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A stylized fact: in matching markets participants usually submit
short preference lists.

� The market is too large: difficult to express preferences over
all possible choices.

� Choice is contrained by the mechanism:
� New York City School Match (12 choices max)
� College admission in Spain (8 choices max)
� Academic job market in France (5 choices max for

departments, until 2009)

� Participants cannot include someone/institution without a
prior interview.

� Participants find many choices as unacceptable.



Constrained choice is the most disturbing case, we loose
strategyproofness (revealing one’s true (complete) preferences is no
longer an option).

Advantages?

� Gives a “target” of the number of choices one would expect

� Easier to think about one’s preferences over a small set of
alternatives than a large one.

� By limiting choice participants only put alternatives they
really care about
⇒ less “no-show” when enrolling.



This lecture

� Theoretical & Experimental investigation of constrained
choice in school choice problems.

� See how short preference lists bring additional information and
how we can use it.



First part: Constrained choice

Study the effects of a quota k on the length of submittable
ordered lists for:

� Boston

� Gale-Shapley

� Top Trading Cycle

base on

� Haeringer & Klijn, Journal of Econ. Theory, 2009

� Calsamiglia & Haeringer & Klijn, American Econ. Rev.,
2010.

(First account: Romero-Medina, Rev. Econ. Design, 1998).



The model

A school choice problem (Abdulkadiroğlu & Sönmez, AER,
2005) consists of

� a set of students I = {i1, . . . , in}

� a set of schools S = {s1, . . . , sm}

� a capacity vector q = (qs1 , . . . , qsm)

� a profile of students preferences P = (Pi1 , . . . ,Pin)

� a priority structure f = (fs1 , . . . , fsm).



Results (Informally)

Constrained School Choice – Main questions for the three
prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

� Is there a dominant strategy?

NO. → Study of Nash equilibria of preference revelation
games.

� Do Nash equilibria (in pure strategies) exist?
YES.

� Are NE outcomes always stable?
Boston: YES, but DA and TTC: NO.

� Can stability be recovered?
DA and TTC: via well-known but restrictive conditions on
priorities.
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Matching: definition

An outcome of a school choice problem is called a matching and
is a mapping µ : I ∪ S → 2I ∪ S such that for any i ∈ I and any
s ∈ S ,

� µ(i) ∈ S ∪ {i};

� µ(s) ∈ 2I ;

� µ(i) = s if and only if i ∈ µ(s);

� |µ(s)| ≤ qs .



The quota game

Fix the priority structure f and the capacity vector q. Let
ϕ ∈ {β, γ, τ, . . .} be a mechanism.

Let Q(k) denote all ordered lists containing at most k schools.
(“The quota is k.”)

We obtain a strategic form game

G
ϕ(P, k) = �I ,Q(k)n,P�.

Notation:
Eϕ(P, k) = set of k-Nash equilibria
Oϕ(P, k) = set of k-Nash equilibrium outcomes
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Incentives

Proposition
ϕ a strategyproof mechanism, ϕk its “constrained version”.

Ordering the declared acceptable school in the true order

dominates any other re-ordering of those schools.



Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Qi :

� Apply to the 1st school in Qi .

� If “rejected”, apply to the 2nd school in Qi .

� If “rejected”, apply to the 3rd school in Qi .

� etc.

Boston and Gale-Shapley differ on the notion of “rejection”.
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Boston

� A school s chooses the students who applied to it that have
the highest priority, up to the capacity qs .

If quota attained, reject all other students who applied to s.

� New applications (from students rejected by other schools):

Repeat the first step with considering only the remaining
available slots and the new applications.
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Deferred Acceptance

� A school s chooses the students who applied to it that have
the highest priority, up to the capacity qs .

If quota attained, reject all other students who applied to s.

� New applications (from students rejected by other schools):

Repeat the first step with considering all the qs slots and
the students previously accepted.



