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When recruiters call me up and ask me for the three best people, I tell them, “No! I will give 
you the names of the six best.”

— Robert J. Gordon, Director of Graduate Placement, 
Northwestern University, Department of Economics

Harvard wants high schools to give class rank, but high schools do not want to.
— Senior Harvard official

Labor market institutions often suppress some information about job candidates. 
For example, students at the Stanford Graduate School of Business (GSB) are 

graded on a curve, resulting in transcripts that very accurately reflect students’ per-
formance. These transcripts, however, are not revealed to potential employers: 

the GSB has no policy on grade disclosure; your grades belong to you and 
it is your right to use them as you wish. Stanford’s nondisclosure norm 
among MBA students, however, has existed for nearly 40 years.1

Most top business schools have similar norms. High profile examples from other 
areas include Yale Law School, where first semester grades are credit/no credit. 
Stanford Medical School conceals from residency programs a part of the student’s 
record. Massachusetts Institute of Technology official undergraduate transcripts 
available to graduate schools and potential employers also suppress available  

1 http://www.gsb.stanford.edu/mba/academics/learning_methods.html, accessed March 22, 2007.
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Information Disclosure and Unraveling 
in Matching Markets†

By Michael Ostrovsky and Michael Schwarz*

This paper explores information disclosure in matching markets. 
A school may suppress some information about students in order 
to improve their average job placement. We consider a setting with 
many schools, students, and jobs, and show that if early contract-
ing is impossible, the same, “balanced” amount of information is 
disclosed in essentially all equilibria. When early contracting is 
allowed and information arrives gradually, if schools disclose the 
balanced amount of information, students and employers will not 
find it profitable to contract early. If they disclose more, some stu-
dents and employers will prefer to sign contracts before all informa-
tion is revealed. (JEL C78, D82, D83)
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information. They contain only full letter grades, while  internal transcripts distin-
guish between such grades as B+ and B−. Nearly 40 percent of high schools do 
not disclose class rank to colleges, even though some of them maintain it internally 
and report it when “absolutely necessary.”  2 In fact, more than 90 percent of private 
nonparochial schools do not disclose class rank (David A. Hawkins et al. 2005).

Concealing information need not require deliberate actions on the part of schools. 
If revealing full information is not in the interests of a school, it can add noise to 
transcripts by tolerating (or encouraging) grading policies that make grades less 
informative. Unless the dean clearly communicates expectations about grading 
standards, professors are likely to have different ideas regarding the appropriate 
grade for the average performance. Lack of consistent grading standards adds noise 
to transcripts, because luck of the draw determines the grading standard adopted by 
an instructor. A school can reduce this sort of noise by reporting an average grade 
in each class alongside the grade received by a student or by mandating the use of 
a forced curve in large classes. Inflated grades could also reduce informativeness 
of transcripts, perhaps unintentionally. For instance, after years of grade inflation, 
close to 50 percent of grades in undergraduate classes at Harvard College are A and 
A−, often erasing the differences between the good and the great. Figure 1 suggests 
that the informativeness of grades at Harvard, as measured by their entropy, has 
declined in recent years as the percentage of A and  A− grades has risen.3

All of the practices described above are similar from the employer’s perspective. 
Refusal to reveal part of the student record, inconsistent grading among instructors, 
or coarse transcripts are all “noise” that reduces the ability of potential employers 
to correctly judge the ability of students. The examples above suggest that at least 
some schools are either indifferent regarding how much information to reveal or 
prefer to conceal some information about the ability of their students; otherwise, 
they would try to implement policies that minimize the amount of noise in their 
transcripts.

There is an alternative channel through which information can be suppressed. 
Each semester before graduation a student’s transcript becomes longer and more 
informative. Even if schools make transcripts as informative as possible, students 
and employers may choose to contract significantly before graduation, thus lead-
ing to incomplete information disclosure. We say that unraveling occurs when the 
timing of contracting reduces the amount of available information in a dynamic 
setting. Early action and early decision admission programs at many selective col-
leges (Christopher Avery, Andrew Fairbanks, and Richard Zeckhauser 2003) are 
examples of unraveling. These programs allow high school students to submit their 
applications in the fall of their senior year, and admission decisions are made before 
fall semester grades are available (in contrast to the regular admission process, 
which takes fall semester grades into account). The market for law clerks (Avery 
et al. 2001) is another dramatic example of unraveling. Avery et al. (2001) report 

2 “Schools Avoid Class Ranking, Vexing Colleges,” New york Times, March 5, 2006.
3 Some of Harvard’s policies actually encourage grade inflation. An instructor who gives an F or a D is asked 

to write a note explaining the reasons for the poor performance of a student. In contrast, instructors who give 
many A grades are not asked to explains their reasons.
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that interviews for clerkship positions are held at the beginning of the second year 
of three-year law school programs, when only one-third of the students’ grades 
are available. Clearly, a lot of information is withheld. Alvin E. Roth and Xiaoling 
Xing (1994) describe several other markets in which the timing of transactions has 
unraveled.

This paper shows that there is a remarkably close connection between the equilib-
rium (or “balanced”) amount of information revealed by schools in the static envi-
ronment and the incentive for students and employers to unravel in the dynamic 
environment. If schools disclose the balanced amount of information, students and 
employers will not find it profitable to contract early. If they disclose more, unravel-
ing will occur.

I.  Information Disclosure in a Static Environment

We begin our analysis in the static model. Schools evaluate students and give 
them transcripts. Subsequently, these transcripts are used by outsiders (e.g., employ-
ers, professional schools, clerkship positions) in their hiring decisions. We assume 
that the ability of each student and the distribution of students among schools are 
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Figure 1. The Informativeness of Grades at Harvard

Notes: The dashed line shows the percentage of A- grades and A grades among all grades at 
Harvard. The solid line shows the entropy of the distribution of grades. We use entropy as a 
proxy for the informativeness of grades. It is equal to (− ∑ i  

 
     si ln(si)), where i ranges from the 

worst grade to the best, and si is the share of grade i among all grades. If all students receive 
the same grade, no information is revealed and entropy is minimized. If a transcript structure 
is modified in a way that reduces the amount of information (e.g., students who had a C or a D 
grade can no longer be distinguished), entropy goes down.
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given exogenously.4 We also assume that wages offered by employers are inflexible, 
and so the supply of placement slots of a given desirability is exogenously fixed.5

The ability of students is perfectly observed by schools, but not by outsiders. 
Each school decides how much information to reveal in its transcripts in order to 
maximize the average desirability of placement of its alumni. Outsiders use tran-
scripts to infer the expected ability of students and rank them solely according to 
their expected ability. The desirability of each position is common knowledge, and 
students rank positions based on desirability. Thus, all students have the same pref-
erences and so do all recruiters.

The key feature of our model is that by introducing noise in students’ transcripts, 
a school can change the distribution of desirabilities of positions to which its stu-
dents are matched in the job market. Consider, for instance, the competition for 
admission to medical schools. Introducing noise into transcripts may enable a col-
lege to increase placement into moderately desirable medical schools at the cost of 
reducing the number of students placed at top medical schools. The aggregate distri-
bution of positions in the job market does not depend on the transcripts given out by 
schools, and so the total desirability of placements is constant. However, as we will 
see in the next section, in a broad range of situations, noise is a necessary feature of 
transcripts given out in equilibrium.6

Consider a population of students. The ability of each student is a real number a 
in the interval [aL  , ah  ]. Each student attends one of I schools. The distribution λi(·) 
of ability levels at each school i is continuous, exogenous, and commonly known. 
Without loss of generality, we assume that schools observe the true abilities of their 
students.7 Each school decides how much of this information to reveal, i.e., how pre-
cise to make its transcripts. A school can make transcripts completely informative, 
revealing the ability level of each student, or it can make them completely uninfor-
mative, or anything in between.

Formally, a school chooses a transcript structure, which is a mapping from the 
abilities of students into expected abilities   ̂     a  ∈ [aL  , ah  ]. This mapping may be sto-
chastic, i.e., for each ability a there can be a probability distribution over the set 
of expected abilities   ̂     a  that a student of ability a can get. However, this mapping 
has to be statistically correct, in the following sense: the average ability of students 
“labeled” with expected ability   ̂     a  in school i has to equal   ̂     a .

4 The effects of allowing agents in a matching market to invest in their “quality” are analyzed in Harold L. 
Cole, George J. Mailath, and Andrew Postlewaite (1992, 2001); Michael Peters and Aloysius Siow (2002); Peters 
(2007); and Ed Hopkins (2010).

5 One can show that our results remain valid when the wages of some (or all) firms are flexible. Moreover, 
if the wages of all firms are flexible, then under full information revelation the wage schedule will be convex in 
ability (see Michael Sattinger 1993, for a survey of the literature on assignment models with flexible wages), and 
therefore, as we explain in the discussion following Theorem 1, full information revelation by all schools will be 
an equilibrium outcome.

6 Several recent papers study strategic disclosure of information in a variety of environments (Steven Matthews 
and Postlewaite 1985; Masahiro Okuno-Fujiwara, Postlewaite, and Kotaro Suzumura 1990; Alessandro Lizzeri 
1999; Archishman Chakraborty and Rick Harbaugh 2007). The distinguishing features of our setup are the gen-
eral equilibrium approach and the competitive nature of the market.

