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Abstract

Behavioral game theory models are important in organizing experimental data of strate-
gic decision making. However, are subjects classified as behavioral types more predictable
in their choices than unclassified subjects? Alternatively, how many subjects await new
behavioral models to describe them? In our experiments, subjects play simple guessing
games against random opponents and are subsequently asked to replicate or best-respond
to their past choices. We find that existing behavioral game theory types capture 2/3 of
strategic subjects, i.e., individuals who can best respond. However, there is additional
room for non-strategic rule-of-thumb models to describe subjects who can merely replicate

their actions.

1 Introduction

A robust finding of strategic choice experiments is that deviations from Nash equilibrium are
common. This has lead to alternative behavioral models with varying specifications of beliefs
and derived choices; of these, hierarchy models, particularly the level-k model, seem to be the

most prominent.lﬂ In a typical empirical paper, laboratory participants play a set of games

*We are especially grateful to Asen Ivanov for his impact on the design of the experiment. We thank
Vince Crawford, Guillaume Fréchette, Matt Jackson and Emanuel Vespa for helpful comments and the NSF for
generous support.

LA level-k player best-responds to beliefs that opponents are level-(k — 1), with a level-O player assumed
to randomly choose any action or to choose a fixed action considered to be focal. The model originated in
empirical papers that found it rationalized large fractions of behavior in beauty contest games (Nagel, 1995)
and small normal-form games (Stahl and Wilson, 1994, 1995). The level-k model has since been used to model
strategic behavior in a multitude of experiments, and has spawned a literature on extensions and theoretical
underpinnings. A notable variant is the cognitive hierarchy model (Camerer, Ho, and Chong, 2004), in which
frequencies of types k in the population are assumed to be distributed according to some distribution, and a
player of type k has beliefs about opponent types corresponding to this distribution truncated at k& — 1.



and are then classified into a set of pre-specified behavioral types; see Crawford, Costa-Gomes,
and Iriberri (2013) for an overview.ﬂ

Such a procedure, however, does not directly test whether the set of existing behavioral
game theory types coincides with the set of participants who play according to a specific rule.
For instance, a participant may follow a behavioral model that is yet to be discovered. In this
paper, we develop a method to identify any participant who uses a specific rule, even if we do
not know what that rule is. This allows us to determine how much room (if any) there is for
new behavioral game theory models. Put differently, our test provides the fraction of subjects
that additional models could conceivably capture. In this paper we focus on deterministic
rules only. We discuss in the concluding section how our test might be expanded to include
non-deterministic rules.

The set of participants classiffied as behavioral game theory types may differ from the
set of participants who deliberately follow deterministic rules. First, due to the necessity of
allowing for error when classifying subjects, a type I error can occur. That is, a participant can
be misclassified as some behavioral game theory type when her underlying behavior follows a
different rule or no rule at all. Second, a type II error can occur if a participant does not follow a
pre-existing model but nonetheless deliberately applies a deterministic rule that we do not (yet)
understand. In this paper we address both type I and type II errors. Specifically, we determine
whether a subject belongs to one of the following sets (or neither or both): participants who
follow existing game theory models and those who deliberately apply a deterministic rule.
Using conventional methods, we can easily identify the first set. Determining who belongs to
the second set is more challenging.

For example, if existing models fail to describe a participant’s observed choices, we need to
determine whether her decisions are reached via an unknown but otherwise deliberate process
versus are chosen arbitrarily. To achieve this, we design a test to asses whether a participant
deliberately uses a deterministic rule, be it a known rule from existing behavioral game theory
models, or a rule for which no model yet exists. Furthermore, we test whether deterministic
players are strategic. On the one hand, they may implement non-strategic “rules of thumb”
that involve making actions in the absence of forming beliefs over opponent play. On the
other, a deterministic player may follow a belief-based rule and be able to adapt her behavior
to information about her opponent. Our approach provides insight into how much room there
is for new behavioral game theory models and, in particular, the relative room for strategic
belief-based models versus non-strategic rules of thumb.

In our experiment, subjects first play twenty two-player guessing games with anonymous

2In addition to the works mentioned above, some leading examples of papers that seek to classify partic-
ipants are Costa-Gomes, Crawford, and Broseta (2001) for normal form games, and Crawford, Gneezy, and
Rottenstreich (2008) for coordination games.



partners and without feedback (Phase I). The games are similar to those from Costa-Gomes and
Crawford, 2006, henceforth CGC. Applying a conventional approach, we classify a participant
as a behavioral type (from a set of models that includes equilibrium, level-k, and others) if it
sufficiently explains a subject’s gameplay. Under this approach, we classify 30% of subjects
and leave the remainder unclassified. While this seems like a failure of our approach and/or
existing models, it is unclear how many of the unclassified subjects we should expect to describe
with yet to be developed models. In other words, if the unclassified subjects exhibit sufficient
arbitrariness in their Phase I behavior, it would not only be extremely difficult to explain
them with deterministic rules, doing so would simply be misguided. To confirm that these
unclassified subjects are not merely confused, we have a control treatment, the ShowGuesses
treatment, where we show that all subjects are virtually always able to best respond to any
given opponent guess.

After completing Phase I, we present each participant with an unanticipated Phase II
to test whether she deliberately applied a deterministic rule in Phase I. In Phase II of the
Replicate treatment, a subject is tasked with replicating her Phase I behavior. Specifically, a
participant is re-shown the Phase I games (with the order preserved) and is paid more as her
Phase II guesses near her corresponding Phase I guesses. Under reasonable assumptions of self-
awareness and cognitive ability, any subject who deliberately uses a well-defined deterministic
rule in Phase I should be able to replicate it in Phase II, even if it is a rule of thumb. Conversely,
arbitrary Phase I behavior should be non-replicable; indeed, results from a separate control
treatment show that purely numeric memory of Phase I choices is very limited.

In Phase II of the BestRespond treatment, a subject is tasked with best-responding to her
Phase I behavior. A participant replays the Phase I games (with the order preserved) but now
takes the role that was previously occupied by her Phase I opponents. Furthermore, we inform
a participant that her Phase II opponent is a computer that is programmed to make the Phase
I guesses that she herself previously made; we do not inform the participant of her explicit
Phase I choices. In effect, subjects in the BestRespond treatment play against their past
selves.lﬂ Unlike the Replicate treatment, a participant’s payoff-maximizing choice in a game
in Phase II of the BestRespond treatment is the best-response in that game to the subject’s
original Phase I action. We reason that any subject who deliberately uses a belief-based rule
in Phase I, and is aware of doing so, should be able to first replicate her former guess and then
best-respond to it.

When considering the 70% of subjects that are unclassified in Phase I from the Replicate

and BestRespond treatments, we find that most of them fail to meet a permissive threshold of

3This treatment is inspired by the design in Ivanov, Levin, and Niederle (2010) but has important differences
we discuss below. A design in which subjects play against themselves is also a central component of Blume and
Gneezy (2010).



making at least 8 optimal Phase II choices out of 20. The 30% of subjects that are classified,
however, are far more likely to meet this threshold. This unequivocally confirms the success
of existing behavioral models (such as level-k) in identifying the types of subjects that they
intend to describe: participants that deliberately apply deterministic rules. Put another way,
our test’s results show that the classified subjects, as a group, are different from the unclassified
subjects; these latter ones cannot be described as participants with equally well-defined decision
rules. Furthermore, we find that classified subjects can best-respond to their former guesses
just as well as they can replicate them while unclassified subjects find best-responding much
harder than replicating. This result, coupled with the assumption that rule of thumb subjects
should be able to replicate but not necessarily best respond to their behavior, suggests that
non-strategic models would do better than belief-based rules in explaining the unclassified
participants.

To further investigate this, we can consider subjects with high rates of replicating and best
responding and ask how many are classified as behavioral types. In the Replicate treatment,
existing models account for only 40% of subjects who score well in Phase II. In contrast,
our existing models explain over two thirds of subjects who score well in Phase II of the
BestRespond treatment. This difference provides further support to the hypothesis that there
is more room for the development of new rules of thumb as opposed to novel belief-based
models. In particular, 32% of subjects with high rates of best responding are unexplainable
with our set of existing models while 35% are explained with level-k. Thus, a new class of
strategic decision rules would at best describe a smaller proportion of subjects than level-k
explains. Though we shed some light on the nature of new decision rules, our experiment was
designed mainly to show their existence.

In summary, this paper provides a new methodology that can assess whether the behavior of
an agent follows a deterministic rule versus exhibits idiosyncratic randomness in her decision-
making. Importantly, the tests that we construct can identify deliberate subjects without
having to understand the rules governing their choices. The value in capturing deliberate
subjects before understanding their behavior is that it allows us to know how many (and which)
subjects we should even attempt to describe with future models. The specific environment we
consider in this paper involves pure strategies in two-player guessing games. In the concluding
remarks, we discuss how our tests of deliberation might be expanded to mixed strategies as
well as how they could be applied to not only games, but to non-strategic decision situations
as well.

The paper proceeds as follows: Section [2| describes the experiment and Section [3] the
classification of subjects. In Section [d] we present results pertaining to whether classified and

non-classified subjects are able to replicate their previous actions and best respond to them. We



provide control treatments that show that the ability to replicate actions is due to recomputing
a rule and not due to memorizing actual guesses. We also show that participants are able to
compute the best response, hence failing to do so is not driven by a lack of understanding or

computational ability. Section [f] discusses the literature and we conclude in Section [6]

2 The Experiment

2.1 Two-Person Guessing Games

Participants interact in simple complete information “two-person guessing games” E| In a two-
person guessing game, player ¢ facing opponent j wishes to guess as close as possible to her
goal, which equals her target multiple ¢; times her opponent’s guess z;. Likewise, player j’s
goal equals his target multiple t; times x;. Each player has a range of allowable guesses [I;, u;],
and the two players simultaneously submit guesses x; and x;. The payoff of i is a strictly
decreasing function e; = |z; — t;x;|, the realized distance from the player’s guess x; to her goal
t;xj. We present the 20 games used in the experiment, as well as the predictions of various

behavioral game theory models in Table [l Further details are given later in this section.

2.2 Experimental Treatments

All treatments but one share a common two-phase structure. In Phase I, subjects play a
series of 20 two-person guessing games against anonymous opponents without feedback. Game
parameters are public information in all games and are presented as in Figure Il In Phase II,
subjects were tasked with either replicating or best-responding to their own first-phase choices

in the same series of games.

Lower Limit Upper Limit Target
DM1 (YOU) Iy U1 tq
DM2 (OTHER PARTICIPANT) lo U2 to

FIGURE 1.—Presentation of game parameters in Phase I

The experiment consisted of the Replicate, BestRespond, ShowGuesses, and Memory treat-

ments. The Phase I tasks of the Replicate, BestRespond, and ShowGuesses treatments were

4 Another “two-person guessing game” is that of Grosskopf and Nagel (2008). They consider the familiar
“p-beauty contest” guessing game where n players guess a number between 0 and 100, and the winner is the
player closest to p times the mean of all submitted guesses, with p < 1. When n = 2, as in their experiments,
guessing 0 becomes a dominant strategy. We opt for CGC games as they allow us to have subjects play many
different games in which different models that have agents best-respond to beliefs result in different actions.



the same and are described in a single subsection below. We then explain Phase II of each of

these treatments separately. Finally, we discuss the Memory treatment.

2.2.1 Phase I of the Replicate, BestRespond, and ShowGuesses Treatments

Subjects play all 20 games in individually-specific random orders without feedback on real-
ized payoffs or opponents’ guesses. Subjects are randomly and anonymously rematched with
opponents before each game.ﬂ Subjects always see themselves in the role of player 1 (called
“Decision Maker 17 or “DM1”) in instructions and the experimental task, as shown in Figure
If 4 is matched to opponent j in a given trial, she wishes to make a guess x; as close as possible

to her goal ¢;z; and earns a payoff decreasing in e; = |z; — t;z;|.

2.2.2 Phase II of the Replicate Treatment

In Phase II of the Replicate treatment, a subject faces the same sequence of 20 games from
Phase I in the same order.lﬂ Participants are told that their goal in a Phase II game is to guess
as close as possible to their previously made guess in that game in Phase I. In other words, for
a given game, let l‘ZI be the guess subject ¢ makes in Phase I and SL‘Z-H be her guess in Phase II.
Then subject i’s payoff from Phase II is strictly decreasing e; = \xZH — :):ZI | (according to the

same function that translates her Phase I distance to her Phase I monetary payoff).