The Boston Mechanism

Theorem
Let P be a school choice problem.

For any quota k,

∅ �= S(P) = O
β(P, k).

Proof straightforward adaptation of Ergin and Sönmez’s (J. Pub.

Econ., 2006)



Gale-Shapley Mechanism

Theorem
For any quota k,

S(P) ⊆ O
γ(P, k) .

Theorem
For any quotas k < k �,

E
γ(P, k) ⊆ E

γ(P, k �).
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Gale-Shapley Mechanism

Proof

� Q a k-Nash equilibrium.

� Q not a k + 1-Nash equilibrium.

� Student i has a profitable deviation Q �
i .

� Let Q̂i = γ(Q �
i ,Q−i )(i).

� γ(Q̂i ,Q−i )(i) = γ(Q �
i ,Q−i )(i) —Roth (1982), Roth and

Sotomayor (1990).

� Q̂i ∈ Q(k). So Q is not a k-Nash equilibrium, contradiction.
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Gale-Shapley Mechanism: stability?

Proposition
S(P) = Oγ(P, 1).

Proof
If k = 1 then Gale-Shapley = Boston. Since Boston implements
stable matchings so does Gale Shapley for k = 1.
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Gale-Shapley Mechanism: stability?

Pi1 Pi2 Pi3 fs1 fs2

s2 s1 s1 i1 i3

s1 s2 s2 i2 i1

i3 i2

For any profile Q = (Pi1 ,Qi2 ,Pi3) with Qi2 ∈ Q(2), γ(Q)(i2) = i2.

Take Qi2 = s2, then γ(Q) = {{i1, s2}, {i3, s1}, {i2}}.

So, Q ∈ Eγ(P, 2), but... γ(Q∗) is not stable w.r.t. P.



Gale-Shapley Mechanism: stability?

� γ(P) is a stable matching (Gale and Shapley, 1962).

� γ(P) may not be efficient.

� Ergin (Econometrica, 2002) introduces the concept of weak
acyclicity (of school priorities).

Priorities weakly acyclic ⇒ γ(P) efficient.
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Gale-Shapley Mechanism: stability?

Given f , an Ergin-cycle is constituted of distinct s, s � ∈ S and
i , j , l ∈ I such that:

� cycle condition fs(i) < fs(j) < fs(l) and fs�(l) < fs�(i);

� scarcity condition there exist disjoint sets Is , Is� ⊆ I\{i , j , l}
such that Is ⊆ U f

s (j), Is� ⊆ U f
s�(i), |Is | = qs − 1, and

|Is� | = qs� − 1.

A priority structure is Ergin-acyclic if no cycles exist.



Gale-Shapley Mechanism: stability?

Given f , an Ergin-cycle is constituted of distinct s, s � ∈ S and
i , j , l ∈ I such that:

� cycle condition fs(i) < fs(j) < fs(l) and fs�(l) < fs�(i);

� scarcity condition there exist disjoint sets Is , Is� ⊆ I\{i , j , l}
such that Is ⊆ U f

s (j), Is� ⊆ U f
s�(i), |Is | = qs − 1, and

|Is� | = qs� − 1.

A priority structure is Ergin-acyclic if no cycles exist.



Gale-Shapley Mechanism: stability?

Given f , an Ergin-cycle is constituted of distinct s, s � ∈ S and
i , j , l ∈ I such that:

� cycle condition fs(i) < fs(j) < fs(l) and fs�(l) < fs�(i);

� scarcity condition there exist disjoint sets Is , Is� ⊆ I\{i , j , l}
such that Is ⊆ U f

s (j), Is� ⊆ U f
s�(i), |Is | = qs − 1, and

|Is� | = qs� − 1.

A priority structure is Ergin-acyclic if no cycles exist.



Gale-Shapley Mechanism: stability?

Theorem
Let k �= 1.

f Ergin-acyclic

�

Γγ(P, k) implements S(P) in Nash equilibria for any P.



