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Studying and doing Market Economics

In “Jonathan Strange and Mr. Norrel”, Susanna Clarke describes
an England around 1800, with magic societies, though not a lot of
magic.

When asked why there is not more magic, the president of the
York society of magicians replies that the question was wrong,

“It presupposes that magicians have some sort of duty to do magic
- which is clearly nonsense. [...] Magicians,.., study magic which
was done long ago. Why would anyone expect more?”

Market design expects of economists more than just studying
economics, rather the aim is to do economics.



Market Design

Design is both a verb and a noun, and we'll approach market design
both as an activity and as an aspect of markets that we study.

Design also comes with a responsibility for detail. Designers can’t
be satisfied with simple models that explain the general principles
underlying a market; they have to be able to make sure that all the
detailed parts function together. Market design papers often have
a detailed description of the market's unique and distinguishing
features in their paper



Matching as part of Market Design

Responsibility for detail requires the ability to deal with complex
institutional features that may be omitted from simple models.

Game theory, the part of economics that studies the “rules of the
game,” provides a framework with which design issues can be
addressed.

But dealing with complexity will require new tools, to supplement
the analytical toolbox of the traditional theorist (Computations,
Experiments).



Game Theory, experimentation, and computation, together with
careful observation of historical and contemporary markets (with
particular attention to the market rules), are complementary tools
of Design Economics.

Computation helps us find answers that are beyond our current
theoretical knowledge.

Experiments play a role

» In diagnosing and understanding market failures, and successes
> In designing new markets

» In communicating results to policy makers



The Economist as Engineer

A rough analogy may help indicate how the parts of this course
hang together. Consider the design of suspension bridges. Their
simple physics, in which the only force is gravity, and all beams are
perfectly rigid, is beautiful and indispensable.

But bridge design also concerns metal fatigue, soil mechanics, and
the sideways forces of waves and wind. Many questions concerning
these complications can't be answered analytically, but must be
explored using physical or computational models.

These complications, and how they interact with that part of the
physics captured by the simple model, are the concern of the
engineering literature. Some of this is less elegant than the simple
model, but it allows bridges designed on the same basic model to
be built longer and stronger over time, as the complexities and how
to deal with them become better understood.



A Flash overview of some topics

Lessons from market failures and successes

To achieve efficient outcomes, marketplaces need make markets
sufficiently

» Thick

Enough potential transactions available at one time
» Uncongested

Enough time for offers to be made, accepted, rejected. ..
> Safe

Safe to act straightforwardly on relevant preferences

Some kinds of transactions are repugnant. ..
This can be an important constraint on market design



v

v

v

v

Medical labor markets

» NRMP in 1995 (thickness, congestion, incentives)
» Gastroenterology in 2006 (thickness, incentives)

> Is reneging on early acceptances repugnant?
School choice systems:

» New York City since Sept. 2004 (congestion & incentives)
» Boston since Sept. 2006 (incentives)

> Repugnant: exchange of priorities (particularly sibling
priorities)

American market for new economists

» Scramble ((thickness)
» Signaling (congestion)
Kidney exchange (thickness, congestion, incentives)

» New England and Ohio (2005)
» National US (20077)

> Repugnant: monetary markets



Introduction to the theory of Two-Sided Matching

To see which results are robust, we'll look at some increasingly
general models. Even before we look at complex design problems,
we can get a head start at figuring out which are our most
applicable results by doing this sort of theoretical sensitivity
analysis.

Discrete models

> One to one matching: the "marriage” model
» many to one matching (with simple preferences) : the
“college admissions” model

» many to one matching with money and complex (gross
substitutes) preferences

These lectures follow the Roth and Sotomayor book, and thoerems
are numbered as in the book.



These lectures follow the Roth and Sotomayor book, and thoerems
are numbered as in the book.

Other resources on the web: Al Roth: Market Design Blog:
http://marketdesigner.blogspot.com/



One to One Matching: the Marriage Model

Players: Men: M = {my,..,m,}, Women: W = {wy, .., w,}.
The market is two-sided: Man m; can only have preferences over
the set of W U {m;}.

Similarly for women's preferences.

Preferences: (complete and transitive):
P(m,-) = Wk, Wy, ..., Mj, Wj... [Wk ~m; W/]

If m; prefers to remain single rather than to be matched to w;, i.e.
if m; =, w;, then w; is said to be unacceptable to m;.

If an agent is not indifferent between any two acceptable mates, or
between being matched and unmatched, we'll say he/she has strict
preferences. Some of the theorems we prove will only be true for
strict preferences. Indifferences: P(m;) = wy, [wy, wy], ..., m;,
where m; is indifferent between w; and w,,.



Stable Outcome

An outcome of the game is a matching p: MU W — MU W
such that

> W:‘u(m)<:>],l(w):m
» u(w) € MU{w} and u(m) € WU {m}. (two-sided).
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Stable Outcome
An outcome of the game is a matching p: MU W — MU W
such that
> w=p(m) < p(w)=m
» u(w) € MU{w} and u(m) € WU {m}. (two-sided).
A matching yu is
» blocked by an individual k : k prefers being single to being
matched with p(k), i.e. k =, u(k).