7 Suppose nobody observes the true ability, but each school observes a signal regarding the true ability of 
each of its students. Based on this signal, a school can form an expectation about a student’s ability. All results 
in the paper continue to hold if instead of “true ability” we use “expected ability based on information available 
to schools.”
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DEFINITION 1: A transcript structure is a function f(· | ·), where f(  ̂     a  | a) is a 
probability distribution with which a student of ability a ∈ [aL  , ah ] is mapped to 
expected ability   ̂     a , such that the average ability of students labeled with expected 
ability   ̂     a  is equal to   ̂     a .8

Essentially, the definition says that schools give out grades and transcripts to stu-
dents using some commonly known grading scheme, and then employers can back 
out each student’s expected ability based on his or her transcript, the grading scheme, 
and the distribution of student abilities in the school. We assume that schools can 
commit to their transcript structure. This is not a critical assumption.9 What is criti-
cal is that employers know the distribution of transcripts given out by a school, as 
well as the distribution of student abilities there. Employers know the distribution of 
transcripts if they receive applications from many candidates from a given school. 
Likewise, the distribution of student abilities in large schools is known to recruit-
ers fairly well, at least if it does not change drastically year-to-year. We rule out the 
possibility that a school can “fool” employers into thinking that it has better students 
than it actually does by giving out too many good grades (as in William Chan, Hao 
Li, and Wing Suen 2007), and focus solely on information compression. This restric-
tion is conceptually similar to the one made by Matthew O. Jackson and Hugo F. 
Sonnenschein (2007), who show that by linking independent decisions and requiring 
each agent to report a vector of his realized types in these decisions that mirrors the 
underlying distribution of types, a mechanism designer can essentially relax incentive 
constraints as the number of independent decisions becomes large. The key differ-
ence between our restriction and theirs is that in our case, while the schools cannot lie 
“on average,” they do have the ability to compress the distribution of reported student 
abilities, whereas in the case of Jackson and Sonnenschein (2007), the mechanism 
designer requires the reported distribution of types to coincide with the expected one.

After schools announce transcript structures and announce expected abilities of 
their students, students and positions are matched. On one side of the market there 
is a population of students. On the other side of the market there is a set of positions. 
The desirability of each position, q ∈ [ qL  , qh ], is common knowledge. The distri-
bution μ(·) of position desirabilities is continuous, exogenous, commonly known, 
and has positive density on [ qL  , qh ]. The mass of positions is equal to the mass 
of students.10 Students rank positions by desirability, and employers rank students 
by expected ability.11 The resulting rankings induce a unique (up to permutations 

8 This definition is very similar to the definition of “information structure” in Dirk Bergemann and Martin 
Pesendorfer (2007). That paper, however, considers information disclosure in a very different environment (a 
single-seller, single-object auction), whereas we consider a matching market.

9 If schools could not commit to their transcript structures, equilibrium information disclosure that we explore 
in the following section would still remain an equilibrium outcome of the resulting cheap-talk game (see Vincent 
P. Crawford and Joel Sobel 1982, for a formal analysis of cheap-talk games). Of course, the cheap-talk game has 
many other equilibria.

10 This is not a restrictive assumption, because unemployment can be viewed as a position of the lowest desir-
ability, and because if the mass of positions is greater than the total mass of students, the same subset of positions 
gets assigned a student under any information disclosure.

11 As long as the output of a worker is a function of his ability, we can find a rescaling of ability, such that a 
particular firm is indifferent between having a worker of ability a0 for sure and a worker of uncertain ability with 
expectation a0. However, we do have to assume that this rescaling is the same for all firms.
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of equally desirable positions) assortative stable matching between students and 
positions.

Each school selects a transcript structure to maximize the total desirability of 
positions obtained by its students. Each school is small relative to the labor market 
and is a “price taker”—its actions have no effect on the placement of students of a 
given expected ability.12

The following series of examples illustrates the model. In these examples, we 
discuss equilibrium information disclosure—the concept we formally define in the 
following section.

Example 1: Student abilities at each school are distributed uniformly on [ 0, 100 ], 
and position desirabilities are also distributed uniformly on [ 0, 100 ]. If all schools 
fully reveal student abilities (i.e., set   ̂     a  ≡ a), the resulting mapping Q from expected 
abilities to position desirabilities is linear (Q(  ̂     a ) =   ̂     a ), and no school can benefit by 
deviating. Thus, fully informative transcripts form an equilibrium.

Example 2: Now, suppose that at one-half of all schools, student abilities are 
 distributed uniformly on [ 0, 100 ], while the other half has a more able popula-
tion—student abilities are distributed uniformly on [ 50, 100 ]. There is a mass 0.5 of 
students at each type of school. There is also a mass 1 of positions, distributed uni-
formly on [ 0, 100 ], as before. If all schools fully reveal student abilities, the resulting 
mapping from expected abilities to desirabilities has two linear pieces:

 Q(  ̂     a ) = e
̂    a 
 __ 2   ,
     

  3  ̂     a 
 __ 

2
   − 50,

   for   ̂     a  ≤ 50      
for   ̂     a  ≥ 50.

 

For instance, a student with expected ability 50 is in the twenty-fifth percentile of the 
student population, and gets a job of the twenty-fifth desirability percentile. Figure 2 
illustrates this desirability mapping Q. Note that again, no school can benefit by 
deviating and suppressing some information. If a “better than average” school 
mixes some students of different abilities together, it gets exactly the same payoff as 
without mixing, while if an “average” school mixes students with abilities above 50 
and below 50, it gets a strictly lower payoff than without mixing.

Example 3: Finally, suppose that there is an “oversupply” of less able students: at 
one-half of all schools student abilities are distributed uniformly on [0, 100], while 
the other half has a less able population—student abilities are distributed uniformly 
on [0, 50]. As before, there is a mass 0.5 of students at each type of school and a mass 

12 This can be reconciled with a finite number of schools by using the standard general equilibrium approach; 
assume that there are I school types and an infinite number of schools of each type. Technically, different schools 
of the same type could select different transcript structures. However, in any equilibrium in which that could hap-
pen, the average transcript structure of schools of a given type would also be an optimal transcript structure for a 
school of that type to use, and so there exists another equilibrium with the same aggregate properties in which all 
schools of the same type behave identically.
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1 of positions, distributed uniformly on [0, 100]. Suppose each school reveals student 
abilities truthfully. Then the resulting mapping (Figure 3) is

 Q(  ̂     a ) = e
3̂    a  __ 
2
   ,
     

    ̂     a 
 __ 2   + 50,

   for   ̂     a  ≤ 50      
for   ̂     a  ≥ 50.

 

Now, consider a school that contains students of all true abilities from 0 to 100. 
The average placement obtained by its students is (75/2 + 175/2)/2 = 62.5. If the 
school deviates from full information revelation and, instead, adopts a “no grade 
disclosure” policy, then every student gets the same transcript, looks the same to 
employers, and has the expected ability 50. Consequently, the average placement 
obtained by the school’s students increases to 75! Therefore, full revelation is not an 
equilibrium in this example. What is?

Suppose each “worse than average” school reveals information truthfully, while 
each “average” school mixes students in such a way that the distribution of expected 
abilities there is the one plotted in Figure 4, panel B. Then one-third of expected 
abilities are distributed uniformly on [0, 50], and the remaining two thirds are dis-
tributed uniformly on [50, 75].13 Then the aggregate distribution of expected abilities 

13 Note that this distribution second-order stochastically dominates the distribution of true abilities at the 
“average” school, and therefore there exists a mixing of students generating such distribution of expected abilities.
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Figure 2. Desirability Mapping Q in Example 2 Under Full Information Revelation
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in the population is uniform on [0, 75], and the corresponding desirability mapping 
Q′ (plotted as the dashed line in Figure 3) is linear:

Q′(  ̂     a ) = e
4  ̂     a  __ 
3
   ,
    

100,
   for   ̂     a  ≤ 75      

for   ̂     a  ≥ 75.
 

This amount of information disclosure is an equilibrium.

II.  Equilibrium Information Disclosure

In our setup, the behavior of students and positions is straightforward. They get 
matched to the agents of the highest quality available to them on the other side of 
the market (in the next section, we give them some flexibility by allowing early 
contracting). Thus, we focus on the actions of schools and the resulting disclosure 
of information.

Let Φ = (f1, f2, … , fI  ) be a profile of transcript structures, and let g be the aggre-
gate distribution of expected abilities generated by Φ.

Figure 3. Desirability Mappings in Example 3

Notes: The solid line represents desirability mapping Q arising under full information revela-
tion. The dashed line represents desirability mapping Q′ arising in equilibrium.
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â



42 AMErIcAN EcoNoMIc JourNAL: MIcroEcoNoMIcs MAy 2010

DEFINITION 2: We say that function Q(·) on [aL, ah] is the desirability mapping 
corresponding to profile Φ if, given that schools give out grades in accordance 
with Φ, the expected desirability of a position matched with a student labeled with 
expected ability   ̂     a  is equal to Q(  ̂     a ). formally,

 •  Q(aL  ) = qL    ,

 •  Q(ah) = qh  ,

 •  for   ̂     a  ∈ (qL   , qh),
  — if g is continuous at   ̂     a , then Q(  ̂     a ) = μ−1(g(  ̂     a ));
  —  if g is discontinuous at   ̂     a , then Q(  ̂     a ) =  ∫ __ q   

 
__
 q  
    q dμ(q)/(μ( __

 q  ) − μ( __ q )), where
 __ q  = μ−1 (lima→  ̂  

  
 a − g(a)) and  

__
 q   = μ−1 (lima→  ̂  

  
 a + g(a)).
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Figure 4. Measures of True and Expected Abilities at an “Average” School in 
Example 3
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We denote by QT  (·) the desirability mapping that corresponds to the fully informa-
tive profile of transcript structures under which all student abilities are revealed 
truthfully.

We assume that if all abilities were revealed truthfully, the corresponding desir-
ability mapping QT  (·) would not switch from convexity to concavity infinitely often. 
In other words, there exists a finite increasing sequence of ability levels ai, starting at 
the lowest and ending at the highest true ability, such that QT  (·) is convex or concave 
on each interval [ai  , ai+1   ].

