling policy instead of

SRPT. NDP only uses two priority levels for its packets (one high and one low priority); the trimmed

headers, pull packets, ack and nack packets are transmitted at high priority and all other packets are

transmitted at low priority. Additionally NDP uses fair-sharing as the default scheduling policy at the



CHAPTER 6. SIMULATION EVALUATION 78

receivers whereas Homa uses SRPT. We’ll show later that because of these differences with Homa,

NDP can’t achieve optimal tail latency for short messages. Furthermore, because NDP doesn’t have

an overcommitment mechanisms, it waste significant amount of bandwidth and cannot achieve high

bandwidth utilization. The last caveat with NDP is that it’s not practical for today’s commodity

switches; it requires switch modifications to implement the cut payload feature.

PIAS

PIAS is an effort to approximate the optimal performance of pFabric without modifying anything in

the network fabric or software stack. PIAS makes two observations about the limitations of today’s

networks and transports that makes pFabric infeasible. First, the network fabrics typically only

provides a small number of priority levels, typically eight. Second, traditional POSIX compatible,

Linux TCP sockets do not provide any interface where the size of a message is known at the time

of transmission. To address these limitations, PIAS is designed such than unlike pFabric, it can be

natively supported on today networks and it uses Linux DCTCP for congestion control.

To address these limitations of pFabric, PIAS tries to mimic Shortest Job First (SJF) scheduling,

without having the priori knowledge of message sizes. PIAS leverages multiple priority queues

available in existing commodity switches to implement a Multiple Level Feedback Queue (MLFQ),

in which a message is gradually demoted from higher-priority queues to lower-priority queues based

on the number of bytes it has sent. Since the message sizes are not known in advance, packets of

each message are initially sent at the highest priority. As a message sends more and more packets,

the priority of the packets are demoted to the lower priority levels. As a result, short flows are likely

to be finished in the first few high-priority queues and thus be prioritized over long flows in general.

This means that PIAS can be implemented without modifying the Linux TCP socket API and also

PIAS can emulate SJF without knowing flow sizes beforehand.

PIAS tries to find priority demotion thresholds such that the average flow completion times (i.e.

FCT) over all messages are minimized; it does this by deriving an analytical equation for the average

FCT of all messages and optimizes the equation to find priority demotion thresholds. The priority

demotion threshold between a lower priority Pi and a higher priority Pi+1, is a value in terms of

bytes, such that if a message transmits more bytes than that value, the priority of its future packets

is demoted to Pi. PIAS statically finds the demotion thresholds based on the workload message size

distributions, similar to that of figure 4.2(a).

We chose to compare Homa against PIAS because it tries to achieve low latency goal by using

priorities. However, PIAS has a few problems that prevent it from achieving low tail latency for short



CHAPTER 6. SIMULATION EVALUATION 79

messages. First, it uses priorities in a more static fashion than Homa and it does not use receiver-

driven scheduling. This causes large queues at high network loads and head of line blocking for short

messages. Second, the MLFQ policy in PIAS behaves contrary to run-to-completion behavior; PIAS

exhausts the high priority levels by over-transmitting on them (all messages regardless of their size

start transmitting at high priority). This hurts the latency of short messages; the real high priority

packets from short messages are blocked by packets of larger messages. Moreover, as a message

sends more and more bytes, its priority decreases and its completion is further delayed. This makes

it hard to finish longer messages and hurts their latency.

6.2 Homa’s Latency vs. pFabric, pHost, PIAS, and NDP

Figures 6.1 and 6.2 display 99th percentile count spectrum plots (e.g. tail slowdown as a function

of message size) at 80% and 50% network loads respectively. Each figure shows the results for

workloads W1 to W7. Slowdown in each plot is measured in terms of one-way message delivery,

from when the message is presented at the sender until it’s fully delivered at the receiver. Unlike a

typical plot where the x axis is linearly scaled with respect to the variable on the axis, the x axis on

each plot on the figures is scaled to match the workload’s message size CDF. As a result the x axis

is linear in the number of messages in the workload. This type of plot was explained in detail in

Section 4.3.1.

Most of the discussion below focuses on Figure 6.1(99th percentile at 80% network load) be-

cause it is the most challenging metric and the one that motivated Homa’s design. The Homa curves

in Figure 6.2 (99th percentile at 50% network load) are similar to those in Figure 6.1, but slowdowns

are somewhat less in Figure 6.2.

SRPT-Oracle
Figure 6.1 compares Homa with SRPT-Oracle, an idealized “fluid” simulation of the SRPT schedul-

ing policy. SRPT-Oracle represents the performance that would be achieved if (1) an optimal global

SRPT matching between senders and receivers could be computed and disseminated to all servers

instantaneously at all times; and (2) the network could realize the desired matching perfectly, for

instance by preempting partially transmitted packets and balancing load perfectly. Every time a new

message is presented to any of the senders or a message has finished transmission, SRPT-Oracle

computes a set of distinct sender-receiver pairs such that the messages with shortest remaining bytes

are transmitted to the receivers. SRPT-Oracle is not practical because it doesn’t consider the impact



CHAPTER 6. SIMULATION EVALUATION 80

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

72
10

21
63

0

28
84

0

50
47

0

70
65

8

26
96

54

10
58

42
8

22
10

58
6

11
53

74
42

28
84

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

NDP
pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.1: 99th-percentile slowdown as a function of message size, at 80% network load, for different
protocols and workloads. Distance on the x-axis is linear in total number of messages (each tick cor-
responds to 10% of all messages). Graphs were measured at 80% network load, except for NDP and
pHost. Neither NDP nor pHost can support 80% network load for these workloads, so we used the high-
est load that each protocol could support (70% for NDP, 58–73% for pHost, depending on workload).
The minimum one-way time for a small message (slowdown is 1.0) is 2.3 µs. NDP was measured only
for W7 because its simulator cannot handle partial packets. W5’s plot is intentionally removed to keep
all plots in one page (W5’s plot is very similar to W6’s plot in the figure).



CHAPTER 6. SIMULATION EVALUATION 81

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

57
68

18
74

6

27
39

8

47
58

6

70
65

8

19
17

86

96
18

14

19
22

18
6

48
06

18
6

28
84

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

NDP
pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.2: 99th-percentile slowdown as a function of message size, at 50% network load, for differ-
ent protocols and workloads. Distance on the x-axis is linear in total number of messages (each tick
corresponds to 10% of all messages). Graphs were measured at 50% network load. The minimum one-
way time for a small message (slowdown is 1.0) is 2.3 µs. NDP was measured only for W7 because its
simulator cannot handle partial packets.



CHAPTER 6. SIMULATION EVALUATION 82

of path collisions and bandwidth limitations in the network; it assumes there’s an unblocked path in

the network from every sender to every receiver for any packet that is scheduled to be transmitted.

Also, it requires real time global knowledge and instantaneous communication of scheduling info.

Although SRPT-Oracle is not practically realizable, it provides a reference for how well a protocol

approximates the SRPT policy.

The results show that Homa achieves its design goal of mimicking SRPT scheduling; the form

of Homa curves is similar to the SRPT-Oracle where tail slowdown for short messages is much less

than long messages. The 99th percentile message slowdown for Homa is around 2× worse than

SRPT-Oracle for tiny messages (e.g., < 100 bytes). This translates to about 3 µs of extra latency for

these messages, which we occurs because of partially transmitted packets that cannot be preempted

in a real network. As the message size increases beyond RTTbytes (9.7 Kbytes), where Homa’s

packet scheduling mechanisms kick in, its latency curve closely matches the shape of SRPT-Oracle.

pFabric is further away from SRPT-Oracle on workloads W6 and W7.

Homa has its worst tail slowdown performance for the largest messages of each workload at the

far right of each plot. Generally this extremely bad tail performance happens for the largest 0.5%

of messages in each workload. For example for W1 Homa leads to tail slowdown of larger than 11

for messages larger than 12-Kbytes and for W6 Homa leads to tail slowdown of 20 for messages

around 10-Mbytes. This behavior is known as the starvation problem for very large messages with

SRPT policy (as it is apparent from the Figure 6.1 the SRPT-Oracle has similar behavior for these

extremely large messages).

One way to solve SRPT’s starvation problem for very large messages is to allocate a small

fraction (say 10%) of scheduling bandwidth for the messages that are starved; for example we can

send one grant in every ten grants for messages which have been waiting for grants for a long time.

That said, if we look at the mean slowdown plots of Figure 6.12, this issue is a lot less pronounced

or it’s even non existent. Therefore, one may argue that this starvation problem is not an issue worth

resolving since mean slowdown is a much more relevant metric (than tail slowdown) for these

extremely large and very rare messages in the workload.

pFabric, pHost, and PIAS
Homa delivers consistent low latency for small messages across all workloads, and its performance

is similar to pFabric: 99th-percentile slowdown for the shortest 50% of messages is never worse than

2.2 at 80% network load. Homa’s tail slowdown is at most 5% higher than pFabric’s slowdown.

For the large messages in heavy-tailed W6 and W7, Homa’s slowdown is smaller than pFabric’s



CHAPTER 6. SIMULATION EVALUATION 83

slowdown. This is because of two reasons: 1) Homa maintains much shorter queues in the network

comparing to pFabric therefore there’s less head of line blocking for large messages. 2) Unlike

Homa, packet drops are not rare in pFabric and larger messages experience more drops at the tail

which increases tail slowdown for those messages.

pHost and PIAS have considerably higher slowdown than Homa and pFabric in Figure 6.1.

This surprised us, because both pHost and PIAS claimed performance comparable to pFabric. On

further review, we found that those claims were based on mean slowdown (in Figure 6.12 both pHost

and PIAS provide performance closer to pFabric for mean slowdown). Our evaluation follows the

original pFabric publication and focuses on 99th percentile slowdown.

PIAS and pHost have 1.5–4 times higher tails slowdown for short messages in heavy-head work-

loads W1-W4. The original pHost and PIAS papers didn’t consider short messages in their evalua-

tions. These papers evaluated their designs using only heavy-tailed workloads like W7 (workloads

like W1 to W4 were not used in their evaluations) and all messages smaller than 100-Kbytes were

considered short. In contrast, in workloads W1 to W4 majority of the messages are very short and

fit in a single 1500-byte packet.

A comparison between the pHost and Homa curves in Figure 6.1 shows that a receiver-driven

approach is not enough by itself to guarantee low latency. Both pHost and Homa are receiver-driven

congestion control protocols. But, using priorities and overcommitment allows Homa to have near

optimal tail latency. Because pHost is not using priorities and overcommitment, it has 2–3 times

higher tail slowdown for short messages compared to Homa.

In our simulations for Figure 6.1, unfortunately pHost’s design was not able to support 80% net-

work load. When we tried to run the pHost simulations at 80% network load the simulator become

unstable and the message queues grew without bound. So we compared against pHost at the highest

network load that we could run an stable simulation for that workload; depending on the workload,

pHost experiments were performed at 58%–73% network load. This means Homa compares even

better against pHost than the figure suggests since the figure compares Homa at 80% network load

against pHost at lower network loads.

The performance of PIAS in Figure 6.1 is somewhat erratic. Under most conditions, its tail

latency is considerably worse than Homa, but for larger messages in W1 and W2 PIAS provides

better latency than Homa. PIAS is nearly identical to Homa for small messages in workloads W3

and W4. PIAS always uses the highest priority level for messages that fit in a single packet, and this

happens to match Homa’s priority allocation for W3 and W4.

PIAS uses a multi-level feedback queue policy, where each message starts at high priority; the



CHAPTER 6. SIMULATION EVALUATION 84

priority drops as the message is transmitted and PIAS learns more about its length. This policy is

inferior to Homa’s receiver-driven SRPT not only for small messages but also for most long ones.

Small messages suffer because they get queued behind the high-priority prefixes of longer messages.

Long messages suffer because their priority drops as they get closer to completion; this makes it

hard to finish them. As a result, PIAS’ slowdown jumps significantly for messages greater than one

packet in length. In addition, without receiver-based scheduling, congestion led to ECN-induced

backoff in workload W6, resulting in slowdowns of 20 or more for multi-packet messages. Homa

uses the opposite approach from PIAS: the priority of a long message starts off low, but rises as the

message gets closer to finishing; eventually the message runs to completion. In addition, Homa’s

rate-limiting and priority mechanisms work well together; for example, the rate limiter eliminates

buffer overflow as a major consideration.

