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In this appendix we explore some parallels between our results and some
recent results on global games.

Frankel, Morris, and Pauzner (2003) show that in global games, different
equilibria may be pinned down by vanishingly small noise. They also show
that a sufficient condition for an equilibrium in a global game to be robust
to the structure of noise is to be a weighted potential maximizer, provided

that the payoffs are own-action quasiconcave. These concepts are defined in
Section 6 of FMP as follows.

Definition A complete information game g is own-action quasiconcave if
for all © and opposing action profiles a_; € A_; and for all constants c, the

set {a; : gi(a;,a_;) > ¢} is convex.

Definition Action profile a* is a weighted potential mazimizer (WP-mazimizer)
of g if there exists a vector & € Ri and a weighted potential function v : A —

R with v(a*) > wv(a) for all a # a*, such that for all i, a;, a; € A; and
a_; € Afl',

v(ai, a—;) —v(aj,a_;) = &lgi(as, a_;) — gi(az, a_;)].



The results of Frankel, Morris, and Pauzner (2002) have parallels in our
setting. Namely, the games presented herein indeed have weighted potential
maximizers, and are own-action quasiconcave. Changing our setting in such
a way that the game no longer has a potential leads to the dependence of
equilibrium on the structure of noise.

We focus our attention on the case with no discounting; the results do

not change if we consider 3 < 1, but presentation gets more complicated.

1 Potentiality of “Noiseless” I'(1)

Consider a “noiseless” version of game I'(1), where t; = p;.

IL(t;) = —ci(te —t;) — dits
i(t;) = ¢ — (¢ + d;)x(player i is last),

and therefore payoffs 1I; are own-action quasiconcave.

To show that this is also a weighted potential game, let v(t) = > s;t; — L,

where s; is the support ratio of player i. Let § = ——. Then

cit+d; *
vty t) —o(tht_y) = [sit; — t] — [siti — t.]
. [Citi — (Ci + dl)t*] — [Clt; — (Ci + dz)t;]
N C; + dz

= & (i(ti, t) — (L, t—4)) -

Thus, v(t) = [>_ sit; — L] is a weighted potential function of “noiseless”
['(1). If > s; < 1, this function is maximized at a certain value of ¢ (since we
assume that target arrival times are bounded from below), and “noisy” I'(1)
has a unique equilibrium with adoption. When > s; > 1, v is unbounded
(adding the same constant 7 to all ¢; increases v by (> s; —1)7), and I'(1)
has no equilibrium with adoption. When ) s; = 1, there is a continuum of

values of ¢ maximizing function v (since adding the same constant to all target



arrival times t; leaves function v unchanged), and I'(1) has a continuum of

equilibria with adoption.

2 Potentiality of the Adoption Game with
Gradual Network Externalities and Iden-

tical Players

We now show that the game with identical players and gradual network
externalities also has a potential function (the proof of its own-action qua-
siconcavity is very similar to the proof of I'(1)’s own-action quasiconcavity,
and is thus omitted). Namely, let v(t) = —[d(1)t! + d(2)t> + - - + d(N)tV],
where t! is the actual compliance time of the earliest adopter, ¢? is the actual

compliance time of the next adopter, and so on. Then

% = —d(1)x(player i is first)

—d(2)x(player i is second)

—d(N)x(player i is last).

The expected net benefit of player ¢ from delaying his compliance time by
dPi;
G

d(2)x(player i is second) — --- — d(NN)x(player i is last), and so v(t;,t_;) —
v(th,t;) = (¢, t—;) — IL;(¢;, t_;). Therefore, v is a potential function of the

game with gradual network externalities and identical players. Just like in

an infinitesimal amount of time is also equal to —d(1)x(player i is first)—

the game I'(1), one can verify that this potential function has a (unique)
maximizer if and only if the corresponding game has a (unique) equilibrium

where players adopt the standard.



3 The Game with Gradual Network Exter-

nalities and Different Players

A general game with gradual network externalities and different players no

longer has a weighted potential function (this can be checked by comparing

cross-derivatives gg?'), and so we do not necessarily expect equilibria to be
J

robust to the form of noise. Indeed, the following counterexample presents a
game with gradual network externalities and different payoffs, in which the
existence of equilibrium depends on the structure of noise.

There are three players. The net payoff of player ¢ when he arrives kth is
equal to d;(k), given in the table below.

i\k| 1 3
1 1
1 1
112

In the first case, suppose that each player’s noise is distributed uniformly
on [0,¢]. Then it is an equilibrium for all players to target the same ar-
rival time—the expected marginal benefit from deviating by an infinitesi-
mal amount (we will call this “the expected first-day payoff”) is zero for
each player (proportional to (—1 4 0+ 1)/3 = 0 for players 1 and 2 and to
(=1 —=1+2)/3 =0 for player 3).

In the second case, consider the following form of noise. Players 1 and 2
either arrive very early ([0, ¢€]), or very late ([100¢, 101¢]), with equal proba-
bilities. Player 3’s noise, on the other hand, is still uniform on [0, ¢]. Then
this game has no equilibrium.

Indeed, suppose there is an equilibrium. It has to be in pure strategies,
since, holding other players’ strategies constant, a player’s expected payoff is
concave in his target arrival time. If players 1 and 2 target the same com-

pliance time, pick any one of them; otherwise, pick the one who targets the
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earlier time. Without loss of generality, assume player 1 is picked. Normalize
his earliest possible arrival compliance time to 0. Then it cannot be the case
that player 3 ever arrives later than 100e (because that would imply that
player 3’s target compliance time is greater than 99¢ and he never arrives
before €. That, in turn, would imply that player 1 arrives first more often
than he arrives last, making his expected first-day payoff negative, which is
impossible in equilibrium). Thus, player 3 always arrives before time 100e.
Therefore, for him to be the last one it has to be the case that both players 1
and 2 comply in the earlier of the two intervals, which happens with probabil-
ity .25. But then player 3’s first-day payoff is no more than .25%x2—.75x1 < 0,

which is impossible in equilibrium.
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