A Philosophy of Software Design

John Ousterhout
Stanford University

A Philosophy of Software Design
by John Ousterhout

Copyright © 2018-2021 John K. Ousterhout

All rights reserved. No part of this book may be reproduced, in any form or by any means, without
permission in writing from the author.

Published by Yaknyam Press, Palo Alto, CA.

Cover design by Pete Nguyen and Shirin Oreizy (www.hellonextstep.com).

Printing History:

April 2018: First Edition (v1.0)
November 2018: First Edition (v1.01)
July 2021: Second Edition (v2.0)

ISBN 978-1-7321022-2-4

Chapter 6

General-Purpose Modules are
Deeper

The process of teaching my software design course, in which I’'m constantly trying
to identify the causes of complexity in student code, has changed my thinking about
software design in several ways. The most important of these has to do with generality
versus specialization. I have found over and over that specialization leads to complex-
ity; I now think that over-specialization may be the single greatest cause of complexity
in software. Conversely, code that is more general-purpose is simpler, cleaner, and
easier to understand.

This principle applies at many different levels in software design. When designing
modules such as classes or methods, one of the best ways to produce a deep API is
to make it general-purpose (general-purpose APIs result in more information hiding).
When writing detailed code, one of the most effective ways to simplify the code is
by eliminating special cases, so that the common-case code handles the edge cases as
well. Eliminating special cases can also make code more efficient, as we shall see in
Chapter 20.

This chapter discusses the problems caused by specialization and the benefits of
generality. Specialization cannot be completely eliminated, so the chapter also offers
guidelines on how to separate special-purpose code from general-purpose code.

39

General-Purpose Modules are Deeper

6.1 Make classes somewhat general-purpose

One of the most common decisions that you will face when designing a new class is
whether to implement it in a general-purpose or special-purpose fashion. Some might
argue that you should take a general-purpose approach, in which you implement a
mechanism that can be used to address a broad range of problems, not just the ones
that are important today. In this case, the new mechanism may find unanticipated uses
in the future, thereby saving time. The general-purpose approach seems consistent
with the investment mindset discussed in Chapter 3, where you spend a bit more time
up front to save time later on.

On the other hand, we know that it’s hard to predict the future needs of a software
system, so a general-purpose solution might include facilities that are never actually
needed. Furthermore, if you implement something that is too general-purpose, it might
not do a good job of solving the particular problem you have today. As a result, some
might argue that it’s better to focus on today’s needs, building just what you know
you need, and specializing it for the way you plan to use it today. If you take the
special-purpose approach and discover additional uses later, you can always refactor
it to make it general-purpose. The special-purpose approach seems consistent with an
incremental approach to software development.

When I first started teaching my software design course I leaned towards the second
approach (make it special-purpose to begin with), but after teaching the course a few
times I changed my mind. In reviewing student projects I noticed that general-purpose
classes were almost always better than special-purpose alternatives. What particularly
surprised me is that general-purpose interfaces are simpler and deeper than special-
purpose ones, and they result in less code in the implementation. It turns out that even
if you use a class in a special-purpose way, it’s less work to build it in a general-purpose
way. And, the general-purpose approach can save you even more time in the future, if
you reuse the class for other purposes. But general-purpose is still better even if you
don’t reuse the class.

In my experience, the sweet spot is to implement new modules in a somewhat
general-purpose fashion. The phrase “somewhat general-purpose” means that the
module’s functionality should reflect your current needs, but its interface should not.
Instead, the interface should be general enough to support multiple uses. The inter-
face should be easy to use for today’s needs without being tied specifically to them.
The word “somewhat” is important: don’t get carried away and build something so
general-purpose that it is difficult to use for your current needs.

40

General-Purpose Modules are Deeper

6.2 Example: storing text for an editor

Let’s consider an example from a software design class in which students were asked
to build simple a GUI text editor. The editor had to display a file and allow users to
point, click, and type to edit the file. It also had to support multiple simultaneous views
of the same file in different windows, and it had to support multi-level undo and redo
for modifications to the file.

Each of the student projects included a class that managed the underlying text of
the file. The text classes typically provided methods for loading a file into memory,
reading and modifying the text of the file, and writing the modified text back to a file.