» blocked by a pair of agents (m, w) if they each prefer each
other to their current outcome, i.e.

> W, p(m) and m >, u(w)

A matching u is stable if it isn't blocked by any individual or a pair
of agents.

A stable matching is efficient and in the core, and in this simple
model the set of (pairwise) stable matchings equals the core.
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Deferred Acceptance Algorithm
roughly the 1962 Gale-Shapley Version

» 0. If some preferences are not strict, arbitrarily break ties

» 1 a. Each man m proposes to his 1st choice (if he has any
acceptable choices).
» b. Each woman rejects any unacceptable proposals and, if

more than one acceptable proposal is received, "holds" the
most preferred (deferred acceptance).

» k a. Any man who was rejected at step kK — 1 makes a new
proposal to its most preferred acceptable mate who hasn't yet
rejected him. (If no acceptable choices remain, he makes no
proposal.)

» b. Each woman holds her most preferred acceptable offer to
date, and rejects the rest.

» STOP: when no further proposals are made, and match each
woman to the man (if any) whose proposal she is holding.



Theorem 2.8(Gale and Shapley)
A stable matching exists for every marriage market.



Theorem 2.8(Gale and Shapley)
A stable matching exists for every marriage market.

Elements of the proof:

> the deferred acceptance algorithm always stops

» the matching it produces is always stable with respect to the
strict preferences (i.e. after any arbitrary tie-breaking),

> and with respect to the original preferences.



The Roommate Problem

Suppose the market is not two-sided, does a stable matching
always exist?

Agent 1: 2 >3 >1
Agent 2: 3> 1> 2
Agent 3: 1 > 2 >3

All agents being alone is not a core matching.
Any matching with 2 students in a room is not stable either.



Stability is theoretically appealing, but does it matter in real life?

Roth (1984) showed that the NIMP algorithm is equivalent to a

(hospital-proposing) DA algorithm, so NIMP produces a stable
matching.



Priority matching (an unstable system)
Edinburgh, 1967

Birmingham 1966, 1971, 1978

Newcastle 1970's

Sheffield 196x

All matches are no longer in use:
In a priority matching algorithm, a 'priority’ is defined for each
firm-worker pair as a function of their mutual rankings. The
algorithm matches all priority 1 couples and removes them from
the market, then repeats for priority 2 matches, priority 3 , etc.
E.g. in Newcastle, priorities for firm-worker rankings were
organized by the product of the rankings, (initially) as follows:
1-1, 2-1, 1-2, 1-3, 3-1, 4-1, 2-2, 1-4, 5-1...
After 3 years, 80% of the submitted rankings were pre-arranged
1-1 rankings without any other choices ranked. This worked to the
great disadvantage of those who didn't pre-arrange their matches.



Theorem 2.12 (Gale and Shapley)

When all men and women have strict preferences, there always
exists an M-optimal stable matching (that every man likes at least
as well as any other stable matching), and a W-optimal stable
matching.

Furthermore, the matching u,, produced by the deferred
acceptance algorithm with men proposing is the M-optimal stable
matching. The W-optimal stable matching is the matching p,,
produced by the algorithm when the women propose.



Theorem 2.12 (Gale and Shapley)

When all men and women have strict preferences, there always
exists an M-optimal stable matching (that every man likes at least
as well as any other stable matching), and a W-optimal stable
matching.

Furthermore, the matching u,, produced by the deferred
acceptance algorithm with men proposing is the M-optimal stable
matching. The W-optimal stable matching is the matching p,,
produced by the algorithm when the women propose.

Terminology:
Woman w is achievable for m if there is some stable y such that

u(m) = w.



Sketch of Proof:

Inductive step: suppose that up to step k of the algorithm, no m
has been rejected by an achievable w, and that at step k w rejects
m (who is acceptable to w) and (therefore) holds on to some m'.

We show: w is not achievable for m.



Sketch of Proof:

Inductive step: suppose that up to step k of the algorithm, no m
has been rejected by an achievable w, and that at step k w rejects
m (who is acceptable to w) and (therefore) holds on to some m'.

We show: w is not achievable for m.
Consider p with p(m) = w, and u(m’) achievable for m'. Can't
be stable: by the inductive step, (m', w) would be a blocking pair.



Let s >p ' denote that all men like p at least as well as p’, with
at least one man having a strict preference.
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Let u >n ' denote that all men like p at least as well as p', with
at least one man having a strict preference.

Then >, is a partial order on the set of matchings, representing
the common preferences of the men. Similarly, define > as the
common preference of the women.

Theorem 2.13(Knuth)

When all agents have strict preferences, the common preferences
of the two sides of the market are opposed on the set of stable
matchings: Let p and p' be stable matchings. Then p =y u’ if
and only if p’ >=w p.