2.2.3 Phase II of the BestRespond Treatment

In Phase II of the BestRespond treatment, a subject faces the same sequence of 20 games from
Phase I in exactly the same order. Now, however, subjects are informed they will play in the
role of player 2, while the role of player 1 (that they had occupied in Phase I) would be taken
by the computer. A subject is told that her computer will make the exact same guess that
the subject previously made when playing the game in Phase 1. Effectively, a participant plays
against her former self. Mathematically, if subject ¢ makes a guess of x{ in Phase I in game
{[l1,u1], t1; [la, ua), t2}, then her Phase II goal is to make a guess z// that is as close as possible
to tox! (since 5 is her target multiplier in Phase II). Subject i’s payoff from Phase I1 is strictly

decreasing e; = |z —tyz!| (according to the same function that translates her Phase I distance

®Unknown to subjects, each participant plays either as Player 1 (P1) or as Player 2 (P2) in all Phase I
decisions. See Table [I} Each pair of opposing players consists of one P1 subject and one P2 participant.

5The motivation behind the preservation of order across phases is twofold. First, subjects may switch rules
during Phase I and only remember the number of games played before the switch; they may not remember the
specific games for which they use each of their rules. Second, for every game in Phase I, the subject makes
the same number of guesses, 19, before seeing that same game again in Phase II. On average, for both this
treatment as well as the BestRespond treatment, 45 minutes pass between playing a given game in Phase I and
playing that same game in Phase II.



TABLE 1.—The 20 two-person guessing games and behavioral game theory type guesses

ts | player 1 u t L1 L2 L3 EQ D1 D2 game
0 P1 100 900 0.5 150 250 112.5 100 162.5 131.25 1
g P2 100 500 1.5 500 225 375 150  262.5  262.5
Ci; o0 P1 300 900 0.7 350 546 3185 300 451.5 423.15 9
w | 5 P2 100 900 1.3 780 455 709.8 390 604.5  604.5
g ..‘ws‘ P1 | P2| 100 500 0.7 210 315 220.5 350 2275 2275 3|4
o P2 | P1| 100 500 1.5 450 315 4725 500 337.5 341.25
?Es P1 | P2]300 500 0.7 350 420 367.5 500 420 420 56
£ P2 | P1| 100 900 1.5 600 525 630 750 600 611.25
8 P1 300 900 1.3 780 900 900 900  838.5 900 7
~ P2 300 900 1.3 780 900 900 900  838.5 900
= P1 300 500 1.5 500 500 500 500 500 500 8
e rC P2 300 900 1.3 520 650 650 650  617.5 650
:§ § P1 100 500 0.7 350 105 122.5 100 1225 1225 9
% P2 100 900 0.5 150 175 100 100 150 100
6 P1 100 900 0.5 200 175 150 150 200 150 10
P2 300 500 0.7 350 300 300 300 300 300
ts | player 1 u t L1 L2 L3 EQ D1 D2 game
P1 250 500 1.1 500 330 440 250 330 330 1
P2 150 950 0.8 300 400 264 200 300 276
P1 100 750 0.8 400 510 480 750 440 440 12
P2 50 950 1.5 637.5 600 765 950 637.5  652.5
8| e P1 150 750 1.5 7125 337.5 534.38 150 337.5 3375 13
% g P2 50 900 0.5 225 356.25 168.75 75 225 178.12
&) % P1 200 800 1.3 617.5 455 561.92 200 455 455 14
g P2 50 900 0.7 350 432.25 3185 140 350 324.8
- P1 | P2 | 250 1000 1.5 937.5 562.5 843.75 375 6375  637.5 15 | 16
g P2 | P1| 250 1000 0.6 375 562.5 3375 250 4125 3825
g P1 | P2]100 950 0.5 225 375 168.75 100 225 178.12 17 | 18
O P2 | P1|150 750 1.5 750 3375  562.5 150 356.25 356.25
o P1 350 500 0.5 350 350 350 350 350 350 19
S P2 450 700 1.3 552.5 455 455 455 455 455
2 P1 450 850 1.1 467.5 660 660 660 676.5  676.5 20
P2 250 600 1.4 600 600 600 600 600 600

The game parameters {[l1, u1], t1; [l2, us], t2} and model predictions for all 20 games are reported
above. As an example, the targets of P1 and P2 in game 1 are 0.5 and 1.5, respectively. To
conserve space, games with the same parameters (such as 3 and 4) are grouped together. For
example, Player 1’s lower bounds in games 5 and 6 are 300 and 100, respectively. For each
game we also give the source of the game (from CGC or generated by us) and the quality of
type separation (ts), strong or weak, where strong type separation requires that L1, L2, L3,

L4, and EQ are separated by at least 10 units.




to her Phase I monetary payoff). Subjects are not shown their previous Phase I guesses when

making their Phase II guess. The games are presented to subjects as in Figure

Lower Limit Upper Limit Target
DM2 (YOU) lo U2 t2
DM1 (COMPUTER) ll Ul tl

FIGURE 2.—Presentation of game parameters in Phase II of the BestRespond treatment

To score well in Phase II of the BestRespond treatment, a subject has to understand that
the information that her opponent is replaced by her computer that uses her Phase I choices
is valuable. Using this insight, they need to first replicate their own former guess, and then
compute the best-response.

The need for the BestRespond treatment arises from the fact that subjects who succeed in
replicating their Phase I guesses do not necessarily have choices in Phase I that are strategic,
i.e. belief-based. For example, it has been argued that the level-k model may merely coincide
with non-strategic rules of thumb, especially for low level-k types like L1 (see e.g. Coricelli
and Nagel, 2009 and Crawford, Costa-Gomes, and Iriberri, 2013). A subject ¢ who uses a rule
of thumb may not recognize the value of the information that the action of the opponent in
Phase II is i’s Phase I action. We therefore expect a subject whose behavior derives from
a non-strategic rule of thumb to be able to replicate her past behavior, but not necessarily
best-respond to it.[Z]

2.2.4 Control: Phase II of the ShowGuesses Treatment

Failure to best-respond in Phase II of the BestRespond treatment could also simply derive
from difficulty in understanding or willingness in executing the computations necessary to
determine the best response to a guess. The ShowGuesses treatment provides a control for this
hypothesis. The ShowGuesses treatment is identical to the BestRespond treatment with one
exception: when prompted for her guess in Phase II, a subject in the ShowGuesses treatment
is shown her Phase I guess. Being able to best-respond to a shown guess seems like a minimal
requirement for subjects who deliberately make strategic choices, that is, subjects who form
potentially non-equilibrium beliefs about the behavior of their opponents and best-respond to
these beliefs.

"Cooper and Kagel (2005) provide compelling evidence that subjects often fail to play strategically because
they fail to think about the behavior of their opponent. However, it could be that some subjects whose initial
behavior was produced by a rule of thumb were able to best-respond to that behavior, as success in Phase II of
the BestRespond treatment requires only a minimal form of strategic thinking.



2.2.5 Control: Memory Treatment

We presume that a subject who successfully replicates or best-responds to her past guesses in
our main treatments does so by reimplementing the deliberate process of choice that produced
these guesses in Phase I. There is, however, the possibility that some subjects simply have
good memories; they may remember the numeric values of a large fraction of their guesses,
even if those guesses were not deliberate or systematic. In the Memory treatment, we provide a
benchmark for how readily subjects can remember 20 guesses that do not follow any consistent
system.

In Phase I of the Memory treatment, a participant plays 20 games against a computer that
makes a uniform random guess in each. A subject is shown the computer’s guess before having
to submit her own. Phase I was otherwise the same as in the other treatments | Phase II of
the Memory treatment is identical to Phase II of the Replicate treatment; subjects are tasked
with replicating their Phase I guesses but are not presented with the values of their Phase I
guesses when prompted for their Phase II guesses. The number of remembered guesses in

Phase II provides a benchmark for numeric memory.

2.3 Experimental Procedures

Our study took place at Stanford University. Sessions consisted of either six, eight, or ten
participants, all Stanford undergraduates. A session lasted about two hours, and subjects
earned an average of $55.17 including a $5.00 show-up fee.

While subjects are initially informed of the two-phase structure, they receive no details
about Phase IT until after Phase I is completed. After hearing instructions for Phase I, subjects
complete an understandings test on paper followed by a second computer-based understandings
test. Participants are given simple pocket calculators for use during the experiment.

For the first several decisions in each phase, subjects are not permitted to submit their
guesses until after a certain time elapses; these restrictions are imposed in hopes that subjects

will take the time to make thoughtful decisions.lﬂ After Phase II, subjects complete a short

8Phase I of the Memory treatment serves as an additional control, like Phase II of the ShowGuesses treatment,
for determining whether participants are able and willing to calculate the best response to a known guess.

9In Phase I, subjects have to wait 2 minutes for the first three games and one minute for the next two before
submitting a guess. In Phase IT we employ similar timing restrictions: subjects must wait one minute in each of
the first five trials. For practical reasons (the experiment could not proceed to Phase IT until all participants had
completed Phase I), we also place soft limits on the maximum amount of time subjects can take to reach their
decisions. In Phase I, this limit is five minutes for each of the first three trials, three minutes for each of the next
two, and two minutes for each thereafter. In Phase II, subjects have up to three minutes for each of the first
five trials and two minutes for each of the remaining fifteen. When the experimenter’s screen shows a subject
taking more than the maximum time, the experimenter makes a verbal announcement reminding subjects to
try to stay within the time limits. Otherwise, subjects can proceed at their own pace.



questionnaire and learn their monetary earnings from the experiment.

For each guess in a game, a subject can earn anywhere from 0 to 300 points. The point
payoff function used is identical to that of CGC; it is a piecewise-linear decreasing function.
Let e; = |z; — y;| denote the distance between participant i’s guess x; and her goal y; in a

certain game.lﬂ Then the points participant ¢ earns from that trial are s(e;), where

300 — e, if e; <200
s(ei) = 4100 — te;  if 200 < e; < 1000
0 if e; > 1000

In hopes of mitigating concerns about unobserved varying risk preferences, the point payoffs
in each trial are converted to realized monetary earnings using separate and independent binary
lotteries run at the end of the experiment (Roth and Malouf, 1979). If a subject earns s points
in a trial, the corresponding lottery pays $2 with probability s/300 and $0 with probability

1 — /3007

2.4 Predicted Behavior in Two-Person Guessing Games

To describe the equilibrium and behavioral game theory model predictions, we introduce the
function R(l,u,x) = min{max{l,z},u} (read, “restrict = to [l,u]”). That is, R(l,u,z) is equal
to I when x < I, v when =z > u, and x otherwise. We select game parameters such that

equilibrium play has a unique prediction.

Observation 1. (CGC) Let {[l;,wi],t;; [, u;],t;} be a two-player guessing game. When
tit; # 1 and payoffs are strictly positive, the game has a unique equilibrium (z;,x;) in pure

strategies:
[ftitj <1, z; = R(li,ui,tilj) and Tj = R(lj,u]',tjli).
Iftitj >1, x; = R(li,ui,tin) and Tj = R(lj,Uj,tjui).

Since we consider behavior in complete information games and focus on deterministic rules,

the leading behavioral game theory models to describe subjects, next to equilibrium, are level-

'%Tn Phase T of the BestRespond, Replicate, and ShowGuesses treatments, y; = t;x;, where x; is the guess of
the opponent and ¢; is player ¢’s target. For Phase I of the Memory treatment, z; is the computer-generated
guess shown to the subject while she chooses her own guess z;. Suppose ! is i’s guess from a given game in
Phase I. In Phase II of the Replicate and Memory treatments, y; = x.. In Phase II of the BestRespond and
ShowGuesses treatment, y; = tz!, where ¢/’ is #’s target in Phase II of that game. Note that y; may fall outside
of the guessing range [l;, us].

Tn Phase I of the Memory treatment and Phase II of the ShowGuesses treatment, the winning lottery
amount was $1 instead of $2, since these tasks were quite simple.

10



k and dominance-k. We adopt the common definition that a level 0 (L0) player i picks x;
randomly and uniformly from her action set. A player of level k£ + 1 believes the opponent uses
the level-k rule and best-responds to this belief.

Here, an L1 player who best-responds to a hypothesized opponent who uniform-randomly
chooses over her allowed guesses plays the same as if she believes her opponent will play the
midpoint of her guessing range with certainty (see CGC); given strictly positive payoffs, the
unique best-response is R(l;, u;,t;(l; +u;)/2). This pins down the behavior of higher levels in
the level-k hierarchy: A level-k + 1 player chooses the best-response to the level-k guess of her
opponent.