We now define our solution concept. We say that Φ is an equilibrium profile of 
transcript structures if each school maximizes the average placement of its students 
given the desirability mapping Q(·) corresponding to Φ. Formally:

DEFINITION 3: Take profile Φ, and consider the corresponding aggregate distri-
bution of expected student abilities g(·) and the resulting desirability mapping Q(·). 
Take any school i, its transcript structure fi under Φ, and the resulting distribution 
of expected student abilities in the school, gi(·). consider any alternative transcript 
structure f′i of school i, and the resulting distribution of expected student abilities, 
g′i(·). Profile Φ is an equilibrium profile of transcript structures if for any school i 
and any alternative transcript structure f′i , the average student placement at school 
i under the original transcript structure is at least as high as it is under the alterna-
tive one, keeping desirability mapping Q(·) fixed:

  ∫ 
aL

   

ah

    Q(  ̂     a ) dgi(  ̂     a )  ≥   ∫ 
aL

   

ah

    Q(  ̂     a ) dg′i   (  ̂     a ).

Before we can state the main result of this section, we need an additional definition.

DEFINITION 4: Let   ̂     a L be the lowest and   ̂     a h the highest expected ability levels pro-
duced in an equilibrium. Then we say that the equilibrium is connected if for every 
point   ̂     a  ∈ (  ̂     a L,   ̂     a h) there exists a school that produces students of all expected abili-
ties in some ε-neighborhood of    ̂     a .

Connectedness is a mild restriction. Indeed, if at least one school gives out some 
transcripts with the worst and the best possible expected abilities, and everything in 
between, this restriction is satisfied. Hence, if we observe a school that places stu-
dents in the entire spectrum of positions, then we can conclude that connectedness 
holds in the observed equilibrium. Even if such a school does not exist, for connect-
edness to fail, it would have to be the case that either there is a “hole” in reported 
ability levels, with some schools producing students of higher ability than a particu-
lar interval, some producing students of lower ability than a particular interval, and 
no school producing students with abilities in that interval; or the boundary in ability 
levels between some schools is extremely sharp, with one school producing students 
of abilities arbitrarily close to, but never higher than, some ability level, and another 
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school producing students arbitrarily close to, but never lower than, that ability level. 
Neither case seems realistic.14

Nevertheless, connectedness is a restriction on the solution concept, not on the 
primitives, and so it is important to address the theoretical question of the exis-
tence of connected equilibria. We discuss this question in detail in Appendix C, 
providing sufficient conditions for the existence of a connected equilibrium, giv-
ing an example of a market for which a connected equilibrium does not exist, 
and describing a general method for checking whether a market has a connected 
equilibrium.

We are now ready to state and prove the main result of this section. It says that in 
all connected equilibria, desirability mappings (and, therefore, the aggregate distri-
butions of expected abilities) are the same. In fact, they do not even depend on how 
students are assigned to schools. Only the aggregate distribution of student abilities 
and the distribution of position desirabilities matter.15

THEOREM 1: suppose there is a connected equilibrium with desirability map-
ping Q1(·). suppose students are reshuffled among schools so that the aggregate 
distribution of student abilities remains the same, but the distributions of abilities 
within schools possibly change, and suppose there is a new connected equilibrium 
with desirability mapping Q2(·). Then for any   ̂     a , Q1(  ̂     a ) = Q2(  ̂     a ), i.e., the desirability 
mappings coincide. Equivalently, the aggregate distribution of expected abilities in 
any connected equilibrium is uniquely determined by the distribution of position 
desirabilities and the aggregate distribution of true abilities, and does not depend 
on how these abilities are divided among schools.

The proof of Theorem 1 proceeds in several steps. First, we show that in any 
equilibrium, desirability mapping Q is an invertible, monotonically increasing, con-
tinuous function, i.e., no positive mass of students receives the same expected ability. 
Next, we show that in any connected equilibrium, the desirability mapping must be 
convex. Otherwise, as in Example 3, at least one school will be able to improve its 
payoff by mixing some students together. On the other hand, if a school does mix 
students on some interval, the desirability schedule there cannot be strictly con-
vex (and therefore has to be linear). Otherwise, the school would be better off by 
not mixing the students. Also, we show that the lowest expected ability produced 
in equilibrium has to be the same as the lowest true ability. The final, and most 
involved part of the proof, shows that there can only exist one desirability map-
ping satisfying the above properties for a given pair of distributions of desirabilities 
and true abilities. This part relies on the assumption that QT does not switch from 
convexity to concavity infinitely often on [aL, ah] and proceeds by induction on the 
number of its inflection points. Along the way, the proof shows how to construct 
the unique equilibrium desirability mapping and describes what happens in various 

14 In Appendix C, we discuss how a force outside of our model (arbitrage) would tend to eliminate non-
connected, nonconvex equilibria, which may explain why such equilibria are not observed in practice.

15 Of course, if there existed only one school, and all students went there, this school would be indifferent 
between all possible amounts of information disclosure. This situation, however, would violate our assumption of 
price-taking behavior by the schools.
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special cases. For instance, if QT is convex, then Q ≡ QT  . If QT is concave, then Q 
is linear on [aL  ,   ̂     a h] for some   ̂     a h, and no students have expected abilities above   ̂     a h in 
equilibrium. If QT is S-shaped, with inflection point   ̂     a i, then in equilibrium there will 
be “information compression at the top”—up to some level   ̂     a * ≤   ̂     a i, abilities will be 
revealed truthfully, and so Q and QT will coincide. Above   ̂     a *  , students of different 
abilities will be mixed together, and Q will be linear. Appendix A makes all of these 
statements formal and gives the full proof of Theorem 1.

Hence, the same amount of information is disclosed in all connected equilibria. 
We will call this the balanced amount of information—the amount that is disclosed 
in equilibrium when schools can release as little or as much information about their 
students as they want. Before proceeding further, we give a definition that makes 
the words “amount of information disclosure” precise. Note that if schools introduce 
more noise in their grades, the resulting distribution of expected abilities gets com-
pressed, and its variance decreases. This leads to a natural partial ordering on the 
set of profiles of transcript structures.

DEFINITION 5: Profile of transcript structures Φ is more informative than profile 
of transcript structures Φ′ if distribution g of expected abilities generated by Φ is 
second-order stochastically dominated by distribution g′ of expected abilities gen-
erated by Φ′.

This partial ordering has two extreme elements: the completely uninformative 
profile, which has zero variance, and the profile revealing all student abilities, which 
has the highest possible variance. Also, it is clear that a more informative profile has 
a higher variance than a less informative one, since the former is a mean-preserving 
spread of the latter.

The last result of this section is a corollary of Theorem 1. It says that if truthful 
revelation of abilities is an equilibrium (i.e., QT is convex), then there are no other 
connected equilibria.

COROLLARY 1: suppose there are multiple connected equilibria in a market, and 
one of them is fully informative. Then all other equilibria are also fully informative, 
and therefore the same.

PROOF:
By Theorem 1, the desirability mappings of all these equilibria have to be the 

same. Therefore, the distributions of expected abilities generated in these equilibria 
also have to be identical (since they are uniquely determined by the desirability map-
ping and the distribution of position desirability). But the fully informative equilib-
rium is strictly more informative than any other one, and so the other equilibria also 
have to be fully informative, and therefore the same.

We conclude this section with comments on efficiency implications of informa-
tion suppression. Our assumptions are insufficient to make unambiguous inferences 
about efficiency. Indeed, if higher student ability and higher position desirability 
are complements, then positive assortative matching is efficient, and therefore noisy 
transcripts will lead to a less efficient allocation of talent than fully informative ones. 
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If, however, they are substitutes, then negative assortative matching is efficient, and 
suppressing information will, in fact, lead to a more efficient allocation.

For instance, consider Example 3 from Section I. Suppose the value of interaction 
between the student of ability a and the position of desirability q is equal to qa, i.e., 
student ability and position desirability are complements. If schools and students are 
matched completely randomly, then the total social welfare from the interactions is 
equal to 50 × 37.5 = 1,875 (the average position desirability is 50, and the average 
student ability in the population is 37.5). If schools and students are matched effi-
ciently, i.e., better students are matched to better jobs, then the resulting matching 
has the desirability mapping shown by the solid line in Figure 3, and, integrating 
along the vertical axis, the total welfare is equal to

 ∫ 
0

   

100

    a(q)q dμ(q) =  ∫ 
0

   

75

      
2q

 ___ 
3
   q   1 ___ 

100
    dq  +   ∫ 

75

   

100

    (50 + 2(q − 75))q   1 ___ 
100

    dq = 2,604.17.

Finally, in equilibrium, the desirability mapping is given by the dashed line in 
Figure 3, and the total welfare is equal to (1/100)  ∫0  

100    (3/4)q2dq = 2,500. Thus, effi-
ciency losses due to information suppression in this example are approximately 
14 percent (as measured by the total surplus in equilibrium relative to the random 
assignment versus the socially optimal surplus relative to the random assignment).

Another dimension potentially important for evaluating efficiency is investment 
in human capital. In our model, a student’s ability is exogenously fixed. If learning 
entails costly effort, noisy transcripts reduce the effort of at least some students 
(William E. Becker, Jr. 1982). However, the efficiency loss may be small, because 
the loss in human capital is partially compensated by saved effort. Moreover, if sig-
naling high ability is merely a ticket to high-rent jobs, then noisy transcripts may be 
welfare-improving.

III.  Unraveling

Sections I and II analyze information disclosure in a static framework. In this sec-
tion, we take the actions of schools as given, but add a time dimension to the model. 
Students and positions can decide when to sign employment contracts. We show that 
there is a strong connection between the static concept of “balanced information dis-
closure” and an inherently dynamic phenomenon that frequently occurs in match-
ing markets—“unraveling,” or “early contracting,” i.e., contracting between students 
and positions before full information about the former is available. Examples of 
early contracting include early action and early decision admission programs at 
many selective colleges, which allow students to apply before fall semester grades 
of their senior year of high school are available (Avery, Fairbanks, and Zeckhauser 
2003); the market for federal judicial law clerks, where judges interview candidates 
two years prior to the beginning of the clerkships (Avery et al. 2001); and many oth-
ers (Roth and Xing 1994).