Proof: immediate from definition of stability.

The best outcome for one side of the market is the worst for the
other.



For any two matchings u and p', and for all m and w, define v=
1V p' as the function that assigns each man his more preferred
of the two matches, and each woman her less preferred:

> v(}:n) = p(m) if p(m) =m p'(m) and v(m) = p'(m)
otherwise.

> 1/(;v) = p(w) if p(w) <w p'(w) and v(w) = p'(w)
otherwise.

Define v= u Apm ' analogously, by reversing the preferences.



For any two matchings u and p', and for all m and w, define v=
1V p' as the function that assigns each man his more preferred
of the two matches, and each woman her less preferred:

> V<?) = p(m) if p(m) =m p'(m) and v(m) = p'(m)
otherwise.
> v(w) = p(w) if p(w) < p'(w) and v(w) = p'(w)

otherwise.

Define v= u Apm ' analogously, by reversing the preferences.

Theorem 2.16 Lattice Theorem (Conway):

When all preferences are strict, if u and p' are stable matchings,
then the functions

v=puVy p' and v=pu Ay p' are also stable matchings.



So if we think of v as asking men to point to their preferred mate
from two stable matchings, and asking women to point to their
less preferred mate, the theorem says that

» No two men point to the same woman (this follows from the
stability of y and p')



So if we think of v as asking men to point to their preferred mate
from two stable matchings, and asking women to point to their
less preferred mate, the theorem says that

» No two men point to the same woman (this follows from the
stability of y and p')
» Every woman points back at the man pointing to her;
» v(m) = w = v(w) = m: follows easily from stability.
» v(w) = m = v(m) = w : takes a bit more work. (We'll
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So if we think of v as asking men to point to their preferred mate
from two stable matchings, and asking women to point to their
less preferred mate, the theorem says that

» No two men point to the same woman (this follows from the
stability of y and p')
» Every woman points back at the man pointing to her;
» v(m) = w = v(w) = m: follows easily from stability.
» v(w) = m = v(m) = w : takes a bit more work. (We'll
come back to this when we prove the Decomposition Lemma,
see next slide).

> And the resulting matching is stable. : immediately from the
stability of p and pu'.
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Symmetrically, p' (W (p')) € M(p), so [M(u)| > \W(V’)|
Since u and p' are one-to-one (and since M () and W (') are
finite), both u and p' are onto (surjective).



Let u, u' be stable matchings, and for some
m,w = u(m) =m ' (m) =w'.

Stability of ' implies ' (w) =, pu(w) = m.
But how about w'?

The Decomposition Lemma (Corollary 2.21, Knuth):
Let ¢ and p' be stable matchings in (M, W, P), with all
preferences strict. Let M(u) (W (u)) be the set of men (women)
who prefery to p', and let M(u') (W (') be those who prefer u'.
Then p and ' map M(y") onto W () and M(u) onto W (p').

Proof: we've just observed above that u(M(p)) is contained in
W(u'). So [M(u)| < [W(u')l.

Symmetrically, p' (W (p')) € M(p), so [M(u)| > \W(V’)|
Since u and p' are one-to-one (and since M () and W (') are
finite), both u and p' are onto (surjective).

So, an agent who prefers one stable matching to another is
matched at both to a mate with the reverse preferences.



Theorem 2.22
In a market (/\/I, W, P) with strict preferences, the set of people
who are single is the same for all stable matchings.



Theorem 2.22
In a market (/\/I, W, P) with strict preferences, the set of people
who are single is the same for all stable matchings.

One strategy of proof: What can we say about the number and
identity of men and women matched (and hence the number and
identity unmatched) at y,, and at p,,?

i.e. denoting M, = u,,(W), etc. what can we say about the
relative sizes and containment relations of the sets M, , W,,
MVW’ WVW?

HFm ‘MVM ‘ } WI‘M ‘

Hw |MVW‘ |WI‘W‘
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last theorems: Once single, always single and the decomposition
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A little disgression: There is an easy graphic representation of the
last theorems: Once single, always single and the decomposition
lemma (strict preferences).

Let there be two stable matchings p and 1. Let
G(u, ') = (V, E) be a bi-choice graph, with V = N the set of
agents (works also for the roommate problem). E consists of 3
types of edges: Let /,j € N.

> E1: i —jifj=u(i) =i w'(i)

> E2: = jifj=u'(i) = u(i)

> E3:i~sjif j=u(i) ~; w'(i) (aloopif i =)

Lemma:
Consider G(p, pt'). Let i € N. Then agent i’s component of
G(u, ') is either:
» [~ j for some agent j (possibly j = i)
> a directed even cycle of 4 or more agents, where edges of 1 of
2 lines alternate.



Proof.
(a) Suppose j «—— j or | <. Then, no other adjacent edge!