We also consider the dominance-k model examined by CGC, where a Dk player performs
k rounds of iterative deletion of dominated strategies and best responds the belief that her
opponent plays uniformly at random among her remaining actions. In Table [2| we summarize
the predicted guesses of the behavioral types we focus on in this paper. The table simplifies
notation by shortening R(l;,u;, x) to R;(z). The numeric values for the guesses of behavioral

game theory types of the 20 games are given in Table

TABLE 2.—Formulas for Behavioral Game Theory Types’ Guesses

Strategy Formula for Player 3

Level 1 R;(t [ + u;]/2)

Level 2 R;i(t;R;(t; [l + u;]/2))

Level 3 Ri(tiR;(t; Ri(t:[l; + uj]/2)))

Equilibrium  R;(tl; ) 1f tit; <1 and R;(tjuy) if tit; > 1

Dominance 1 R;(t;[R;(t; )—I— R;(tju;)]/2)

Dominance 2 R; (tl[max{R (tl ) R;(tjR;(til;))} + min{ R;(t;u;), Rj(t; Ri(tiu;))}]/2)

2.5 Game Design

Fach participant plays a common set of twenty games, each with a unique Nash equilibrium.
The games are chosen to identify various behavioral types. For each game, guessing range
endpoints [ and u are multiples of 50 between 0 and 1000, inclusive. Targets ¢ are positive
multiples of 0.1 in (0,1) U (1, 2).

We use all eight games from CGC, one of which one is a symmetric game. While CGC
had subjects play all eight games from both sides, we did this for only two of the CGC games
(see the 3-4 game pair and the 5-6 game pair in Table . In addition, we use two games (19
and 20) where each has a dominant strategy for one player. For the remaining eight games,
we wanted each game to provide type separation between the most common behavioral types,

namely L1, L2, L3, L4, and EQ, to clearly identify a subject’s. Otherwise, we had no specific

11



hypotheses about what games would be more or less conducive to behavior that concords
with a given model. To ensure against inadvertently choosing parameters that favor certain
behavior, we generate the remaining eight games randomly, subject to the above restrictions
on the parameters and the requirement that there is a distance of at least 30 units between the
L1, L2, L3, L4, and EQ predictions. These 8 games are games 11-18 in Table [Il As a result,
in 14 games (8 randomly-generated and 6 from CGC) we have reasonable type separation
between L1, L2, L3, L4, and E(Q, with the distance between those types’ predicted guesses
never less than 10.5 units.lE Such type separation facilitates classifying a subject as a given

type on the basis of observed choices.

3 Behavioral Types in Two-Person Guessing Games

Before we analyze the behavior of all 150 participants in the BestRespond, Replicate and
ShowGuesses treatments, we provide evidence that our participants understand the games
and seem sufficiently motivated by the incentives in the experiment.

We have 20 participants in the Memory treatment who, in Phase I, are tasked with re-
sponding to the displayed guesses of the computer, and 10 participants in the ShowGuesses
treatment who, in Phase II, are tasked with responding to their Phase I guesses while they are
shown to them. Of those 600 guesses, all but 5 are within 0.5 units of the best response. This
demonstrates that our participants understand the games and are willing and able to calculate
the best responses to given guesses.lE Being able to best-respond to a shown guess seems like
a minimal requirement for subjects who are supposed to form beliefs about the opponent and
best-respond to them, which corresponds to the literal interpretation of the behavioral types
we consider.

We also examine whether subjects make dominated guesses, which cannot be rationalized
as best-responses to beliefs.lﬂ If subjects chose actions uniformly at random in all Phase 1
decisions, they are expected to make 7.40 dominated guesses on average. In fact, the average
number of dominated guesses is 2.35 (s.d. 2.68)[""] About one-third of the 150 subjects (44)

12%While 70% of games in our experiment have type separation between L1, L2, L3, L4, and EQ, in CGC this
is the case for 50% of the 16 games. Partly as a result, we have fewer classified subjects than CGC. For details
on the comparison between our results and those of CGC, see the online appendix.

13Furthermore, these results are obtained under experimental incentives half those used in the main treat-
ments: in these trials, the lottery payoff is only one dollar instead of two.

“In a guessing game {[I1,u1],t1; [l2,u2],t2} a guess x; of player i is dominated if x; < min{us,t;l;} or
x; > max{l;,t;u;}. Players are able to make dominated guesses in 13 and 17 of the 20 games, for G1 and G2
subjects respectively.

15Subjects do not appear to “learn” substantially over the course of the games by this measure: the number
of dominated guesses in the first 10 games is 1.13 (s.d. 1.42) compared to 1.22 (s.d. 1.56) in the last 10 games,
a small and statistically not significant difference (p > 0.3). We can analyze “learning” this way because every
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have no dominated guesses, and about two-thirds (97) have two dominated guesses or fewer.

Only 17 subjects have 6 or more dominated guesses, and 9 of whom have 8 or more.

3.1 Behavioral Types Identified in Phase I

We use a simple and straightforward method — very much in line with CGC — to identify
participants who can be described by L1, L2, L3, EQ, D1, or D2 on the basis of their Phase 1
play. We classify a participant 7 as having apparent type m when at least 8 of their 20 guesses
(40%) are within 0.5 units of m;, the action i would take under rule m. A 0.5 unit window
ensures that a behavioral type guess m; that is rounded to the closest integer is still counted
as being a guess of behavioral type m. While it is possible that a subject is classified as more
than one type, this does not happen in our data. While there is no theoretical reason for
these two cut-offs, we use them as they mirror those of CGC. In the Appendix, Section 8.2,
we show how the classification changes when we relax these cut-offs. Even though the number
of classified participants varies, the relative distribution of types is quite stable.

With these parameters, we classify 30% of participants; the results are shown in Table |3, A
large fraction of classified subjects are EQ (10%) and L1 (9.3%) types, with L2 (6.7%) making
up much of the remainder. Not a single subject is identified as D2, but some match L3 (2)
and D1 (4). We find no L4 subjects. Starting from Nash equilibrium only, adding a small set
of behavioral types increases the set of classified subjects by 200 percent. Compared to CGC,
we have relatively more equilibrium types and somewhat fewer L1 and L2 types; for a more

detailed comparison see the online Appendix.ﬁ

TABLE 3.—Summary of Estimated Type Distributions in Phase I

L1 L2 L3 EQ D1 D2 Unclassified
Organization of Subjects 14 10 2 15 4 0 105
Percentage of Classified 31.1% 22.2% 4.4% 33.3% 88% 0% -

Subjects (150) are pooled from the Replicate, ShowGuesses and BestRespond treatments

Because we allow only for small mistakes when matching subjects against the model pre-
dictions, it is quite unlikely that a subject having eight guesses or more coinciding with a given
model has this happen out of chance. There is, however, one strategy (outside our pre-specified
models) that may make a subject spuriously appear as a Nash equilibrium type. Specifically,

for P1 and P2 subjects, 15 and 10 out of 20 equilibrium guesses are on the guessing range

subject sees the 20 games in a subject-specific random order.
161 CGC, of all classified participants, 46.4% are L1, 27.8% are L2, 4.7% L3 and 20.9% are EQ. They have
no D1 or D2 types when using their “apparent from guesses” method.
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boundary, respectively. For the other behavioral types, at most 5 of the 20 predicted guesses
are on the boundary. Hence, a player who always plays one of the boundaries might wrongly
be classified as matching the equilibrium type. In our sample we may there are two subjects
for which this may be a concern.lﬂ

While many subjects have fewer than 8 modal-type guesses, the non-modal-type guesses
generally do not correspond to any of our other behavioral models. That is, subjects rarely
“switch” from one behavioral type to another. Only 9% of subjects have more than 3 guesses
matching behavioral types that are not their modal type.lE For more details see the Appendix,
Section 8.3.

4 Who uses a Deterministic Rule and Who is Strategic?

Behavioral game theory allows us to describe players using simple and portable models such
as level-k and dominance-k. While the equilibrium type alone allows us to classify 10% of
subjects, adding the level-k and dominance-k behavioral models brings this to 30%. This leaves
almost 70% of subjects not classified as behavioral game theory types. A traditional next step
would be to relax classification criteria by allowing participants to implement their strategy
with error. Such an exercise, in general, restricts attention to a given set of behavioral game
theory types.lE In contrast, a goal of this paper is to assess how many of the 70% unclassified
subjects use deterministic rules that differ from those described by existing behavioral game
theory models.

We therefore propose a test of whether or not a subject deliberately plays according to a
deterministic rule. In short, the test checks whether subjects are predictable, that is, if they
behave in Phase II as expected given their Phase I choices. If a subject who is classified as a
behavioral type is indeed applying that type’s rule deliberately, we would expect the participant
to score highly on our test. This expectation is driven by the fact that, to have been classified

in the first place, a participant must have implemented her behavioral type with essentially no

170f the 15 subjects identified as equilibrium types, two have all their equilibrium guesses on the boundary,
and furthermore, have 15 and 20 of their guesses on the boundary, respectively. The subject with 15 boundary
guesses is from the BestRespond treatment and the subject with 20 boundary guesses is from the Replicate
treatment. The other 13 equilibrium-type subjects have at most 10 guesses on the boundary and never more
than 5 guesses on the boundary that are not equilibrium guesses. In addition, the difference in frequencies of
hitting the equilibrium guess on the boundary versus the interior is never more than 65%.

18Subjects with 10-12 modal-type guesses seem to have the most behavioral type guesses that differ from
their modal behavioral type. However, such subjects would be classified as their modal type given the apparent
type method anyway, as the threshold for classification is to have at least 8 guesses of the same type. Only 20%
(21/105) of subjects with fewer than 8 modal types have a total number of 8 or more behavioral type guesses.
The Figure in the online Appendix shows, for each number of modal type guesses n and each subject with n
modal type guesses, the number of behavioral type guesses of the subject.

There are, of course, exceptions, e.g. CGC).
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error in at least 40% of the games. We therefore expect a classified subject to make Phase 11
guesses that conform to the predictions generated from her Phase I guesses (and the particular
treatment she is in). If the 70% of subjects not classified as behavioral types are to a large
extent not using deliberate deterministic rules, we would expect them, as a group, to not score
highly on our test. We therefore expect subjects identified as behavioral game theory types to
make Phase II choices that are more in concordance with their Phase I choices when compared
to unclassified subjects. The flip side of this reasoning is that we aim to determine the success
of existing behavioral types in identifying subjects who are using deliberate rules. As such,
our approach will allow us to assess the scope for additional behavioral game theory models.

To evaluate whether a subject deliberately uses a deterministic rule, we exploit the expected
relationships between Phase I and Phase II choices in our two main treatments. In the Replicate
treatment, we expect any subject who uses a well-defined deterministic rule to be able to
replicate her past behavior. In the BestRespond treatment, we expect such a subject who,
in addition, exceeds a minimal level of strategic reasoning to be able to best-respond to her
past behavior. A deliberate subject whose behavior is best described by a rule of thumb
(that sidesteps considerations about the opponents’ behavior) may be able to replicate but not
best-respond to her former actions.

Our test relies on the assumption that participants recompute their guesses rather than
remember their numeric values. In the last part of this section, we show that predictive success
in Phase II cannot be explained merely by numeric memory of Phase I guesses. This shows that
subjects who are classified as behavioral types are conforming more to actions in line with their
former behavior because they are more likely to regenerate their guesses, presumably because
they use deterministic rules, rather than because they have “superior” memories. Furthermore,
it confirms that subjects who were particularly successful in Phase II but whose Phase I actions
were poorly matched by our behavioral models are more likely to represent “omitted types”
than arbitrary subjects with particularly good memories.

In this paper, we assess whether a subject behaves in Phase II in concordance with her
Phase I guess by using a “guess-level” approach that is “model-free”. Specifically, we assume
that the expected relationship between Phase I and Phase II behavior will manifest itself in
each game. This model-free approach allows us to analyze whether a Phase II guess conforms
to the profit-maximizing choice given the corresponding Phase I guess while remaining ignorant
of the rule underlying the Phase I choice. This lets us compare the cross-phase predictability

of the group of classified subjects versus the unclassified participants.
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4.1 Can Players Replicate their Past Actions?
4.1.1 Classified versus Unclassified Participants

In the Replicate treatment, we have Phase I and Phase II observations for 63 participants.m In
Phase II, participants are paid as a function of how close their guesses are to the guesses they
made in Phase I. We say that a Phase II guess “replicates” the Phase I guess if the Phase 11
guess is within 0.5 units of the subject’s Phase I guess in the same game.lﬂ We call a subject a
“replicator” if in at least 40% of games (8 out of 20), her Phase II guesses replicate her Phase I
guesses. Only 31 of the 63 subjects (49%) meet this criterion.lﬂ This criterion suggests that
only half the subjects may be thought of as consciously and deliberately using deterministic
systems of choice that could potentially be uncovered.