To show the advantage of SRPT, we made a trivial modification to PIAS. For short-message

workloads such as W1, PIAS allocates multiple priority levels for the first packet worth of data.

Rather than split the packet, PIAS transmits the entire packet at the highest priority level. We

changed PIAS to use the lower of these priority levels, which makes it more SRPT-like. With this

change, PIAS’ performance became nearly identical to Homa’s for messages less than one packet

in length.

NDP.
The NDP simulator [16] could not simulate partial packets, so we measured NDP only with W7,

in which all packets are full-size; Figure 6.1 shows the results. NDP’s performance is considerably

worse than any of the other protocols and we suspect that is due to two reasons. First, it uses a rate

control mechanism with no overcommitment, which wastes bandwidth: at 70% network load, 27%

of receiver bandwidth was wasted (the receiver had incomplete incoming messages yet its downlink

was idle). The wasted downlink bandwidth results in additional queuing delays at high network

load. We could not run the NDP simulation above 73% network load; at higher loads the simulation

became unstable and message queues grew without bound.

NDP does not use SRPT and that’s the second reason for why NDP has much higher tail slow-

down; its receivers use a fair-share scheduling policy, which results in a uniformly high slowdown

for all messages longer than RTTbytes. This demonstrates why SRPT is extremely important for

achieving low latency; compared to Homa’s SRPT, with NDP’s fair-sharing the largest 1% of mes-

sages have better tail slowdown but the other 99% of messages are suffering. In addition, NDP

senders do not prioritize their transmit queues; this results in severe head-of-line blocking for small



CHAPTER 6. SIMULATION EVALUATION 85

messages when the transmit queue builds up during bursts. The NDP comparison demonstrates the

importance of overcommitment and SRPT.

6.3 Bandwidth Utilization

To measure each protocol’s ability to use network bandwidth efficiently, we simulated each workload-

protocol combination at higher and higher network loads to identify the highest load the protocol

can support (the load generator runs open-loop, so if the offered load exceeds the protocol’s ca-

pacity, queues grow without bound). Figure 6.3 shows that Homa can operate at higher network

loads than either pFabric, pHost, NDP, or PIAS, and its capacity is more stable across workloads.

Homa’s maximum bandwidth utilization ranges from 89%–92% depending on the workload while

PIAS have bandwidth utilization in the range of 81%–85% and pFabric in the range of 75%–87%.

NDP can utilize 73% of bandwidth for the one workload we simulated it. pHost is the worst of the

protocols in terms of bandwidth utilization; pHost can only use 58%–73% of the network bandwidth

depending on the workload.

None of the protocols can achieve 100% bandwidth because each of them wastes network band-

width under some conditions. As we discussed earlier in this chapter, Homa wastes bandwidth

because it has a limited number of scheduled priority levels: there can be times when (a) all of the

scheduled priority levels are allocated, (b) none of those senders is responding, so the receiver’s

downlink is idle and (c) there are additional messages for which the receiver could send grants if it

had more priority levels.

The other protocols also waste bandwidth. pFabric wastes bandwidth because it drops packets to

signal congestion; those packets must be retransmitted later. NDP and pHost both waste bandwidth

because they do not overcommit their downlinks. For example, in pHost, if a sender becomes nonre-

sponsive, bandwidth on the receiver’s downlink is wasted until the receiver times out and switches to

a different sender. Moreover, in pHost the tokens expire in a small amount of time (1.5×MTU) and

senders quickly miss the opportunity to send packets and can waste the receiver’s downlink. Fig-

ure 6.3 suggests that Homa’s overcommitment mechanism uses network bandwidth more efficiently

than any of the other protocols.



CHAPTER 6. SIMULATION EVALUATION 86

60

92

52

75

43

71

57

83

72

91

69

85

45

5869

83
81

91

74

81

52

61
78

84

80

90

75

84

60

65
78

84

79

89

80

87

69

7379

85

79

87

81

86

69

7377

81

67

73

H
om

a
pF

ab
ric

pH
os

t
pi

as

H
om

a
pF

ab
ric

pH
os

t
pi

as

H
om

a
pF

ab
ric

pH
os

t
pi

as

H
om

a
pF

ab
ric

pH
os

t
pi

as

H
om

a
pF

ab
ric

pH
os

t
pi

as

H
om

a
pF

ab
ric

pH
os

t
pi

as
N

D
P

0

25

50

75

100

W1 W2 W3 W4 W6 W7
Workload

M
ax

im
um

 B
an

dw
id

th
 U

til
iz

at
io

n 
(%

)
Application Total 

Figure 6.3: Network utilization limits. The bottom part of each bar indicates the percent of network
bandwidth used for application data at that load. The top of each bar indicates the highest percent of
available network bandwidth that the given protocol can support for the given workload; it counts all
bytes in goodput packets. The top of the bars has higher value because it also accounts the overhead
bytes in addition to the application data (including packet headers, and control packets; it excludes
retransmitted packets).

6.4 Measuring Deeper Levels

In this section we present lower level measurements of the Homa protocol. These measurements

help us to better understand the behavior of Homa’s flow control and priority assignment mecha-

nisms.

6.4.1 Causes of Remaining Delay

We instrumented the Homa simulator to identify the causes of tail latency (“why is the slowdown

at the 99th percentile greater than 1.0?”) Figure 6.4 shows that tail latency for short messages (i.e.

the shortest 20% of messages in each workload) is almost entirely due to link-level preemption lag,

where a packet from a short message arrives at a link while it is busy transmitting a packet from a

longer message; when this happens transmission of the packet from short message is delayed until

the current packet is fully serialized into the link. This shows that Homa is nearly optimal given the

current networking hardware: the only way to significantly improve short messages’ tail latency is



CHAPTER 6. SIMULATION EVALUATION 87

0

1

2

W1 W2 W3 W4 W5 W6 W7
Workload

D
el

ay
 (

us
)

DelayType
QueuingDelay
PreemptionLag

Figure 6.4: Sources of tail delay for short messages. “Preemption Lag” occurs when a higher priority
packet must wait for a lower priority packet to finish transmission on a link. “Queuing Delay” occurs
when a packet waits for one or more packets of equal or higher priority. Each bar represents an average
across short messages with delay near the 99th percentile. For workloads W1-W6 the bar considers the
smallest 20% of all messages; for W7 it considers all single packet messages.

with changes to the networking hardware, such as implementing link-level packet preemption.

6.4.2 Queue Length

Some queuing of packets in switches is inevitable in Homa because of its use of unscheduled packets

and overcommitment. Even so, Table 6.1 shows that Homa is successful at limiting packet buffer-

ing: average queue lengths at 80% load are only 1–18 Kbytes, and the maximum observed queue

length was 202 Kbytes (in a TOR→host downlink). Of the maximum, overcommitment accounts

for as much as 56 Kbytes (RTTbytes in each of 7 scheduled priority levels); the remainder is from

collisions of unscheduled packets. Workloads with shorter messages consume less buffer space than

those with longer messages. For example, the W1 workload uses only one scheduled priority level,

so it cannot overcommit; in addition, its messages are shorter, so more of them must collide simulta-

neously in order to build up long queues at the TOR. The 202-Kbyte peak occupancy is well within

the capacity of typical switches, so the data validates our assumption that packet drops due to buffer

overflows will be rare.

Table 6.1 also validates our original hypothesis that in datacenter networks the majority of con-

gestions happens in the TOR→host downlinks and there is not significant congestion in the core. In



CHAPTER 6. SIMULATION EVALUATION 88

Queue W1 W2 W3 W4 W5 W6 W7
TOR→Aggr mean 0.7 1.0 1.7 1.6 1.7 1.7 1.7

max 21.1 30.0 50.1 50.3 83.8 82.7 93.6
Aggr→TOR mean 0.8 1.1 2.2 1.8 1.9 1.7 1.6

max 22.4 34.1 78.7 57.1 84.6 92.2 78.1
TOR→host mean 1.7 5.5 15.4 12.8 18.1 17.3 17.3

max 58.7 93.0 202 117.9 148.2 146.1 126.4

Table 6.1: Average and maximum queue lengths (in Kbytes) at switch egress ports for each of the three
levels of the network, measured at 80% network load. Queue lengths do not include partially-transmitted
or partially-received packets.

Queue W1 W2 W3 W4 W5 W6 W7
TOR→Aggr mean 0.7 1.0 1.7 1.6 2.3 1.8 1.6

max 16.5 27.5 50.3 55.1 69.8 84.7 115.2
Aggr→TOR mean 0.8 1.1 2.2 2.0 3.1 1.9 1.5

max 21.9 36.5 86.6 75.6 103.6 79.8 69.2
TOR→host mean 1.7 6.5 26.5 23.2 45.0 37.2 34.3

max 63.1 126.5 299.2 202.3 266.5 278.7 223.3

Table 6.2: Same as Table 6.1 except the value of RTTBytes in these experiments is two times larger than
the one for Table 6.1.

spite of Homa’s attempt to control the queues at the TOR→host downlinks, these queues can have

mean occupancies up to 18 Kbytes and their maximum can reach as high as 202 Kbytes. The table

confirms that the core queues (i.e. TOR→Aggr and Aggr→TOR) contain less than 2 Kbytes of data

on average, and their maximum length is less than 100 Kbytes.

Homa appears to produce even lower buffer occupancy than Fastpass [28], which uses a central-

ized message scheduler to control queue lengths. Direct comparisons with Fastpass must be taken

with a grain of salt, due to differences in experimental setup, but Fastpass produced a mean queue

length of 18 Kbytes and a 99.9th percentile length of 350 Kbytes.

One question we like to answer is how sensitive are the queue occupancies, with respect to

the changes in the value of RTTBytes? This is an interesting question because sometimes it’s very

challenging to measure RTTBytes accurately in the network and also different host-pairs in the

network may have different RTTBytes (e.g. nodes within a rack have a different RTT value from

nodes across two racks). In these situations we’d rather set RTTBytes to a higher value than a lower

value (refer to Figure 6.10 for a discussion on this topic). So in these cases it is important to know



CHAPTER 6. SIMULATION EVALUATION 89

Queue W1 W2 W3 W4 W5 W6 W7
TOR→Aggr mean 0.7 1.6 1.7 1.6 2.4 1.7 1.6

max 18.1 22.0 52.1 53.1 88.0 87.9 147.4
Aggr→TOR mean 0.7 1.7 2.8 2.3 4.3 2.1 1.5

max 17.7 47.1 122.1 144.3 279.6 137.2 122.4
TOR→host mean 1.7 15.2 43.6 55.3 119.6 86.1 81.6

max 76.3 321.1 608.8 538.5 805.9 700.3 577.6

Table 6.3: Same as Table 6.1 except the value of RTTBytes in these experiments is five times larger than
the one for Table 6.1.

that if we use a larger value for RTTBytes, how does that impact the queue occupancies in the

network? We need to make sure that queues don’t grow too large and still remain within the buffer

space provided by the switches.

Our simulations show that increasing the value of RTTBytes by a factor of two doesn’t sig-

nificantly increase the average and maximum queue sizes under Homa. Tables 6.2 and 6.3 show

the queue lengths when we multiply the value of RTTBytes in our experiments by a factor of two

and five respectively. Doubling RTTBytes has increased the average queue length to as high as 45

Kbytes and the maximum to 299 Kbytes. Both of these queue values are still within the buffer ca-

pacity of the commodity switches. These results are encouraging as they show that our computation

of RTTBytes in Homa can have a large margin of error without incurring any issues for the trans-

port; Homa may use an RTTBytes value that deviates by 100% from the correct value and yet packet

drops because of buffer overflow remain rare in the network. Increasing the RTTBytes by factor of

five results in excessively large queue sizes; the maximum queue occupancy in this case is around

806 Kbytes and Homa may start experiencing packet drops under high network load in this case.

6.4.3 Senders’ SRPT

As we discussed in Section 3.6, Homa senders implement SRPT for their outgoing messages. In

fact as we were designing Homa, we came to the understanding that an efficient implementation of

SRPT at the senders is critical for achieving great tail slowdown for short messages. To implement

senders’ SRPT, Homa senders don’t consider the priorities in the packets since these priorities are

set to achieve SRPT at the downlinks to the receivers; the sender’s priority for an outgoing packet

does not necessarily correspond to the priority stored in the packet.