Many of the student teams implemented special-purpose APIs for the text class.
They knew that the class was going to be used in an interactive editor, so they thought
about the features that the editor had to provide and tailored the API of the text class
to those specific features. For example, if a user of the editor typed the backspace key,
the editor deleted the character immediately to the left of the cursor; if the user typed
the delete key, the editor deleted the character immediately to the right of the cursor.
Knowing this, some of the teams created one method in the text class to support each
of these specific features:

void backspace(Cursor cursor);

void delete(Cursor cursor);

Each of these methods takes the cursor position as its argument; a special type Cursor
represents this position. The editor also had to support a selection that could be copied
or deleted. The students handled this by defining a SeTection class and passing an
object of this class to the text class during deletions:

void deleteSelection(Selection selection);

The students probably thought that it would be easier to implement the user inter-
face if the methods of the text class corresponded to the features visible to users. In
reality, however, this specialization provided little benefit for the user interface code,
and it created a high cognitive load for developers working on either the user interface
or the text class. The text class ended up with a large number of shallow methods, each
of which was only suitable for one user interface operation. Many of the methods, such
as delete, were only invoked in a single place. As a result, a developer working on
the user interface had to learn about a large number of methods for the text class.

This approach created information leakage between the user interface and the text
class. Abstractions related to the user interface, such as the selection or the backspace
key, were reflected in the text class; this increased the cognitive load for developers

41

General-Purpose Modules are Deeper

working on the text class. Each new user interface operation required a new method to
be defined in the text class, so a developer working on the user interface was likely to
end up working on the text class as well. One of the goals in class design is to allow
each class to be developed independently, but the specialized approach tied the user
interface and text classes together.

6.3 A more general-purpose API

A better approach is to make the text class more generic. Its API should be defined
only in terms of basic text features, without reflecting the higher-level operations that
will be implemented with it. For example, only two methods are needed for modifying
text:

void insert(Position position, String newText);

void delete(Position start, Position end);
The first method inserts an arbitrary string at an arbitrary position within the text, and
the second method deletes all of the characters at positions greater than or equal to
start but less than end. This API also uses a more generic type Position instead
of Cursor, which reflects a specific user interface. The text class should also pro-
vide general-purpose facilities for manipulating positions within the text, such as the
following:

Position changePosition(Position position, int numChars);

This method returns a new position that is a given number of characters away from a
given position. If the numChars argument is positive, the new position is later in the
file than position; if numChars is negative, the new position is before position.
The method automatically skips to the next or previous line when necessary. With
these methods, the delete key can be implemented with the following code (assuming
the cursor variable holds the current cursor position):

text.delete(cursor, text.changePosition(cursor, 1));

Similarly, the backspace key can be implemented as follows:
text.delete(text.changePosition(cursor, -1), cursor);

With the general-purpose text API, the code to implement user interface functions
such as delete and backspace is a bit longer than with the original approach using a
specialized text API. However, the new code is more obvious than the old code. A
developer working in the user interface module probably cares about which characters
are deleted by the backspace key. With the new code, this is obvious. With the old

42

General-Purpose Modules are Deeper

code, the developer had to go to the text class and read the documentation and/or code
of the backspace method to verify the behavior. Furthermore, the general-purpose
approach has less code overall than the specialized approach, since it replaces a large
number of special-purpose methods in the text class with a smaller number of general-
purpose ones.

A text class implemented with the general-purpose interface could potentially be
used for other purposes besides an interactive editor. As one example, suppose you
were building an application that modified a specified file by replacing all occurrences
of a particular string with another string. Methods from the specialized text class, such
as backspace and delete, would have little value for this application. However, the
general-purpose text class would already have most of the functionality needed for the
new application. All that is missing is a method to search for the next occurrence of a
given string, such as this:

Position findNext(Position start, String string);

Of course, an interactive text editor is likely to have a mechanism for searching and
replacing, in which case the text class would already include this method.

6.4 Generality leads to better information hiding

The general-purpose approach provides a cleaner separation between the text and user
interface classes, which results in better information hiding. The text class need not
be aware of specifics of the user interface, such as how the backspace key is han-
dled; these details are now encapsulated in the user interface class. New user interface
features can be added without creating new supporting functions in the text class. The
general-purpose interface also reduces cognitive load: a developer working on the user
interface only needs to learn a few simple methods, which can be reused for a variety
of purposes.