Gale-Shapley Mechanism: stability?

Proof of ⇒

� Q a Nash equilibrium but γ(Q) /∈ S(P).

� There are i and j such that sPiγ(Q)(i) and fs(i) < fs(j).

� Define Q �
i = γ(Pi ,Q−i )(i).

� Since γ(Pi ,Q−i )Riγ(Q) and γ(Q �
i ,Q−i )(i) = γ(Pi ,Q−i )(i),

we have γ(Q �
i ,Q−i )(i) = γ(Qi ,Q−i )(i).

γ strategy-proof + Q equilibrium.

� f Ergin-acyclic, so γ non-bossy (Ergin, 2002).

� Rewriting we get γ(Pi ,Q−i ) /∈ S(Pi ,Q−i ), contradiction.
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TTC

Theorem
For any quotas k < k �,

E
τ (P, k) ⊆ E

τ (P, k �).



TTC

proof

� We first show that if a mechanism ϕ is individually

idempotent then the equilibria are nested:

ϕ(ϕ(Q)(i),Q−i ) = ϕ(Q) ⇒ E
ϕ(P, k) ⊆ E

ϕ(P, k �)

� TTC is individually idempotent: show that under Q and
(τ(Q)(i),Q−i ) the same cycles form.
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TTC

Theorem
For any quota k ≥ 2,

∅ �= O
τ (P, 1) = O

τ (P, k) .

Note: we can have S(P) ∩ Oτ (P, 1) = ∅.



TTC: stability?

� τ(P) is an efficient matching.
(Gale and Shapley, 1962)

� τ(P) may not be stable.

� Priorities Kesten-acyclic ⇒ τ(P) stable.
(Kesten, JET, 2006)
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Given f , a Kesten-cycle (Kesten, JET, 2006) is constituted of
distinct s, s � ∈ S and i , j , l ∈ I such that:

� cycle condition fs(i) < fs(j) < fs(l) and
fs�(l) < fs�(i), fs�(j);

� scarcity condition there exists a set Is ⊆ I\{i , j , l} with
Is ⊆ U f

s (i) ∪ [U f
s (j)\U f

s�(l)] and |Is | = qs − 1.

A priority structure is Kesten-acyclic if no cycles exist.
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Proof of ⇒

� f Kesten-acyclic ⇒ τ = γ (Theorem 1 of Kesten, 2006).

� f is Ergin-acyclic (Lemma 1 of Kesten, 2006).

� Since Oγ(P, k) ∈ S(P) (our result about γ), we have
Oτ (P, k) ∈ S(P).



TTC: stability?

Proof of ⇒

� f Kesten-acyclic ⇒ τ = γ (Theorem 1 of Kesten, 2006).

� f is Ergin-acyclic (Lemma 1 of Kesten, 2006).

� Since Oγ(P, k) ∈ S(P) (our result about γ), we have
Oτ (P, k) ∈ S(P).



TTC: stability?

Proof of ⇒

� f Kesten-acyclic ⇒ τ = γ (Theorem 1 of Kesten, 2006).

� f is Ergin-acyclic (Lemma 1 of Kesten, 2006).

� Since Oγ(P, k) ∈ S(P) (our result about γ), we have
Oτ (P, k) ∈ S(P).



TTC: stability?

Proof of ⇐

� f Kesten-cyclic ⇒ there exists P such that τ(P) /∈ S(P)
(Theorem 1 of Kesten, 2006).

� τ strategy-proof, so P is an m-equilibrium.

� For each k ≤ m, there exists a k-equilibrium Q such that
τ(Q) = τ(P) /∈ S(P) (our result about τ).
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Eq. of undominated “truncations”

Pi1 Pi2 Pi3 Pi4 fs1 fs2 fs3

s1 s2 s3 s1 i3 i1 i2

s2 s3 s1 s2 i1 i2 i4

s3 s1 s2 s3 i2 i3 i3

i4 i4 i1

Let k = 2. Let Q be such that each student submits his 2 best
schools. Then,
γ(Q) = τ(Q) = {{i1, s1}, {i2, s2}, {i3, s3}, {i4}}.