(b) Suppose W.l.o.g. | e—pej £ 1. . .
J K J K

By (a) and definition of G(p, '), either _, or «__p..
(Case E1) (Case E2)

In Case E1:
i J k#FDjoi=k -
be——bs  OF b = I=p0)=k
; j contradicting k +# i!
—pe = {i,j} blocks 1/,
— contradicting stability of ;!
So, Case E2.
i J . .
s> = ull)=j=p(), o
A contradicting (i) —; p/(i)! A
1 J - e . i . — * k
gl = 1= 1) = (), N /
contradicting ind. rat. of p! <+ -
(|

Figure: Slide from B. Klaus



Theorem

Lonely wolves
1 and ;' have the same set of single agents, i.e., (i) =i < p'(i) = i.

Proof.
Suppose w.l.o.g. p(i) = i but x/(i) = i. Then,

g =1
-
R Y
is wW(iy=ih { . . . .
\. w(ig) =i, i.e., p(i) = ig
‘---.
is i ¥

(i) # i = contradiction!

Fiociire:r <lide from R Klarie



Lemma

Decomposability

Let (i) =j. Then,
(@) (i) =i p'(i) implies (/' (j) = p(j) and
(o) p'(7) =i puli) implies () »; p' (7).

Proof.
(a) Suppose j = u(i) =; p'(i). Then, lonely wolf theorem: j, u/(i) # i.
Moreover,‘ _
i pli)=J
s _ = p'J) = ).
()
(b) Suppose p/(i) = u(i) = j. Then, lonely wolf theorem: j, /(i) #i.
Moreover,
k f
LRGN = (k) ie.j =k

(-\ 2 K@ 7 and ulf) =, 1) O

i
mﬁm Decomposability and Bi-Choice Granhs September2008  11/11



Example of such a graph G(u,u') :

101
2~3
4~5
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proposal.
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individually rational matching p (stable or not) such that

Uo=m py, forallme M.

Proof (using the deferred acceptance algorithm...)

If 4 were such a matching it would match every man m to some
woman w who had rejected him in the algorithm in favor of some
other man m' (i.e. even though m was acceptable to w).

Hence all of these women, p(M), would have been matched under
py- Thatis py (u(M)) = M.

Hence all of M would have been matched under y,, and

P (M) = p(M).

But since all of M are matched under y,, any woman who gets a
proposal in the last step of the algorithm at which proposals were
issued has not rejected any acceptable man, i.e. the algorithm
stops as soon as every woman in ji,,(M) has an acceptable
proposal.

So such a woman must be single at p (since every man prefers p
to u,,), which contradicts the fact that y,,(M) = p(M).



Example 2.31 (u,, not strongly Pareto optimal for the men)

M = {m1, m2, m3}, W = {wl, w2, w3}

P(ml) = w2, wl, w3 P(wl) = ml, m2, m3
P(m2) = wl, w2, w3 P(w2) = m3, ml, m2
P(m3) = wl, w2, w3 P(w3) = ml, m2, m3

g = (L, w], [m2, 3], [m3, w2]) =y,

But note that y > py, for p = ([ml, w2], [m2, w3], [m3, wl])



Example 2.31 (u,, not strongly Pareto optimal for the men)

M = {m1, m2, m3}, W = {wl, w2, w3}

P(ml) = w2, wl, w3 P(wl) = ml, m2, m3
P(m2) = wl, w2, w3 P(w2) = m3, ml, m2
P(m3) = wl, w2, w3 P(w3) = ml, m2, m3

g = (L, wi], [m2, w3), [m3, W) = sy
But note that y > py, for p = ([ml, w2], [m2, w3], [m3, wl])

Note: This is also shows that while in the whole game (M, W, P)
a stable matching # may be unique, this may not be the case for a
subset (M', W', P), even as M" = u(W’).



Lemma 3.5 Blocking Lemma (Gale and Sotomayor)

Let u be any individually rational matching with respect to strict
preferences P and let M’ be all men who prefer i to u),. If M"is
nonempty there is a pair (m, w) which blocks p such that m is in
M\M’ and w is in u(M").



Lemma 3.5 Blocking Lemma (Gale and Sotomayor)

Let u be any individually rational matching with respect to strict
preferences P and let M’ be all men who prefer i to u),. If M"is
nonempty there is a pair (m, w) which blocks p such that m is in
M\M’ and w is in u(M").

Proof : Case I: u(M’") # p,,(M'): Choose w € pu(M")\pu,, (M),
say w = p(m'). Then m’ : w > pt,(m') so w:

y(w) =m>=, m'.

But m ¢ M’, since w & p,,(M’), hence m: w >p, p(m) (since

preferences are strict), so (m, w) blocks p.



Case Il: j1,,(M') = u(M") = W'. Let w be the woman in W’
who receives the last proposal from an acceptable member of M’
in the deferred acceptance algorithm. Since all w in W' have
rejected acceptable men from M’, w had some man m engaged
when she received this last proposal. We claim (m, w)is the
desired blocking pair.
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desired blocking pair.