The backspace method in the original version of the text class was a false abstrac-
tion. It purported to hide information about which characters are deleted, but the user
interface module really needs to know this; user interface developers are likely to read
the code of the backspace method in order to confirm its precise behavior. Putting
the method in the text class just makes it harder for user interface developers to get
the information they need. One of the most important elements of software design is
determining who needs to know what, and when. When the details are important, it
is better to make them explicit and as obvious as possible, such as the revised imple-

43

General-Purpose Modules are Deeper

mentation of the backspace operation. Hiding this information behind an interface just
creates obscurity.

6.5 Questions to ask yourself

It is easier to recognize a clean general-purpose class design than it is to create one.
Here are some questions you can ask yourself, which will help you to find the right
balance between general-purpose and special-purpose for an interface.

What is the simplest interface that will cover all my current needs? If you reduce
the number of methods in an API without reducing its overall capabilities, then you are
probably creating more general-purpose methods. The special-purpose text API had
at least three methods for deleting text: backspace, delete, and deleteSelection.
The more general-purpose API had only one method for deleting text, which served
all three purposes. Reducing the number of methods makes sense only as long as the
API for each individual method stays simple; if you have to introduce lots of addi-
tional arguments in order to reduce the number of methods, then you may not really
be simplifying things.

In how many situations will this method be used? If a method is designed for one
particular use, such as the backspace method, that is a red flag that it may be too
special-purpose. See if you can replace several special-purpose methods with a single
general-purpose method.

Is this API easy to use for my current needs? This question can help you to deter-
mine when you have gone too far in making an API simple and general-purpose. If
you have to write a lot of additional code to use a class for your current purpose, that’s
a red flag that the interface doesn’t provide the right functionality. For example, one
approach for the text class would be to design it around single-character operations:
insert inserts a single character and delete deletes a single character. This API is
both simple and general-purpose. However, it would not be particularly easy to use for
a text editor: higher-level code would contain lots of loops to insert or delete ranges
of characters. The single-character approach would also be inefficient for large opera-
tions. Thus it’s better for the text class to have built-in support for operations on ranges
of characters.

44

General-Purpose Modules are Deeper

6.6 Push specialization upwards (and downwards!)

Most software systems must inevitably have some code that is specialized. For ex-
ample, applications provide specific features for their users; these are often highly
specialized. Thus it isn’t usually possible to eliminate specialization altogether. How-
ever, specialized code should be cleanly separated from general-purpose code. This
can be done by pushing the specialized code either up or down in the software stack.

One way to separate specialized code is to push it upwards. The top-level classes
of an application, which provide specific features, will necessarily be specialized for
those features. But this specialization need not percolate down into the lower-level
classes that are used to implement the features. We saw this in the editor example
earlier in this chapter. The original student implementation leaked specialized user-
interface details such as the behavior of the backspace key down into the implementa-
tion of the text class. The improved text API pushed all of the specialization upwards
into the user interface code, leaving only general-purpose code in the text class.

Sometimes the best approach is to push specialization downwards. One example
of this is device drivers. An operating system typically must support hundreds or
thousands of different device types of devices, such as different kinds of secondary
storage devices. Each of these device types has its own specialized command set. In
order to prevent specialized device characteristics from leaking into the main operating
system code, operating systems define an interface with general-purpose operations
that any secondary storage device must implement, such as “read a block” and “write
a block”. For each different device, a device driver module implements the general-
purpose interface using the specialized features of that particular device. This approach
pushes specialization down into the device drivers, so that the core of the operating
system can be written without any knowledge of specific device characteristics. This
approach also makes it easy to add new devices: if a device has enough features to
implement the device driver interface, it can be added to the system with no changes
to the main operating system.

6.7 Example: editor undo mechanism

In the GUI editor project, one of the requirements was to support multi-level undo/redo,
not just for changes to the text itself, but also for changes in the selection, insertion cur-
sor, and view. For example, if a user selects some text, deletes it, scrolls to a different
place in the file, and then invokes undo, the editor must restore its state to what it was

45

General-Purpose Modules are Deeper

just before the deletion. This includes restoring the deleted text, selecting it again, and
also making the selected text visible in the window.