So, even (strong) Nash equilibria in (undominated) “truncations”
may yield unstable matchings!
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Conclusion

Nash Implementation of the stable correspondence through
mechanism

� Boston: for k ≥ 1: YES.

� DA: for k = 1: YES;

for k > 1: if and only if priority structure is acyclic à la Ergin
(Econometrica, 2002).

� TTC: for k ≥ 1: if and only if priority structure is acyclic à la
Kesten (JET, 2006).
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(Econometrica, 2002).

� TTC: for k ≥ 1: if and only if priority structure is acyclic à la
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� Chen and Sönmez (JET, 2006):
experimental study shows that
γ and τ outperform β in terms of efficiency.

� Ergin and Sönmez (J. Pub. Ec., 2006):
β implements set of stable matchings in NE
→ transition from β to γ would lead to unambiguous
efficiency gains.

� As the acyclicity conditions are restrictive, current transitions
from β to γ or τ with quota are unlikely to be as successful as
they could be.
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Conclusion

Equilibrium analysis of matching games

Players
Students Students-Schools Schools

β Ergin-Sönmez ∅ ∅
(J. Pub. Econ., 2005)

Alcalde Roth
γ This paper (JET, 1996) (JET, 1984)

IR(P) S(P)

τ This paper ∅ ∅



The experiment

Reconduct the Chen-Sönmez experiment with two treatments:

� First treatment: like Chen-Sönmez, no constraint.

� Second treatment: a quota k on the length of submittable
ordered lists is imposed.

Note: No after market for unassigned students.



The experiment

� 36 students to be matched to 7 schools
(2 schools of capacity 3, 5 schools of capacity 6).

� Constrained case: can put only 3 schools.

� 2 sets of payoffs: one designed, one random.

� For each mechanism (BOS, SOSM, TTC) and each payoff
matrix, 2 sessions.

� A total of 2× 3× 2× 2× 36 = 872 subjects
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The district school and priorities

Each student was assigned a “district school”

� For each school, the number of students whose district school
is this school = capacity of the school.

� Once subjects’ choices were collected, a random order of the
student was drawn from an urn.

� For each school, the students of the district were placed on the
top of the school priority list, in the order given by the draw.

� Other students were ranked in the school priority list below
the district students in the order given by the draw.
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District Schools

� For SOSM and TTC, the district school is a “safety” school.

� For Boston, the district school is a “safety” school only if put
first in choices.



Sub-samples

We split the set of subjects into two sub-samples:

� High district: the district school is ranked 1st, 2nd or 3rd in
the subject’s preferences.

� Low district: the district school is ranked 4th or less in the
subject’s preferences.



The experiment

� During a session, each subject was given his payoff vector (her
gain depending on the school she would be matched to)

� Subjects were given a mini-course on about the mechanism at
hand.

� Subjects had to make a choice list (7 schools in one treatment
and 3 schools in another treatment).

� Choices were collected and a matching was computed.
Subjects were paid just at the end of the experiment. Average
duration: 45 minutes.
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Hypothesis 1

For SOSM and TTC:

Constraint implies more rational behavior.

(relative order of schools in choices same as in preference)



Hypothesis 2

For SOSM and TTC:

Constraint implies less truncated truthtelling.
(choices are the 3 most preferred.)

For BOS:

Constraint implies less (but not significant) truncated
truthtelling.



Hypothesis 3

For SOSM and TTC:

Constraint implies more District School Bias and more Small
School Bias.

For BOS:

Constraint implies more (but not significant) District School Bias
and more Small School Bias.



Hypothesis 4

For BOS, SOSM and TTC:

Constraint implies more Safety School Effect.

Effect smaller for BOS than for SOSM and TTC.