First, m is not in M’ for if so, after having been rejected by w, he
would have proposed again to a member of W' contradicting the

fact that w received the last such proposal. But m prefers w to his
mate under 11;, and since he is no better off under y, he prefers w

to p(m).



Case Il: j1,,(M') = u(M") = W'. Let w be the woman in W’
who receives the last proposal from an acceptable member of M’
in the deferred acceptance algorithm. Since all w in W’ have
rejected acceptable men from M’, w had some man m engaged
when she received this last proposal. We claim (m, w)is the
desired blocking pair.

First, m is not in M’ for if so, after having been rejected by w, he
would have proposed again to a member of W' contradicting the

fact that w received the last such proposal. But m prefers w to his
mate under 11;, and since he is no better off under y, he prefers w

to p(m).

On the other hand, m was the last man to be rejected by w so she
must have rejected her mate under u before she rejected m and
hence she prefers m to p(w), so (m, w) blocks .
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Strategic Behavior

So far, we assumed we know the preferences. But, when we apply
such a centralized matching procedure to actual markets, we will
have to elicit preferences.

Let's consider strategic behavior in centralized matching
mechanisms, in which participants submit a list of stated
preferences. By the revelation principle, some of the results will
apply to decentralized markets also, in which agents have different
sets of strategies.

Consider a marriage market (M, W, P) whose outcome will be
determined by a centralized clearinghouse, based on a list of
preferences that players will state (“reveal”). If the vector of
stated preferences is @, the algorithm employed by the
clearinghouse produces a matching h(Q). The matching
mechanism h is defined for all (M, W, Q). If the matching
produced is always a stable matching with respect to @, we'll say
that h is a stable matching mechanism.



Theorem 4.4 Impossibility Theorem (Roth):
No stable matching mechanism exists for which stating the true
preferences is a dominant strategy for every agent.
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preferences P = (Pml, Pm2, Pwl, Pw?2) as follows:

ml: wl, w2 wl: m2, ml

m2: w2, wl w2 : ml, m2

In this example, what must an arbitrary stable mechanism do? l.e.
what is the range of h(P) if h is a stable mechanism?



Theorem 4.4 Impossibility Theorem (Roth):
No stable matching mechanism exists for which stating the true
preferences is a dominant strategy for every agent.

Consider an example with 2 agents on each side, with true
preferences P = (Pml, Pm2, Pwl, Pw?2) as follows:

ml: wl, w2 wl: m2, ml

m2: w2, wl w2 : ml, m2

In this example, what must an arbitrary stable mechanism do? l.e.
what is the range of h(P) if h is a stable mechanism?

Given h(P), and the restriction that h is a stable mechanism, can
one of the players x engage in a profitable manipulation by stating
some P) # Py such that x prefers h(P’) to h(P)?



Of course, this kind of proof of the impossibility theorem leaves
open the possibility that situations in which some participant can
profitably manipulate his preferences are rare. The following result
suggests otherwise.

Theorem 4.6

When any stable mechanism is applied to a marriage market in
which preferences are strict and there is more than one stable
matching, then at least one agent can profitably misrepresent his
or her preferences, assuming the others tell the truth. (This agent
can misrepresent in such a way as to be matched to his or her
most preferred achievable mate under the true preferences at every
stable matching under the mis-stated preferences.)



Incentives facing the men when the M-optimal stable
mechanism is used

Theorem 4.7 (Dubins and Freedman, Roth)

The mechanism that yields the M-optimal stable matching (in
terms of the stated preferences) makes it a dominant strategy for
each man to state his true preferences.

Theorem 4.10 (Dubins and Freedman)

Let P be the true preferences of the agents, and let P’ differ from
P in that some coalition M’ of the men mis-state their preferences.
Then there is no matching y, stable for P, which is preferred to
1y, by all members of M’



Theorem 4.11 (Limits on successful manipulation.)
(Demange, Gale, and Sotomayor).

Let P be the true preferences (not necessarily strict) of the agents,
and let P’ differ from P in that some coalition C of men and
women mis-state their preferences. Then there is no matching y,
stable for P/, which is preferred to every stable matching under the
true preferences P by all members of C.

Note that Theorem 4.11 implies both Theorems 4.7 and 4.10.



Proof of Theorem 4.11:

Suppose some nonempty subset M’ U W' of men and women
mis-state their preferences and are strictly better off under y,
stable w.r.t. P’, than under any stable matching w.r.t. P.

u must be individually rational wrt P, even though unstable.