Of the 63 subjects in the Replicate treatment, 18 (roughly thirty percent) are classified as
matching one of our given behavioral types in Phase I; 5 as L1, 4 as L2, 1 as L3, 6 as EQ, and
2 as Dl.lﬂ We find that 72% of these classified participants are replicators. The proportion of
classified level-k or dominance-k types who are replicators (8 of 12) is not significantly different
from that of participants classified as the equilibrium type (5 of 6; p = 1). All proportion tests
in this paper show p-values of two-sided Fischer exact tests.@ Of the 45 unclassified subjects,
18 (40%) are replicators. While this is not zero, it is significantly lower than the fraction
of classified subjects who are replicators (p = 0.01). This suggests, first, that being able to
replicate one’s actions is not a trivial task. Second, subjects classified as behavioral types are
strictly superior at this task, suggesting that behavioral game theory models have some success
in uncovering subjects who use deliberate rules.lﬂ

To assess the extent to which behavioral models identify participants who deliberately
use deterministic rules, note that of the 31 replicators, only 42% are classified in Phase I.
Specifically, we have 18 players who match each behavioral model fewer than eight times in
Phase I but who replicate 8 or more of their guesses in Phase II. The fact that they can
precisely replicate many of their non-behavioral type guesses suggests that these subjects are
not merely subjects who play known behavioral rules with noise. Quite the contrary, they seem

to be non-noisy followers of unknown rules, suggesting room for new behavioral game theory

20Qubject 31 had a computer malfunction and could not finish Phase II; her data is dropped from this analysis.

2IThat is, !’ replicates z] if |z’ — z]| < 0.5, where ] and 2 are the respective Phase I and Phase II guesses
of participant i in the same game.

22Note that if all a subject recollects is that she played an action that was not dominated, we expect her to
replicate only one guess, which corresponds to the game that has a dominant strategy.

230f the 6 EQ players, one may be a misclassified boundary player.

#Likewise, the 5 L1 subjects are as likely to be replicators (3 out of 5) as the 5 that are L2 or L3 subjects
(4 out of 5), p = 0.99.

25Note that even the 12 classified subjects who are not of the equilibrium type have a higher fraction of
replicators (8 of 12) than the 45 unclassified subjects (18 of 45), though the difference is not significant, p = 0.12.
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models to describe these “omitted types”.

In the following paragraphs, we consider several different continuous measures of Phase 11
performance; we find robustness of our previous finding that classified subjects are better at
replicating their behavior than unclassified subjects.

Subjects identified as behavioral types have significantly more replicated guesses compared
to unclassified subjects: 11.88 versus 7.22 (p < 0.01). All tests of equality of means in this
paper are t-tests. Furthermore, when considering all guesses, classified participants replicate
58% of them, while only 36% are replicated by unclassified subjects. The difference in the
replication rate mostly stems from Phase I guesses that are behavioral type guesses. For such
Phase I guesses, the replication rate is 73% for classified subjects and 59% for unclassified
subjects.PY

We next assess the difference between classified and unclassified subjects by considering
how far subjects are from replicating their guesses. For each subject i, we average—over the 20
games—the miss distance ]mZH — xlf |, where CCZI and xiH are the Phase I and Phase II guesses in a
given game. Classified participants have a mean miss distance of 49.13, which is significantly
lower than the mean miss distance of 74.28 held by the unclassified subjects (p = 0.036).
This difference is also reflected in the earnings of subjects. Classified participants have 12%
higher expected earnings than unclassified participants in Phase II, $34.47 compared to $30.71
(p = 0.005) 7]

The distinction between classified and unclassified subjects also manifests itself in Figure [3]
which orders subjects by average miss distance and plots the cdfs of both classified and un-
classified participants. Figure |3|shows that the 21 subjects with the lowest miss distances (the
lower third) comprise 44 percent of all classified and 29 percent of all unclassified participants.
The fact that the cdf of classified participants is above the cdf of unclassified participants
reflects that classified participants have lower miss distances. That the cdf of unclassified par-
ticipants is not too far off the 45 degree line suggests that some unclassified participants are
not much worse at replicating their choices compared to classified participants.lﬁ

To compare the miss distances of subjects both within a treatment, but especially across

treatments, we introduce a baseline miss distance. A subject who follows the “sophisticated

26For non-behavioral-type guesses in Phase I, classified participants replicate 23% of guesses, compared to
29% for unclassified subjects.

2"The maximum possible expected earnings in Phase IT are $40.00 for both groups of participants, which can
be achieved for all possible Phase I actions. Note however that classified participants have significantly lower
expected earnings from random uniform play than unclassified participants: $14.90 and $16.17, respectively
(p = 0.005). Both higher average earnings and lower earnings from random play imply that classified participants
realize a significantly larger fraction of the gains from optimal play relative to random play than unclassified
participants, 78% compared to 60% (p = 0.002).

28To provide some idea as to the miss distances, note that the lowest miss distance is 0, that of the 25"
percentile is 36, the 50" is 61, the 75" is 91 and the highest miss distance is 211.
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FIGURE 3.—The cdf of the 18 classified and FIGURE 4.—For each subject, we plot the
the 45 unclassified participants in the Repli- number of Phase II guesses that are replica-
cate treatment, ordered by their miss dis- tions of the corresponding Phase I guesses
tances. Subject 1 has the lowest miss dis- as a function of the number of modal type
tance and subject 63 the highest. guesses in Phase I.

rule” is a subject who in Phase II has no recollection of the guesses she made in Phase I, apart
from the fact that it was not a strictly dominated guess. The sophisticated rule subject then
randomizes in Phase II over any guess that is a best response to a surviving Phase I guess.
In the Replicate treatment, the sophisticated rule therefore corresponds to randomizing in
Phase II over guesses that are not strictly dominated. If subjects were to use the sophisticated
rule, the mean miss distance of classified subjects would be 137.58, which is not significantly
different from the mean miss distance unclassified subjects would have, 135.81 (p = 0.846).
This suggests that the observed differences in miss distances between classified and unclassified
subjects are not mechanically driven by the structure of the games nor their different Phase 1
actions ]

29We can also ask what fraction of reduction in miss distance a subject achieved compared to the sophisticated
baseline. We find that classified participants realize a significantly greater fraction of the gains towards optimal
behavior than do unclassified participants. A subject who has the same miss distance as the sophisticated
baseline has a reduction of 0, while 1 corresponds to a subject whose Phase II choices are payoff maximizing.
Specifically, for each game ¢, let MissDist; be the distance between the subject’s Phase II guess and the
Phase I guess, and let Soph; be the (expected) distance between the Phase II guess and the Phase I guess under
the sophisticated baseline rule. Then, we define (Soph; — MissDist;)+ = max{Soph;, — MissDist;,0} as the
reduction in miss distance of the actual guess relative to the sophisticated baseline in game . In a game in
which Soph; > 0, (Soph; — MissDist;)+/Soph; is a value between 0 and 1 representing the normalized gains a
subject made towards optimal play (a miss distance of zero) relative to the sophisticated baseline. Soph; is zero
in the game with a dominant strategy. Losses are counted as zero gains. Note that when Soph; — MissDist;
is negative, dividing by Soph; does not normalize the losses to be between 0 and 1, and indeed they can take
very high negative valuations, especially when Soph; happens to be small. Since that may distort the measure
that considers average gains from the sophisticated baseline towards optimal play, we decided to count losses
as zero. For the set of games in which Soph; > 0, we compute the mean of (Soph; — MissDist;)+/Soph;,
yielding a measure of the gains towards optimal play in Phase II relative to the sophisticated baseline. On
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4.1.2 Performance by number of modal type guesses

In the following paragraphs we adopt a more continuous measure of Phase I behavior and show
further robustness of our previous finding that classified subjects are better at replicating their
behavior than unclassified subjects. Instead of partitioning subjects in Phase I into sets of
classified and unclassified participants, we consider how often a subject plays her modal type,
i.e., her most frequently played behavioral type. Figure [4] shows that the more modal type
guesses a participant makes in Phase I, the more guesses she replicates in Phase II. A regression
of the number of replicated guesses in Phase II on the number of Phase I modal type guesses
shows a coefficient of 0.670 (s.e. 0.101, p < 0.001) and a constant of 4.347 (s.e. 0.784, p < 0.01).
The figure also shows that there are clearly many omitted types: subjects who often replicate
their past guesses while having few modal type guesses. That is, a sizable number of subjects
seem to play according to rules they can replicate while these rules do not match any of the
behavioral models we consider. Precise replication of many guesses suggests that these are not
subjects who noisily implement knowns behavioral types, nor are they subjects who simply
switch among several known rules ]

The conclusions are mirrored when we consider earnings. A regression of expected earnings
in Phase II on the number of modal type guesses in Phase I shows a coefficient of 0.551
(s.e. 0.109, p < 0.01) and a constant of 28.33 (s.e. 0.846, p < 0.01). That is, each additional
modal type guess in Phase I is associated with an increase in earnings of about 50 cents.

To summarize, we find that participants classified in Phase I by the method of Section 3
are, to a large extent, able to replicate their past guesses, confirming their behavioral type
classifications. Furthermore, as a group, participants who are not classified in Phase I suc-
cessfully replicate in Phase II at much lower rates, showing that existing behavioral models
identify subjects who are more deliberate in their choices. Finally, among participants who
are replicators, 42% are classified, which suggests that quite a few participants who cannot
be described by one of our behavioral types are nonetheless playing according to deterministic

rules they can replicate. This suggests considerable room for new behavioral types.

average, classified participants realize a significantly greater fraction of the gains towards optimal behavior than
do unclassified participants, 71.6% versus 56.9% (p = 0.009). Furthermore, for each subject we can assess
whether their miss distances are significantly different than the sophisticated baseline. Using a significance level
of 10%, all classified subjects have significantly lower mean miss distances than the sophisticated baseline; this
is the case for only 82% of unclassified subjects, a significant difference (p = 0.092). As we might expect, of the
31 subjects who are replicators (successfully replicated in 8 or more games), all have significantly lower miss
distances, while this is the case for only 75% of the 32 non-replicators (p = 0.004).
30Recall that a subject with a low modal type also has few behavioral type guesses.
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4.2 Can Players Best-Respond to their Past Actions?
4.2.1 Classified versus Unclassified Participants

While being able to replicate a guess is consistent with the deliberate use of a deliberate
deterministic rule, it does not necessarily indicate that a participant forms beliefs about the
behavior of the opponent and then best-responds to those beliefs. Indeed, if the interpretation
of the level-k type as an “as if” representation of a rule of thumb is accurate, we would expect
level-k players to successfully replicate their past actions but not necessarily best-respond
to them. This would be also expected if the obtained level k is an indication of cognitive
limitations. Most importantly, it remains an open question whether the unclassified replicators
(omitted types) are best described by rules of thumb versus strategic rules that involve the
formation of beliefs followed by best responses. The goal of the BestRespond treatment is to
shed light on these questions.

We have 76 participants in the BestRespond treatment, who, in Phase II, play against their
Phase I selves. Specifically, in Phase II, subjects play the 20 games of Phase I (in the same
order), but take on the role of their Phase I opponent. A subject’s Phase II opponent is her
computer that plays in the participant’s Phase I role and makes her exact Phase I guess. (The
subject is informed that the computer is programmed this way, but is not explicitly shown her

previous guesses.) We call a Phase IT guess a “best response guess” if it is within 0.5 units of
Iig

the unique best response to its corresponding Phase I guess. That is, ;' is a best response
guess if and only if |2/ — BR(2!)| < 0.5, where (i) z! and x!! are the respective Phase I and
Phase II guesses of participant i in the same game {[l1,u1],t1; [l2, ua, t2}, (i) BR(x]) = tox!
if I < tgx{ < wg, (iii) BR(:C{) = [y if tgl'i[ < ly and (iv) BR(JUZ-]) = wuy if tgxi[ > up. A
participant is a “best-responder” if in at least forty percent of games her Phase II guess is a
best-response guess. Only 31 of the 76 subjects meet this criterion. This suggests that only
a small fraction of participants can be thought of as deliberately playing deterministic rules
that are best responses to beliefs about the guesses of the opponents.

In Phase I, roughly one-third (26 out of 76) of participants are classified using the method
of Section 3; 9 are L1, 5 are L2, 1 is L3, 9 are FQ and 2 are Dl.lﬂ We find that 81%
of the 26 classified participants are best-responders. Level-k and dominance-k participants
are as likely to be best-responders (13 of 17) as are equilibrium participants (8 of 9) (p =
0.614). This suggests that the level-k model may be closer to an actual strategic description of
behavior as oppose to a mere “as if” representation of a rule of thumb or cognitive limitation.lﬂ

Only 20% of unclassified subjects (10 of 50) are best-responders. While this is not zero,

310f the 9 EQ players, one may be a misclassified boundary player.
32The 9 L1 subjects are somewhat less likely to be best-responders (5 out of 9) than the 6 that are L2 or L3
subjects (6 out of 6), though the difference fails to be significant, p = 0.103.
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it is significantly smaller than the fraction of classified participants who are best-responders
(p < 0.001). These results show that behavioral types are not only doing well in this two-phase
strategic environment; we see that performing well is difficult.

To assess the extent to which behavioral models capture subjects who successfully best-
respond, note that of the 31 best-responders in Phase II, 68% are participants classified as
behavioral types in Phase 1. This suggests that existing behavioral models are particularly
suited in identifying subjects who use deliberate rules that have some degrees of strategic
sophistication. We have, in addition, 10 participants who provide exact best-responses to at
least 40% of their guesses but who were not classified as any behavioral type in Phase I. These
omitted types are prime candidates for being described with new belief-based behavioral game
theory models.