Some of the student projects implemented the entire undo mechanism as part of the
text class. The text class maintained a list of all the undoable changes. It automatically
added entries to this list whenever the text was changed. For changes to the selection,
insertion cursor, and view, the user interface code invoked additional methods in the
text class, which then added entries for those changes to the undo list. When undo or
redo was requested by the user, the user interface code invoked a method in the text
class, which then processed the entries in the undo list. For entries related to text, it
updated the internals of the text class; for entries related to other things, such as the
selection, the text class called back to the user interface code to carry out the undo or
redo.

This approach resulted in an awkward set of features in the text class. The core of
undo/redo consists of a general-purpose mechanism for managing a list of actions that
have been executed and stepping through them during undo and redo operations. The
core was located in the text class along with special-purpose handlers that implemented
undo and redo for specific things such as text and the selection. The special-purpose
undo handlers for the selection and the cursor had nothing to do with anything else
in the text class; they resulted in information leakage between the text class and the
user interface, as well as extra methods in each module to pass undo information back
and forth. If a new sort of undoable entity were added to the system in the future, it
would require changes to the text class, including new methods specific to that entity.
In addition, the general-purpose undo core had little to do with the general-purpose
text facilities in the class.

These problems can be solved by extracting the general-purpose core of the undo/redo
mechanism and placing it in a separate class:

pubTlic class History {
public interface Action {
pubTlic void redo();
pubTlic void undo(Q);
3

History() {...}

void addAction(Action action) {...}
void addFence() {...}

void undo() {...}

46

General-Purpose Modules are Deeper

void redo() {...}

3
In this design, the Hi story class manages a collection of objects that implement the in-
terface History.Action. Each History.Action describes a single operation, such
as a text insertion or a change in the cursor location, and it provides methods that can
undo or redo the operation. The History class knows nothing about the information
stored in the actions or how they implement their undo and redo methods. History
maintains a history list describing all of the actions executed over the lifetime of an ap-
plication, and it provides undo and redo methods that walk backwards and forwards
through the list in response to user-requested undos and redos, calling undo and redo
methods in the History.Actions.

History.Actions are special-purpose objects: each one understands a particu-
lar kind of undoable operation. They are implemented outside the History class, in
modules that understand particular kinds of undoable actions. The text class might im-
plement UndoabTeInsert and UndoabTleDelete objects to describe text insertions
and deletions. Whenever it inserts text, the text class creates a new UndoableInsert
object describing the insertion and invokes History.addAction to add it to the his-
tory list. The editor’s user interface code might create UndoableSelection and
UndoableCursor objects that describe changes to the selection and insertion cursor.

The History class also allows actions to be grouped so that, for example, a sin-
gle undo request from the user can restore deleted text, reselect the deleted text, and
reposition the insertion cursor. To implement grouping the History class uses fences,
which are markers placed in the history list to separate groups of related actions. Each
call to History.redo walks backwards through the history list, undoing actions until
it reaches the next fence. The placement of fences is determined by higher-level code
by invoking History.addFence.

This approach divides the functionality of undo into three categories, each of which
is implemented in a different place:

* A general-purpose mechanism for managing and grouping actions and invoking

undo/redo operations (implemented by the History class).

* The specifics of particular actions (implemented by a variety of classes, each of

which understands a small number of action types).

* The policy for grouping actions (implemented by high-level user interface code

to provide the right overall application behavior).
Each of these categories can be implemented without any understanding of the other
categories. The History class does not know what kind of actions are being undone; it

47

General-Purpose Modules are Deeper

could be used in a variety of applications. Each action class understands only a single
kind of action, and neither the History class nor the action classes needs to be aware
of the policy for grouping actions.

The key design decision was the one that separated the general-purpose part of
the undo mechanism from the special-purpose parts, creating a separate class for the
general-purpose part and pushing the special-purpose parts down into subclasses of
History.Action. Once that was done, the rest of the design fell out naturally.