One of the most important and subtle design features of Homa that enables SRPT at the senders



CHAPTER 6. SIMULATION EVALUATION 90

1

2
3
4

10

500

72
10

21
63

0

28
84

0

50
47

0

70
65

8

26
96

54

10
58

42
8

22
10

58
6

11
53

74
42

28
84

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Pacer_ON
Pacer_OFF

Workload: W7

Figure 6.5: Impact of enabling/disabling senders’ traffic pacers on the tail slowdown of workload W7 at
80% network load. When the transmit pacer is off, a queue builds up in the NIC’s transmit queue and the
sender fails to enforce SRPT among its outgoing messages. This increases the tail slowdown by more
than two orders of magnitude for short messages.

is a traffic pacer that we implemented on the transmit path for the outgoing packets. Disabling this

pacer in Homa increases the tail slowdown for short messages by orders of magnitude. Figure 6.5

shows the impact of disabling senders’ traffic pacers on the tail slowdown of workload W7 at 80%

network load. The crucial role of this pacer is that it prevents large queue build up in the NIC’s

transmit queue (i.e. ensures that the queue size always remains less than two packets) so that high

priority outgoing packets don’t have to wait for lower priority packets queued previously in the NIC

queue. When this pacer is disabled, queue build up in the NIC prevents the sender from enforcing

SRPT among the packets of its outgoing messages. This increases the tail slowdown by more than

two orders of magnitude for the short message in W7. For other workloads, when pacer is disabled

the tail slowdown of short messages increases by 8–20X.

6.4.4 Priority Utilization

Figure 6.6 shows how network traffic is divided among the priority levels when executing workload

W4 at three different network loads. For this workload Homa splits the priorities evenly between

scheduled and unscheduled packets. The four unscheduled priorities (P4–P7) are used evenly, with

the same number of network bytes transmitted under each priority level. As the network load in-

creases, the additional traffic is also split evenly across the unscheduled priority levels.

The four scheduled priorities are used in different ways depending on the network load. At 50%



CHAPTER 6. SIMULATION EVALUATION 91

0

10

20

30

P7P6P5P4P3P2P1P0

%
 N

et
w

or
k 

B
an

dw
id

th

Network Load: 50% 80% 90%

Figure 6.6: Usage of priority levels for workload W4 under different loads. Each bar indicates the
number of network bytes transmitted at a given priority level, as a fraction of total available network
bandwidth. P0-P3 are used for scheduled packets and P4-P7 for unscheduled packets.

load, a receiver typically has only one schedulable message at a time, in which case the message

uses the lowest priority level (P0) and most of the scheduled traffic is on P0. Higher priority levels

are used for preemption when a shorter message appears part-way through the reception of a longer

one. It is rare for preemptions to nest deeply enough to use all four scheduled levels. As the network

load increases, the usage of scheduled priorities changes. By the time network load reaches 90%,

receivers typically have at least four partially-received messages at any given time, so they use all of

the scheduled priority levels. More scheduled packets arrive on the highest scheduled level than any

other; the other levels are used only if the highest-priority sender is nonresponsive or if the number

of incoming messages drops below 4. The figure indicates that senders are frequently nonresponsive

at 80% network load (more than half of the scheduled traffic arrives on P0–P2).

6.4.5 Configuration Policies

In Chapter 3 we presented Homa’s priority allocation scheme for unscheduled packets and between

unscheduled and scheduled packets. Then in Chapter 4 we evaluated this scheme under network

load pressure when there is a single receiver in the network. Here we empirically evaluate the con-

figuration scheme under many-to-many traffic patterns to show that our design of priority allocation

design remains near optimal even when we have such traffic patterns.

Homa automatically configures itself to handle different workloads. For example, it allocates

seven priority levels for unscheduled packets in W1, four in W4, and only one in W6 and W7. In



CHAPTER 6. SIMULATION EVALUATION 92

1

2

3

4
5

8
10

15

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Unsched. Prios. 1 2 3 7 

Workload: W1

Figure 6.7: Impact of the number of unscheduled priority levels on workload W1 (80% network load,
one scheduled priority level). The vertical jumps occur at the cutoff points between priority levels; for
example with two priority levels Homa sets the cutoff point at around 350-byte.

this section we evaluate Homa’s configuration policies by manually varying each parameter in order

to see its impact on the performance. For each policy we display results for the workload with the

greatest sensitivity to the parameter in question. The results show that Homa policies result in near

optimal values for the configuration parameters.

One policy question to ask is “Does Homa allocate the right number of priorities for un-
scheduled packets?” To answer this questions we selected workload W1 and varied the number of

unscheduled priorities for it. Figure 6.7 shows the slowdown for workload W1 when the number of

unscheduled priorities was varied from 1 to 7 while fixing the number of scheduled priorities at 1

(Homa would normally allocate 7 unscheduled priorities for this workload). The graph shows that

workloads with small messages need multiple unscheduled priorities in order to provide low latency:

with only a single unscheduled priority (two priority levels in total), the 99th percentile slowdown

increases by more than 2.5x for most message sizes. A second unscheduled priority level improves

latency for more than 80% of messages; additional priority levels provide smaller gains but reduce

the slowdown for the rest of the messages (except the largest of them). This figure suggests that

for good slowdown performance Homa doesn’t necessarily require eight priority levels; but three or

four priority levels should be sufficient. However, if total of eight priority levels are provided, then

Homa uses them for the unscheduled packet in this workload to get a closer approximation of the

optimal SRPT. Note that Homa’s performance is superior to that of NDP and pHost as both of these

protocols only use a single priority level for all data packets.



CHAPTER 6. SIMULATION EVALUATION 93

1

2

3

4

5

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
) Priority Cutoff

100
400
1000
2000
4000

Workload: W4

Figure 6.8: The impact of the cutoff point between unscheduled priorities for workload W4. All mea-
surements were taken at 80% network load with 2 unscheduled priority levels. Each curve uses a differ-
ent cutoff point between the two unscheduled levels. Homa’s algorithm for choosing the cutoff, which
balances the amount of network traffic on the two levels, would select a cutoff point of 1930 bytes.

Next we would like to evaluate “How efficient is Homa in dividing the unscheduled priority
levels between different message sizes?”. Figure 6.8 analyzes Homa’s policy for choosing the cut-

off points between unscheduled priority levels. It shows the 99th percentile slowdown for workload

W4 when two priority levels are used for unscheduled packets and the cutoff point is varied. In-

creasing the cutoff point provides a significant latency reduction for messages sizes between the old

and new values of the cutoff, while increasing latency slightly for smaller messages. Up until about

2000 bytes, the penalty for smaller messages is negligible; however, increasing the cutoff to 4000

bytes results in a noticeable penalty for about 90% of all messages, while providing a large benefit

for about 5% of messages. A cutoff of around 2000 bytes appears to provide a reasonable balance.

Homa’s policy of balancing traffic in the levels would choose a cutoff point of 1930 bytes. We con-

sidered other ways of choosing the cutoffs, such as balancing the number of messages across priority

levels; in Figure 6.8 this would place the cutoff around 200 bytes, which is clearly sub-optimal.

Next we would like to evaluate “how does varying the number of scheduled priorities affect
the slowdown for heavy-tailed workloads?” We focus on heavy-tailed workloads here because

they are the most sensitive to the number of scheduled priorities. Figure 6.9 shows the slowdown

for workload W6 with four or seven scheduled priorities, while fixing the number of unscheduled

priorities at 1 (Homa would normally allocate 7 scheduled priorities for this workload). Additional

scheduled priorities beyond four have little impact on latency. However, the additional scheduled



CHAPTER 6. SIMULATION EVALUATION 94

1

2

3

4
5

8
10

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Cumulative Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

SchedPrios 4 7 

Workload: W6

Figure 6.9: Impact of the number of scheduled priority levels on workload W6 (80% network load, one
unscheduled priority level). Increasing the number of scheduled priorities beyond four has little to no
effect on the tail slowdown.

priorities have a significant impact on the network load that can be sustained (refer to the overcom-

mitment discussion in Chater 5 and in Figure 5.4). We do not need many priority levels to achieve

SRPT, but we need them for high bandwidth utilization; this workload could not run at 80% net-

work load with fewer than four scheduled priorities. In this figure we don’t show the results for less

than scheduled four priorities because Homa needs at least four scheduled priorities to achieve 80%

bandwidth utilization.

The next feature of Homa we would like evaluate is “the impact of the number of unscheduled
bytes on the tail slowdown.” Figure 6.10 shows the slowdown for workload W6 when the number

of unscheduled bytes per message is varied. In this experiment, Homa uses one priority level for

unscheduled packets and seven for the scheduled packets. The figure demonstrates the benefits of

unscheduled packets: messages smaller than RTTbytes but larger than the unscheduled limit suffer

2.5x worse latency. Increasing the unscheduled limit beyond RTTbytes results in slightly worse

performance for messages smaller than RTTbytes, because of additional traffic sharing the single

unscheduled priority level. From this figure we conclude that in terms of latency performance, it is

better to set RTTbytes at higher values than lower ones; higher values of RTTbytes help to reduce

the latency but result in additional buffering as we discussed previously in this chapter.

The last question we would like to answer is “how effective is Homa’s policy in dividing the
priority levels between unscheduled and scheduled traffic?” Homa divides priorities between

scheduled and unscheduled packets in proportion to the total number of bytes arriving in each kind



CHAPTER 6. SIMULATION EVALUATION 95

1

2

3

4
5

10

15

31
3

37
1

49
1

56
1

64
6

96
0

45
82

48
60

9

12
03

73

1e
+0

7

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Unsched. Bytes
1
500
1000
9328 (RTTbytes)
18656 (2 x RTTbytes)

Workload: W6

Figure 6.10: The impact of the number of unscheduled bytes on slowdown. Each curve uses a different
limit on the number of unscheduled bytes per message. All measurements used workload W6 at 80%
network load. The figure shows that it is important to send at least RTTBytes of unscheduled bytes per
message for good tail slowdown across the spectrum. Sending more than RTTbytes of unscheduled bytes
doesn’t have any benefit for slowdown but at the same time it is better to set RTTbytes at higher values
rather than lower ones.

of packet and balances traffic bytes between the two priority type. To evaluate this choice, we

simulated workload W3 under different allocations between scheduled and unscheduled priorities.

We chose W3 because it is most balanced between scheduled and unscheduled packets; Homa will

normally allocate four priorities for each. The results are shown in Figure 6.11. If Homa shifts

the balance in the direction of more scheduled priorities, the tail latency for short messages starts

to increase; with seven scheduled priorities the short messages’ slowdown is 2.5x the minimum

slowdown. If Homa shifts the balance in the other direction (fewer scheduled priorities), there is

relatively little impact on latency. This shows Homa’s choice of four scheduled and four unscheduled

priorities is the right priority allocation for this workload.

6.5 Mean and Median Latency: Homa vs. Other Protocols

For the curious readers, in this section we added the mean and median slowdown spectrum plots

for Homa vs other protocols. Figures 6.12 and 6.13 displays mean slowdown for all workloads and

all protocols. And, Figures 6.14 and 6.15 displays median slowdown for the same experiments. As

we discussed earlier, even on these slowdown metrics, Homa outperforms PIAS, pHost and NDP.

However, the difference between the performance of Homa and other protocols is less pronounced.



CHAPTER 6. SIMULATION EVALUATION 96

1

2

3

4
5

10

51 59 69 84 10
7

14
7

23
3

57
1

16
44

84
50

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

SchedPrios 2
3

4
5

6
7

Workload: W3          
                       

Figure 6.11: The impact on slowdown of the balance between unscheduled and scheduled priority levels.
Each curve uses 8 total priority levels, but with a different trade off between unscheduled and scheduled
levels. All measurements used workload W2 at 80% network load.