In the following paragraphs, we consider several different continuous measures of Phase I1
performance; we find robustness of our previous finding that classified subjects are better at
best responding to their behavior than unclassified subjects.

When we compute the number of times participants best-respond to their past actions, clas-
sified participants have, on average have 11.42 best-responses while unclassified participants
have only 5.46; this difference is statistically significant (p < 0.01). Classified participants
best-respond to 57% of all guesses compared to 27% for unclassified participants. This differ-
ence is mostly driven by the best-response rate to behavioral type guesses. For such Phase I
guesses, the best-response rate is 68% for classified participants compared to 35% for unclas-
sified subjects ]

Alternatively, we can assess how well a subject best-responds to her past behavior by
measuring how far her Phase II guess (z) lies from the exact best response (BR(x!)). For
each subject i, we average this discrepancy (|z//—BR(z!)|) over the twenty games to compute 4’s
average miss distance. The mean of classified subjects’s average miss distances is 53.54; this is
significantly smaller than the corresponding statistic of 97.90 unclassified subjects (p = 0.001).
This difference is also reflected in the earnings of subjects: classified participants have 19%

greater expected earnings than participants who are not classified ($30.13 compared to $25.36,
p < 0.001) [

33For non-behavioral type guesses, the best-response rate is 33% for classified and 25% for unclassified partici-
pants. Subject fixed-effects conditional logit regressions confirm that guesses that are classified as best-response
guesses are more likely to be best-responded to than are other guesses and that this effect is significantly stronger
for participants classified as behavioral types.

34While the maximum possible expected earnings in Phase II are $40.00 for both groups of participants,
this cannot be achieved for all possible Phase I actions, and differences in Phase 1 behavior across groups
could mechanically produce differences in Phase II earnings. This does not seem to account for the difference we
observe. The highest possible expected earnings are $36.14 and $35.94 for classified and unclassified participants,
respectively (p = 0.747), while those for random play are $18.44 and $18.36 (p = 0.828). Classified participants
realize 66% of the difference between random play and highest possible earnings, compared to only 38% for
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In Figure [5, we order subjects by their average miss distances. We then plot the cdfs of
both classified and unclassified participants. Figure [5| shows that the 25 subjects with the
lowest miss distances (the lower third) comprise 65 percent of all classified and 16 percent of
all unclassified participants. The fact that the cdf of classified participants is well above the
45 degree line, while that of unclassified participants is well below, confirms that classified
participants, on average, have lower mean miss distances; that is, classified subjects deviate

much less from best responses than do unclassified participants.lﬂ

Noise Distribution in the BestRespond Treatment
Best Response Treatment
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F1GURE 6.—For each subject, we plot the
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FI1GURE 5.—The cdf of the 26 classified and
the 50 unclassified participants in the Be-
stRespond treatment ordered by their miss
distances. Subject 1 has the lowest miss dis-
tance, and subject 76 the highest.

In order to confirm that difference in average miss distances between classified and un-
classified participants is not mechanically driven by these groups’ different Phase I choices,
we compute, as in the previous section, a baseline miss distance. A subject that follows the
“sophisticated” rule best responds to a past self that guesses uniformly at random over the
set of Phase I guesses that are not strictly dominated. The sophisticated baseline for classified
subjects yields a mean miss distance of 105.03, which is not much lower than the mean miss dis-
tance for unclassified subjects using the sophisticated baseline 114.01 (p = 0.111). That is, the
difference in the actual mean miss distances for these groups does not seem to be mechanically

driven by differences in the structures of games or their Phase I play. ﬁ

unclassified participants (p < 0.001).

35To provide some idea as to the miss distances, note that the lowest miss distance is 3, that of the 25"
percentile is 35, the 50" is 74, the 75" is 117 and the highest average miss distance is 325.

36We assess what fraction of the reduction in miss distance from the sophisticated baseline to the optimum
(zero miss distance) players achieved. As before, we normalize losses to 0, so that for each game the realized
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4.2.2 Performance by number of modal type guesses

As in the Replicate treatment, we can consider how often a subject plays her modal type, i.e.,
her most frequently played behavioral type. This allows for a more continuous measure of
Phase I behavior and lets us investigate the further robustness of our previous finding that
classified subjects are better at best responding to their behavior than unclassified subjects.
Figure [0 shows that making more modal type guesses in Phase I translates to more best
responses in Phase II. A regression of the number of best-responses in Phase II on the number
of modal type guesses in Phase I yields a slope coefficient of 0.634 (s.e. 0.092, p < 0.01) and a
constant of 3.201 (s.e. 0.756, p < 0.01). Figure |§| also quite impressively shows the existence
of subjects who are very good at best-responding to their Phase I guesses but have few modal
type guesses. These subjects appear to represent omitted types. The fact that they so precisely
best-respond to their guesses suggests that they indeed play omitted rules; they do not seem
to implement existing behavioral types with noise.

The conclusions are mirrored when we look at earnings instead of the number of best-
response guesses. A regression of expected earnings on the number of modal type guesses a
participant makes yields a slope coefficient of 0.501 (s.e. 0.123, p < 0.01) and a constant of
23.60 (s.e. 1.015, p < 0.01). That is, each additional Phase I modal type guess is associated
with a 50 cent increase in Phase II expected earnings.

We find that participants classified as behavioral game theory types in Phase I are, to a
large extent. able to best-respond to their own past behavior, confirming their behavioral type
classifications. This also suggests that the interpretation of behavioral strategies as strategic
choices might be more accurate than the interpretation that such models are largely “as if”
models or non-strategic rules of thumb. Furthermore, participants not classified in Phase 1
generally fail to best-respond to their past actions. That is, subjects who match behavioral
types are clearly distinguished from those who do not. Finally, among participants who are
best-responders, 68% are captured as behavioral types by the classification of Section 3. That
is, behavioral strategies capture the majority of subjects who we judge as deliberate and

strategic in this setting.

gains are normalized between 0 and 1. We take the average over all games in which the sophisticated baseline
yields a strictly positive miss distance and average these measures separately over classified and unclassified
subjects. Classified participants realize 68.7% of the gains towards optimal performance in Phase II relative to
the sophisticated baseline, while this value is only 44.9% for unclassified participants (p < 0.001). Furthermore,
for each subject we can assess whether her miss distance is significantly different (smaller) at the 10% level than
the sophisticated baseline. Of the 26 participants whose Phase I behavior classified them as behavioral types,
77% have significantly less noise in Phase II than had they used the sophisticated rule in Phase II. This is a
significantly higher percentage than the 46% of the 50 unclassified participants (p = 0.014). As expected, of the
31 subjects who were classified as best-responders, 87% have significantly smaller mean miss distances than the
sophisticated baseline, compared to only 36% of the 45 non-best-responders (p < 0.001).
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There are, however, some omitted types (unclassified best responders), which suggests
there is some room for additional strategic behavioral models. Note that the level £ model
captures about two-thirds of classified behavioral types, and behavioral types (including the
equilibrium type), represent about two-thirds of “strategic” subjects. So, even if all strategic
omitted types could be explained by a single new behavioral model, that new model (in our
data) would capture fewer participants than does level k. In other words, our data predict
that a new model cannot be as successful as level k in capturing strategic types in two-player

guessing games.

4.3 Are Many Deterministic Rules Strategic?

The goal of this section is to assess the extent to which subjects are more successful in replicat-
ing than best-responding to their past guesses. There are two reasons why replicating a guess
may be easier than best-responding to it. While replicating a guess is clearly a necessary first
step for best-responding to it, the latter entails that the subject also be aware that her action
in a game should depend on her beliefs about the action of the opponent. A participant who
uses a rule of thumb may never actually think about the opponent. She may not value the
following information: the other player in Phase II of the BestRespond treatment is a computer
who makes the subjects’ exact Phase I guesses. Therefore, subjects who use rules of thumb
may be able to replicate their guesses but fail to make the strategic leap that is necessary to
best-respond to them.

A more mundane reason why best-responding is harder than replicating is that subjects
now have an additional opportunity to make computational errors; once they compute the
replications, they additionally must calculate the best responses. Note, however, that we find
that subjects make virtually no mistakes when computing the best responses to guesses. As
noted in Section 3, out of 600 times that subjects are tasked with responding to shown guesses,

all but 6 are within 0.5 units of the best response.

4.3.1 Classified Participants

We first focus on classified participants, that is, participants who have guesses of the same
behavioral type in 40% or more of the games (in Phase I). We saw that 72% of classified
subjects are replicators and 81% are best-responders. This difference is not significant (p = 1).
The number of Phase II guesses that correspond to the predicted guesses given the Phase 1
behavior is similar across treatments; it is 11.42 for subjects in the BestRespond treatment
and 11.56 for subjects in the Replicate treatment (p = 0.928).@

37 Across the two treatments, classified participants have about the same number of Phase I guesses that are
classified, 13.88 for subjects in the BestRespond treatment and 13.83 for subjects in the Replicate treatment,
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For a continuous measure, we report the mean miss distances of classified participants in
the Replicate and the BestRespond treatments in Table ] below. Classified participants have
about the same mean miss distances in both treatments.lﬂ For classified participants, best-
responding to Phase I guesses seems no more difficult than replicating them. This suggests
that not only the equilibrium type, but also the much more prevalent level k types are probably
best thought of as strategic types rather than rules of thumb.lﬂ

Replicate  BestRespond  t-test

Classified Subjects (N) 18 26
Miss Distance 49.13 53.54 0.750
Unclassified Subjects (N) 45 50
Miss Distance 74.28 97.90 0.021

TABLE 4.—Classified subjects: mean miss distances across treatments. The last column shows
the p-values of two-sided t-tests of equal means across treatments.

4.3.2 Unclassified Participants

For subjects who are not classified in Phase I, we find that 39% are replicators, while only 20%
are best-responders (p = 0.046). On average, unclassified subjects best-respond to significantly
fewer guesses than they replicate: 5.46 compared to 7.24 (p = 0.028). This difference is not
driven by a difference in the number of behavioral type or modal-type guesses in Phase I across
the BestRespond and Replicate treatments.lﬂ

Finally, we can compare the miss distances of subjects not classified in Phase I across
treatments. In concordance with the results so far, unclassified participants in the Replicate
treatment average significantly smaller miss distances than unclassified participants in the
BestRespond treatment; the difference is almost 25%.@

p = 0.964.

38Furthermore, they realize about the same gains towards optimal play relative to the sophisticated baseline
(see (Soph-Miss Dist.)/Soph). The sophisticated rule has a miss distance of 137.58 in the Replicate treatment
and a miss distance of 105.03 in the BestRespond treatment, p = 0.000. For (Soph-Miss Dist.)/Soph) the
numbers are 0.716 and 0.687, respectively, p = 0.656.

39Even when we just concentrate on L1, or on all Lk types, such types are as likely to be best-responders as
they are to be replicators across treatments: 5 of 9 and 3 of 5 (p = 1) for L1 and 11 of 15 and 7 of 10 (p = 1)
for all Lk types.

“Tn Phase I of the BestRespond treatment, unclassified subjects average 5.26 behavioral type guesses and
3.98 modal-type guesses, which is not significantly lower than the corresponding 4.89 (p = 0.464) and 3.71
(p = 0.480) measures from the Replicate treatment.

4I'Note that this is the reverse of the relationship between the sophisticated baseline measures, which suggests
that this difference in actual miss distances is not mechanically driven by the structures of the games or tasks
across treatments. The sophisticated rule has a miss distance of 135.81 in the Replicate treatment and of
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That for unclassified subjects replicating past behavior is so much easier than best-responding
to it, and that there are fewer best-responders than replicators, suggests that some of the
omitted types may be better described by rules of thumb than by strategies that entail best

responses to beliefs.

4.4 Playing according to a rule, or simply remembering guesses?

One interpretation of participants replicating and best-responding to guesses is that they re-
apply their original deterministic rules to recompute their former guesses. However, it could
be that some participants merely have good numerical memories. In the Memory treatment,
we provide a benchmark for how easy it is to remember 20 guesses that do not result from any
deliberate rule. To this end, in Phase I of the Memory treatment, participants play the guessing
games against computers that make random guesses. Notably, a subject sees her computer’s
guess before making her own guess. Like in Phase I of the other treatments, subjects are
paid as a function of how far their guesses are from their goals. In Phase II of the Memory
treatment, participants are tasked with replicating their Phase I guesses (of course, without
being shown these guesses).