Hypothesis 5

Under all three mechanisms, the constraint produces an efficiency
loss.

The inefficiency of the three mechanisms in the constrained case is
similar.



Hypothesis 6

SOSM is “more stable” than TTC or Boston in the unconstrained
case.

SOSM more stable in the unconstrained case.



Hypothesis 7

Individuals will be assigned to their district school more often in
the constrained than in the unconstrained case.



Rational Behavior

More rationality under constrained SOSM and TTC

Constrained Unconstrained p-value
BOSd 34.7 37.5 .37
BOSr 37.5 44.4 .2

SOSMd 95.8 73.6 .0001
SOSMr 91.7 81.9 .043
TTCd 93.1 84.7 .057
TTCr 90.3 88.9 .4



Rational Behavior

Low-district subjects more sensitive to the constraint.

Low-district sample High-district sample
Cons. Uncons. Cons. Uncons.

SOSMd 95.2 57.1 96.7 96.7
SOSMr 88.6 81.8 96.4 82.1
TTCd 90.5 78.6 96.7 93.3
TTCr 90.9 86.4 89.3 92.9



Rational behavior

Without low capacity schools

Treat. SOSMd SOSMr TTCd TTCr

Cons. (%) 100 100 100 100
Unons. (%) 100 100 100 100



Truncated truthtelling

Less truncated truthtelling under constrained choice

Constrained Unconstrained p-value
BOSd 18.1 18.1 .5
BOSr 8.3 22.2 .0102

SOSMd 25.0 58.3 .000
SOSMr 18.1 56.9 .000
TTCd 22.2 62.5 .000
TTCr 19.4 73.6 .000

In the constrained setting, the level of truncated truthtelling does
not significantly vary among SOSM, TTC and BOS-d.



Truncated truthtelling

Low-district optimize more.

Low-district sample High-district sample
Cons. Uncons. Cons. Uncons.

BOSd 16.7 19.0 20.0 16.7
BOSr 9.1 25.0 7.1 17.9

SOSMd 2.4 45.2 56.7 76.7
SOSMr 6.8 26.8 35.7 57.1
TTCd 0 64.3 53.3 60.0
TTCr 6.8 79.5 39.3 64.3



Two types of misrepresentation

� District School Bias (DSB)
A participant puts his district school into a higher position
than that in the true preference order.

� Small School Bias (SSB)
A participant puts school A or B (or both) into lower
positions than those in the true preference ordering.
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Misrepresentations

District School Bias:

SOSM and TTC: 15 (d) – 20 (r) % → 70 (d) – 75 (r)%

BOS: 60 (r) – 70 (d) % → 75 (r) – 80 (d) %

Small School Bias:

SOSM and TTC: 20 (d) –35 (r) % → 60 (d) – 40 (r)%

BOS: 37 (r) – 70 (d) % → 52 (r) – 77 (d) %

Low-district more biased than high-district.



Misrepresentations

Low-district and high-district subjects exhibit different patterns of
manipulation:

� Low-district subjects: DSB dominates in the constrained case,
SSB dominates in the unconstrained case.

� High-district subjects: DSB dominates in both cases
(const./unconst.), and SSB ⇒ DSB.



Safety school effect

Proportion of subjects having the district school ranked 4th or
more in preferences (low-district subjects) and ranked 3rd or less in
choices.

Mechanism Constrained Unconstrained p-value
SOSMd 91 12 0.009
SOSMr 89 18 0.0076
TTCd 86 14 0.00
TTCr 89 9 0.00
BOSd 81 57 0.000
BOSr 75 50 0.000



Safety School effect

� Constrained case: DSB ≡ Safety School Effect (by definition).

� Unconstrained case: DSB and Safety School Effect do not
measure the same thing.

However, we observe DSB ≈ Safety School Effect.

⇒ First three choices are “focal”.

Safety School Efffect even if the district school is the worst school
(constrained case).