6.6 Chapter Summary

In this chapter we evaluated the end-to-end design of Homa using a packet simulator that we devel-

oped in OMNeT++ framework. We showed that Homa indeed can achieve its goals of low latency

and high throughput. We showed that for a variety of of workloads, Homa can achieve 99%-ile tail

slowdown of less than 2.2 for the shortest 50% of all messages in each workload. For example,

99%-ile one-way latency for a 100-byte message is 4–5µs in a two tier network topology. Addition-

ally we demonstrated that Homa can achieve up to 90% network bandwidth utilization for a variety

of workloads.

We also compared Homa against pFabric, pHost, PIAS and NDP. Homa achieves very similar

tail latency to pFabric, without the switch modifications that pFabric needs. 99%-ile tail slowdown

at 80% network load under PIAS and pHost is at least 1.5–4x larger than that of Homa. Homa also

outperforms the other protocols in terms of bandwidth utilization.

Lower level measurements of Homa shows that Homa is close to optimal in terms of it priority

allocation mechanisms. When we look at the breakdown of the tail latency for short messages under

Homa, we observe that the majority of the extra latency is because of preemption lag in the switches

when a short packet is ready to be forwarded at an egress port but it has to be delayed for a larger

packet currently being transmitted on the port. This preempting lag is a limitation of the switch

fabric. In order to further improve the tail latency for the short messages, switches need to add the



CHAPTER 6. SIMULATION EVALUATION 97

support of preempting packets in the middle of transmission.

We also showed that as much as the receivers’ SRPT is important for low latency, so is the

senders’ SRPT. Homa senders can enforce SRPT using a packet pacer that controls queue build up

in the NIC’s transmit queue. Disabling this pacer prevents the senders to correctly implement SRPT

among outbound messages which increases the tail slowdown for short messages by two orders of

magnitude.

Finally, we also evaluated Homa’s configuration policy and showed that Homa does a good job

of setting various parameters to achieve very low tail latency in various situations.



CHAPTER 6. SIMULATION EVALUATION 98

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

) pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

) pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

72
10

21
63

0

28
84

0

50
47

0

70
65

8

26
96

54

10
58

42
8

22
10

58
6

11
53

74
42

28
84

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

NDP
pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.12: Mean slowdown as a function of message size, at 80% network load, for different protocols
and workloads. Distance on the x-axis is linear in total number of messages (each tick corresponds to
10% of all messages). Graphs were measured at 80% network load, except for NDP and pHost. Neither
NDP nor pHost can support 80% network load for these workloads, so we used the highest load that
each protocol could support (70% for NDP, 58–73% for pHost, depending on workload). The minimum
one-way time for a small message (slowdown is 1.0) is 2.3 µs. NDP was measured only for W7 because
its simulator cannot handle partial packets.



CHAPTER 6. SIMULATION EVALUATION 99

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

) pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

) pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

57
68

18
74

6

27
39

8

47
58

6

70
65

8

19
17

86

96
18

14

19
22

18
6

48
06

18
6

28
84

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

NDP
pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.13: Mean slowdown as a function of message size, at 50% network load, for different protocols
and workloads. Distance on the x-axis is linear in total number of messages (each tick corresponds to
10% of all messages). Graphs were measured at 50% network load. The minimum one-way time for a
small message (slowdown is 1.0) is 2.3 µs. NDP was measured only for W7 because its simulator cannot
handle partial packets.



CHAPTER 6. SIMULATION EVALUATION 100

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

72
10

21
63

0

28
84

0

50
47

0

70
65

8

26
96

54

10
58

42
8

22
10

58
6

11
53

74
42

28
84

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
) NDP

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.14: Median slowdown as a function of message size, at 80% network load, for different pro-
tocols and sssssssorkloads. Distance on the x-axis is linear in total number of messages (each tick cor-
responds to 10% of all messages). Graphs were measured at 80% network load, except for NDP and
pHost. Neither NDP nor pHost can support 80% network load for these workloads, so we used the high-
est load that each protocol could support (70% for NDP, 58–73% for pHost, depending on workload).
The minimum one-way time for a small message (slowdown is 1.0) is 2.3 µs. NDP was measured only
for W7 because its simulator cannot handle partial packets.



CHAPTER 6. SIMULATION EVALUATION 101

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

9

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

44

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W2

1

2

3
4
5

1010

58 68 82 10
4

14
1

20
9

44
3

13
89

61
34

31
62

28

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W3

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
5

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W4

1

2

3

4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

7

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
) pHost

PIAS
pFabric
Homa
SRPT−Oracle

Workload: W6

1

2

3
4
5

10

30

57
68

18
74

6

27
39

8

47
58

6

70
65

8

19
17

86

96
18

14

19
22

18
6

48
06

18
6

28
84

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
) NDP

pHost
PIAS
pFabric
Homa
SRPT−Oracle

Workload: W7

Figure 6.15: Median slowdown as a function of message size, at 50% network load, for different proto-
cols and workloads. Distance on the x-axis is linear in total number of messages (each tick corresponds
to 10% of all messages). The minimum one-way time for a small message (slowdown is 1.0) is 2.3 µs.
NDP was measured only for W5 because its simulator cannot handle partial packets.



Chapter 7

System Implementation And Evaluation

We implemented Homa as a new transport in the RAMCloud main-memory storage system [27] and

measured Homa’s performance in a real test bed setup. The purpose of this experiment is to validate

our simulation results of Chapter 6 and confirm that Homa can indeed achieve its low latency and

high throughput goal in real application.

RAMCloud is a great platform for Homa’s implementation because it’s a low latency system.

RAMCloud supports a variety of transports that use different networking technologies, and it has

a highly tuned software stack: the total software overhead to send or receive an RPC is 1–2 µs in

most transports. The Homa transport is based on DPDK [10], which allows it to bypass the kernel

and communicate directly with the NIC; Homa detects incoming packets with polling rather than

interrupts. The Homa implementation contains a total of approximately 4000 lines of C++ code, of

which about half are comments.

7.1 Implementing Transports For RPCs

The RAMCloud implementation of Homa includes all of the features described in Chapters 3 and

5. Specifically, to achieve SRPT the implementation includes receiver-driven flow control, packet

priority assignment scheme, and traffic pacers at senders; to achieve high bandwidth utilization, it

has the overcommitment mechanism. These features were the key ideas in Homa’s design and were

pivotal to Homa’s transport mechanism and its performance. So, we allocated the majority of the

previous chapters to designing and analysing them in simulations and we explained how to imple-

ment them in practice. The only thing that is not implemented in the RAMCloud implementation

of Homa is that it does not yet measure incoming message lengths on the fly (the priorities were

102



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 103

DATA Sent from sender to receiver. Contains a range of bytes within a message, defined by an offset and a length.
Also indicates total message length.

GRANT Sent from receiver to sender. Indicates that the sender may now transmit all bytes in the message up to a given
offset, and specifies the priority level to use.

RESEND Sent from receiver to sender. Indicates that sender should re-transmit a given range of bytes within a message.

BUSY Sent from sender to receiver. Indicates that a response to RESEND will be delayed (the sender is busy trans-
mitting higher priority messages, or an RPC operation is still being executed); used to prevent timeouts.

Figure 7.1: The packet types used by Homa. All packet types except DATA are sent at highest priority;
the priorities for DATA packets are specified by the receiver as discussed in Chapter 3.

precomputed based on knowledge of the benchmark workload).

In addition to the key ideas from the previous chapters, the RAMCloud implementation of Homa

contains several unusual features: it is message-oriented, rather than stream-oriented; it is connec-

tionless; it uses no explicit acknowledgments; it implements timeouts and packet retransmissions

(simulations of previous chapter didn’t implement this); it has a mechanism to handle incast sce-

narios; and it implements at-least-once semantics, rather than the more traditional at-most-once

semantics. In this section we discuss these other aspects of the protocol that most of them are less

essential for latency performance but result in a complete and practical substrate for datacenter RPC.

Homa’s RAMCloud implementation uses four packet types, which are summarized in Fig-

ure 7.1. The DATA type is used for unscheduled and scheduled packets, the GRANT type as the

name suggests is for grant packets, RESEND is used when a packet retransmission is requested by

the receiver, and BUSY is a control packet that is to avoid retransmission time outs at the receivers.

Later in this section, we will explain the last two types in more detail.

7.1.1 Homa: Transport For RPCs, Not Connections

What is RPC? An RPC consists of a request message from a client to a server and its corresponding

response message. RPCs have a ubiquitous presence in datacenters; they are the primary type of

communication primitives used in datacenters. The majority of the distributed datacenter applica-

tions that we know of use RPCs to communicate with remote servers. For example in a distributed

key-value store, when a client application performs a read from a remote storage server, it uses an

RPC to get the data. In such RPCs, the request includes the key and is sent from the application to

the server and the server sends back the value corresponding to that key in the response of the RPC.

Each RPC is identified by a globally unique RPCid generated by the client. The RPCid is included



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 104

in all packets associated with the RPC. An RPC is considered finished when the response is deliv-

ered to the application in its entirety. The client has to keep the state associated with an RPCid for

as long as the RPC is not finished. A client may have any number of outstanding unfinished RPCs

at a time, to any number of servers.

One of the unique features of Homa is that it doesn’t support connections; instead it is a transport

for RPCs. No setup phase or connection is required before a client initiates an RPC to a server, and

neither the client nor the server retains any state about an RPC once the client has received the result.

Homa’s connectionless approach means that the state kept on a server is determined by the number

of active RPCs, not the total number of clients and this significantly reduces the state that needs to

be kept. In datacenter applications, servers can have large numbers of clients; for example, servers

in Google datacenters commonly have several hundred thousand open connections, at least one per

clients [13]. With connection oriented transports, this means the server needs to maintain lots of

state for each client. In contrast, Homa’s approach to keep state only for active RPCs significantly

reduces the amount of state that needs to be kept.

Homa’s RPC approach, contrast to traditional streaming approaches, allows out of order delivery

of messages; out of order delivery of messages between a sender-receiver pair is critical for low tail

latency. When a short message is presented to a sender for transmission to a receiver, after a long

message between the same sender-receiver pair, we don’t want the longer message to block the

quick delivery of the shorter one. Homa’s RPC approach naturally realizes the out of order delivery

behavior because concurrent RPCs to the same server may complete in any order. This is contrast

to the streaming approach used by TCP which serializes all messages between the same sender-

receiver pair based on the order they arrive at the sender. This serialization results in head-of-line-

blocking, where a short message is queued behind a long message for the same destination. Later in

this chapter will show that the streaming approach increases tail latency by 100x for short messages.

We need to also mention that some recent stream-based proposals, such as DCTCP, pFabric, and

PIAS, assume dozens of connections between each sender-receiver pair, so that each message has a

dedicated connection to avoid serialization of messages on the same stream. However, this approach

results in an explosion of connection state. As we discussed previously, even a single connection for

each application-server pair is problematic for large-scale applications ([24], [12]), so it is probably

not realistic to use multiple connections. So these protocols are most likely not viable as described.

Another benefit of Homa’s RPC approach is that it eliminates the need for acknowledgment

packets. Homa doesn’t use explicit acknowledgment packets as in TCP or many other protocols



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 105

because each RPC request inevitably requires a response. Homa uses the response as an acknowl-

edgment for the request. This reduces the number of packets transmitted over the network (in the

simplest case, there is only a single request packet and a single response packet). One-way mes-

sages can be simulated by having the server application return an empty response immediately upon

receipt of the request. This design decision of not using acknowledgment packets has implications

on how to detect and retransmit lost packets which is the topic of the next section.

Although we designed Homa for newer datacenter applications where RPC is a natural fit, we

believe that traditional applications could be supported by implementing a socket-like byte stream

interface above Homa. We leave this for future work.

7.1.2 Retransmission of Lost Packets

We expect lost packets to be rare in Homa. There are two reasons for packet loss: corruption in

the network, and buffer overflow. Corruption is extremely rare in modern datacenter networks, and

Homa reduces buffer usage enough to make buffer overflows extremely uncommon as well (refer to

Section 6.4.2). Since packets are almost never lost, Homa optimizes lost-packet handling for effi-

ciency in the common case where packets are not lost, and for simplicity (as opposed to efficiency)

when packets are lost.