{Now construct strict preferences P, so that if any agent x is
indifferent under P between p(x) and some other alternative, then
under P x prefers 1i(x) (but otherwise make no change in the
ordering of preferences P). Then (m, w) blocks i under P only if
(m, w) blocks p under P. Since every stable matching under P is
also stable under P,

u(m) >=pm pp,(m) for every m e M" and u(w) > py, (w) for
every w € W'. (¥)

where u,, and u, are the M- and W- optimal stable matchings
for (M, W, P).}



If M’ is not empty we can apply the Blocking Lemma (3.5) to the
market (M, W, /5) since by (*¥) M’ is a subset of M the set of
men who prefer y to pi,,; thus there is a pair (m, w) which blocks
1 under P and so under P such that

g (m) = i(m) and

iy (W) =y p(w) (otherwise w and p(w) would block pz,,, since
w is in (M) by the blocking lemma).

Clearly m and w are not in M’ U W' and so are not mis-stating
their preferences, so they will also block y under P’, contradicting
that p is stable under P’.

If M" is empty W’ is not, and the symmetrical argument applies.



What can we say about equilibrium?

Pure strategy equilibria exist:

Theorem 4.15 (Gale and Sotomayor)

When all preferences are strict, let u be any stable matching for
(M, W, P). Suppose each woman w in y(M) chooses the strategy
of listing only u(w) on her stated preference list of acceptable men
(and each man states his true preferences). This is an equilibrium
in the game induced by the M-optimal stable matching mechanism
(and p is the matching that results).



Furthermore, every equilibrium mis-representation by the women
must nevertheless yield a matching that is stable with respect to
the true preferences. (But the proof of this should raise doubts
about it's applicability:)

Theorem 4.16 (Roth)

Suppose each man chooses his dominant strategy and states his
true preferences, and the women choose any set of strategies
(preference lists) P, that form an equilibrium for the matching
game induced by the M-optimal stable mechanism. Then the
corresponding M-optimal stable matching for (M, W, P’) is one of
the stable matchings of (M, W, P).



Many-to-one matching: The college admissions model

Players: Firms {fi, .., f,} with number of positions: qi, ..., g,
Workers: {wi, ..., wp }

Synonyms (sorry:): F = Firms, C = Colleges, H = Hospitals

W = Workers, S = Students.

Preferences over individuals (complete and transitive), as in the
marriage model:
P(fi) = w3, w2, ..fi... (W3 >¢ w2]
P(wj) = f2,f4, .. .wj...
An outcome of the game is a matching: y: FUW — FU W s.t.
> w € u(f) iff u(w) = f forall f,w
> ()l < ar
» u(w) € FU{w}.

so f is matched to the set of workers u(f).



We need to specify how firms' preferences over matchings, are
related to their preferences over individual workers, since they hire
groups of workers. The simplest model is

Responsive preferences: for any set of workers S C W with

|S| < gi, and any workers w and w' in W\S:

SUw >¢ SUW if and only if w >¢ w/, and

SUw >¢ S if and only if w is acceptable to f;.

A matching u is individually irrational (and blocked by the relevant
individual) if u(w) = f for some w, f such that either the worker is
unacceptable to the firm or the firm is unacceptable to the student.
A matching u is BLOCKED BY A PAIR OF AGENTS (f, w) if
they each prefer each other to u:

» w > w for some w' in u(f) or w>¢ fif |u(f)| < gr
> >, u(w)

As in the marriage model, a matching is (pairwise) stable if it isn't
blocked by any individual or pair of agents.



But now that firms employ multiple workers, it might not be
enough to concentrate only on pairwise stability. The assumption
of responsive preferences allows us to do this, however.

A matching yu is blocked by a coalition A of firms and workers if
there exists another matching u' such that for all workers w in A,
and all firms f in A

> W (w) € A

> 1 (w) =w p(w)

» w € y/(f) implies w € AU u(f) (i.e. every firmin Ais
matched at p' to new students only from A, although it may
continue to be matched with some of its “old” students from
#. (THIS DIFFERS FROM THE STANDARD DEFINITION
OF THE CORE. . .)

> W (f) = u(f)

A matching is group stable if it is not blocked by a coalition of any
size.



Lemma 5.5: When preferences are responsive, a matching is group
stable if and only if it is (pairwise) stable.

Proof: instability clearly implies group instability.

Now suppose p is blocked via coalition A and outcome p'. Then
there must be a worker w and a firm f such that w is in y/(f) but
not in p(f) such that w and f block p. (Otherwise it couldn’t be
that 3/ (f) >¢ u(f), since f has responsive preferences.)



A related marriage market
Replace college C by g¢ positions of C denoted by c1, ¢, ..., g,
Each of these positions has C's preferences over individuals. Since
each position ¢; has a quota of 1, we do not need to consider
preferences over groups of students.
Each student’s preference list is modified by replacing C, wherever
it appears on his list, by the string c1, ¢, ..., ¢4, in that order.
A matching u of the college admissions problem, corresponds to a
matching y' in the related marriage market in which the students
in u(C) are matched, in the order which they occur in the
preferences P(C), with the ordered positions of C that appear in
the related marriage market. (If preferences are not strict, there
will be more than one such matching.)

Lemma 5.6: A matching of the college admissions problem is
stable if and only if the corresponding matchings of the related
marriage market are stable.