Recombinant technique

� Each treatment = one shot game

� Each treatment was run twice, so we have two strategy
profiles.

⇒ to compute the outcomes for a treatment, we can use any
combination of the two strategy profiles, i.e., 236 different
combinations (Mullin-Reiley, Games Econ. Behav., 2006).

We use 14,400,000 recombinations.



Efficiency

Observed 1-2 2-3 1-3
Uncons.-d TTC > SOSM > Bos R R A
Uncons.-r TTC � SOSM > Bos A R A
Cons.-d TTC > SOSM � Bos R A A
Cons.-r TTC > SOSM � Bos R A A

The efficiency loss between the unconstrained an unconstrained
cases is significant for the three mechanisms.



Stability

Average number of blocking pairs.

Constrained Unconstrained p-value
BOSd 10.6 11.4 .2
BOSr 14.9 12.6 .05

SOSMd 7.6 4.7 .001
SOSMr 9.6 7.8 .07
TTCd 10.4 15.5 .04
TTCr 13.4 9.8 .01



Segregation

Proportion of students assigned to their district school.

Mechanism Constrained Unconstrained p-value
SOSMd 65 54 0.008
SOSMr 44 28 0.0002
TTCd 59 46 0.007
TTCr 31 23 0.039
BOSd 68 31 0.026
BOSr 45 50 0.008

Increase milder than for District School Bias.



Conclusion

� Experimental study of a situation in which agents are
constrained: some of their strategies are “deleted”.

� Agents tend to choose “safe” strategies:
� Secure their prospects (district school),
� Flee competition (small school bias).

� Subjects without easily (easily identifiable) dominant strategy
tend to show greater signs of optimizing behavior.

� Trade-off when restricting agents’ strategies:
� Increase agents’ rationality,
� Efficiency loss.



Two-Sided Matching with One-Sided
Preferences

(or how take advantage short preference lists)

with Vincent Iehlé (Université Paris-Dauphine)



The student-optimal stable matching µI

� students’ most preferred stable matching;

� Strategyproof (for the students)

� Not necessarily Pareto optimal

Proposition (Kesten, 2010, QJE)

There is no Pareto-efficient and strategy-proof mechanism that

selects the Pareto-efficient and stable matching whenever it exists.
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The origin of inefficiency

i1 i2 i3

s2 s1 s1

s1 s2 s3

s1 s2 s3

i1 i2 i3

i3 i1

i2

Not asking a school I won’t get can make other students better off.

Kesten’s mechanism finds those “critical” students, eliminates
them. But his mechanism is not strategy-proof.
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The origin of inefficiency

i1 i2 i3

s2 s1

s1 s2 s3

s1 s2 s3

i1 i2 i3

i3 i1

i2

Not asking a school I won’t get can make other students better off.

Kesten’s mechanism finds those “critical” students, eliminates
them, but looses strategy-proofness.



A matching µ is not stable if there exists a pair of agents (i , j)
such that

i Pj µ(j) and j Pi µ(i),

or there is an agent i such that iPiµ(i).

⇒ Checking stability involves preferences from both sides of the
market.
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Objective of the paper

Propose a mechanism that:

� Pareto dominates the Student-Optimal Stable Matching
(SOSM)

� Selects SOSM whenever it is efficient

� that is “pseudo strategyproof.”



How we do it

Given a matching problem:

� We go to a more general problem where we ignore students’
preferences

� Extract information about stable matchings

� Feed back that information to the original problem.
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� Take the preferences from both sides of a matching market
(schools and students).

� Consider only school’s preferences and for each student the
list of acceptable schools (but not their preferences)

� for each pair student-school, (i , s), say whether there exists a
student preference profile such that i can be matched to s for
some stable matching. If not, i is a dummy for s.