A frequently stated reason for early contracting is insurance. A student may prefer 
to contract early with a mediocre firm to avoid the possibility of being matched with 
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a really bad firm in case of a negative shock in the future (Li and Sherwin Rosen 
1998; Li and Suen 2000; Suen 2000).16 We consider this explanation in light of our 
model and establish a close, albeit not obvious, connection between information 
 disclosure and unraveling. To compute the balanced amount of information disclo-
sure, one only needs to know the distribution of ability in the population and the 
distribution of job desirability. It is easy to check that in situations where unraveling 
occurs due to insurance reasons, waiting until all information is revealed will lead 
to the disclosure of more than the balanced amount of information. This is not a 
coincidence. Theorems 2 and 3 show that if the balanced amount of information is 
revealed, no unraveling occurs. Consequently, if schools can control the amount of 
information disclosed to potential employers, the insurance reason for unraveling 
disappears. The intuition is simple. In equilibrium, due to the convexity of desirabil-
ity mapping Q(·), the expected placement that a student will get tomorrow is higher 
than the placement that he could get today.17

It may seem surprising that there is no unraveling under the balanced amount 
of information disclosure. After all, imagine all positions have similar desirability 
except for a few that are terrible, e.g., unemployment. Then one might think that 
students would be eager to sign contracts earlier to avoid this outcome. However, as 
the following example shows, this does not happen. What happens, instead, is that 
the balanced distribution of transcripts “mimics” the distribution of desirability—a 
small group of students gets very bad transcripts, and the rest get compressed tran-
scripts with little information beyond being much better than the bad transcript.

Example 4: Suppose mass 0.8 of position desirabilities is distributed uniformly 
on [80, 100] (“good jobs”), and mass 0.2 of position desirabilities is distributed uni-
formly on [0, 80] (“bad jobs”). Suppose also that student abilities in each school are 
distributed uniformly on [0, 100], and the total mass of students is 1 (Figure 5).

First, note that it is not an equilibrium for all schools to lump all students into one 
category. If they do, then a school can profitably deviate by separating a small frac-
tion of the worst students into a new category. Second, providing fully informative 
signals is not an equilibrium either. The resulting desirability mapping is concave, 
and so schools can benefit from mixing students (Figure 6). So, what is the balanced 
amount of information disclosure in this market?

It turns out that the desirability mapping corresponding to the balanced amount of 
information disclosure in this example is linear on the relevant range:

 Q′(  ̂     a ) = e
8 __ 
5
     ̂     a ,
    

100,
   for   ̂     a  ≤ 62.5        

for   ̂     a  ≥ 62.5,
 

16 Of course, this is not the only possible reason. Unraveling can also occur because of the use of an unstable 
matching mechanism, exercise of market power, small numbers of participants in a matching market, and other 
strategic reasons (Roth and Xing 1994; Avery, Fairbanks, and Zeckhauser 2003).

17 Our arguments rely on the assumption that not only ordinal, but also cardinal preferences of schools and 
students over positions coincide. Otherwise, unraveling may occur even if the balanced amount of information 
is disclosed.
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and the corresponding distribution of expected abilities, g, mimics the distribution 
of position desirabilities:

 g(  ̂     a ) = e
1 ___ 

250
      ̂      a, 
           

  1 __ 
5
    +    16 ___ 

250
   (  ̂     a  − 50),

   
for   ̂     a  ≤ 50

          
for 50 ≤   ̂     a  ≤ 62.5.

 

Of course, distribution g has the same mean as the distribution of “true” abilities 
(uniform on [0, 100] ), and second-order stochastically dominates it, so there exist 
transcript structures fi that give rise to distribution g of expected abilities. Figure 7 
illustrates the resulting distribution of expected ability and the corresponding desir-
ability mapping.

Notice that in this equilibrium there is no unraveling (or, more precisely, no 
incentive to unravel), since students become effectively risk-neutral. Consider a stu-
dent whose first-year transcript indicates an expected ability level corresponding to 
a particular job desirability. This student can secure a job corresponding to his cur-
rent expected ability, or he can wait for second-year grades. In the absence of private 
information about ability, the expected change in ability implied by the transcript 
must be zero. It is easy to see that the expected change in placement cannot be nega-
tive as a result of arrival of new information.

In the remainder of the section, we present a simple two-period model where 
no information is available in period 1, which is very similar to the model of Suen 
(2000).18 This similarity brings into focus the fact that the schools’ ability to control 
information undermines the insurance reason for unraveling. We then show that the 
result becomes much stronger if information arrives gradually. In that case, if more 
than the balanced amount of information is disclosed, unraveling will occur.

A. Two-period Model, Balanced Amount of Information

Suppose students stay in school for two periods. In period 1 no information about 
them is known. Therefore, for all students in school i, expected ability in period 1 
is the same,   ̂     a i. A student has no private information about his ability.19 Suppose 
employers and students can sign binding contracts in either year of study based on 
the information available at that period.

18 We should note that Suen’s (2000) model is more complicated. It involves wages. However, the main intu-
ition that unraveling is caused by workers’ demand for insurance can be applied to our model just as well, as we 
will show at the end of this section, when we demonstrate unraveling in environments in which schools cannot 
fully control information.

19 Even if students did have private information, unraveling would still not occur. In fact, the result would 
become even stronger. In the absence of private information, unraveling is a matter of indifference for both stu-
dents and positions. If students do have private information, adverse selection works against unraveling, because 
the lowest ability students have higher payoff from unraveling than observationally equivalent students of higher 
ability. Essentially, only the lowest ability students are eager to unravel, and unraveling cannot occur under equi-
librium information disclosure except for a set of measure zero.
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THEOREM 2: If, in period 2, schools reveal the balanced amount of information, 
then no position can increase the expected ability of its match by making an early 
offer.

PROOF:
Take a student from school i in period 1. His expected ability in period 1 is   ̂     a i. 

If he waits until period 2, more information about his ability will be revealed. His 
expected ability will become, say,   ̂     a ; and he will get a position of desirability Q(  ̂     a ). 
By the law of iterated expectations, Ei[   ̂     a  ] =   ̂     a i. Desirability mapping Q(·) is convex, 
and therefore Ei[ Q(  ̂     a )] ≥ Q(  ̂     a i ). Thus, a student will only accept an early offer from 
a position that is at least as desirable as Q(  ̂     a i ). But positions of desirability Q(  ̂     a i ) and 
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Desirability Mapping Q in Example 4
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higher get a student of expected ability at least   ̂     a i if they wait until period 2, and so 
they cannot benefit from moving early.

B. gradual Information Arrival

We now set up a continuous-time model of gradual information arrival, and show 
a close connection between unraveling and information disclosure.

Students are in school from time τ = 0 until time τ =  
_
 τ  . At time 0 no information 

about a student is known except for the school i that he attends. While the student 
stays in school, new information arrives continuously and is added to his transcript 
(we assume that information about students cannot disappear). Namely, at each time 
τ a potential employer can compute the student’s expected ability   ̂     a  τ based on the 
school and the current transcript. Since employers use Bayes’ rule to form beliefs 
about a student’s expected ability, the drift term must be zero and the process is a 
martingale. We assume that   ̂     a  τ for students in school i follows a diffusion process

(1) d    ̂     a  τ = σi(·) dz,

where diffusion parameter σi(·) is a bounded continuous function of τ and   ̂     a  τ  , such that 
the process does not leave the interval [aL, ah] and for all   ̂     a  ∈ (aL, ah), σi(  ̂     a ,  

_
 τ  ) > 0.

We also assume that for some τ <  
_
 τ  , function   ̂  

   
 Q i(  ̂     a  τ ′ , τ ′  ) = E[ Q(  ̂     a  _ τ  ) |   ̂     a τ  ′  , τ ′,   i ] is 

twice continuously differentiable for all τ ′ ∈ [ τ,  
_
 τ   ].20 Whenever expected ability 

follows such diffusion process, we will say that information arrives gradually. Also, 
we call the amount of information disclosed by schools at the end, i.e., at time  

_
 τ  , the 

actual amount of information disclosure.
Each position’s desirability is constant and commonly known, and any student-

position pair can enter into a binding match at any time. Unraveling occurs if at 
some time τ <  

_
 τ   there is a pair, student s and position P, that finds it profitable to 

sign such a contract.21

We now claim that it is an equilibrium for students and firms to sign contracts 
at time  

_
 τ   without contracting early if the actual amount of information released 

by schools (i.e., the amount of information disclosed at time  
_
 τ   ) coincides with the 

balanced amount of information. If more than the balanced amount of information 
is disclosed, some students and employers will find it profitable to sign contracts 
earlier.

THEOREM 3: suppose that information about ability of students arrives gradually 
(see equation (1)). If at time  

_
 τ   transcripts contain the balanced amount of informa-

tion, then it is an equilibrium for all students and positions to wait until time  
_
 τ   to 

sign contracts. If at time  
_
 τ   transcripts contain more than the balanced amount of 

20 More formally,   ̂  
   

 Q i(  ̂     a τ ′, τ ′) is twice continuously differentiable on the set of points {(a, τ ′) | τ ′ ∈ [ τ,  _ τ   ], a is 
in the domain of   ̂  

   
 Q i(·, τ ′)}.

21 It is profitable for the pair to sign such a contract if by waiting until time  
_
 τ  , P would get a student of expected 

ability no higher than the expected ability of s, given the information available at time τ; s, in expectation, would 
get a position of desirability no higher than that of P; and at least one of these two inequalities is strict.
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information, then some agents are strictly better off not waiting until time  
_
 τ   to sign 

contracts.