In TCP, senders are responsible for detecting lost packets. This approach requires acknowledg-

ment packets, which add overhead to the protocol (the simplest RPC requires two data packets and

two acknowledgments). In Homa, receivers are responsible for detecting the lost packets; as a result,

Homa does not use any explicit acknowledgments. This eliminates half of the packets for simple

RPCs. Receivers use a simple timeout-based mechanism to detect lost packets. If a long time period

(a few milliseconds) elapses without additional packets arriving for a message, the receiver sends a

RESEND packet that identifies the first range of missing bytes; the sender will then retransmit those

bytes.

If all of the initial packets of an RPC request are lost, the server will not know about the message,

so it won’t issue RESENDs. However, the client will timeout on the response message, and it will

send a RESEND for the response (it does this even if the request has not been fully transmitted).

When the server receives a RESEND for a response with an unknown RPCid, it assumes that the

request message must have been lost and it sends a RESEND for the first RTTbytes of the request.

If a client receives no response to a RESEND (because of server or network failures), it re-

tries the RESEND several times and eventually aborts the RPC, returning an error to higher level

software.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 106

7.1.3 Controlling Incast

Incast is a type of traffic pattern that can cause buffer overflow in a receiver’s TOR switch and cause

massive reduction in bandwidth utilization at the receiver downlink. In incast, multiple senders

transmit simultaneously to the same receiver and each sends enough packets such that they consume

all of the buffer space in the TOR near the receiver. Under this condition, lost packets won’t be rare

anymore as incast causes massive packet drops in the TOR for all of the senders’ messages. This

massively cripples the progress of the transport as it causes a very large number of retransmission

timeouts and retransmission requests for all messages. The net effect is a significant reduction in

bandwidth utilization because 1) the timeouts are long and no packet will be retransmitted until the

timeout occurs and 2) a lot of bandwidth get wasted as a result of many packets that drop. Hence

none of the messages can make progress to completion in a timely manner.

Incast is usually self inflicted; it occurs when a node issues many concurrent RPCs to many

servers, all of which return their results at the same time. The simultaneous arrival of these responses

causes incast at the TOR switch near the node that issued the RPCs.

Homa solves the incast problem by taking advantage of the fact that incast is usually self-

inflicted: Homa detects impending incasts by counting each node’s outstanding RPCs. Once this

number exceeds a threshold, new RPCs are marked with a special flag that causes the server to

use a lower limit for unscheduled bytes in the response message (a few hundred bytes). Small

responses will still get through quickly, but larger responses will be scheduled by the receiver; the

overcommitment mechanism will limit buffer usage. With this approach, a 1000-fold incast will

consume at most a few hundred thousand bytes of buffer space in the TOR.

Incast can also occur in ways that are not predictable; for example, several machines might

simultaneously decide to issue requests to a single server. However, it is unlikely that many such

requests will synchronize tightly enough to cause incast problems. If this should occur, Homa’s

efficient use of buffer space still allows it to support hundreds of simultaneous arrivals without

packet loss. We will show this later in our evaluation of incast in this chapter.

Incast is largely a consequence of the high latency in current datacenters. If each request results

in a disk I/O that takes 10 ms, a client can issue 1000 or more requests before the first response

arrives, resulting in massive incast. In future low-latency environments, incast will be less of an issue

because requests will complete before very many have been issued. For example, in the RAMCloud

main-memory storage system [27], the end-to-end round-trip time for a read request is about 5µs.

In a multiread request where a client issues multiple concurrent read requests to different servers, it

takes the client 1–2µs to issue each request; by the time it has issued 3–4 RPCs, responses from the



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 107

first requests have begun to arrive. Thus there are rarely more than a few outstanding requests.

7.1.4 At-least-once Semantics

RPC protocols have traditionally implemented at most once semantics, where each RPC is executed

exactly once in the normal case; in the event of an error, an RPC may be executed either once or

not at all. In contrast, Homa allows RPCs to be executed more than once: in the normal case, an

RPC is executed one or more times; after an error, it could have been executed any number of times

(including zero). There are two situations where Homa re-executes RPCs. First, Homa doesn’t keep

connection state, so if a duplicate request packet arrives after the server has already processed the

original request and discarded its state, Homa will re-execute the operation. Second, servers get

no acknowledgment that a response was received, so there is no obvious time at which it is safe to

discard the response. Since lost packets are rare, servers take the simplest approach and discard state

for an RPC as soon as they have transmitted the last response packet. If a response packet is lost,

the server may receive the RESEND after it has deleted the RPC state. In this case, it will behave as

if it never received the request and issue a RESEND for the request; this will result in re-execution

of the RPC.

Homa allows re-executions because it simplifies the implementation and allows servers to dis-

card all state for inactive clients (at-most-once semantics requires servers to retain enough state for

each client to detect duplicate requests). Moreover, duplicate suppression at the transport level is

insufficient for most datacenter applications. For example, consider a replicated storage system: if

a particular replica crashes while executing a client’s request, the client will retry that request with

a different replica. However, it is possible that the original replica completed the operation before it

crashed. As a result, the crash recovery mechanism may result in re-execution of a request, even if

the transport implements at-most-once semantics. In general, duplicates must be filtered at a level

above the transport layer.

Homa assumes that higher level software will either tolerate redundant executions of RPCs

or filter them out. The filtering can be done either with application-specific mechanisms, or with

general-purpose mechanisms such as RIFL [20]. For example, a TCP-like streaming mechanism

can be implemented as a very thin layer on top of Homa that discards duplicate data and preserves

order.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 108

CloudLab Infiniband
CPU Xeon D1548 (8 cores

@ 2.0 GHz)
Xeon X3470 (4 cores
@ 2.93 GHz)

NICs Mellanox ConnectX-3
(10 Gbps Ethernet)

Mellanox ConnectX-2
(24 Gbps)

Switches HP Moonshot-45XGc
(10 Gbps Ethernet)

Mellanox MSX6036
(4X FDR) and Infinis-
cale IV (4X QDR)

Figure 7.2: Hardware configurations used in experiments with Homa’s implementation. The Infiniband
cluster was used only for measuring Infiniband performance; CloudLab was used for all other measure-
ments.

7.2 Implementation Measurements

Our goal with the RAMCloud implementation of Homa is to see if a practical implementation can

provide the same benefits we saw in the simulations. Similar to the Homa simulations in chapter 6,

we’d like to answer the following questions in this section:

1. Does Homa provide low latency for short messages even at high network load and in the

presence of long messages?

2. How efficiently does Homa use network bandwidth?

3. How does Homa compare to existing low latency approaches used in practice?

4. How important are Homa’s novel features to its performance?

We used the CloudLab cluster described in Figure 7.2 to measure the performance of the Homa

implementation in RAMCloud. The cluster contained 16 nodes connected to a single switch using

10 Gbps Ethernet; 8 nodes were used as clients and 8 as servers. Each client generated a series of

echo RPCs; each RPC sent a block of a given size to a server, and the server returned the block

back to the client. Clients chose RPC sizes pseudo-randomly to match one of the workloads from

Figure 4.2(a), with Poisson arrivals configured to generate a particular network load. The server for

each RPC was chosen at random.

The Homa implementation experiments are different from the simulations of Chapter 6 in two

aspects: first, the simulations only focused on the network latencies and didn’t consider latency

overheads and queuing delays inflicted by the end-host software stack. Conversely, the implemen-

tation measurements by default include the variable delays incurred by the software and CPUs in



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 109

packet and protocol processing, PCI-e communication and memory copies. Secondly, in the simula-

tions, latencies were measured in terms of one way delays from when a message is presented to the

sender’s transport until it’s fully received by the receiver. This is in contrast to the implementation

experiments where the latencies are measured in terms of round-trip times from when the request

of an RPC is presented to the client’s transport until the response is fully received by the client.

7.2.1 Homa Performance Analysis

Figures 7.3, 7.4, and 7.5 show the performance of Homa and several variations of Homa for work-

loads W2-W7 at 80% network load. Our primary metric for evaluating Homa, shown in Figure 7.3,

is 99th percentile tail slowdown, where a slowdown of 1 is ideal and lower numbers are better. The

figures show slowdown spectrum plots where the x-axis is linear in the total number of messages,

with ticks corresponding to 10% of all messages in that workload. This results in a different x-axis

scale for each workload, which makes it easier to see results for the message sizes that are most

common. This benefits of this type of plot were discussed in details in Section 4.3.1.

In the figures, W1 is not shown because RAMCloud’s software overheads are too high to han-

dle the large numbers of small messages generated by this workloads at 80% network utilization.

Furthermore, W2 is shown at 41% network load, which is the maximum load we could utilize with

this workload; beyond 41% network load, the experiment becomes unstable and the input messages

queues grow out of bound.

Homa provides a 99th percentile tail slowdown in the range of 1.8–3.1 across a broad range of

RPC sizes and workloads. For example, a 100-byte echo RPC takes 4.7 µs in an unloaded network.

At 80% network load, the 99th-percentile latency was about 14 µs (corresponding to slowdown

of 3) in all 6 workloads. Compared to the simulations results, tail slowdown is a bit larger with

the implementation results; in the simulations, the minimum one-way transmission time for a 100-

byte message is 2.1µs and 99th-percentile latency is 4.8µs (corresponding to slowdown of 2.3). The

extra slowdown in the implementation compared to the simulations is a result of queuing and packet

processing delays in the software.

To quantify the benefits provided by the priority and overcommitment mechanisms in Homa, we

also measured RAMCloud’s Basic transport. Basic is similar to Homa in that it is receiver-driven,

with grants and unscheduled packets. However, Basic does not use priorities and it has no limit

on overcommitment: receivers grant independently and simultaneously to all incoming messages.

Figure 7.3 shows that tail latency is 5–15x higher in Basic than in Homa for most of the workloads.

By analyzing detailed packet traces we determined that Basic’s high latency is caused by queuing



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 110

1

2

3

5

8

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

35
29

90
4

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W2

1

2

3

5

10

20

5045

58 68 82 10
2

13
7

20
9

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W3

1

2
3

5

10

20

50

100

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

5

10

20

50
61

12
8

28
1

10
33

18
89

34
64

65
81

16
81

7

70
94

1

27
18

23

10
00

00
0

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

2

3

5

10

20

50
68

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

2

3

5

10

20

50

89

73
50

20
58

0

29
40

0

49
98

0

72
03

0

19
84

50

10
05

48
0

20
33

01
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.3: Tail latency of Homa and its variations for workloads W2–W7 at 80% network load, except
W2 that is ran at 41% network load. X-axes are linear in total number of messages (each tick is 10%
of all messages). “HomaPx” measures Homa restricted to use only x priorities. “Basic” measures the
preexisting Basic transport in RAMCloud, which corresponds roughly to HomaP1 with no limit on
overcommitment. Best-case RPC times (slowdown of 1.0) for 100 byte RPCs are 4.7 µs for Homa and
Basic.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 111

1

22

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

35
29

90
4

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W2

1

2

3

5

10

16

58 68 82 10
2

13
7

20
9

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W3

1

2
3

5

10

20

50

100

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W4

1

2

3

5

10

17

12
8

28
1

10
33

18
89

34
64

65
81

16
81

7

70
94

1

27
18

23

10
00

00
0

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W5

1

2

3

5

10

16

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W6

1

2

3

5

10

16

73
50

20
58

0

29
40

0

49
98

0

72
03

0

19
84

50

10
05

48
0

20
33

01
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W7

Figure 7.4: same as figure 7.3 except the y-axis is mean slowdown instead of 99th percentile slowdown.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 112

1

22

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

35
29

90
4

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W2

1

2

3

5

10

15

58 68 82 10
2

13
7

20
9

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W3

1

2

3

5

10

20

41

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

5

10

15

12
8

28
1

10
33

18
89

34
64

65
81

16
81

7

70
94

1

27
18

23

10
00

00
0

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

2

3

5

10

13

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

2

3

5

10
12

73
50

20
58

0

29
40

0

49
98

0

72
03

0

19
84

50

10
05

48
0

20
33

01
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.5: Same as Figure 7.3 except the y-axis is median slowdown instead of 99th percentile slow-
down.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 113

delays at the receiver’s downlink; Homa’s use of priorities eliminates almost all of these delays.

Although Homa prioritizes small messages, it also outperforms Basic for large ones. This is

because Homa’s SRPT policy tends to produce run-to-completion behavior: it finishes the highest

priority message before giving service to any other messages. In contrast, Basic, like TCP, tends to

produce round-robin behavior; when there are competing large messages, they all complete slowly.