(NB: some results from the marriage model translate, but not
those involving both stable and unstable matchings: . .)



Geographic distribution:

Theorem 5.12

When all preferences over individuals are strict, the set of students
employed and positions filled is the same at every stable matching.
The proof is immediate via the similar result for the marriage
problem and the construction of the corresponding marriage
problem (Lemma 5.6).

So any hospital that fails to fill all of its positions at some stable
matching will not be able to fill any more positions at any other
stable matching. The next result shows that not only will such a
hospital fill the same number of positions, but it will fill them with
exactly the same interns at any other stable matching.

Theorem 5.13 Rural hospitals theorem (Roth ‘86):

When preferences over individuals are strict, any hospital that does
not fill its quota at some stable matching is assigned precisely the
same set of students at every stable matching.

(This will be easy to prove after Lemma 5.25)



Comparison of stable matchings in the college admissions model:
Overview: suppose one of the colleges, C, evaluates students by
their scores on an exam, and evaluates entering classes according
to their average score on the exam. (So even when we assume no
two students have exactly the same score, so that college C's
preferences over individuals are strict, it does not have strict
preferences over entering classes, since it is indifferent between two
entering classes with the same average score.) Then different stable
matchings may give college C different entering classes. However
no two distinct entering classes that college C could have at stable
matchings will have the same average exam score. Furthermore,
for any two distinct entering classes that college C could be
assigned at stable matchings, we can make the following strong
comparison. Aside from the students who are in both entering
classes, every student in one of the entering classes will have a
higher exam score than any student in the other entering class.



Lemma 5.25 (Roth and Sotomayor)

Suppose colleges and students have strict individual preferences,
and let u and u' be stable matchings for (S, C, P), such that
#(C) # u'(C) for some C. Let i and i’ be the stable matchings
corresponding to y and p' in the related marriage market. If

fi(ci) =c #'(c;) for some position ¢; of C then fi(c;) =¢ #'(c;) for
all positions ¢; of C.



Proof: It is enough to show that 7i(c;) =¢ 7' (c;) for all j > i.
So suppose this is false. Then there exists an index j such that
() =c #(c), but @' (ci+1) =c #i(cj+1). Theorem 5.12
(constant employment) implies 7i'(c;) € S. Let s’ = ii’(cj). By
the decomposition lemma ¢; = j1'(s').=¢ i(s').

Furthermore, Ji(s") # ¢j11, since s’ =¢ ' (¢j+1) =c pi(cj+1)
(where the first of these preferences follows from the fact that for
any stable matching ﬁ/ in the related marriage market,

#'(c) =c #(cjz1) for all j).

Therefore ¢j 1 comes right after ¢; in the preferences of s’ in the
related marriage problem. So i is blocked via s" and ¢ 1,
contradicting (via Lemma 5.6) the stability of p.

(This proof also establishes the rural hospitals theorem).



Theorem 5.26: (Roth and Sotomayor)

If colleges and students have strict preferences over individuals,
then colleges have strict preferences over those groups of students
that they may be assigned at stable matchings. That is, if # and
u' are stable matchings, then a college C is indifferent between
1(C) and 1 (C) only if ju(C) = 1'(C).

Proof: via the lemma, and repeated application of responsive
preferences.

Theorem 5.27: (Roth and Sotomayor)

Let preferences over individuals be strict, and let u and p' be
stable matchings for (S, C, P). If u(C) =¢ p'(C) for some college
C, then s ¢ s’ for all s'in u(C) and s" in ¢/ (C)\u(C). That is,
C prefers every student in its entering class at y to every student
who is in its entering class at ' but not at .



Proof: Consider the related marriage market and the stable
matchings 7 and 7’ corresponding to u and '. Let qc = k, so
that the positions of C are c, .., ck.

First observe that C fills its quota under u and 3/, since, if not,
Theorem 5.13 (Rural hospitals) would imply that p(C) = u/(C).
So u'(C)\u(C).is a nonempty subset of S, since u(C) # u'(C).
Let s’ = i’ (c;) for some position ¢; such that s’ is not in u(C).
Then Ji(c;) # #'(c)).

By Lemma 5.25 Ji(¢;) =c #'(¢)) = 5.

The Decomposition Lemma implies ¢; > Ji(s’).

So the construction of the related marriage problem implies
c =g u(s'), since C =y u(s'), since u(s’) # C.

Thus s ¢ s’ for all s € u(C) by the stability of y, which
completes the proof.



So, for considering stable matchings, we have some slack in how
carefully we have to model preferences over groups. (This is lucky
for design, since it reduces the complication of soliciting
preferences from firms with responsive preferences. . .)

The results also have an unusual mathematical aspect, since they
allow us to say quite a bit about stable matchings even without
knowing all the preferences of potential blocking pairs.