� A new mechanism: If a student is a dummy for a school,
delete that student from that school’s preferences. Then run
Gale-Shapley.
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This paper adds to a series of paper that extract information from
partial matching data:

� Stable matchings −→ preferences:
Roth and Sotomayor (1985), Echenique, Lee, Shum and
Yenmez (2012).

� Preferences −→ stable matchings:
Mart́ınez, Massó, Neme and Oviedo (2012), Rastegari,
Condon, Immorlica, and Leyton-Brown (2012).



Example

Ps1 Ps2 Ps3 Ps4

i1 · · ·

· i2 i3 i4

· · · ·

· i1 i2 i3

· · ·

· i4 ·

There is no preference profile and a stable matching (for that
profile) such that i1 is matched to s2.



A matching problem, (I ,S ,�I ,�S , qS), is defined by:

� A set S of schools

� A set I of students.

� A vector qS of schools’ capacities.

� Each school s has a preference relation �s over the set of
students. (responsive prefs. over sets of students)

� Each student i has a preference relation �i over the set of
schools and himself.



A pre-matching problem, (I ,S ,PS , qS), is defined by:

� A set S of schools

� A set I of students.

� A vector qS of schools’ capacities.

� Each school s has a preference relation Ps over a set As ⊆ I

of students. (responsive prefs. over sets of students)

As = set of students acceptable for s

⇒ Ai = set of acceptable schools for i .



Example

�s1 �s2 �s3 �s4 �s5 �s6

i1 i3 · i2 i2 i2

i2 i2 i3 i4 i3 ·

i3 · · · · i3

· i1 i2 i3 i4 ·

i4 · i1 · i1 i1

· i4 i4 i1 · i4

�i1 �i2 �i3 �i4

s1 s2 s3 s2

s2 s3 s4 s4



Example

Ps1 Ps2 Ps3 Ps4 Ps5 Ps6

i1 · · · · ·

· i2 i3 i4 · ·

· · · · · ·

· i1 i2 i3 · ·

· · · · ·

· i4 · · ·

�i1 �i2 �i3 �i4

s1 s2 s3 s2

s2 s3 s4 s4



Given a pre-matching problem P, a matching problem � is
P-compatible if

� for each student i and each school s,

s �i i ⇔ i ∈ As

� for each pair of students i , i � ∈ I such that i , i � ∈ As ,

iPs i
�
⇔ i �s i

�

Θ(P) = the set of matching problems that are P-compatible.
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For a matching problem �, a matching µ is stable if

� it is individually rational: I prefer my match than being
unmatched.

� it is non wasteful: If I prefer a school to my match, that
school is full.

� there is no justified envy: If I prefer a school to my match,
that school has no student less preferred than me.
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For a pre-matching problem P, a pre-matching µ is stable if

� it is non-wasteful: If a school does not fill its capacity, all the
students acceptable for that school are matched to some
school.

� there is no justified envy: If a student is matched to a
school, all the students preferred to him by that school are
matched to a school.
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Dummy students

A student i is a dummy for school s at the pre-profile P if for any
matching problem �∈ Θ(P), there is no matching µ stable for �
such that µ(i) = s.



� If µ is stable for � then µ is stable for P, with �∈ Θ(P).

� If µ is stable for P, then there exists � in Θ(P) such that µ is
stable for �.

−→ i is dummy for s

�

there is no pre-matching stable for P such that µ(i) = s.



Identifying dummy students

Given P, let P i ,s be P obtained by deleting i to each Ps� with
s � �= s.

Proposition
Student i is a dummy for s if, and only if, there is no maximum

and stable matching µ for P i ,s such that µ(i) = s.



Proof

� Take µ, stable for P i but not maximum.

⇒ There is an augmenting path π

� If the resulting matching is not stable, then we can select a
subpath of π that will avoid the violating the stability
condition:

π = (i1, s1, i2, . . . , ih, sh, . . . , ik , sk),

but iPsh ih, j /∈ π, and µ(j) = j

π� = (j , sh, . . . , ik , sk).