The proof of the first statement of Theorem 3 follows the same intuition as the 
proof of Theorem 2. If the balanced amount of information is disclosed at time  

_
 τ  , 

desirability mapping Q(·) is convex, making students effectively risk-neutral or risk-
seeking, and thus giving them an incentive to wait for additional information.

The proof of the second statement involves several steps. When the actual amount 
of information disclosed at time  

_
 τ   is between the balanced and the full amounts, 

we show that at the points of strict convexity of the balanced desirability mapping 
all three desirability mappings coincide, and students of abilities below and above 
such points are not mixed together. Thus, any additional information revelation in 
the actual versus the balanced amounts has to take place in an interval where the 
balanced desirability mapping is linear. But then at some expected ability level   ̂     a * 
in this interval, the actual desirability mapping Q(·) will be locally concave. This 
implies that at some time τ sufficiently close to  

_
 τ  , a student of expected ability   ̂     a * 

will strictly prefer immediately signing a contract with a position of desirability 
Q(  ̂     a *) to waiting until time  

_
 τ  . See Appendix B for the detailed proof.

IV.  Conclusion

Information suppression by schools is a widespread phenomenon, taking many 
forms from nondisclosure policies to coarse transcripts and inconsistent grading stan-
dards. We show that such behavior may be necessary in equilibrium. For many distri-
butions of student abilities and job desirabilities, if all schools revealed full information 
about their students, then some of them could benefit by giving similar transcripts to 
students of different abilities, thus increasing the placement into moderately desirable 
positions and reducing the placement into very desirable and very undesirable ones. 
We also show that an essentially unique amount of information is disclosed in all equi-
libria. We call this the balanced amount of information disclosure.

Schools are not the only actors in this market who can suppress information. By 
signing contracts early, students and employers can forgo the information about the 
students’ performance in the last few semesters. We show that these two seemingly 
distinct ways of suppressing information are, in fact, closely related. If schools dis-
close the balanced amount of information, students and employers will not find it 
profitable to contract early. If they disclose more, unraveling will occur.

The intuition behind this connection is very natural. Under the balanced amount 
of information disclosure, the mapping from expected student abilities inferred 
from their transcripts to job desirabilities must be convex; otherwise, a school could 
“mix” some students together and increase its payoff. Hence, if the balanced amount 
of information is disclosed at graduation, a student is effectively risk-neutral or even 
risk-seeking. In expectation, additional information does not hurt him. If, however, 
schools disclose more than the balanced amount of information, some parts of the 
ability–desirability mapping become concave, and students in the relevant ability 
range become effectively risk-averse, thus trying to avoid the arrival of future infor-
mation by contracting early.
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Educational institutions are often criticized for not revealing full and accurate 
information about their students, either by means of nondisclosure policies22 or 
as a result of grade inflation, which can compress grades so that they lose some 
of their informativeness.23 Our results show that information suppression may 
be inevitable. Even if schools reveal full information about their students, some 
of that information will be suppressed via a different channel—unraveling will 
occur. Unraveling in various markets and its consequences are documented in 
Roth and Xing (1994), Avery et al. (2001), and Muriel Niederle and Roth (2003). 
Avery et al. (2001) give many colorful quotes from judges and law school students 
who experience the effects of unraveling in the market for federal judicial law 
clerks, such as “The unseemly haste to hire law clerks is a disgrace to the federal 
bench” and, “Some judges scrapped decorum and even bare civility.”24 Anyone 
who claims that more information needs to be disclosed has to keep in mind the 
“unseemly haste” that may follow.

Appendix A: Proof of Theorem 1

We first show that in equilibrium there is a one-to-one mapping from expected 
ability to position desirability, i.e., the distribution of expected abilities, as well as the 
corresponding desirability mapping Q are continuous in equilibrium. This implies 
that Q is an invertible function.

LEMMA A1: In equilibrium, any two students of the same expected ability   ̂      a  obtain 
equally desirable positions.

PROOF:
Suppose in equilibrium students of expected ability   ̂     a  get jobs of desirabilities 

from q1 to q2, q1 < q2, i.e., there is a positive mass of students of expected ability   ̂     a . 
Let   ̂     q  be the average desirability that students of expected ability   ̂     a  get. q1 <   ̂     q  < q2. 
Since there is a positive mass of students of expected ability   ̂     a , there must be at least 
one school producing a positive mass of such students. This school has to include 
some students of lower ability and some students of higher ability in this mass. 
Thus, it can select a small subset from the mass (say, ε-share of the mass) such that 
its expected ability is   ̂     a  − δ, where δ is also small. Then the remaining mass has an 
expected  ability higher than   ̂     a , and therefore all students there get positions of desir-
ability q2 or higher. For sufficiently small ε and δ, the net change in average desir-
ability is positive, i.e., the school was able to improve upon its equilibrium transcript 
structure—contradiction.

Desirability mapping Q(·) is monotonically increasing. This, however, does not 
necessarily mean that a student of a higher true ability will get matched to a better 

22 “Campus Confidential,” Business Week, September 12, 2005.
23 “The Economics of Grade Inflation,” The Economist, March 7, 2002.
24 The quote continues, “One federal district court judge asked a student to sneak into his office on a Sunday 

in January, through the service entrance. His court had agreed not to conduct early interviews, he explained, and 
he wanted to cheat in secret.”
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position than a student of a lower true ability. If a school gives out transcripts that are 
not fully informative, the lower ability student may receive a better transcript than 
the higher ability student, and thus get a better position.

We will say that an equilibrium is fully informative at a particular value of posi-
tion desirability q if there is an ability level that is necessary and sufficient for 
receiving a position of this quality. More precisely, equilibrium is fully informative 
at desirability q and ability a if Q(a) = q, no students with true ability below a get 
matched with jobs of desirability above q, and no students with true ability above a 
get matched with jobs of desirability below q. It is straightforward to show that an 
equilibrium is fully informative (i.e., schools do not suppress any information) if and 
only if it is fully informative at every position desirability.

Now, suppose a school produces students of expected abilities b and c. This could 
only be optimal for the school if by mixing students of these abilities it could not 
raise its payoff, i.e., if αQ(b) + (1 − α)Q(c) ≥ Q(αb + (1 − α)c) for any α ∈ [0, 1]. 
Since this reasoning can be applied to every pair of points, and in a connected equi-
librium there is a school producing students in a neighborhood of any point, Q(  ̂     a ) 
has to be convex.

Next, if a school does mix students of true abilities b and c, by convexity of 
desirability mapping Q(  ̂     a ), this could only be optimal if the desirability mapping 
is linear on the interval [b, c]. Consequently, if Q(  ̂     a ) is strictly convex at a certain 
expected ability level a, it is fully informative at Q(a): students with ability above a 
get positions better than Q(a), and students with ability below a get positions worse 
than Q(a). Therefore, in that case, Q(a) = QT(a) (recall that QT(a) is the desirability 
mapping that would arise if all schools revealed all abilities truthfully).

The next lemma shows that the lowest expected ability produced by schools is 
equal to the lowest true ability. This is similar to the “lowest type not signaling” in 
a separating equilibrium of a signaling game.

LEMMA A2: In a connected equilibrium, let   ̂     a L be the lowest expected ability level, 
and aL be the lowest true ability level. Then   ̂     a L = aL.

PROOF:
It is clear that   ̂     a L ≥ aL, since it is impossible to produce students of expected abil-

ity lower than the lowest true ability.

Suppose   ̂     a L > aL. Take a school that has students of true ability aL (i.e., a 
positive mass of students of abilities (aL, aL + ε) for any positive ε). Since the 
school does not produce any students of ability below   ̂     a L, it has to “bundle” stu-
dents in the interval (aL, aL + ε) with higher ability students (0 < ε <   ̂     a L − aL  ). But 
then, since Q(  ̂     a ) is increasing and convex, the school would increase the aver-
age desirability of placements of its students by “unbundling” these low ability 
students—contradiction.

We are now ready to prove Theorem 1. The proof proceeds by induction on the 
number of intervals on which the convexity or concavity of QT(a) does not change 
(and, along the way, shows how to construct the equilibrium desirability mapping). 
For convenience, we will call such intervals “convexity intervals.” Recall that by 
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assumption, QT(a) does not switch from convexity to concavity infinitely often, and 
hence has a finite number of convexity intervals.25

Step 1: Suppose QT(a) has only one convexity interval.

Step 1: Case “Convex.” Suppose QT(a) is convex on [aL , ah]. Then truthful revela-
tion is an equilibrium profile of transcript structures. Suppose there is another equi-
librium profile of transcript structures Φ, involving some mixing of students, with 
desirability mapping Q(  ̂     a ) on [aL,   ̂     a h], where   ̂     a h ≤ ah. Take any point x1 on (aL,   ̂     a h) 
such that QT(x1  ) ≠ Q(x1). Equilibrium Φ is not fully informative at x1, and is there-
fore linear on some interval containing x1. Take the largest such interval [a1, a2]. 
Equilibrium Φ has to be fully informative at a1, and therefore QT(a1) = Q(a1).

With a2, there are two possibilities.
If a2 <   ̂     a h or a2 =   ̂     a h = ah, then Φ also has to be fully informative at a2, with 

QT   (a2) = Q(a2). But then QT is convex, Q is linear on [a1, a2], QT(a1) = Q(a1), QT(a2) 
= Q(a2), and QT(x1) ≠ Q(x1) (with a1 < x1 < a2 ), which implies that QT(x1) < Q(x1), 
which in turn implies that for all x ∈ (a1, a2), QT(x) < Q(x). This, in turn, implies 
that every firm of desirability q strictly between q1 = QT(a1) = Q(a1) and q2 = QT(a2)
= Q(a2) is matched to a better (in expectation) student under truthful revelation than 
under equilibrium with mixing Φ, which, finally, implies that the total ability of 
students matched to those positions in equilibrium Φ is strictly higher than the total 
ability of students matched to them under truthful revelation, i.e.,

  ∫ 
q1

   

q2

    aa1 +   
q − q1 ______ q2 − q1

   (a2 − a1)b dμ(q) <  ∫ 
q1

   

q2

     Q T  −1 (q) dμ(q) =  ∫ 
a1

   

a2

    a dg(a).