Consider a College C with quota 2 and preferences over individuals
P(C) = s1,5s2,s3, s4. Suppose that at various matchings 1 — 4, C
is matched to

1. {s1,s4}, 3. {s1,s3}, and

2. {s2,s3}, 4. {s2,s4}.

Which matchings can be simultaneously stable for some responsive
preferences over individuals?

So long as all preferences over groups are responsive, matchings 1
and 2 cannot both be stable (Lemma 5.25), nor can matchings 3
and 4 (Theorem 5.27).



Strategic questions in the College Admissions model:
Theorem 5.16 (Roth)
A stable matching procedure which yields the student-optimal
stable matching makes it a dominant strategy for all students to
state their true preferences.
Proof: immediate from the related marriage market

Theorem 5.14 (Roth)

No stable matching mechanism exists that makes it a dominant

strategy for all hospitals to state their true preferences.

Proof: consider a market consisting of 3 hospitals and 4 students.

H1 has a quota of 2, and both other hospitals have a quota of 1.

The preferences are:

sl: H3,H1, H2 s3: H1,H3, H2 H1 : s1,s2,s3,s4

s2: H2, H1, H3 s4: H1, H2, H3 H2 : s1,s2,s3,s4
H3 :s3,s1,s2,s4

The unique stable matching is {[H1, s3, s4], [H2, s2], [H3, s1]}

But if H1: instead submitted the preferences s1, s4 the unique

stable matching is {[H1, s1, s4], [H2, s2], [H3, s3]}.



A More Complex Market: Matching with Couples

This model is the same as the college admissions model , except
the set of workers is replaced by a set of applicants that includes
both individuals and couples.

Denote the set of applicants by A = A; U C, where A; is the set of
(single) applicants who seek no more than one position, and C is
the set of couples {a;, a;} such that a; is in the set Ay (of
husbands) and a; is in the set Az (of wives), and the sets of
applicants A1, Ay, and Az together make up the entire population
of individual applicants, A = A; U Ay U As.

Each couple ¢ = {aj, a;} in C has preferences over ordered pairs of
positions, i.e. an ordered list of elements of F X F. The first
element of this list is some (r;, rj) in F x F. which is the couples’
first choice pair of jobs for a; and a; respectively, and so forth.
Applicants in the set A; have preferences over residency programs,
and residency programs (firms) have preferences over the
individuals in A, just as in the simple model discussed earlier. A
matching is a set of pairsin F X A.



Each single applicant, each couple, and each residency program
submits to the centralized clearinghouse a Rank Order List (ROL)
that is their stated preference ordering of acceptable alternatives.

A matching p is blocked by a single applicant (in the set A;), or by
a residency program, if y matches that agent to some individual or
residency program not on its ROL. A matching is blocked by an
individual couple {a;, a;} if they are matched to a pair (r;, rj) not
on their ROL.

A residency program r and a single applicant a in A; together
block a matching p precisely as in the college admissions market, if
they are not matched to one another and would both prefer to be.



A couple ¢ = {aj, aj} in A and residency programs r; and r, in F
block a matching p if the couple prefers (r1, r2) to p(c), and if
either r; and r, each would prefer to be matched to the
corresponding member of the couple, or if one of them would
prefer, and the other already is matched to the corresponding
couple member. That is, ¢ and (i, r) block y if

» (n,n)=cu(c) and if
either

» {{a1 ¢ u(n) and a; >, a; for some a; € pu(ry) or aj is
acceptable to r; and |u(r)| < g1 } and either a, € p(r) or
{ar & u(rn), a >, aj for some a; € u(r) or a is acceptable
tor and [u(n)| < ¢ }

or

> {a> & (r), a >, aj for some a; € y(r) or a is acceptable
to r; and |u(r)| < g2} and a1 € pu(n).



A matching is stable if it is not blocked by any individual agent or
by a pair of agents consisting of an individual and a residency
program, or by a couple together with one or two residency
programs

Theorem 5.11 (Roth '84): In the college admissions model with
couples, the set of stable matchings may be empty.

Proof: by example.
Furthermore, the following example shows that even when the set

of stable matchings is non-empty, it may no longer have the nice
properties we've come to expect.



Matching with couples (Example of Aldershof and Carducci, '96)
4 hospitals {h1,...h4} each with one position;
2 couples {s1,s2} and {s3,s4}

Preferences:
hi hy h3
Sa ) )
S3 S3 S4

51 s

hy
52
53

{s1, %}
hs, hy
ho, h3
ha, hy
h3, hy
u, h3
u, h2
u, h4
h3, u
hg, u

{s3, 5}
ho, hy
hy. hs
hi, hs
hg,
ha, h3

There are exactly two stable matchings:

(h1,54), (h2,52), (h3, s1), (ha, s3) preferred by hy, ha, hg, {51, 52)
(h1,s4), (h2,s3), (h3,512), (ha, u) preferred by h3, {s;, s3)

So, even when stable matchings exist, there need not be an optimal
stable matching for either side, and employment levels may vary.



Q>



Q>
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