For the very largest messages, Homa produces 99th-percentile slowdowns between 30–100x

depending on the workload. This is very similar to what we observed in the simulations of Chapter 6,

where the worst tail slowdown were between 11x to 33x. This is because of the SRPT policy; in

SRPT the largest messages are at disadvantage for scheduling priority. As we discussed in previous

chapter, we speculate that the performance of these outliers could be improved by dedicating a small

fraction of downlink bandwidth to the oldest message; we leave a full analysis of this alternative to

future work.

To answer the question “How many priority levels does Homa need?” we modified the Homa

transport to reduce the number of priority levels by collapsing adjacent priorities while maintaining

the same degree of overcommitment. Figures 7.3 and 7.5 show the results. 99th-percentile tail la-

tency is almost as good with 4 priority levels as with 8, but tail latency increases noticeably when

there are only 2 priority levels. Even when considering median slowdown (Figure 7.5), perfor-

mance is considerably better with two priorities than just one. Homa with only one priority level is

still significantly better than Basic; this is because Homa’s limit on overcommitment results in less

buffering than Basic, and this reduces preemption lag.

7.2.2 Homa vs. Infiniband

We also compared Homa against RAMCloud’s InfRC transport, which uses kernel bypass with

Infiniband reliable connected queue pairs.

Figures 7.6 shows the comparison between Homa and Infiniband only for workloads W4, W6,

and W7. Other workloads had too many short messages; high software overheads didn’t allow us to

run Infiniband with them.

The Infiniband measurements were taken on a different cluster with faster CPUs, and the In-

finiband network has 24 Gpbs application level bandwidth, vs. 10 Gbps for Homa and Basic. The

software overheads for InfRC were too high to run at 80% load on the Infiniband network; with 2.4x

more bandwidth than the 10Gbps Ethernet used for Homa, it would take 2.4x more messages/sec to

achieve 80% load. Therefore, we used the same absolute load as for the Homa measurements, which

resulted in only 33% network load for Infiniband (i.e. 80%
2.4 = 33%). This give a massive benefit to



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 114

Infiniband in our comparisons because it’s running at a much lower network load.

The Infiniband measurements show the advantage of Homa’s message-oriented protocol over

streaming protocols. We first measured InfRC in its normal mode, which uses a single connection

for each client-server pair. This resulted in tail latencies about 1000x higher than Homa for small

messages. Detailed traces showed that the long delays were caused by head-of-line blocking at the

sender, where a small message got stuck behind a very large message to the same destination. Any

streaming protocol, such as TCP, will suffer similar problems because of head-of-line blocking; this

validates the advantage of Homa’s RPC approach to the streaming approaches as we discussed in

Section 7.1.1. Infiniband is widely believed to be a low latency mechanism, but in fact our experi-

ments show that it doesn’t provide good tail latency at high network load.

We modified the Infiniband benchmark to use multiple connections per client-server pair (“InfRC-

MC” in the figures). This eliminated the head-of-line blocking and improved tail latency by 100x,

to about the same level as Basic. As discussed in Section 7.1.1 in this chapter, this approach is

probably not practical in large-scale applications because it causes an explosion of connection state.

InfRC-MC still doesn’t approach Homa’s performance, because it doesn’t use priorities.

As a result of lower network load for Infiniband experiments (33% vs Homa’s 80%), the figure

overstates the performance of Infiniband relative to Homa. In particular, Infiniband appears to per-

form better than Homa for large message sizes. This is an artifact of measuring Infiniband at 33%

network load and Homa at 80%; at equal load factors, we expect Homa to provide significantly

lower latency than Infiniband at all message sizes.

7.3 Homa vs. TCP

The “TCP-MC” curves in Figure 7.6 show the performance of RAMCloud’s TCP transport, which

uses the Linux kernel implementation of TCP. Only workloads W6 and W7 are shown (system

overheads were too high to run other workloads at 80% load), and only with multiple connections

per client-server pair (with a single connection, tail slowdown was off the scale of the graphs).

Even in multi-connection mode, TCP’s tail latencies are 10–100x higher than for Homa and TCP

is also a lot slower than Infiniband. We also created a new RAMCloud transport using mTCP [19],

a user-level implementation of TCP that uses DPDK for kernel bypass. However, we were unable

to achieve latencies for mTCP less than 1 ms; the mTCP developers confirmed that this behavior is

expected (mTCP batches heavily, which improves throughput at the expense of latency). We did not

graph mTCP results.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 115

1
2
3
5

10
20

50
100

1000

7344

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

5

10

20
24

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1
2
3
5

10
20

50
100

1000

2227

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

TCP−MC InfRC−MC InfRC Homa
Workload: W6

1

2
3

5

10

20

100
125

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
) TCP−MC InfRC−MC InfRC Homa

Workload: W6

1
2
3
5

10
20

50
100

1000

4126

73
50

20
58

0

29
40

0

49
98

0

72
03

0

19
69

80

10
05

48
0

19
59

51
0

48
99

51
0

29
40

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

1

2

3

5

10

20

53

73
50

20
58

0

29
40

0

49
98

0

72
03

0

19
69

80

10
05

48
0

19
59

51
0

48
99

51
0

29
40

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.6: Tail and median latency of Homa, Infiniband and TCP for workloads W4, W6, and W7
at 80% network load, ”InfRC” measures RAMCloud’s Infrc transport, which uses Infiniband reliable
connected queue pairs. “InfRC-MC” uses Infiniband with multiple connections per client-server pair.
“TCP-MC” uses kernel TCP with multiple connections per client-server pair. Homa was measured on
the CloudLab cluster. InfRC was measured on the Infiniband cluster using the same absolute workload,
so its network utilization was only about 33%. Best-case RPC times (slowdown of 1.0) for 100 byte
RPCs are 4.7 µs for Homa. 3.9 µs for InfRC, 15.5 µs for TCP.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 116

● ●
● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ●

●
●

●

●

●

● ●

●
●

●

●
●

● ●

● ●

●
● ●

●

● ● ●

●

●
●

● ● ● ●
●

● ● ● ● ●
● ● ● ● ●

● ●
● ● ● ●

0.0

2.5

5.0

7.5

10.0

0 1000 2000 3000 4000 5000
# Concurrent RPCs

T
hr

ou
gh

pu
t (

G
bp

s)

●

●

Incast Control
No Incast Control

Figure 7.7: Homa’s performance under incast. The figure shows overall throughput when a single Homa
client receives responses for RPCs issued concurrently to 15 servers. Each response was 10 KB. Each
data point shows min, mean, and max values over 10 runs. When the incast control mechanism is dis-
abled, Homa can support up to 300 concurrent responses without throughput degradation. With incast
control enabled, Homa is able to support an incast of several thousand concurrent transmissions.

7.4 Homa vs. Other Implementations

It is difficult to compare Homa with other published implementations because most prior systems

do not break out small message performance and some measurements were taken with slower net-

works. Nonetheless, Homa’s absolute performance (14 µs round-trip for small messages at 80%

network load and 99th percentile tail latency) is nearly two orders of magnitude faster than the best

available comparison systems. For example, HULL [4] reported 782 µs one-way latency for 1 Kbyte

messages at 99th percentile and 60% network load, and PIAS [7] reported 2 ms one-way latency

for messages shorter than 100 Kbytes at 99th percentile and 80% network load; both of these sys-

tems used 1 Gbps networks. NDP [16] reported more than 600 µs one-way latency for 100 Kbyte

messages at 99th percentile in a loaded 10 Gbps network, of which more than 400 µs was queueing

delay.

7.4.1 Homa Performance Under Incast

To measure the effectiveness of Homa’s incast control mechanism, we ran an experiment where

a single client initiated a large number of RPCs in parallel to a collection of servers; this causes

self inflicted incast scenario for the client. In Homa, incast can only happen as a result of a flood

of uninvited unscheduled packets. Therefore, in this experiment each RPC had a tiny request and a

response of approximately RTTbytes (10 KB) that fully fits in unscheduled packets (larger responses

would produce similar incast). Figure 7.7 shows the results. With the incast control mechanism



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 117

enabled, Homa successfully handled several thousand simultaneous RPCs without degradation.

We also measured performance with incast control disabled; this shows the performance that

can be expected when incast occurs for unpredictable reasons. Beyond 300 concurrent RPCs, the

utilized bandwidth of the client’s downlink drops which means the buffer space in the TOR is

full and packets are dropping because of incast (throughput drops because of long transmission

timeouts and wasted bandwidth from packet drops). This demonstrates that under unpredictable

incast condition, Homa supports about 300 concurrent RPCs before performance degrades. Homa

is less sensitive to incast than protocols such as TCP because its packet scheduling mechanism limits

buffer buildup to at most RTTbytes per incoming message. In contrast, a single TCP connection can

consume all of the buffer space available in a switch. Note that in the curve for disabled incast

control, throughput rises again when number of concurrent RPCs increases beyond 400. This is

because as the number of RPCs increases, the number of timeouts that happens in a fixed period

time increases and more number of RPCs make progress toward completion.

7.4.2 Homa Under Lower Loads

For curious readers, we also included the slowdown of Homa and its variations under moderate and

lower network loads. Figures 7.8, 7.9, and 7.10 show tail, mean and median slowdown at moderate

50% network load and Figures 7.11, 7.12, and 7.13 show these metrics at low 35% load. Similar

trends as in 80% network load plots can be observed in these plots. Homa outperforms other schemes

in tail slowdown; regardless of the network load, both priorities and controlled overcommitment are

critical for good tail and even mean latency of short messages. However, at lower loads the median

latency for short messages is less sensitive to the number of priorities or controlled overcommitment.

That is because at lower loads, network queues are empty most of the time and head-of-line blocking

happens less frequently.

7.5 Chapter Summary

In this chapter we discussed an implementation of Homa in the RAMCloud storage system. We

introduced several new features of the RAMCloud’s implementation of Homa, in addition to the

key ideas presented in previous chapters. These new features includes Homa is message-oriented,

rather than stream-oriented; it is connectionless; it uses no explicit acknowledgments; it implements

timeouts and packet retransmissions (simulations of previous chapter didn’t implement this); it has

a mechanism to handle incast scenarios; and it implements at-least-once semantics.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 118

We showed that Homa’s implementation can achieve very similar tail slowdown to what we

observed in the simulations. 99%-ile tail slowdown for short messages at 80% network load is 1.8–

3.1 across a broad range of RPC sizes and workloads. We also studied the effect of priorities and

controlled overcommitment in achieving low latency; removing priorities and controlled overcom-

mitment from Homa can increase the tail slowdown of short messages by a factor 15.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 119

1

2

3

5

10

14

58 68 82 10
2

13
7

21
0

44
8

14
00

61
34

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W3

1

2

3

5

10

2019

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

5

10

2019

12
8

28
1

10
33

18
89

34
64

64
81

16
81

7

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

2

3

5

10

2021

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

2

3

5

10
11

73
50

19
11

0

27
93

0

49
98

0

72
03

0

19
69

80

10
05

48
0

20
33

01
0

48
99

51
0

29
40

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.8: same as figure 7.3 except slowdown measured at 50% load



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 120

1

2

3

4

58 68 82 10
2

13
7

21
0

44
8

14
00

61
34

31
62

28

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W3

1

2

3

4

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W4

1

2

3

4

12
8

28
1

10
33

18
89

34
64

64
81

16
81

7

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W5

1

2

3

55

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W6

1

2

3

4

73
50

19
11

0

27
93

0

49
98

0

72
03

0

19
69

80

10
05

48
0

20
33

01
0

48
99

51
0

29
40

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W7

Figure 7.9: same as figure 7.3 except the y-axis is mean slowdown instead of 99th percentile slowdown
and the experiments are run at 50% load.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 121

1

2

3

4

58 68 82 10
2

13
7

21
0

44
8

14
00

61
34

31
62

28

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W3

1

2

3

4

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

4

12
8

28
1

10
33

18
89

34
64

64
81

16
81

7

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

2

3

4

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

2

33

58
80

20
58

0

29
40

0

48
51

0

72
03

0

19
69

80

10
05

48
0

20
33

01
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.10: Same as Figure 7.3 except the y-axis is median slowdown instead of 99th percentile slow-
down and the experiments are run at 50% load.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 122

1

2

3

5

7

58 68 82 10
2

13
7

21
0

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W3

1

2

3

5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

2

3

5

1010

12
0

28
1

10
33

18
89

34
64

65
81

17
41

0

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

2

3

5

10
11

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

2

3

5

7

73
50

20
58

0

27
93

0

48
51

0

72
03

0

19
55

10

98
04

90

19
59

51
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.11: same as figure 7.3 except slowdown measured at 35% load



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 123

1

22

58 68 82 10
2

13
7

21
0

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Basic HomaP1 HomaP2 Homa HomaP4
Workload: W3

1

22

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W4

1

2

33

12
0

28
1

10
33

18
89

34
64

65
81

17
41

0

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W5

1

2

33

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W6

1

22

73
50

20
58

0

27
93

0

48
51

0

72
03

0

19
55

10

98
04

90

19
59

51
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

M
ea

n 
S

lo
w

do
w

n 
(L

og
 S

ca
le

)

Workload: W7

Figure 7.12: same as figure 7.3 except the y-axis is mean slowdown instead of 99th percentile slowdown
and the experiments are run at 35% load.