This is impossible, because, by construction, desirability mapping Q is strictly con-
vex at both a1 and a2, and so the set of students matched with positions in the range 
[q1, q2] in equilibrium Φ is the same as the set of students matched with those posi-
tions under truthful revelation, and so all of the integrals above have to be equal.

If a2 =   ̂     a  h < ah, then QT(  ̂     a  h) < QT(ah) = Q(  ̂     a  h), and by convexity of QT and 
linearity of Q on [a1,   ̂     a  h], for all x ∈ (a1,   ̂     a h), QT(x) < Q(x), and therefore for all 
q ∈ (QT(a1), QT(ah)),  Q T  −1 (q) > Q−1(q), which is impossible because equilibrium Φ 
is fully informative at a1, and the set of students matched to positions above QT(a1) is 
the same under Φ and under truthful revelation (in both cases, it is the set of students 
with abilities above a1  ).

Step 1: Case  “Concave.” Suppose QT(a) is concave on [aL, ah]. In equilib-
rium, the desirability mapping Q has to be linear on the entire interval [aL,   ̂     a  h] for 
some   ̂     a  h ≤ ah. Indeed, suppose there is a point,   ̂     a , at which Q is not linear. Then it 

25 We do not discuss in detail intervals on which QT is linear, and effectively assume its interval-wise strict 
concavity or convexity. Considering the intervals on which the mapping is linear is not hard conceptually, but 
would make the proof more cumbersome.
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has to be strictly convex (and equilibrium fully informative) at   ̂     a . By an argument 
analogous to that of Case “Convex,” this is impossible.

Moreover, there exists only one   ̂     a h that can arise in equilibrium. It is the unique 
one that guarantees that the total ability of students assigned to all schools is equal 
to the total ability of students in the population, i.e., the unique   ̂     a h such that

  ∫ 
qL

   

qh

    aaL +    q − qL ______ qh − qL
   (  ̂     a h − aL)b dμ(q) =   ∫ 

aL

   

ah

    a dg(a).

Step 2: We are now ready to prove the inductive step. Suppose the theorem is true 
for all n < k, and suppose there are k > 1 convexity intervals in QT . Take the first 
one, i.e., the one that begins at aL and ends at some value b1. It is now more conve-
nient to consider the two cases in the reverse order.

Step 2: Case “Concave.” Suppose QT is concave on [aL, b1]. By an argument 
analogous to the one above, equilibrium desirability mapping Q has to be linear 
on interval [aL, c1] for some c1 > b1. Let us find this point c1 and show that it is 
uniquely determined. Consider the graph of QT on a two-dimensional plane, and 
take the infinite ray that starts at the point (aL, qL) and has a slope of zero. Start 
rotating this ray around its origin, increasing its slope. Once the ray begins to 
intersect with the graph of QT at points (ai, qi) other than the origin, for each of 
these points (and there is always a finite number of them, at most two per con-
vexity interval) keep checking whether they could potentially be the c1 we are 
looking for. Specifically, check whether the total ability of all students of ability 
below ai is equal to the hypothetical total ability of students assigned to positions 
of quality below qi under the linear desirability mapping implied by the ray, i.e., 
whether

  ∫ 
aL

   

ai

    a dg(a) =  ∫ 
qL

   

qi

    aaL +   
q − qL ______ qi − qL

    (ai − aL)bdμ(q).

As soon as such a point exists, stop, and consider this point (a*, q*  ). If, by coinci-
dence, there are several such points on the ray, consider the one with the largest 
coordinates. This is Subcase “Partially Linear.” If no such point exists for any slope 
less than or equal to (qh − qL)/(ah − aL), let q* = qh, take the unique point (a*, qh  ) 
such that the total ability of students assigned to positions [qL,qh] implied by desir-
ability mapping qL + ((qh − qL)/(a* − aL))(  ̂     a  − aL) is equal to the total ability of 
all students in the population, i.e.,  ∫qL

  
qh

    (aL + ((q − qL)/(qh − qL))(a* − aL)) dμ(q)
=  ∫aL

  
ah

    a dg(a); this is Subcase “Fully Linear” below.
We now claim that in any connected equilibrium, c1 = a* and the desirability 

mapping on [aL, a*] is a straight line between (aL, qL) and (a*, q*  ).

Step 2: Case “Concave.”  Subcase  “Partially Linear.” Suppose there exists an 
 equilibrium, Φ, for which c1 ≠ a*. Consider students assigned to positions [qL, q* ] 
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under Φ and under truthful revelation. Under truthful revelation, matching is based 
on true ability, and so these positions get the worst possible students. Hence, the total 
ability of these students has to be at most as high as the total ability of students assigned 
to these positions under Φ. Now, consider desirability mapping Q corresponding to 
Φ. By construction, the slope of Q at aL is at least as high as (q* − qL)/(a* − aL) 
and Q(a*  ) > q*, which implies that for all q ∈ [qL, q* ], Q−1(q) ≤ aL + ((q − qL)/
(qi − qL))(ai − aL), and for a positive mass of positions q from this interval, Q−1(q) < 
aL + ((q − qL)/(qi − qL)) (ai − aL). But this leads us to a contradiction, because then 
the total ability of students assigned to positions [qL, q* ] under Φ,  ∫qL

  
qi
     Q−1(q) dμ(q), 

is strictly less than  ∫qL
  q*
    (aL + ((q − qL)/(q* − qL)) (a* − aL)) dμ(q), which by  con-

struction is equal to  ∫aL
  ai     a dg(a), i.e., the total ability of students assigned to

these positions under truthful revelation.
To complete the inductive step for this case, it is now sufficient to note that if 

a* = ah, then we are done. Otherwise, the equilibrium desirability mapping for 
expected ability levels above a* is uniquely determined as the equilibrium desir-
ability mapping of the original economy excluding the students of ability below 
a* and positions of desirability below q*; in this truncated economy, the number 
of convexity intervals is less than k, satisfying the assumptions of the inductive 
step.

Step 2: Case “Concave.” Subcase “Fully Linear.” This substep follows from the 
same ideas as subcase “Partially Linear” and case “Concave” of Step 1, and is there-
fore omitted.

Step 2: Case “Convex.” Suppose QT is convex on [aL, b1]. Our method for finding 
the unique equilibrium desirability mapping Q is based on the following observa-
tion. Suppose Q and QT do not coincide on [aL, b1]. Then there exists a ∈ [aL, b1) 
such that

 1)  Q(x) = QT(x) for all x ∈ [aL, a],
 2)  Q(x) is linear on [a, b1],
 3)  the slope of Q(x) on [a, b1] is less than or equal to the right derivative of QT(x) 

at a, and
 4)  if a > aL, the slope of Q(x) on [a, b1] is greater than or equal to the left deriva-

tive of QT(x) at a.

Indeed, suppose for some x ∈ (aL, b1), Q(x) ≠ QT(x). Then we know that Q(x) has to 
be linear on some interval around x. Take the largest such interval [a, b]. The equi-
librium is fully informative at a. It is also fully informative at aL. If a = aL, state-
ment (1) above follows trivially; otherwise it follows from the convexity of QT(x) on 
[aL, a] by the argument analogous to Step 1, case “Convex.” By a similar argument, 
b has to be strictly greater than b1, giving us (2). Statement (4) follows immediately 
from the convexity of equilibrium desirability mapping Q at any point, including, 
of course, a. To prove (3), suppose the slope of Q(x) on [a, b1] is strictly greater than 
the right derivative of QT at a. Then the total ability of students assigned to positions 
in some small interval [ Q(a), Q(a) + ε ] in this equilibrium is strictly lower than the 
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total ability of students assigned to these positions under full information revelation, 
which is impossible.

Let  
_
 r   be the left derivative of QT at b1. The observation above implies that any 

equilibrium has to be either fully informative on [aL, b1] or fully informative up to 
some ability level a ≥ aL and linear with some slope r <  

_
 r   on [a, b1  ]. Crucially, it 

also implies that for any slope r <  
_
 r  , there exists exactly one point a(r) on [aL, b1], at 

which an equilibrium could switch from being fully informative to being linear with 
slope r. This point a(r) is simply the point at which a line with slope r is tangent to 
the graph of function Q T.

We now proceed in essentially the same way as in Step 2, Case “Concave,” start-
ing with a ray from (aL, qL) and a slope of zero, and gradually increasing the slope, 
looking first for a “Partially Linear” subcase and then, after the ray crosses the point 
(ah, qh), looking for the “Fully Linear” subcase. There are, however, two differ-
ences. First, as we increase the slope, we also gradually move the origin of the ray 
along the graph of mapping QT, keeping the ray tangent to it. Second, the slope may 
reach  

_
 r   before encountering either the “Partially Linear” or “Fully Linear” subcase. 

If that happens, we know that the equilibrium has to be fully informative on [aL, b1], 
and the rest of the desirability mapping is uniquely pinned down as the equilibrium 
desirability mapping of the original economy excluding the students of ability below 
b1 and positions of desirability below QT(b1). In this truncated economy, the number 
of convexity intervals is equal to k − 1, satisfying the assumptions of the inductive 
step.