Note: the suggestion to separate general-purpose code from special-purpose code
refers to code related to a particular mechanism. For example, special-purpose undo
code (such as code to undo a text insertion) should be separated from general-purpose
undo code (such as code to manage the history list). However, it may make sense to
combine special-purpose code for one mechanism with general-purpose code for an-
other. The text class is an example of this: it implements a general-purpose mechanism
for managing text, but it includes special-purpose code related to undoing. The undo
code is special-purpose because it only handles undo operations for text modifications.
It doesn’t make sense to combine this code with the general-purpose undo infrastruc-
ture in the History class, but it does make sense to put it in the text class, since it is
closely related to other text functions.

6.8 Eliminate special cases in code

Up until this point I have been discussing specialization in the context of class and
method design. Another form of specialization occurs in the code for method bodies,
in the form of special cases. Special cases can result in code that is riddled with if
statements, which make the code hard to understand and are prone to bugs. Thus,
special cases should be eliminated wherever possible. The best way to do this is by
designing the normal case in a way that automatically handles the edge conditions
without any extra code.

In the text editor project, students had to implement a mechanism for selecting text
and copying or deleting the selection. Most students introduced a state variable in their
selection implementation to indicate whether or not the selection exists. They probably
chose this approach because there are times when no selection is visible on the screen,
so it seemed natural to represent this notion in the implementation. However, this
approach resulted in numerous checks to detect the “no selection” condition and handle
it specially.

The selection handling code can be simplified by eliminating the “no selection”

48

General-Purpose Modules are Deeper

special case, so that the selection always exists. When there is no selection visible on
the screen, it can be represented internally with an empty selection, whose starting and
ending positions are the same. With this approach, the selection management code can
be written without any checks for “no selection”. When copying the selection, if the
selection is empty then O bytes will be inserted at the new location; if implemented
correctly, there will be no need to check for O bytes as a special case. Similarly,
it should be possible to design the code for deleting the selection so that the empty
case is handled without any special-case checks. Consider a selection all on a single
line. To delete the selection, extract the portion of the line preceding the selection and
concatenate it with the portion of the line following the selection to form the new line.
If the selection is empty, this approach will regenerate the original line.

Chapter 10 will discuss exceptions, which create many more special cases, and
how to reduce the number of places where they must be handled.

6.9 Conclusion

Unnecessary specialization, whether in the form of special-purpose classes and meth-
ods or special cases in code, is a significant contributor to software complexity. Spe-
cialization can’t be eliminated completely, but with good design you should be able to
reduce it significantly and separate specialized code from general-purpose code. This
will result in deeper classes, better information hiding, and simpler and more obvious
code.

49

Better Together Or Better Apart?

9.8 A different opinion: Clean Code

In the book Clean Code', Robert Martin argues that functions should be broken up
based on length alone. He says that functions should be extremely short, and that even
10 lines is too long:

The first rule of functions is that they should be small. The second rule of
functions is that they should be smaller than that.... Blocks within if statements,
else statements, while statements, and so on should be one line long. Probably
that line should be a function call.... This also implies that functions should not be
large enough to hold nested structures. Therefore, the indent level of a function
should not be greater than one or two. This, of course, makes the functions easier
to read and understand.

I agree that shorter functions are generally easier to understand than longer ones. How-
ever, once a function gets down to a few dozen lines, further reductions in size are
unlikely to have much impact on readability. A more important issue is: does breaking
up a function reduce the overall complexity of the system? In other words, is it easier
to read several short functions and understand how they work together than it is to read
one larger function? More functions means more interfaces to document and learn.
If functions are made too small, they lose their independence, resulting in conjoined
functions that must be read and understood together. When this happens, then it’s bet-
ter to keep the larger function, so all of the related code is one place. Depth is more
important than length: first make functions deep, then try to make them short enough
to be easily read. Don’t sacrifice depth for length.

9.9 Conclusion

The decision to split or join modules should be based on complexity. Pick the structure
that results in the best information hiding, the fewest dependencies, and the deepest
interfaces.

I Clean Code, Robert C. Martin, Pearson Education, Inc., Boston, MA 2009

76

Why Write Comments? The Four Excuses

and there is a risk of bugs if the new developer misunderstands the original designer’s
intentions. Comments are valuable even when the original designer is the one making
the changes: if it has been more than a few weeks since you last worked in a piece of
code, you will have forgotten many of the details of the original design.