CHAPTER 7. SYSTEM IMPLEMENTATION AND EVALUATION 124

1

22

58 68 82 10
2

13
7

21
0

44
8

14
00

63
51

31
62

28

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Basic HomaP1 HomaP2 HomaP4 Homa
Workload: W3

1

22

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

15
15

81
97

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W4

1

22

12
0

28
1

10
33

18
89

34
64

65
81

17
41

0

70
00

0

27
18

23

10
00

00
0

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W5

1

22

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

10
00

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W6

1

22

58
80

19
11

0

27
93

0

48
51

0

72
03

0

19
55

10

10
05

48
0

20
33

01
0

10
29

14
70

29
40

00
00

Message Size (Bytes)

M
ed

ia
n 

S
lo

w
do

w
n 

(L
og

 S
ca

le
)

Workload: W7

Figure 7.13: Same as Figure 7.3 except the y-axis is median slowdown instead of 99th percentile slow-
down and the experiments are run at 35% load.



Chapter 8

Related Work

In recent years there have been numerous proposals for new transport protocols, driven by new

datacenter applications and the well-documented shortcomings of TCP.

Some of these recent works like Hedera [1], MPTCP [29], and RPS [11] tackle the high through-

put aspect of the design. Other works like HULL [4], PDQ [18], pHost [14], Fastpass [28], Timely [22],

and DCQCN [38] tackle the low latency aspect of the design. However, none of these proposals

combines the right set of features to produce low latency for short messages under high load.

Timely and DCQCN assume lossless networks for achieving low latency but the problem with

these approaches is that they can’t prevent pause frames and their negative impact in congestion

spreading. The biggest problem with these approaches is that these works focus on low latency

without considering the high throughput goal and performance of large flows.

The biggest shortcoming of most recent proposals is that they do not take advantage of in-

network priority queues. This includes rate-control techniques such as DCTCP [3] and HULL [4],

which reduce queue occupancy, and D3 [36] and D2TCP [35], which incorporate deadline-awareness.

PDQ [18] adjusts flow rates to implement preemption, but its rate calculation is too slow for schedul-

ing short messages. Without the use of priorities, none of these systems can achieve the rapid pre-

emption needed by short messages.

A few systems have used in-network priorities, but they do not implement SRPT. Chapter 6

showed that the PIAS priority mechanism [7] performs worse than SRPT for most message sizes

and workloads. QJUMP [15] requires priorities to be specified manually on a per-application basis.

Karuna [8] uses priorities to separate deadline and non-deadline flows, and requires a global calcu-

lation for the non-deadline flows. Without receiver-driven SRPT, none of these systems can achieve

low latency for short messages.

125



CHAPTER 8. RELATED WORK 126

pFabric [5] implements SRPT by assuming fine-grained priority queues in network switches.

Although this produces near-optimal latencies, it depends on features not available in existing

switches.

pHost [14] and NDP [16] are the systems most similar to Homa, in that both use receiver-driven

scheduling and priorities. pHost and NDP use only two priority levels with static assignment, which

results in poor latency for short messages. Neither system uses overcommitment, which limits their

ability to operate at high network load. NDP uses fair-share scheduling rather than SRPT, which

results in high tail latencies. NDP includes an incast control mechanism, in which network switches

drop all but the first few bytes of incoming packets when there is congestion. Homa’s incast control

mechanism achieves a similar effect using a software approach: instead of truncating packets in-

flight (which wastes network bandwidth), senders are instructed by the protocol to limit how much

data they send.

Almost all of the systems mentioned above, including DCTCP, pFabric, PIAS, and NDP, use

a connection-oriented streaming approach. As previously discussed, this results in either high tail

latency because of head-of-line blocking at senders, or an explosion of connections, which is im-

practical for large-scale datacenter applications.

A final alternative is to schedule all messages or packets for a cluster centrally, as in Fast-

pass [28]. However, communication with the central scheduler adds too much latency to provide

good performance for short messages. In addition, scaling a system like Fastpass to a large cluster

is challenging, particularly for workloads with many short messages.



Chapter 9

Limitations And Future Work

This section summarizes the most important assumptions Homa makes about its operating environ-

ment. If these assumptions are not met, then Homa may not achieve the performance levels reported

here.

Homa assumes that congestion occurs primarily at host downlinks, not in the core of the net-

work. Homa assumes per-packet spraying to ensure load balancing across core links, combined with

sufficient overall capacity. Oversubscription is still possible, as long as there is enough aggregate

bandwidth to avoid significant congestion. We hypothesize that congestion in the core of datacenter

networks will be uncommon because it will not be cost-effective. If the core is congested, it will

result in underutilization of servers, and the cost of this underutilization will likely exceed the cost

of provisioning more core bandwidth. If the core does become congested, then Homa latencies will

degrade. Homa’s mechanisms for limiting buffer occupancy may reduce the impact of congestion

in comparison to TCP-like protocols, but we leave a full exploration of this topic to future work.

Homa also assumes a single implementation of the protocol for each host-TOR link, such as

in an operating system kernel running on bare hardware, so that Homa is aware of all incoming

and outgoing traffic. If multiple independent Homa implementations share a single host-TOR link,

they may make conflicting decisions. For example, each Homa implementation will independently

overcommit the downlink and assign priorities based on the input traffic passing through that imple-

mentation. Multiple implementations can occur when a virtualized NIC is shared between multiple

guest operating systems in a virtual machine environment, or between multiple applications that im-

plement the protocol at user level. Obtaining good performance in these environments may require

sharing state between the Homa implementations, perhaps by moving part of the protocol to the

NIC or even the TOR. We leave an exploration of this problem and its potential solutions to future

127



CHAPTER 9. LIMITATIONS AND FUTURE WORK 128

work.

Homa assumes that the most severe forms of incast are predictable because they are self-inflicted

by outgoing RPCs; Homa handles these situations effectively. Unpredictable incasts can also occur,

but Homa assumes that they are unlikely to have high degree. Homa can handle unpredictable incasts

of several hundred messages with typical switch buffer capacities; unpredictable incasts larger than

this will cause packet loss and degraded performance.

The Homa configuration and measurements in this paper were based on 10 Gbps link speeds.

As link speeds increase in the future, RTTbytes will increase proportionally, and this will impact

the protocol in several ways. A larger fraction of traffic will be sent unscheduled, so Homa’s use

of multiple priority levels for unscheduled packets will become more important. With faster net-

works, workloads will behave more like W1 and W4 in our measurements, rather than W5-W7. As

RTTbytes increases, each message can potentially consume more space in switch buffers, and the

degree of unpredictable incast that Homa can support will drop.

Homa is designed for use in datacenter networks and capitalizes on the properties of those

networks; it is unlikely to work well in wide-area networks. There are many reason for why we

believe Homa wont work in wide-area networks. One reason that may cause Homa to fail in these

networks is that congestion can happen anywhere in the network and the assumption of Homa that

congestion primarily happens at the TOR may not be valid anymore. Another reason is that these

networks typically have very large and highly variable RTTs (RTTs in the range of 1–100ms is very

common). This means lots of unscheduled packets in Homa that can easily cause buffer overflow

and lots of packet drops. Homa’s retransmission mechanisms is not optimized for an environment

that packets drops are not rare.



Chapter 10

Conclusion

The rise of datacenter computing over the last decade has created new opportunities and challenges

for network protocols. On one hand, modern datacenter networking hardware offers the potential

for very low latency communication; round-trip times of 5 µs or less are now possible for short mes-

sages. In addition, many datacenter applications use request-response protocols that are dominated

by very short messages (a few hundred bytes or less). Existing transport protocols are ill-suited

to these conditions, so the latency they provide for short messages is far higher than the hardware

potential, particularly under high network loads.

The combination of tiny messages and low-latency networks creates challenges and opportuni-

ties that have not been addressed by previous transport protocols. Therefore, in this dissertation we

revisited the need for creating a low latency transport for datacenters. Homa meets this need with a

new transport architecture that combines several unusual features:

1. It uses network priority queues with a hybrid allocation mechanism that approximates SRPT

2. It manages most of the protocol from the receiver, not the sender.

3. It overcommits receiver downlinks in order to maximize throughput at high network loads.

These features combine to produce nearly optimal latency for short messages across a variety of

workloads. Even under high loads, tail latencies are within a small factor of the hardware limit. The

remaining delays are almost entirely due to the absence of link-level packet preemption in current

networks; there is little room for improvement in the protocol itself.

Homa can be implemented with no changes to networking hardware. We have implemented

Homa in RAMCloud’s transport layer and our implementation introduces new features that are

129



CHAPTER 10. CONCLUSION 130

different from traditional transports:

1. Homa implements discrete messages for remote procedure calls, not byte streams.

2. It is connectionless and has no explicit acknowledgments.

Homa’s features significantly simplify the transport design and benefit the datacenter application.

Our experiments show that our test bed implementation achieve very close results to what we ob-

served in the simulations. We believe that Homa provides an attractive platform on which to build

low-latency datacenter applications.



Bibliography

[1] AL-FARES, M., RADHAKRISHNAN, S., RAGHAVAN, B., HUANG, N., AND VAHDAT, A.

Hedera: Dynamic Flow Scheduling for Data Center Networks. In Proceedings of the 7th

USENIX Conference on Networked Systems Design and Implementation (Berkeley, CA,

USA, 2010), NSDI’10, USENIX Association, pp. 19–19. 125

[2] ALIZADEH, M., EDSALL, T., DHARMAPURIKAR, S., VAIDYANATHAN, R., CHU, K., FIN-

GERHUT, A., LAM, V. T., MATUS, F., PAN, R., YADAV, N., AND VARGHESE, G. CONGA:

Distributed Congestion-aware Load Balancing for Datacenters. In Proceedings of the ACM

SIGCOMM 2014 Conference (New York, NY, USA, 2014), SIGCOMM ’14, ACM, pp. 503–

514. 8, 18

[3] ALIZADEH, M., GREENBERG, A., MALTZ, D. A., PADHYE, J., PATEL, P., PRABHAKAR,

B., SENGUPTA, S., AND SRIDHARAN, M. Data Center TCP (DCTCP). In Proceedings of

the ACM SIGCOMM 2010 Conference (New York, NY, USA, 2010), SIGCOMM ’10, ACM,

pp. 63–74. 1, 5, 6, 7, 9, 46, 75, 125

[4] ALIZADEH, M., KABBANI, A., EDSALL, T., PRABHAKAR, B., VAHDAT, A., AND YA-

SUDA, M. Less is More: Trading a Little Bandwidth for Ultra-low Latency in the Data

Center. In Proceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation (Berkeley, CA, USA, 2012), NSDI’12, USENIX Association, pp. 19–19. 1,