Appendix B: Proof of Theorem 3

Suppose the balanced amount of information is disclosed, and there is no unravel-
ing. We then show that no student has an incentive to deviate, i.e., to sign a contract 
earlier than  

_
 τ   . Consider an arbitrary school i. Let the interval of expected abilities 

of students at school i at time  
_
 τ   be [ai, bi]. By the law of iterated expectations, no 

student at school i can have expected ability outside of this interval at any time 
τ ≤  

_
 τ   . Take any time τ <  

_
 τ   and any student from school i who has expected abil-

ity   ̂     a  τ inside the interval at time τ. If he signs now, the best position he can get is 
of desirability Q(  ̂     a  τ). If he waits until time  

_
 τ   , the expected desirability of the posi-

tion he gets is E[  Q(  ̂     a   _ τ  ) |   ̂     a τ  , τ , i ]. By assumption, at time  
_
 τ  , the school produces a 

positive density of students on an interval, and transcript structures form an equilib-
rium. Thus, Q(  ̂     a τ) is convex on the interval. E[   ̂     a   _ τ   ] =   ̂     a  τ , and so E[ Q(  ̂     a   _ τ  ) |   ̂     a  τ  , τ , i ] ≥ 
Q(  ̂     a   _ τ  ), and the student does not have an incentive to deviate. This is the same logic 
as in the proof of Theorem 2.

Now suppose more than the balanced amount of information is disclosed at time  _
 τ    . We first show that the corresponding desirability mapping is not convex. Let f be 

the distribution of expected abilities under balanced information disclosure, g the 
distribution of expected abilities actually disclosed at time  

_
 τ  , and h the distribution 

of true abilities. We know that h is more informative than g, which, in turn, is more 
informative than f. Suppose at some expected ability level a, the desirability map-
ping corresponding to f is strictly convex. Then, as we have previously explained, 
in the static equilibrium, schools do not mix students with abilities below a and 
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above a, and so under both f and h, a student with reported expected ability a gets 
matched with a job of the same desirability d. Moreover, the average (and the total) 
ability of students matched with positions of desirabilities less than d is the same 
under f and h.

Consider two arbitrary distributions of expected abilities, β and γ, desirability 
level δ, and expected ability level α corresponding to δ if expected abilities are dis-
tributed according to β. Note that if γ is less informative than β, then the average 
(or total) ability of students matched with positions of desirability less than δ under 
γ is a least as large as under β. Moreover, the two are equal only if distribution β 
restricted to [aL, α ] is a mean-preserving spread of distribution γ restricted to the 
same interval, i.e., under γ (relative to β), students of expected ability levels below α 
do not get mixed with students of expected ability levels above α .

But then it has to be the case that under distribution g, which in terms of infor-
mativeness is between distributions f and h, students of ability below a do not get 
mixed with students of ability above a. Therefore, any piece of additional disclosure 
of information under g versus f has to take the form of a mean-preserving spread 
of the distribution of expected abilities in a region where the desirability mapping 
under f is linear. It is easy to see that any amount of additional information in such 
a region leads to a desirability mapping that is not convex. Hence, there exists some 
point   ̂     a * inside that region such that Q″(  ̂     a  *) < 0.

Since   ̂     a  * is inside the region of reported abilities, there exists some τ1 <  _ τ   
and school i such that a positive mass of expected abilities is produced by school 
i in a small ε-neighborhood of   ̂     a  * for any τ ∈ [ τ1,  

_
 τ   ]. By assumption,   ̂  

   
 Q i(  ̂     a  τ  , τ) 

= E[ Q(  ̂     a   _ τ  ) |   ̂     a  τ  , τ, i ] is twice continuously differentiable; also,   ̂  
   

 Q i(  ̂     a ,  
_
 τ  ) = Q(  ̂     a ). 

Therefore, there exists τ2 <  
_
 τ  , τ2 ≥ τ1 such that (∂2   ̂  

   
 Q i(  ̂     a  * , τ))/(∂     ̂     a 2) < 0 for all 

τ ∈ [τ2,  
_
 τ   ]. Finally, there exists τ3 <  

_
 τ  , τ3 ≥ τ2 such that diffusion parameter 

σi(  ̂     a * , τ) is strictly positive for all τ ∈ [ τ3,  
_
 τ   ].

By construction,   ̂  
   

 Q i is a martingale, and therefore E [ d  ̂  
   

 Q i(  ̂     a , τ)] = 0. By Ito’s 
lemma,

 0 = E [ d   ̂  
   

 Q i(  ̂     a , τ)] =    1 __ 
2
    σ i  

 2    
∂  2   ̂  

   
 Q i(  ̂     a , τ) ________ 

∂   ̂     a 2
    +    

∂   ̂  
   

 Q i(  ̂     a , τ) _______ ∂τ   .

For τ ∈ [τ3,  
_
 τ   ],

   1 __ 
2
    σ i  

 2    
∂  2   ̂  

   
 Q i(  ̂     a  * , τ) _________ 
∂   ̂     a  2

   < 0,

and so

   
∂   ̂  

   
 Q i(  ̂     a *  , τ) ________ ∂  τ   > 0.

But this implies that Q(  ̂     a  *) =   ̂  
   

 Q i(  ̂     a  * ,  
_
 τ  ) >   ̂  

   
 Q i(  ̂     a  * , τ3), and so at time τ3, a student 

of expected ability   ̂     a * strictly prefers unraveling and immediately matching with 
a position of desirability Q(  ̂     a *) to waiting until time  

_
 τ   and getting, in expecta-

tion,   ̂  
   

 Q i(  ̂     a * , τ3), while the employer is indifferent.
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Appendix C: The Connectedness Restriction

In this Appendix, we discuss the connectedness restriction. First, we give a suf-
ficient condition for the existence of a connected equilibrium—all schools are iden-
tical. Next, we show that in some markets, a connected equilibrium may not exist, 
even if for every true ability level a ∈ (aL, ah) there exists a school that has students 
of all true abilities in some ε-neighborhood of a. Third, we present a method for 
checking whether a connected equilibrium exists. We conclude by discussing how 
arbitrage would tend to eliminate equilibria with nonconvex desirability mappings.

THEOREM C.1: If all schools have identical distributions of student abilities, there 
exists a symmetric equilibrium in pure strategies. This equilibrium is connected.

PROOF:
We first prove the existence of a symmetric equilibrium in pure strategies. Let s 

be the set of a school’s strategies. Let B(s) be the best response correspondence—the 
set of best responses for a school given that all other schools play s. We need to show 
that correspondence B(·) has a fixed point. 

Define sn as the set of all strategies that generate a finite number of expected 
abilities {    ̂     a  i  

n  }, i ∈ {1, 2, … , 2n − 1}, such that expected ability   ̂     a  n2n−1 corresponds to 
the average true ability in the population,   ̂     a  n2n−1 + 2n−2 corresponds to the expected 
ability of a better-than-average student,   ̂     a  n2n−1 − 2n−2 corresponds to the expected abil-
ity of a worse-than-average student, and so on (there can be a zero mass of students 
with a particular expected ability). sn is not empty for n ≥ 1 because it contains the 
strategy that assigns the same expected ability to all students.

Note that sn is just the set of distributions on the set of the above 2n − 1 points 
that second-order stochastically dominate the underlying distribution of student 
abilities.26 sn is convex (if each of two distributions dominates f, their affine combi-
nations do too, and they are also concentrated on the set of 2n − 1 points), compact, 
and the payoff function is continuous on sn (Each element in sn is just a vector of 
2n − 1 positive numbers adding up to 1, and so we can use the induced metric from 
r2n−1 ). Consider now the best response correspondence Bn(·), which for every strat-
egy s ∈ sn returns the (nonempty) set of best responses to s from the set sn. Note 
that due to the continuity of payoffs, Bn(·) is upper hemicontinuous. Note also that 
for any s, the set Bn(s) is convex, due to the linearity of payoffs (if strategies s1 and s2 
are in Bn(s), and thus give identical payoffs to the school, for any α ∈ [0, 1], strategy 
(αs1 + (1 − α)s2) is also in sn and gives the same payoff to the school, and therefore 
also belongs to Bn(s)). Thus, by Kakutani’s Fixed Point Theorem there exists s*

n such 
that s*

n ∈ Bn(s*
n).

Take the sequence {s*
n} for n→∞. Since all distributions s*

n have supports on subsets 
of a bounded interval [aL, ah], this sequence has a weakly converging  subsequence. 

26 Clearly, any distribution in sn second-order stochastically dominates the underlying distribution of true 
student abilities. On the other hand, any distribution s that second-order stochastically dominates the underlying 
distribution of true student abilities can be obtained from that distribution by mixing some students together, 
because the underlying distribution of true student abilities is a mean-preserving spread of s.
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Let s be the limit of this subsequence. Note that the payoff function of a school is 
continuous both in its own strategy and in the strategy of other players. Therefore, s 
is a best response to itself, and thus corresponds to a symmetric equilibrium.

Let us show that this equilibrium is connected. Suppose it is not. This implies 
that there is an interval (a, b) such that no school produces students of ability in this 
interval, but each (since the equilibrium is symmetric) produces positive masses of 
students on both sides of the interval, i.e., for any open interval containing a or b. 
Then the school can increase its payoff by mixing some students of ability slightly 
below a and some students of ability slightly above b so that the expected ability in 
this mix equals a.

The symmetry condition is sufficient for the existence of a connected equilib-
rium, but it is not necessary, as examples 2, 3, and 4 illustrate. However, it is not clear 
what a more general sufficient condition on the primitives of the model could be. As 
we show in the following example, a connected equilibrium may not exist, even if for 
any true ability level a ∈ (aL, ah) there exists a school that has students of all true 
abilities in some ε-neighborhood of a.

Example C.1: There is mass 0.8 of students in “bad” schools, with abilities dis-
tributed uniformly on [0, 50] and mass 0.2 of students in “good” schools, with abili-
ties distributed uniformly on [0, 150]. There is also mass 1 of positions, distributed 
uniformly on [0, 100].