As in our other treatments, we use a 0.5 unit window to determine whether or not an
individual “remembers” a guess; we say a subject is a “rememberer” if she remembers 8 or
more Phase I guesses. In Phase II of the Memory treatment, subjects remember between 1
and 7 guesses, so we find no “rememberers”. On average, subjects remember 3.9 guesses out
of 20. To assess that number, we compute the expected number of guesses that a subject
with no numerical memory should be able to remember if she only recalls that, in Phase I, she
best responded to her computer that chose a guess uniformly at random over the action set.
For each game, this reasoning generates a unique action in Phase II that maximizes expected
earnings. If all 20 subjects would have used this scheme, they would remember 2.8 guesses on
average. Note that while not much smaller, this is significantly different than the mean of 3.9
remembered guesses (p = 0.()3).@

Finally, we can compare how well subjects perform in the Memory and Replicate treat-
ments. While 31 out of 63 subjects replicate 8 or more guesses and hence are replicators, no
subject in the Memory treatment remembers 8 or more guesses (p < 0.01). The mean num-

ber of remembered guesses in the Memory treatment (3.9) is also significantly lower than the

114.01 in the BestRespond treatment (p = 0.000). Similarly, unclassified subjects in the Replicate treatment
realize more of the gains towards optimal play relative to the sophisticated baseline compared to unclassified
participants in the BestRespond treatment. (Soph-Miss Dist.)/Soph has a value of 0.569 in the Replicate and
of 0.449 in the BestRespond treatment (p = 0.003).

“When considering the distribution of # remembered guesses - # guesses remembered using the optimal no-

memory scheme, the mean is 1.1, standard deviation is 2.23, and minimum and maximum values are —4 and
5.
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average number of replicated guesses (8.5) in the Replicate treatment (p < 0.01). Subjects in
the Memory treatment even remember fewer guesses than unclassified subjects replicate (7.24)
in the Replicate treatment (p = 0.001). A comparison to the BestRespond treatment yields
similar results.[=]

In sum, participants who perform well Phase II of the Replicate and BestRespond treat-
ments are unlikely to be exceptional in numerically remembering arbitrary Phase I play.
Rather, their Phase II success likely comes from reimplementation of deterministic Phase I

rules.

4.5 Explaining Unclassified Subjects

Our experimental design allows us to identify subjects who can replicate and best respond to
their past behavior, even when we fail to capture that initial behavior with existing models.
Such subjects are prime candidates for having deliberate rules that govern their Phase I choices.
In this section, we use two methods aimed to shed light on the behavior of the 28 omitted
types: the 18 unclassified replicators and 10 unclassified best-responders. Specifically, we aim
to address whether many omitted types could be explained by one or a small number of models

that may share the recursive best-response feature of level-k.

4.5.1 Method #1: Search for Types Related to {L1,L2, L3, EQ, D1, D2}

The L1,D1 and D2 strategies all involve best responding to a range of opponent guesses.
Specifically, if a subject ¢ performs 0, 1 or 2 rounds of iterative deletion of dominated strategies
(idds) and believes her opponent plays uniformly at random among her remaining actions, then
i’s best response is the L1, D1 or D2 guess, respectively. The same L1, D1 and D2 actions
emerge, however, as the best responses to the deterministic strategy of opponents guessing the
midpoints of their guessing ranges that remain after, respectively, 0, 1 or 2 rounds of idds.
Accordingly, we check whether there are subjects who perform 0, 1 or 2 rounds of idds and
then guess their own midpoints at least 40% of the time.

Only one unclassified subject can be assigned to one of these three “midpoint types”;
this participant (subject 80) performs one round of idds and guesses the midpoint of her
remaining guesses. Furthermore, this subject is a best responder. Thus, when considering
each deterministic strategy s ¢ BT = {L1, L2, L3, EQ, D1, D2} for which some s’ € BT is a

43In the BestRespond treatment, 31 out of 76 subjects are best-responders, a significantly greater proportion
than the 0 rememberers out of 20 subjects (p < 0.01). The mean number of best-response guesses, 7.5, is
also significantly greater than the mean of 3.9 remembered guesses from the Memory treatment (p < 0.01).
Subjects in the Memory treatment are even worse at remembering guesses than unclassified subjects are at
best-responding to them in the BestRespond treatment, as they average 5.46 best-response guesses compared
to 3.9 remembered guesses out of 20 (p = 0.07).

27



best response to s, we find one subject playing such an s with D1 as the corresponding s’.
This subject is also one of our 28 omitted types.

Other strategies that are related to BT = {L1, L2,L3, EQ, D1, D2} are L4, BRD1 and
BRD?2, the types who best respond to beliefs of L3, D1 and D2 opponents, respectively. (The
best responses to L1, L2 and EQ are in BT already.) We do not find any unclassified subjects
who can be explained by L4, BRD1, or BRD?2.

4.5.2 Method #2: Search for Participants with Related Behavior

Thus far, we have checked three ways in which the 150 subjects from the Replicate, BestRespond
and ShowGuesses treatment may be affiliated with a given type t € BT. First, we checked
whether a participant follows ¢, in which case the subject is classified. Second, we checked if
an unclassified participant follows ¢/, the determinisitc strategy to which ¢ is a best response
to; this occurs for one subject (Subject 80), who is an omitted type. Third, we checked if
an unclassified participant follows a type t” generated by taking the best response to type t,
where t” is not in BT’; we find no such subjects. This threefold approach classifies 46 subjects,
45 in BT and one outside of BT who is one of our 28 omitted types.

To shed light on the behavior of the remaining 27 omitted types and address whether they
employ strategies that are similar or related to each other, we follow an approach of CGC.
We examine all pairs of subjects from the 150 participants in the Replicate, BestRespond and
ShowGuesses treatment, and check for each pair of subjects i, whether their actions are
similar. There are 4 asymmetric games that ¢ and 7' each play both as Player 1 and Player 2.
For these games, we compare their guesses made as Player 1 as well as their guesses made as
Player 2 (for a total of 8 guess-comparisons). For the 12 games (11 of which are asymmetric)
that ¢ and ' play only once, we compare i and i'’s guesses in each game, even if ¢ plays as
Player 1 and ¢’ plays as Player 2. If there are 8 or more guess-comparisons (out of 20) that are
no more than 0.5 units apart, we say that i can be classified as an '-type (and that i’ can be
classified as an i-type).

In addition to finding strategies shared by subjects and specifically by omitted types, we
also want to check whether omitted types play according to a model that shares the recursive
best response feature of level-k. Therefore, for each subject j, we define a br(j)-type by taking
each j-type guess and computing its best response. If a subject 5 has 8 or more guesses that
are no more than 0.5 units apart from the br(j)-type, we say that j' can be classified as a
br(j)-type.

We place two subjects h and b/ into the same “cluster” if i’ can be classified as an h-type or
as a br(h)-type. One test whether such a clustering technique is helpful in finding subjects who

play either according to the same strategy, or according to strategies that share a recursive best
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response feature is to check whether it clusters subjects we have identified as either playing
the same strategy or as playing strategies that best respond to each other, namely subjects
classified as a type in BT.

We thus we hope to find at least three clusters of individuals: one linking the D1 subjects,
another connecting the EQ players, and a large one that ties all L1, L2 and L3 participants
together.@ In fact, we find one large cluster, henceforth the Behavioral Types Cluster (BTC),
that contains, among others, 42 of our 46 classified participants. Let BTCys denote these 42
classified participants who are linked in BT'C'. The four classified subjects that are not part of
the BT'C cluster are each of a different type: D1 (subject 24), EQ (subject 86), L2 (subject
61) and (the recently added) subject 80 to whom D1 is the best response.lﬂ Furthermore, each
of these four subjects is in her own unit-sized cluster ]

In addition to linking 42 classified subjects, BT'C captures 14 unclassified participants of
which 6 are omitted types: Four are replicators (subjects 10, 28, 42 and 49) and two of are best
responders (subjects 84 and 104). Subjects 42, 84, 104 are linked to BT'C' because each can be
classified as an i-type for some i € BT'Cyy. Subject 42 guesses her lower bound (which is often
the equilibrium action) in 10 games and is a lower bound type. She is linked to Subject 23, an
EQ player in BTCys. Subjects 84 and 104 are linked to a number of L1 subjects in BT Cys
because, in 11 and 17 games, respectively, their guess is within 0.5 units of their opponent’s
unbounded L1 guess, that is they guess R;(t;[l; + u;]/2).

Subjects 10, 28 and 49 are linked to BT'C because each is best responded to by some ¢ €
BTCy4s. Subjects 49 and 10 (both replicators) are best responded to by FQ subjects in BT Cjys
because even though they are not an FQ type (though subject 10 has five E'Q) guesses) their
guesses often fall within the range of guesses that yield E Q) as their opponents’ best response.lE
Subject 28 is best responded to by three L2 individuals in BTC4e. Upon investigating her
guesses one-by-one, we find she is actually a very deliberate player: in 19 games, she guesses
as close as possible to the product of her midpoint with her target, R;(¢;[l; + u;]/2). To see
how the L2 individuals best respond to subject 28, note that the “unbounded” version of
this strategy is ¢;[l; + w;]/2, which, when multiplied by t;, yields ¢;¢;[l; + w;]/2, which is the

These clusters are not guaranteed to arise; of our 45 classified participants, only three subjects, subject 36,
102 and 137 implement their behavioral types in all 20 games.

450f those four behavioral types that are not in the BT'C cluster only two: subject 86 and the newly discovered
subject 80 are best repsonders. The other two are in the Replicate treatment and fail to replicate.

46Recall that the cluster analysis does not necessarily link two subjects classified as the same ¢t € BT. For
instance, subject ¢ and j may guess the Level 1 actions in the 11 asymmetric games that they play as Player
1 and as Player 2, respectively, and otherwise, play randomly. Each will be classified as L1 yet may have no
guesses that are within 0.5 units of one another, and hence, will not be part of the same cluster.

4"These two subjects are also not lower (upper) bound types, i.e. they fail to guess within 0.5 of their lower
(upper) bounds at least 40% of the time. Subject 49 is best responded to by an EQ player, while subject 10 is
best responded to by an EQ player as well as by an L2 subject.
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unbounded version of L2.

Therefore, the six omitted types related to subjects in BT'Cys have decision rules that are
similar to the strategies in BT'. Nevertheless, their behavior is generally rather unconventional
(such as guessing as close as possible to the opponent’s L1 guess).

The largest cluster next to BTC contains three subjects: subject 25 and 56 who are
replicators, and subject 93 who is not a best responder. Subjects 56 and 93 are linked to
each other, as both make 10 guesses within 0.5 units of the rather bizarre strategy given
by Ri([Ri(til;) + Rj(tjui)]/2) = sg3. In words, an sg3 type guesses as close as possible to
the average of her lowest undominated guess and her opponent’s largest undominated guess.
Subject 25 makes 9 guesses within 0.5 units of the actions given by R;([tiu; + t;1;]/2) = sos.
In words, an so5 player guesses as close as possible to the midpoint of = and y, where z is
the product of her own target and her opponent’s upper bound and y is the product of her
opponent’s target and her own lower bound.@

There are two additional clusters bigger than size one that contain an omitted type. One
contains subjects 53 (a replicator) and subject 136 who is not a best responder. Each computes
her own L1 guess as well as that of her opponent and guesses the average, i.e., follows the rule
given by R;(1/2 x [R;(t;i(l; + u;)/2) + R;(t;(l; + u;)/2]). Subjects 53 and 136 have 11 and 16
such guesses within 0.5 units of this rule, respectively.

The other cluster consists of subject 112 who is a best responder and subject 139 who is
not. Each makes 10 lower bound guesses. Regarding the 11 asymmetric games played only
from one side, these subjects play each from the same side. Subject 42, a previously discussed
lower boundary type who is part of BT'C/, plays these games from the other side.

The remaining individuals are all in their own unit-sized clusters, save for a cluster of two, a
non-replicator (subject 13) and a subject from the ShowGuesses treatment (subject 67). That
is 17 of the 27 omitted types are in these unit-sized clusters which makes it difficult to find
their strategies.

Thus, to summarize, the cluster analysis reveals a sizable BT'C' cluster that includes 42 of
the initially classified subjects as well as 14 unclassified participants of which 6 are omitted
types. Outside BT'C, there are 18 omitted types who are linked to no other subjects, though
one omitted type (subject 80) is classified as using a strategy that is connected to BT, see
Section 4.5.1. The four omitted types who are part of clusters with other subjects are spread

thinly across three different clusters of sizes two and three. Taken altogether, these results

48 At first, so5 appears quite different from sg3. Subject 25 is linked directly to subject 93 and the reason is
as follows. Suppose that a player follows a “less bounded” version of sg3, namely, R;([til; 4+ t;u;]/2) = sg3/. In
many games, Sg3 and Sgz/ yield the same action. Upon inspection, the portions inside the square brackets of
sg3 and sa25 are identical except for the ¢ and j roles being flipped. Thus, subjects 25 and 93 are linked through
making the same guesses in asymmetric games.
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cast doubt over the possibility that an alternative model of a unique deterministic strategy,
or even an alternative model that shares the recursive best response feature of level-k could
come close to describing as many individuals as the level-k model (which classifies 26 subjects

in our experiment).