8, 9, 116, 125

[5] ALIZADEH, M., YANG, S., SHARIF, M., KATTI, S., MCKEOWN, N., PRABHAKAR, B.,

AND SHENKER, S. pFabric: Minimal Near-optimal Datacenter Transport. In Proceedings of

the ACM SIGCOMM 2013 Conference (New York, NY, USA, 2013), SIGCOMM ’13, ACM,

pp. 435–446. v, 1, 3, 6, 7, 10, 73, 126

131



BIBLIOGRAPHY 132

[6] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND PALECZNY, M. Work-

load Analysis of a Large-scale Key-value Store. In Proceedings of the 12th ACM

SIGMETRICS/PERFORMANCE Joint International Conference on Measurement and

Modeling of Computer Systems (New York, NY, USA, 2012), SIGMETRICS ’12, ACM,

pp. 53–64. 7, 46

[7] BAI, W., CHEN, L., CHEN, K., HAN, D., TIAN, C., AND WANG, H. Information-

agnostic Flow Scheduling for Commodity Data Centers. In Proceedings of the 12th USENIX

Conference on Networked Systems Design and Implementation (Berkeley, CA, USA, 2015),

NSDI’15, USENIX Association, pp. 455–468. v, 1, 3, 7, 10, 73, 116, 125

[8] CHEN, L., CHEN, K., BAI, W., AND ALIZADEH, M. Scheduling Mix-flows in Commodity

Datacenters with Karuna. In Proceedings of the ACM SIGCOMM 2016 Conference (New

York, NY, USA, 2016), SIGCOMM ’16, ACM, pp. 174–187. 10, 125

[9] CHO, I., JANG, K., AND HAN, D. Credit-Scheduled Delay-Bounded Congestion Control for

Datacenters. In Proceedings of the ACM SIGCOMM 2017 Conference (New York, NY, USA,

2017), SIGCOMM ’17, ACM, pp. 239–252. 9

[10] Data Plane Development Kit. http://dpdk.org/. 5, 102

[11] DIXIT, A., PRAKASH, P., HU, Y. C., AND KOMPELLA, R. R. On the Impact of Packet

Spraying in Data Center Networks. In Proceedings of IEEE Infocom (2013). 8, 18, 40, 125

[12] DRAGOJEVIĆ, A., NARAYANAN, D., CASTRO, M., AND HODSON, O. FaRM: Fast Remote

Memory. In 11th USENIX Symposium on Networked Systems Design and Implementation

(NSDI 14) (Seattle, WA, Apr. 2014), USENIX Association, pp. 401–414. 8, 104

[13] FELDERMAN, B. Personal communication, February 2018. Google. 104

[14] GAO, P. X., NARAYAN, A., KUMAR, G., AGARWAL, R., RATNASAMY, S., AND SHENKER,

S. pHost: Distributed Near-optimal Datacenter Transport over Commodity Network Fab-

ric. In Proceedings of the 11th ACM Conference on Emerging Networking Experiments and

Technologies (New York, NY, USA, 2015), CoNEXT ’15, ACM, pp. 1:1–1:12. v, 3, 7, 10, 11,

73, 125, 126

[15] GROSVENOR, M. P., SCHWARZKOPF, M., GOG, I., WATSON, R. N. M., MOORE, A. W.,

HAND, S., AND CROWCROFT, J. Queues Don’t Matter When You Can JUMP Them! In

http://dpdk.org/


BIBLIOGRAPHY 133

12th USENIX Symposium on Networked Systems Design and Implementation (NSDI 15)

(Oakland, CA, 2015), USENIX Association, pp. 1–14. 1, 10, 125

[16] HANDLEY, M., RAICIU, C., AGACHE, A., VOINESCU, A., MOORE, A. W., ANTICHIK,

G., AND MOJCIK, M. Re-architecting Datacenter Networks and Stacks for Low Latency and

High Performance. In Proceedings of the ACM SIGCOMM 2017 Conference (New York, NY,

USA, 2017), SIGCOMM ’17, ACM, pp. 29–42. v, 1, 3, 7, 8, 9, 12, 73, 84, 116, 126

[17] HE, K., ROZNER, E., AGARWAL, K., FELTER, W., CARTER, J., AND AKELLA, A. Presto:

Edge-based Load Balancing for Fast Datacenter Networks. In Proceedings of the ACM

SIGCOMM 2015 Conference (New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 465–

478. 8, 18

[18] HONG, C.-Y., CAESAR, M., AND GODFREY, P. B. Finishing Flows Quickly with Preemptive

Scheduling. In Proceedings of the ACM SIGCOMM 2012 Conference (New York, NY, USA,

2012), SIGCOMM ’12, ACM, pp. 127–138. 1, 8, 10, 125

[19] JEONG, E., WOOD, S., JAMSHED, M., JEONG, H., IHM, S., HAN, D., AND PARK, K.

mTCP: a Highly Scalable User-level TCP Stack for Multicore Systems. In 11th USENIX

Symposium on Networked Systems Design and Implementation (NSDI 14) (Seattle, WA,

2014), USENIX Association, pp. 489–502. 114

[20] LEE, C., PARK, S. J., KEJRIWAL, A., MATSUSHITA, S., AND OUSTERHOUT, J. Implement-

ing Linearizability at Large Scale and Low Latency. In Proceedings of the 25th Symposium

on Operating Systems Principles (New York, NY, USA, 2015), SOSP ’15, ACM, pp. 71–86.

107

[21] memcached: a Distributed Memory Object Caching System. http://www.memcached.

org/, Jan. 2011. iv, 1

[22] MITTAL, R., LAM, V. T., DUKKIPATI, N., BLEM, E., WASSEL, H., GHOBADI, M., VAH-

DAT, A., WANG, Y., WETHERALL, D., AND ZATS, D. TIMELY: RTT-based Congestion

Control for the Datacenter. In Proceedings of the 2015 ACM Conference on Special Interest

Group on Data Communication (New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 537–

550. 5, 9, 125

[23] MONTAZERI, B., LI, Y., ALIZADEH, M., AND OUSTERHOUT, J. Homa: A Receiver-

driven Low-latency Transport Protocol Using Network Priorities. In Proceedings of the 2018

http://www.memcached.org/
http://www.memcached.org/


BIBLIOGRAPHY 134

Conference of the ACM Special Interest Group on Data Communication (New York, NY, USA,

2018), SIGCOMM ’18, ACM, pp. 221–235. iv

[24] NISHTALA, R., FUGAL, H., GRIMM, S., KWIATKOWSKI, M., LEE, H., LI, H. C.,

MCELROY, R., PALECZNY, M., PEEK, D., SAAB, P., STAFFORD, D., TUNG, T., AND

VENKATARAMANI, V. Scaling Memcache at Facebook. In 10th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 13) (Lombard, IL, 2013), USENIX,

pp. 385–398. 8, 104

[25] ns-2 Main Page. http://nsnam.sourceforge.net/wiki/index.php/Main_

Page. 73

[26] OMNeT++ Discrete Event Simulator. http://https://omnetpp.org/. 73

[27] OUSTERHOUT, J., GOPALAN, A., GUPTA, A., KEJRIWAL, A., LEE, C., MONTAZERI, B.,

ONGARO, D., PARK, S. J., QIN, H., ROSENBLUM, M., ET AL. The RAMCloud Storage

System. ACM Transactions on Computer Systems (TOCS) 33, 3 (2015), 7. iv, 1, 19, 102, 106

[28] PERRY, J., OUSTERHOUT, A., BALAKRISHNAN, H., SHAH, D., AND FUGAL, H. Fastpass:

A Centralized “Zero-queue” Datacenter Network. In Proceedings of the ACM SIGCOMM

2014 Conference (New York, NY, USA, 2014), SIGCOMM ’14, ACM, pp. 307–318. 1, 9, 88,

125, 126

[29] RAICIU, C., BARRE, S., PLUNTKE, C., GREENHALGH, A., WISCHIK, D., AND HANDLEY,

M. Improving Datacenter Performance and Robustness with Multipath TCP. In Proceedings of

the ACM SIGCOMM 2011 Conference (New York, NY, USA, 2011), SIGCOMM ’11, ACM,

pp. 266–277. 125

[30] Redis, Mar. 2015. http://redis.io. 1

[31] ROY, A., ZENG, H., BAGGA, J., PORTER, G., AND SNOEREN, A. C. Inside the Social

Network’s (Datacenter) Network. In Proceedings of the ACM SIGCOMM 2015 Conference

(New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 123–137. 7, 46

[32] SHANLEY, T. Infiniband Network Architecture. Addison-Wesley Professional, 2003. 5

[33] SIVARAM, R. Some Measured Google Flow Sizes (2008). Google internal memo, available

on request. 7, 46

http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://nsnam.sourceforge.net/wiki/index.php/Main_Page
http://https://omnetpp.org/


BIBLIOGRAPHY 135

[34] BCM56960 Series: High-Density 25/100 Gigabit Ethernet StrataXGS Tomahawk Eth-

ernet Switch Series. https://www.broadcom.com/products/ethernet-

connectivity/switching/strataxgs/bcm56960-series. 5

[35] VAMANAN, B., HASAN, J., AND VIJAYKUMAR, T. Deadline-aware Datacenter TCP

(D2TCP). In Proceedings of the ACM SIGCOMM 2012 Conference (New York, NY, USA,

2012), SIGCOMM ’12, ACM, pp. 115–126. 1, 125

[36] WILSON, C., BALLANI, H., KARAGIANNIS, T., AND ROWTRON, A. Better Never Than

Late: Meeting Deadlines in Datacenter Networks. In Proceedings of the ACM SIGCOMM

2011 Conference (New York, NY, USA, 2011), SIGCOMM ’11, ACM, pp. 50–61. 1, 125

[37] ZATS, D., DAS, T., MOHAN, P., BORTHAKUR, D., AND KATZ, R. DeTail: Reducing the

Flow Completion Time Tail in Datacenter Networks. In Proceedings of the ACM SIGCOMM

2012 Conference on Applications, Technologies, Architectures, and Protocols for Computer

Communication (New York, NY, USA, 2012), SIGCOMM ’12, ACM, pp. 139–150. 5

[38] ZHU, Y., ERAN, H., FIRESTONE, D., GUO, C., LIPSHTEYN, M., LIRON, Y., PADHYE, J.,

RAINDEL, S., YAHIA, M. H., AND ZHANG, M. Congestion Control for Large-Scale RDMA

Deployments. In Proceedings of the 2015 ACM Conference on Special Interest Group on Data

Communication (New York, NY, USA, 2015), SIGCOMM ’15, ACM, pp. 523–536. 5, 9, 125

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56960-series

	Abstract
	Preface
	Acknowledgments
	Introduction
	Motivation and Key Ideas
	Motivation: Tiny Latency for Tiny Messages
	The Design Space
	Putting It All Together: Homa Overview

	Single Receiver Design
	Congestion: Where Does It Happen In Networks?
	Homa's Congestion Control
	Receiver Driven Packet Scheduling
	Receiver Side Congestion Control

	Receivers Use SRPT Scheduling
	Priorities For Preemption
	Priority Assignment Mechanism
	Priority Allocation: Scheduled vs. Unscheduled
	Priority Assignment For Unscheduled Packets
	Priorities For Scheduled Traffic

	Senders Also Use SRPT Scheduling

	Single Receiver Evaluation
	Homa Simulator Structure
	Network Topology
	Message Generator
	Homa Transport Module

	Workload Distributions
	Homa Performance Evaluation
	Slowdown: Latency Metric of Our Choice
	Homa's Slowdown Performance
	Unscheduled Priority Allocation Scheme
	Varying Number of Unscheduled Priorities

	Chapter Summary

	Multi Receiver Design
	Single Receiver Design: Good and Bad
	Overcommitment To Avoid Wasting Bandwidth
	Chapter Summary

	Simulation Evaluation
	Comparison Transports
	Homa's Latency vs. pFabric, pHost, PIAS, and NDP
	Bandwidth Utilization
	Measuring Deeper Levels
	Causes of Remaining Delay
	Queue Length
	Senders' SRPT
	Priority Utilization
	Configuration Policies

	Mean and Median Latency: Homa vs. Other Protocols
	Chapter Summary

	System Implementation And Evaluation
	Implementing Transports For RPCs
	Homa: Transport For RPCs, Not Connections
	Retransmission of Lost Packets
	Controlling Incast
	At-least-once Semantics

	Implementation Measurements
	Homa Performance Analysis
	Homa vs. Infiniband

	Homa vs. TCP
	Homa vs. Other Implementations
	Homa Performance Under Incast
	Homa Under Lower Loads

	Chapter Summary

	Related Work
	Limitations And Future Work
	Conclusion
	Bibliography