Suppose this market has a connected equilibrium. Under truthful information 
revelation the desirability mapping would be concave. Hence, in the connected equi-
librium, the desirability mapping would be linear, and so the observed distribu-
tion of expected abilities would be uniform on [0,   ̂     a h]. The average true ability in 
this market is 0.8 × 25 + 0.2 × 75 = 35, and the average expected ability has to 
be the same. Therefore,   ̂     a h = 70. But no matter what mixing strategy it uses, a 
“good” school will produce a positive mass of students with expected ability 75 or 
higher—contradiction.

Hence, there is no connected equilibrium in this market. Is there another equi-
librium? It turns out, there is, and moreover, the desirability mapping in it is not 
convex. In this equilibrium, each “bad” school reveals full information about its 
students, and each “good” school “compresses” the distribution of its students’ abili-
ties from the true distribution of u [0, 150] to the distribution of expected ability 
u [50, 100]. The resulting desirability mapping is

 Q(  ̂     a ) = e
8 __ 
5
      ̂      a, 

          
80  +    2 __ 

5
   (  ̂     a  − 50),

   
for   ̂     a  ≤ 50

       
for   ̂     a  ∈ [50, 100],

 

and it is easy to check that each school behaves optimally.
The arguments in Example C.1 illustrate how to check whether a particular 

matching market has a connected equilibrium. The general method is as follows:

 1.  By Theorem 1, if a connected equilibrium exists, its desirability mapping Q has 
to be the same as in a market with the same aggregate distribution of abilities, 



62 AMErIcAN EcoNoMIc JourNAL: MIcroEcoNoMIcs MAy 2010

but allocated identically across schools. By Theorem C.1, that latter market has 
a connected equilibrium, and its desirability mapping can be constructed fol-
lowing the steps of the proof of Theorem 1. Construct that mapping Q.

 2.  Construct mapping QT. At every point   ̂     a  where Q is strictly convex, by the 
arguments in the proof of Theorem 1, Q(  ̂     a ) = QT(  ̂     a ), and in equilibrium, there 
is no mixing of students above and below such points.

 3.  Consider the (maximal) intervals on which Q is linear. Since at the boundar-
ies of these intervals Q is strictly convex, for every such interval [   ̂     a ,   ̂  

  
 b  ], the set 

of students with expected abilities in that interval is the same (up to a set of 
measure 0) as the set of students with true abilities in that interval. Moreover, 
the aggregate distribution of true abilities in that interval is a mean-preserving 
spread of the aggregate distribution of reported abilities implied by desirability 
mapping Q (which is linear on that interval) and the corresponding distribu-
tion of position desirabilities. The last step is to check whether this aggre-
gate distribution of reported abilities can be obtained as the weighted sum of 
mean-preserving contractions of the underlying distributions of true abilities 
(in range  [   ̂     a ,   ̂  

  
 b  ]) in schools, with weights equal to the masses of students in 

relevant range in those schools. If it cannot (like in Example C.1), then there 
cannot be a connected equilibrium. If, for every (maximal) interval, there is, 
then there is a connected equilibrium, because each school is indifferent over 
various mixings of student abilities in every interval [   ̂     a ,   ̂  

  
 b  ], since the desir-

ability mapping there is linear, and hence every school is behaving optimally.

Finally, we would like to point out that there is a powerful force that is not cap-
tured in our model and that would tend to eliminate disconnected equilibria with 
nonconvex desirability mappings as in Example C.1. This force is arbitrage. In our 
model, we abstract away from how students get assigned to schools. In fact, as long 
as there exists a connected equilibrium, that does not matter. If, however, schools 
can compete for students and can facilitate monetary transfers between them (e.g., 
in the form of a high tuition and heterogeneous financial aid), then a nonconvexity 
in the desirability mapping would allow a school to get students from other schools, 
mix them together, and get a higher average payoff for them. Thus, any nonconvex-
ity in the desirability mapping is an arbitrage opportunity, which cannot persist in 
equilibrium. Since, for all aggregate distributions of student abilities and position 
desirabilities, equilibria without this arbitrage opportunity exist for at least some 
allocations of students among schools (e.g., by Theorem C.1, for symmetric alloca-
tions), arbitrage will lead to one of such allocations and to an equilibrium with a 
convex desirability mapping.

REFERENCES

Avery,  Christopher,  Andrew  Fairbanks,  and  Richard  Zeckhauser.  2003. The Early Admissions 
game: Joining the Elite. Cambridge, MA: Harvard University Press.

Avery, Christopher, Christine Jolls, Richard A. Posner, and Alvin E. Roth. 2001. “The Market for 
Federal Judicial Law Clerks.” university of chicago Law review, 68(3): 793–902.

Becker, William E., Jr. 1982. “The Educational Process and Student Achievement Given Uncertainty 
in Measurement.” American Economic review, 72(1): 229–36.



VoL. 2 No. 2 63osTroVsky ANd schWArz: INforMATIoN dIscLosurE ANd uNrAVELINg

Bergemann,  Dirk,  and  Martin  Pesendorfer.  2007. “Information Structures in Optimal Auctions.” 
Journal of Economic Theory, 137(1): 580–609.

Chakraborty, Archishman, and Rick Harbaugh. 2007. “Comparative Cheap Talk.” Journal of Eco-
nomic Theory, 132(1): 70–94.

Chan, William, Hao Li, and Wing Suen. 2007. “A Signaling Theory of Grade Inflation.” International 
Economic review, 48(3): 1065–90.

Cole, Harold L., George J. Mailath, and Andrew Postlewaite. 1992. “Social Norms, Savings Behav-
ior, and Growth.” Journal of Political Economy, 100(6): 1092–125.

Cole, Harold L., George J. Mailath, and Andrew Postlewaite. 2001. “Investment and Concern for Rel-
ative Position.” review of Economic design, 6(2): 241–61.

Crawford, Vincent P., and Joel Sobel. 1982. “Strategic Information Transmission.” Econometrica, 
50(6): 1431–51.

Hawkins, David A., Jessica Lautz, Patricia M. McDonough, and William G. Tierney. 2005. state 
of college Admission. National Association for College Admission Counseling. Alexandria, VA, 
March.

Hopkins, Ed. 2010. “Job Market Signaling of Relative Position, or Becker Married to Spence.” http://
www.homepages.ed.ac.uk/hopkinse/signal.pdf.

Jackson, Matthew O., and Hugo F. Sonnenschein. 2007. “Overcoming Incentive Constraints by Link-
ing Decisions.” Econometrica, 75(1): 241–57.

Li, Hao, and Sherwin Rosen. 1998. “Unraveling in Matching Markets.” American Economic review, 
88(3): 371–87.

Li, Hao, and Wing Suen. 2000. “Risk Sharing, Sorting, and Early Contracting.” Journal of Political 
Economy, 108(5): 1058–91.

Lizzeri, Alessandro. 1999. “Information Revelation and Certification Intermediaries.” rANd Journal 
of Economics, 30(2): 214–31.

Matthews, Steven, and Andrew Postlewaite. 1985. “Quality Testing and Disclosure.” rANd Journal 
of Economics, 16(3): 328–40.

Niederle, Muriel, and Alvin E. Roth. 2003. “Unraveling Reduces Mobility in a Labor Market: Gastro-
enterology with and without a Centralized Match.” Journal of Political Economy, 111(6): 1342–52.

Okuno-Fujiwara, Masahiro, Andrew Postlewaite, and Kotaro Suzumura. 1990. “Strategic Informa-
tion Revelation.” review of Economic studies, 57(1): 25–47.

Peters, Michael. 2007. “The Pre-Marital Investment Game.” Journal of Economic Theory, 137(1): 
186–213.

Peters, Michael, and Aloysius Siow. 2002. “Competing Premarital Investments.” Journal of Political 
Economy, 110(3): 592–608.

Roth, Alvin E., and Xiaolin Xing. 1994. “Jumping the Gun: Imperfections and Institutions Related to 
the Timing of Market Transactions.” American Economic review, 84(4): 992–1044.

Sattinger, Michael. 1993. “Assignment Models of the Distribution of Earnings.” Journal of Economic 
Literature, 31(2): 831–80.

Suen, Wing. 2000. “A Competitive Theory of Equilibrium and Disequilibrium Unravelling in Two-
Sided Matching.” rANd Journal of Economics, 31(1): 101–20.



This article has been cited by:

1. Talia Bar, Vrinda Kadiyali, Asaf Zussman. 2012. Putting Grades in Context. Journal of Labor
Economics 30:2, 445-478. [CrossRef]

2. Emir Kamenica, , Matthew Gentzkow. 2011. Bayesian Persuasion. American Economic
Review 101:6, 2590-2615. [Abstract] [View PDF article] [PDF with links]

3. Andrew F. Daughety , Jennifer F. Reinganum. 2010. Public Goods, Social Pressure, and the
Choice Between Privacy and Publicity. American Economic Journal: Microeconomics 2:2,
191-221. [Abstract] [View PDF article] [PDF with links]

http://dx.doi.org/10.1086/663591
http://dx.doi.org/10.1257/aer.101.6.2590
http://pubs.aeaweb.org/doi/pdf/10.1257/aer.101.6.2590
http://pubs.aeaweb.org/doi/pdfplus/10.1257/aer.101.6.2590
http://dx.doi.org/10.1257/mic.2.2.191
http://pubs.aeaweb.org/doi/pdf/10.1257/mic.2.2.191
http://pubs.aeaweb.org/doi/pdfplus/10.1257/mic.2.2.191

	Information Disclosure and Unravelingin Matching Markets
	I. Information Disclosure in a Static Environment
	II. Equilibrium Information Disclosure
	III. Unraveling
	A. Two-period Model, Balanced Amount of Information
	B. Gradual Information Arrival

	IV. Conclusion
	Appendix A: Proof of Theorem 1
	Appendix B: Proof of Theorem 3
	Appendix C: The Connectedness Restriction
	REFERENCES