Chapter 2 described three ways in which complexity manifests itself in software
systems:

Change amplification: a seemingly simple change requires code modifications in

many places.

Cognitive load: in order to make a change, the developer must accumulate a large

amount of information.

Unknown unknowns: it is unclear what code needs to be modified, or what infor-

mation must be considered in order to make those modifications.
Good documentation helps with the last two of these issues. Documentation can re-
duce cognitive load by providing developers with the information they need to make
changes and by making it easy for developers to ignore information that is irrelevant.
Without adequate documentation, developers may have to read large amounts of code
to reconstruct what was in the designer’s mind. Documentation can also reduce the
unknown unknowns by clarifying the structure of the system, so that it is clear what
information and code is relevant for any given change.

Chapter 2 pointed out that the primary causes of complexity are dependencies and
obscurity. Good documentation can clarify dependencies, and it fills in gaps to elimi-
nate obscurity.

The next few chapters will show you how to write good documentation. They will
also discuss how to integrate documentation-writing into the design process so that it
improves the design of your software.

12.6 A different opinion: comments are failures

In his book Clean Code, Robert Martin takes a more negative view of comments:

. comments are, at best, a necessary evil. If our programming languages
were expressive enough, or if we had the talent to subtly wield those languages to
express our intent, we would not need comments very much — perhaps not at all.

The proper use of comments is to compensate for our failure to express our-
selves in code.... Comments are always failures. We must have them because we
can’t always figure out how to express ourselves without them, but their use is not
a cause for celebration.

99

Why Write Comments? The Four Excuses

I agree that good software design can reduce the need for comments (particularly
those in method bodies). But comments do not represent failures. The information
they provide is quite different from that provided by code, and this information can’t
be represented in code today. Code and comments are each well-suited to the things
they represent and they each provide important benefits; even if the information in
comments could somehow be captured in code, it’s unclear that this would be an im-
provement.

One of the purposes of comments is to make it it unnecessary to read the code: for
example, instead of reading the entire body of a method, a developer can read a short
interface comment to get all the information they need in order to invoke the method.
Martin takes the opposite tack: he advocates replacing comments with code. Instead
of writing a comment to explain what is happening in a block of code in a method,
Martin suggests pulling that block out into a separate method (with no comments) and
using the name of the method as a replacement for the comment. This results in long
names such as isLeastRelevantMultipleOfNextLargerPrimeFactor. Even with
all these words, names like this are cryptic and provide less information than a well-
written comment. And, with this approach, developers end up effectively retyping the
documentation for a method every time they invoke it!

I worry that Martin’s philosophy encourages a bad attitude in programmers, where
they avoid comments so as not to seem like failures. This could even result in good
designers coming under false criticism: “What’s wrong with your code that it requires
comments?”

Well-written comments are not failures. They increase the value of code and serve
a fundamental role in defining abstractions and managing system complexity.

100

Chapter 21

Decide What Matters

One of the most important elements of good software design is separating what matters
from what doesn’t matter. Structure software systems around the things that matter.
For the things that don’t matter as much, try to minimize their impact on the rest of the
system. Things that matter should be emphasized and made more obvious; things that
don’t matter should be hidden as much as possible.

Many of the ideas in the preceding chapters have at their heart the notion of separat-
ing what matters from what doesn’t. For example, this is what we do when designing
abstractions. The interface of a module reflects what matters to users of that module;
things that don’t matter to the module’s users should be hidden in the implementation,
where they are less obvious. When choosing a variable name, the goal is to pick a
few words that convey the most possible information about the variable and use those
in the name; these are the aspects of the variable that matter most. If performance
really matters for a module, then the design of the module should be structured around
achieving the performance goals; in the example of Section 20.4, this meant finding a
design where the performance-critical path had as few method calls and special-case
checks as possible, while still being clean, simple, and obvious.

21.1 How to decide what matters?

Sometimes things that are important are imposed as external constraints on a system,
such as performance in Section 20.4. More often it is up to the designer to determine
what matters. Even when there are external constraints, the designer must figure out
what matters most in achieving those constraints.