5 Related Literature, Methodological Remarks, Discussion and
Gender

The core approach of empirical game theory consists of observing strategic choices in specific
settings. This has proven sufficiently powerful to topple several important null hypotheses, in-
cluding the canonical model of unanimous Nash equilibrium play. However, these conventional
strategic choice experiments offer limited power for delineating the set of subjects who play
according to strategic models or determining the stability of behavior across strategic settings.
In this section, we review previous methods and efforts to assess the stability of behavior and
capture additional information on the processes generating strategic choices.

While the papers cited below have other valuable aspects we lack the space to discuss, we
focus on the parts of papers that help determine the set of subjects who use deliberate rules
and assist in understanding what sorts of rules these are; furthermore, we isolate aspects that
concern the stability of behavior across settings, or, in other words, the degree of predictability
of the behavior of subjects. We contrast these approaches with our design.

The most straightforward approach to assessing whether a subject identified as a certain
behavioral type is “correctly” classified is to determine the stability of behavior out-of-sample.
One possibility is to perform this exercise on the population level using different samples.
This, however, does not guarantee that play is predictable on an individual level. There are
a couple of reasons why predicting play on the individual level is desirable. First, this may
provide a more convincing test that the classification of a subject to a specific behavioral type
is not erroneous. Second, we may aim to use individual characteristics such as demographics
and intelligence measures to predict play. For approaches in this direction, see Burnham et
al. (2009) for a positive correlation between depth of reasoning and IQ style measures, as
well as Georganas et al. (2015) for a correlation of play with a CRT measure and Agranov,
Caplin and Tergiman (2015) for a correlation between sophistication in the guessing game
and a Monty Hall game. Another example is Coricelli and Nagel (2009), who correlate brain
imaging results with depth of reasoning in a guessing game. Most research on stability of rules

within individuals has focused on comparing behavior across strategic settings.@ Crawford and

49 An alternative method to assess type stability is to perform a hold-out prediction. This has been surprisingly
unusual in the present literature with the exception of Stahl and Wilson (1995). They select a subset of games,
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Iriberri (2007) look at various hide-and-seek games and find some consistency across games.
On the other hand, Buchardi and Penczynski (2011) and Georganas, Healy, and Weber (2015)
do not find strong consistency of play across guessing and hide-and-seek or “undercutting”
games, respectively.

Failure to find type stability within a subject across strategic settings could be attributed
to the subject being “erroneously” classified as a certain type. However, a lack of stability
of a behavioral type can also be attributed to subjects having different beliefs about the
behavior of others across different types of games. This poses inherent problems to out-of-
sample predictions for models such as level-k of which one interpretation is that subjects best-
respond to erroneous beliefs.lﬂ Indeed, our results from the BestRespond treatment suggest
that level-k subjects are in general not rule of thumb players. There are several other recent
results that suggest that level-k subjects may not merely be rule of thumb players, Arad and
Rubinstein (2012) and Agranov, Caplin and Tergiman (2015) (see also Georganas et al. (2015)
below) E|

To more precisely pin down rules underlying choice, researchers have worked to observe
what parameters of a game are considered by subjects by hiding them and having sub-
jects uncover each one individually (see Camerer et al. (1993), Costa-Gomes, Crawford, and
Broseta (2001), Costa-Gomes and Crawford (2006), Brocas et al. (2014), and Wang et al. (2010)).
While this data can be very valuable and can rule out certain models of behavior, these ap-
proaches may not be inert with respect to the subjects’ deliberations and could alter the
strategic choice behavior we hope to observe.

Alternatively, researchers have tried to assess the thought processes with which decisions are
reached through various communication devices. Most prominent is Burchardi and Penczynski
(2014), where each of the two players in a team is randomly chosen to decide for the team.
Before submitting choices, a subject can send a suggestion with explanations to her team-

mate. They find that roughly one third of subjects are non-strategic L0 players (see also Ball

estimate the subjects’ type, and using the remaining games in addition, provide an estimate of the posterior
probability that a subject has that particular type. When classifying a subject as stable if the posterior
probability of having the same type is at least a (perhaps too modest) 15 percent, they find that 35 of 48
subjects are stable.

50Predictions would be more straightforward if those models were “as if” representations of rules of thumb.

5! Arad and Rubinstein (2012) consider two versions of a game that only differ in the salience of L0 play.
They find that while this manipulation does not increase the overall use of actions consistent with level k (for
k > 0), it increased the frequency of actions associated with low levels of k. This is expected if the manipulation
shifted not only the actual, but also the believed amount of L0 play. Agranov, Caplin and Tergiman (2015)
observe choices in a version of the classic {[0, 100],2/3} guessing game. Subjects aim to guess 2/3 of the mean
of 8 subjects who have already played the game. The innovation in that paper is to observe choices over the
course of 3 minutes, where the decision at any second is potentially payoff relevant. They claim that about
57% of subjects are “strategic”. Their choices average around 34 over the whole 3 minutes, but fall over time.
Remarkably, they classify roughly 43% as naive - a fraction close to our findings. These subjects not only make
average choices of 50 throughout the three minutes, their choices also do not fall over time.
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et al., 1991 and Sbriglia, 2008). Unfortunately, there is again a concern that the experimental
paradigm may alter behavior.

Another approach has exploited the interpretation that behavioral models often rely on
subjects holding erroneous beliefs about others, but that subjects otherwise behave in a profit
maximizing way. This allows experimenters to assess those beliefs directly and check for payoff-
maximizing behavior. Costa-Gomes and Weizsicker (2008) show that elicited beliefs system-
atically conflict with their subjects’ strategy choices; the beliefs suggest a greater strategic
sophistication than the observed choices. In that vein, Bhatt and Camerer (2005) show dif-
ferences in patterns of brain activation for corresponding belief elicitation and strategy choice
tasks. Omne potential problem with this approach is that beliefs are in general elicited coin-
cidentally with strategic choices, and as such may alter strategic thinking.lﬂ Alternatively,
researchers have manipulated beliefs to determine whether the behavior of subjects changes
accordingly. Georganas et al. (2015) manipulate subjects’ beliefs about the strategic capacity
of their opponent by providing information on their score on a battery of cognitive tests. They
found that only some subjects adjust behavior in the expected direction. One possible expla-
nation for the lack of change in behavior in the expected direction is that subjects—just like
the authors—believe that the depth of reasoning of their opponent does not necessarily only
depend on the cognitive abilities of the opponent, but rather on her beliefs about the degree
of sophistication of others.

There is another paper, Ivanov, Levin, and Niederle (2010), that is initially similar to the
present paper but reaches very different conclusions. Pairs of subjects bid in a common-value
second-price auction. The experimenters first elicit the bid function in Phase I and observe,
as expected, many subjects overbidding and facing the winner’s curse, consistent with cursed
equilibrium or a level-k model. Subjects then, in Phase II, face an additional set of auctions
where the other player is replaced by an automaton that uses the subjects’ Phase I bid function.
They find that the Phase II bid function is not generally a best-response to the Phase I bid
function. This is the case even though the subject gets to see her Phase I bid function while
making her Phase II bids; that is, their experiment corresponds to our ShowGuesses treatment.
It appears that in their common-value second-price auctions, subjects simply cannot (or are
not willing to) compute best-responses to given bid functions. As such, their environment
may be less amenable to models in which subjects hold erroneous beliefs about others, while
behaving in payoff-maximizing ways given their beliefs. In our paper, we found that subjects

are perfectly able to compute best-responses to given guesses; maintaining this assumption, our

52Geveral papers find that eliciting beliefs significantly alters play, see e.g. Riitstrom and Wilcox (2009), Erev,
Bornstein, and Wallsten (1993), Croson (1999) and (2000), and Géchter and Renner (2010). Others fail to
reject the null hypothesis that play is not affected by eliciting beliefs, e.g. Nyarko and Schotter (2002), and
Costa-Gomes and Weizsacker (2008).
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Replicate and BestRespond treatments then help elucidate the subjects’ processes of strategic
choice.

The main advantage of the approach we take in this paper is that if subjects are playing
according to a behavioral game theory type (or indeed any deterministic rule), we have precise
expectations of their future play. A failure to comply with expected behavior in the Replicate
treatment cannot be rationalized by, for example, subjects believing that as the number of
games increases the opponent plays in a different way. Our two treatments are also uniquely
suited to elucidate whether behavior that conforms with the level-k model (and dominance-k)
is more likely an as if representation arising from a rule of thumb than an accurate description
of participants strategically best-responding to non-equilibrium beliefs. Despite the precise test
of whether subjects truly use a deterministic rule, we find very strong evidence and support

not only for the equilibrium but also the level-k£ model.

5.1 Gender

The rising interest in gender differences in economics (see e.g. Niederle, 2016) has also lead to
an interest on whether women are less strategic than men. For an early example see Casari et
al. (2007). They find that women, compared to men, are much more prone to bid above the
risk neutral Nash equilibrium in common value auctions. However, as women and men gained
experience, their bidding behavior converged.

In this paper we can use such a test common to the literature on whether men are more
“sophisticated” than women by assesing whether women or men have higher earnings in Phase I
of the Replicate, BestRespond and ShowGuesses treatment. Of our 150 subjects 72 are female.
The average expected earnings per game are $1.01 for women and $1.04 for men (p = 0.172).
When we regress expected earnings per game on a gender dummy and also control whether
the subject sees the games from the point of view of Player 1 (P1) or Player 2 (P2), we find
that women have no more than 3 percent lower earnings than men, a difference that is not
significant, see Table [5|[?]

One problem with such an endeavor is that different actions can often be rationalized by
different beliefs. A more direct and more stringent test is therefore to focus on actions that
cannot be rationalized, namely dominated guesses. The average number of dominated guesses
are 2.65 for women and 2.06 for men (p = 0.180). A regression controlling for the point of

view from which the subject played confirms this result, see Table

53Instead of focusing on earnings, we can focus on whether subjects behave according to a behavioral strategy:
On average in Phase I, men and women have 6.49 and 6.26 modal type guesses (p = 0.769). Twenty five out of
78 men and 20 out of 72 women are classified in Phase I. These proportions are not significantly different using
a two-tailed Fisher’s exact test (p = 0.597).
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Phase I Phase II Earnings

FEarnings Dominated Replicate  BestRespond  Replicate &
Guesses BestRespond
(1) 2) (3) (4) (5)
Female -0.03 0.55 -0.12* -0.01 -0.06
(0.02) (0.44) (0.06) (0.06) (0.04)
Player 1 0.04* -0.52 -0.01 0.09 0.04
(0.02) (0.44) (0.06) (0.06) (0.04)
BestRespond -0.24%**
(0.04)
Constant 1.02*** 2.34%** 1.65"** 1.31%** 1.60***
(0.02) (0.38) (0.05) (0.06) (0.05)
Observations 150 150 63 76 139

TABLE 5.—Phase I and II Earnings are in dollars. Phase I Dominated Guesses are the total
for Phase I. The table shows the results of linear regressions with standard errors are clustered
at the individual level and shown in parentheses. Female is a gender dummy equal to 1 if
the subject is female. Player 1 is a dummy equal to 1 if the subject is in group P1 (see
Footnote [5)). BestRespond is a dummy equal to 1 if the subject is from the BestRespond
treatment. Regression (3) includes the 63 subjects (out of 64) from the Replicate treatment
whose computers functioned properly in Phase II. Regression (5) includes the subjects from

Regressions (4) and (5). *p < 0.10, **p < 0.05, ***p < 0.01.
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While women do not make significantly more dominated guesss than men, our design allows
us to asses whether women are more or less likley to deliberately use a well-defined strategy
rather than making idiosyncratic choices that are unlikley to be driven by a deterministic rule.
We have two direct tests to assess such gender differences in “sophistication”. We can assess
whether women are more or less able to replicate their guesses and hence whether they are
more or less likley to use a well-defined deterministic rule than men are. Second, we can assess
whether women are more or less strategic, that is, whether they are more or less able to best
respond to their guesses than men are.

Women seem to be slightly less good at replicating their guesses than men, their earnings
per game in Phase II of the Replicate treatment are about 12 cents lower per game than those
of men, a significant difference (see Table . However, this difference may be driven by the
31 women in the Replicate treatment, as they also earn about 5 cents less per game than
men in Phase I, a difference not bourne out when we consider all 72 women in the Replicate,
BestRespond and ShowGuesses treatment.@ Note, however, that the expected earnings in
Phase II of the Replicate treatment are not affected by Phase I earnings, as they only depend
on how close the Phase II guess is to the Phase I guess, a distance that is minimized (and zero)
by replicating the Phase I guess, whatever that may be.