Keep doing with π��, π���, etc. until we have a problem-free
augmenting path.
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A sufficient condition

Intuition we want to capture:

i is a dummy for s and µ(i) = s =⇒ however we match the other
students (filling schools’ capacities) there is always a student i �

and a schools � such that

µ(i �) = i
� and i

�
Ps� i

�� for some i
��
∈ µ(s �).

The truncation of P at i is the pre-profile P̄ i such that

� If i /∈ As then P̄ i
s = Ps ,

� If i ∈ As then P̄ i
s is a truncation of Ps at i (including i).
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A block at (i0, s0) is a set J ⊆ I\{i0} of students such that:

(a) |J| =
�

s∈AJ
qs and there exists a perfect match between J

and AJ

(b) J0 := J ∩ {i : iPs0 i0} �= ∅ with |J0| ≥ qs0

(c) If we match i0 to s0, we need to “get rid” of some j ∈ J.

⇒ For any j ∈ J, it is not possible to match all students in
J\{j} such that j does not block the matching.

⇔ For any j ∈ J, it is not possible to match all students in
J\{j} in the pre-profile P̄ j .

(c) for each i ∈ J\J0, for the pre-matching problem P i ,

∃ T ⊆ J\{i} such that |T | >
�

s ∈ A
i
T

q̄s (�)

where q̄s = qs if s �= s0 and q̄s0 = qs0 − 1.
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Illustration of condition (�)

Ps0 Ps1 Ps2 Ps3

a b b b

i0 c c d

a d a

· a ·

·

There is no block at (i , s1): b and c can “eliminate” d and let a be
matched to s2 so that i can be matched to s1.

Here condition (c) is not satisfied for d .
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Proposition
Let PS be a profile. If there is a block at (i0, s0) then student i0 is

dummy for school s0.



Proof

� Take µ such that µ(i0) = s0 and µ stable

� Then ∃ j1 ∈ J such that µ(j1) = j1.

� By (�), ∃ j2 ∈ J\{j1} such that µ(j2) = j2.

� By (�), ∃ j3 ∈ J\{j2} such that µ(j3) = j3.

� Claim j3 �= j1:

� If ∃h /∈ J but µ(h) ∈ AJ, unmatch h. Then µ not maximum
for J, so there is an augmenting path π

� π can be chosen such that the resulting matching is
compatible with P j2 , i.e., j2 never part of a blocking pair.

� Now we have j1 matched but not j2. Using (�), ∃ j3 ∈ J\{j2}
such that µ(j3) = j3.

� Repeat for j4, j5, . . . until we hit jk ∈ J0, contradicting µ
being stable.
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Corrolary for school choice problems

School choice usually endow each student with a “district school”:
a school for which the student has the highest priority.

Assumption
Each student always puts his district school in his submitted

preference list.



Assumption
There exists an order partition of schools, {S1,S2, . . . ,Sk} such

that students whose school district is in Sh only put in their

submitted preferences schools that are in S1,S2, . . . ,Sh.

Proposition
For any stable matching, students whose district school is in Sh are

matched to a school in Sh.
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Dummy-free mechanism

1. Students submit preferences;

2. Identify dummy students and delete the schools for which
they are dummies in their preferences;

3. Run students’ DA with with the “cleaned” preferences.
Output = µ̄I .
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Proposition
The dummy-free mechanism weakly Pareto dominates the

student-optimal matching.

Proposition
Once a student has chosen which schools to put in his submitted

preferences, it is a dominant strategy to put them in the correct

order.

→ Students can manipulate but only by declaring some schools as
unaccepable.
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Wrap up: Look at the data before doing anything

� Under not so severe circumstances, knowing preferences of
both sides of the market is not necessary to identify unstable
matchings;

� Stable mechanisms are not necessarily the best way to
promote district mobility in school choice;

� Scrutinizing the data before running the algorithm can help to
enhance one side’s welfare.
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