171

Decide What Matters

To decide what matters, look for leverage, where the solution to one problem also
allows many other problems to be solved, or where knowing one piece of information
makes it easy to understand many other things. For example, in the discussion of how
to store text in Section 6.2, a general-purpose interface for inserting and deleting ranges
of characters could be used to solve many problems, whereas specialized methods such
as backspace only solved a single problem. The general-purpose interface provided
more leverage. At the level of the text class interface, it didn’t matter whether the
interface was being invoked in response to the backspace key; all that really mattered
was that text needed to be deleted. An invariant is another example of a leverage
point: once you know an invariant for a variable or structure, you can predict how that
variable or structure will behave in many different situations.

It’s easier to determine what is most important if you have multiple options to
choose among. For example, when choosing a variable name, make a mental list of
words that relate to that variable, then pick a few of the words that convey the most
information. Use those words to form the variable name. This is an example of the
“design it twice” principle.

Sometimes it may not be obvious which things matter the most; this can be particu-
larly hard for younger developers who don’t have much experience. In these situations
I recommend making a hypothesis: “I think this is what matters most.” Then commit
to that hypothesis, build the system under that assumption, and see how it works out.
If your hypothesis was right, think about why it ended up being right, and what clues
there might have been that you can use in the future. If your hypothesis was wrong,
that’s still OK: think about why it ended up being wrong, and whether there were clues
that you could have used to avoid this choice. Either way, you will learn from the
experience and you will gradually make better and better choices.

21.2 Minimize what matters

Try to make as little matter as possible: this will result in simpler systems. For exam-
ple, try to minimize the number of parameters that must be specified to construct an
object, or provide default values that reflect most common usage. For things that do
matter, try to minimize the number of places where they matter. Information that is
hidden within a module doesn’t matter to code outside that module. If an exception
can be handled entirely at a low level in a system, then it doesn’t matter to the rest
of the system. If a configuration parameter can be computed automatically based on
system behavior (rather than exposing it for an administrator to choose manually) then

172

Decide What Matters

it no longer matters to administrators.

21.3 How to emphasize things that matter

Once you have identified the things that matter, you should emphasize them in the
design. One way to emphasize is with prominence: important things should appear in
places where they are more likely to be seen, such as interface documentation, names,
or parameters to heavily used methods. Another way to emphasize is with repetition:
key ideas appear over and over again. A third way to emphasize is with centrality. The
things that matter the most should be at the heart of the system, where they determine
the structure of things around them. One example is the interface for device drivers in
operating systems; this is a central idea because hundreds or thousands of drivers will
depend on it.

Of course, the converse is also true: if an idea is more likely to be seen, or if it
appears over and over again, or if it impacts a system’s structure in significant ways,
then that idea matters.

Similarly, things that don’t matter should be de-emphasized. They should be hid-
den as much as possible, they should not be encountered frequently, and they should
not impact the structure of the system.

21.4 Mistakes

In deciding what matters, there are two kinds of mistakes you can make. The first mis-
take is to treat too many things as important. When this happens, unimportant things
clutter up the design, adding complexity and increasing cognitive load. One example
is methods with arguments that are irrelevant to most callers. Another example is the
Java I/O interface discussed on page 26: it forced developers to be aware of the distinc-
tion between buffered and unbuffered I/O, even though this distinction is almost never
important (developers almost always want buffering and don’t want to waste time ask-
ing for it explicitly). Shallow classes are often the result of treating too many things as
important.

The second kind of mistake is to fail to recognize that something is important.
This mistake leads to situations where important information is hidden, or important
functionality is not available so developers must continually recreate it. This kind of
mistake impedes developer productivity and leads to unknown unknowns.

173

Decide What Matters

21.5 Thinking more broadly

The idea of focusing on what’s most important applies in other domains beside soft-
ware design. It’s also important in technical writing: the best way to make a document
easy to read is to identify a few key concepts at the beginning and structure the remain-
der of the document around them. When discussing the details of a system, it helps to
tie them back to the overall concepts.

Focusing on what is important is also a great life philosophy: identify a few things
that matter most to you, and try to spend as much of your energy as possible on those
things. Don’t fritter away all of your time on things that you don’t consider important
or rewarding.

The phrase “good taste” describes the ability to distinguish what is important from
what isn’t important. Having good taste is an important part of being a good software
designer.

174