When we assess whether women are less strategic than men, we compare the Phase 11
earnings in the BestRespond between women and men. Women earn only about 1 cent less
than men per game, a difference that is not significant, see Table E Finally, we can combine
the Phase II earnings of both treatments, and find once more that women earn about 6 cents
less than men per game, a difference that is not significant (see Table . As a comparison,
subjects earn $1.59 and $1.35 in Phase II of the Replicate and BestRespond treatments, a
significant difference (p < 0.01). Using our very direct test of strategic sophistication we

cannot confirm that women are less strategically sophisticated than men.

6 Conclusion

To date there has not been a practical way to organize players according to whether they
implement deliberate decision rules, especially if we haven’t behavioral models to explain their

behavior. In this paper we say that a subject deliberately employs a well-defined rule if the

54 A linear regression of expected Phase I earnings per game of the 31 women and 33 men in the Replicate
treatment yields a constant of 1.04 (s.e. 0.026,p < 0.01), a coefficient on a female dummy of —0.05 (s.e.
0.030,p = 0.095) and a coefficient on a Group 1 dummy of 0.04 (s.e. 0.030,p = 0.197).

55In Phase II of the BestRespond treatment we can also once more assess whether women are more likely to
make dominated guesses than men do. This is not the case: a linear regression on the number of dominated
guesses of the 37 women and 39 men yields a constant of 1.66 (s.e. 0.393,p < 0.01), a coefficient on a female
dummy of 0.24 (s.e. 0.481,p = 0.616) and a coefficient on a Group 1 dummy of —0.111 (s.e. 0.481,p = 0.818).
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behavior of the subject conforms to an expected relationship across strategic situations. We
provide an environment and a test that allow us to identify such behavior, enabling us to relate
existing behavioral game theory types with the set of subjects that use deterministic rules.

We augment choice data from a conventional strategic choice environment with information
from treatments pitting subjects against their past behavior. We observe subjects’ choices in
two-player “guessing games”; we then surprise subjects by placing them in strategic situations
where each subject’s optimal action depends solely on her own previous choices. Subjects’
behavior in the second phase of the experiment reveals the extent of their knowledge regarding
how they arrived at their previously-made strategic choices. The design of our experiment
allows us to provide a lower bound of how many subjects deliberately use deterministic rules.

The first environment where we assess this is the Replicate treatment, where we determine
whether subjects can recreate their own actions in games. In a way, we assess whether sub-
jects are predictable to themselves. Using specific thresholds to classify an action in a game
as a replication and to identify subjects who are able to replicate their behavior, we found
that roughly half the participants are replicators. The level-k model, jointly with equilibrium
and the dominance-k model, account for one-third of subjects (of whom three-quarters are
replicators). This suggests that there is noticeable room for additional behavioral models in
accounting for subjects who are able to replicate their behavior.

In the BestRespond treatment, we require subjects to show strategic sophistication. We
do this by paying subjects depending on how close they are to best-responding to their former
actions. We find that there are much fewer subjects who are strategic than simply able to
replicate their behavior. While only about 40% of subjects are best-responders, behavioral
types comprise two-thirds of such subjects. Furthermore, behavioral types seem equally able
to replicate and best-respond to their actions, while this is not the case for subjects not classified
as behavioral types.

Overall, our results show that while equilibrium is able to account for two-ninths of strate-
gic subjects, adding the level-k model brings this to almost two-thirds. We also have a small
number of dominance-k subjects. Therefore, behavioral game theory has been quite successful
in identifying strategic subjects. When considering only subjects who use well-defined deter-
ministic rules they are able to replicate (rule-of-thumb players), there seems to be much more
room for new behavioral models.

This paper is also part of a small literature that tries to understand the “when” and “how”
subjects think about opponents and contingencies (see Esponda and Vespa, 2014, Enke and
Zimmermann, 2015 and Vespa and Wilson, 2016). We believe that our paper opens many
avenues for future research. While we found type stability in our experiments, the stability

of behavior across different types of games remains still unresolved. The results from our
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paper suggest that behavioral types are better interpreted as forming erroneous beliefs and
best-responding to those beliefs than playing rules of thumb. As such, stability may only be
found when assessing whether subjects are strategic per se.

Finally, we show how having participants replicate their past choices can be a method
to assess whether a subject deliberately uses deterministic strategies versus makes choices
idiosyncratically. This approach may not detect the deliberate use of a mixed strategy, however.
We think our method can be extended to mixed strategies, albeit probably in simpler contexts.
For instance, consider the case where a mixed strategy may be optimal, as in a matching pennies
or two-player zero sum game. One could provide participants with a randomization device and
have subjects decide how to randomize. One could then show subjects the same game again
and ask them to randomize in the same way they did previously. We leave it to future research

to explore our method in settings that are more likely to invoke the use of mixed strategies.
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8 Appendix

8.1 Classified Subjects: Comparison with CGC

We found that 30% of participants are classified using the apparent type method. While we use
the same apparent type classification method as CGC, they have significantly more subjects
classified as behavioral types, 49% (p = 0.005). Table [f] shows the fraction of participants
classified as each behavioral type. Most notably we have fewer L1 and L2 types, though
roughly the same number of equilibrium types.

There are two potential reasons why we have a different number of subjects classified
as behavioral game theory types using the apparent type method than CGC has. The first
concerns the games we use and the second the subjects.

We say that a game has type separation of K for player ¢, if for any types Til,TiQ €
{L1,L2,L3,L4, EQ} with 7} # 72 we have |7} (z) — 72(z)| > K, where TIJ(.’E) is the action
prescribed by strategy Tij for j = 1,2. In our experiments, subjects play 8 random games, that
have a type separation of at least 30, games 11 — 18 in Table 1, and 4 of the CGC games that
have type separation of at least 10, games 1 — 6 in Table 1, of which they play two from both
sides. This results in 14 games with type separation, or 70% of all games. In contrast, of the
8 CGC games only 4 have type separation. Since in CGC subjects play every game from both
sides, this results in 50% of games with type separation.

To assess the role of the type of games for the classifications of participants, we make two
comparisons. First, we compare the classification in all 20 games to the classification we would
have obtained had we only used the 14 games with type separation (see Type-Sep Games in
Table @ For all comparisons we keep a threshold of 40% for the apparent type classification.
That is, a subject has to have a guess not further than 0.5 from the same behavioral game
theory type guess in at least 40% of games to be classified as that behavioral type. The number
of classified subjects drops from 30% to 24% when we go from using all 20 games to only using
the 14 games with type separation.

Second, since our subjects play 10 CGC games and 10 new games, two of which have a
dominant strategy for one player, we can compare the classification in those two subsets of
games, that have 60% and 80% of games with type separation, respectively. While 39% of
subjects are classified in the 10 games we use from CGC, only 33% of subjects are classified
in the new games. While almost a 16% drop, this difference is not significant, p = 0.335.
Note, however, that the number of subjects classified in just the CGC games in our data is
not significantly different from the classification in the CGC data (92 unclassified subjects out
of 150 is not significantly difference from 45 unclassified subjects out of 88, p = 0.137). When

we compare the number of subjects unclassified in the 10 non-CGC games (101 out of 150) to
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the CGC data (45 out of 88), the difference is significant, p = 0.019.

A second possible explanation is that our participants are not as sophisticated as the
students used by CGC, or that they are not sufficiently motivated given the incentives at
hand. Recall, however, that we have 20 participants in the Memory treatment who in Phase
I best respond to the guess of a computer they observe, and 10 participants in the ShowGuess
treatment who in Phase II best responded to their Phase I guess after observing their Phase 1
guess. Of the 400 guesses made by the 20 participants in the Memory treatment, all but 3 are
within 0.5 of the best response, and of the 200 guesses made in the ShowGuess treatment, all
but 2 are within 0.5 of the best response. This suggests that our participants are willing and
able to calculate the best response to a guess, even when we only pay them, as in these two
cases at most $1 per guess.

To assess the sophistication of subjects we can also assess the extent to which they make
dominated guesses which are not accounted for by any behavioral game theory model. Only
about one third of subjects (44) have no dominated guess, though two thirds (97) have two
dominated guesses or less. While CGC do not have a similar analysis they have more exclusion
criteria than we do. This way they may eliminate players who make many mistakes.

When we condition only on participants that have no dominated guess, we have 52% of
participants who are classified. This is a significantly higher fraction than the 21% of those
subjects who have at least one dominated guess, p < 0.0l.lﬂ We can compare the fraction of
subjects who are classified among participants with no dominated guess between our data and
CGC. The difference is still significant (p = 0.069).

8.2 Apparent type classifications using different parameters

In the following two figures we show the relative distribution of types as a function of various
cutoffs. For Figure [7] we keep a 0.5 ball around the behavioral type guess. We count the
number of games where that subject’s decision matches the behavioral type’s prediction. We
then identify the (perhaps non-unique) behavioral type with the largest count and call this
the subject’s modal type. Since the modal type may not be unique, we count a subject
that has n behavioral strategies {mj,...,m,} for her modal type as 1/n of an m; player, for
m; € {L1,L2,L3,EQ, D1, D2} for 1 <i < n. For any ¢ € {1, ...,20} and any behavioral type
m;, we can compute the number of subjects whose modal type corresponds to m; and who
match that type in ¢ or more games. Figure [7| shows for each number of games ¢, for each
behavioral type m; € {L1, L2, L3, EQ, D1, D2}, the number of subjects who in at least ¢ games

56When we condition on participants with one or two dominated guesses, we have 25% of participants who
are classified, significantly lower than the 52% who had no dominated guess (p = 0.006). The number is,
however, roughly similar to the 17% who are classified among participants with three or more dominated
guesses (p = 0.473).
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TABLE 6.—Classification comparison with CGC

ALL SUBJECTS L1 L2 L3 EQ D1 D2 Uncl. N
Our Data

All Games (20) 93% 61% 1.3% 10% 2.7% 0%  70% (105) 150
Type-Sep Games (14) 6.7% 4.7% 13% 93% 2% 0%  76% (114) 150

Just CGC Games (10) 13% 8%  1.7% 12% 3% 1%  61.3% (92) 150
Non CGC Games (10)  9.3%  8.3% 1.3% 11.3% 2.3% 0%  67.3% (101) 150

CGC Data

All Games (16) 22.7% 13.6% 2.3% 102% 0% 0% 51.1% (45) 88
Our Data: Rational
All Games (20) 15.9% 91% 2.3% 205% 4.5% 0% 47.7% (21) 44

Type-Sep Games (14) 13.6% 4.5% 23% 13.6% 4.5% 0%  61.4% (27) 44
Just CGC Games (10)  19.3% 11.4% 34% 22.7% 5.7% 3.4% 34.1% (15) 44
Non CGC Games (10)  15.9% 11.4% 2.3% 15.9% 4.5% 0% 50% (22) 44

CGC Data: Rational

All Games (16) 271%  21.6% 54% 18.9% 0% 0% 27% (10) 37

For several subsets of games the fraction of participants classified as various types (or left
unclassified). We compare data from this paper (Our Data) to data from CGC (CGC Data).
“Type-Sep” Games refers to the 14 of our 20 games that have type separation of at least 10.5,
“Just CGC Games” refers to the 8 games from CGC used in our experiment, of which 2 were
played from both sides, “Non CGC Games” refers to the 8 randomly drawn games with type
separation of at least 30 and the 2 games with a dominant strategy. The part of the Table
with the heading “Rational” refers to analyses where we only include subjects that made no
dominated guess in any game of the experiment.

play m; — up to 0.5 — and who have m; as their modal type. When we require subjects to play
the same behavioral type in only one game in order to be classified all but 2 of the 150 subjects
are classified. While L1 and EQ are the most common types, L1 is more prevalent when we
require subjects to play a type only in 6 games or less to be classified. Once the threshold is
7 or more games (up to 13 or less), FQ is slightly more prevalent. However, overall the figure
shows that the relative distribution of types is quite stable.

Figure [§] shows that similar conclusions hold when we allow subjects to deviate up to 5

instead of 0.5 from each behavioral type guess.
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FIGURE 7.—The number of subjects classi-
fied as a specific behavioral type when we re-
quire subjects to play at least ¢ games with
a guess at most 0.5 different from that be-
havioral type guess to be classified.
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F1GURE 8.—The number of subjects classi-
fied as a specific behavioral type when we re-
quire subjects to play at least ¢ games with
a guess at most 0.5 different from that be-
havioral type guess to be classified.

8.3 The number of behavioral type guesses dependent on the number of

modal type guesses

For each participant we compute the modal type (the behavioral type they use most often),

and compute the number of modal type guesses made. We then compute the total number

of behavioral type guesses made. This will be, of course, at least as large as the number of

modal type guesses. It may be larger if a subject switches between several behavioral types.

Figure |§| shows that 91% of subjects have at most only 3 behavioral type guesses that are not

their modal type.
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Do Subjects Play Several Behavioral Strategies?
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F1GURE 9.—For each number of modal type guesses of a subject, the number of total behavioral
type guesses that subject made.
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