Matching with Short Preference Lists

Guillaume Haeringer ${ }^{1}$

${ }^{1}$ Universitat Autònoma de Barcelona \& Barcelona GSE
Visiting Stanford

A stylized fact: in matching markets participants usually submit short preference lists.

- The market is too large: difficult to express preferences over all possible choices.
- Choice is contrained by the mechanism:
- New York City School Match (12 choices max)
- College admission in Spain (8 choices max)
- Academic job market in France (5 choices max for departments, until 2009)
- Participants cannot include someone/institution without a prior interview.
- Participants find many choices as unacceptable.

Constrained choice is the most disturbing case, we loose strategyproofness (revealing one's true (complete) preferences is no longer an option).

Advantages?

- Gives a "target" of the number of choices one would expect
- Easier to think about one's preferences over a small set of alternatives than a large one.
- By limiting choice participants only put alternatives they really care about
\Rightarrow less "no-show" when enrolling.

This lecture

- Theoretical \& Experimental investigation of constrained choice in school choice problems.
- See how short preference lists bring additional information and how we can use it.

First part: Constrained choice

Study the effects of a quota k on the length of submittable ordered lists for:

- Boston
- Gale-Shapley
- Top Trading Cycle
base on
- Haeringer \& Klijn, Journal of Econ. Theory, 2009
- Calsamiglia \& Haeringer \& Klijn, American Econ. Rev., 2010.
(First account: Romero-Medina, Rev. Econ. Design, 1998).

The model

A school choice problem (Abdulkadiroğlu \& Sönmez, AER, 2005) consists of

- a set of students $I=\left\{i_{1}, \ldots, i_{n}\right\}$
- a set of schools $S=\left\{s_{1}, \ldots, s_{m}\right\}$
- a capacity vector $q=\left(q_{s_{1}}, \ldots, q_{s_{m}}\right)$
- a profile of students preferences $P=\left(P_{i_{1}}, \ldots, P_{i_{n}}\right)$
- a priority structure $f=\left(f_{s_{1}}, \ldots, f_{s_{m}}\right)$.

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist?

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist? YES.

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist? YES.
- Are NE outcomes always stable?

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist? YES.
- Are NE outcomes always stable?

Boston: YES, but DA and TTC: NO.

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist? YES.
- Are NE outcomes always stable? Boston: YES, but DA and TTC: NO.
- Can stability be recovered?

Results (Informally)

Constrained School Choice - Main questions for the three prominent mechanisms β (Boston), γ (Gale-Shapley), τ (TTC):

- Is there a dominant strategy?

NO. \rightarrow Study of Nash equilibria of preference revelation games.

- Do Nash equilibria (in pure strategies) exist? YES.
- Are NE outcomes always stable? Boston: YES, but DA and TTC: NO.
- Can stability be recovered?

DA and TTC: via well-known but restrictive conditions on priorities.

Matching: definition

An outcome of a school choice problem is called a matching and is a mapping $\mu: I \cup S \rightarrow 2^{I} \cup S$ such that for any $i \in I$ and any $s \in S$,

- $\mu(i) \in S \cup\{i\} ;$
- $\mu(s) \in 2^{\prime}$;
- $\mu(i)=s \quad$ if and only if $\quad i \in \mu(s)$;
- $|\mu(s)| \leq q_{s}$.

The quota game

Fix the priority structure f and the capacity vector q. Let
$\varphi \in\{\beta, \gamma, \tau, \ldots\}$ be a mechanism.

The quota game

Fix the priority structure f and the capacity vector q. Let $\varphi \in\{\beta, \gamma, \tau, \ldots\}$ be a mechanism.

Let $\mathcal{Q}(k)$ denote all ordered lists containing at most k schools. ("The quota is k.")

The quota game

Fix the priority structure f and the capacity vector q. Let $\varphi \in\{\beta, \gamma, \tau, \ldots\}$ be a mechanism.

Let $\mathcal{Q}(k)$ denote all ordered lists containing at most k schools. ("The quota is k.")

We obtain a strategic form game

$$
G^{\varphi}(P, k)=\left\langle I, \mathcal{Q}(k)^{n}, P\right\rangle .
$$

Notation:
$\mathcal{E}^{\varphi}(P, k)=$ set of k-Nash equilibria
$\mathcal{O}^{\varphi}(P, k)=$ set of k-Nash equilibrium outcomes

Incentives

Proposition

φ a strategyproof mechanism, φ^{k} its "constrained version". Ordering the declared acceptable school in the true order dominates any other re-ordering of those schools.

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

- Apply to the 1st school in Q_{i}.

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

- Apply to the 1st school in Q_{i}.
- If "rejected", apply to the 2nd school in Q_{i}.

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

- Apply to the 1st school in Q_{i}.
- If "rejected", apply to the 2 nd school in Q_{i}.
- If "rejected", apply to the 3rd school in Q_{i}.

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

- Apply to the 1st school in Q_{i}.
- If "rejected", apply to the 2nd school in Q_{i}.
- If "rejected", apply to the 3rd school in Q_{i}.
- etc.

Boston and Gale-Shapley - The mechanisms

For a student i who submitted the list Q_{i} :

- Apply to the 1st school in Q_{i}.
- If "rejected", apply to the 2 nd school in Q_{i}.
- If "rejected", apply to the 3rd school in Q_{i}.
- etc.

Boston and Gale-Shapley differ on the notion of "rejection".

Boston

- A school s chooses the students who applied to it that have the highest priority, up to the capacity q_{s}.

If quota attained, reject all other students who applied to s.

Boston

- A school s chooses the students who applied to it that have the highest priority, up to the capacity q_{s}.

If quota attained, reject all other students who applied to s.

- New applications (from students rejected by other schools): Repeat the first step with considering only the remaining available slots and the new applications.

Deferred Acceptance

- A school s chooses the students who applied to it that have the highest priority, up to the capacity q_{s}.

If quota attained, reject all other students who applied to s.

- New applications (from students rejected by other schools): Repeat the first step with considering all the q_{s} slots and the students previously accepted.

The Boston Mechanism

Theorem
Let P be a school choice problem.
For any quota k,

$$
\emptyset \neq S(P)=\mathcal{O}^{\beta}(P, k)
$$

Proof straightforward adaptation of Ergin and Sönmez's (J. Pub. Econ., 2006)

Gale-Shapley Mechanism

Theorem
For any quota k,

$$
S(P) \subseteq \mathcal{O}^{\gamma}(P, k)
$$

Gale-Shapley Mechanism

Theorem
For any quota k,

$$
S(P) \subseteq \mathcal{O}^{\gamma}(P, k)
$$

Theorem
For any quotas $k<k^{\prime}$,

$$
\mathcal{E}^{\gamma}(P, k) \subseteq \mathcal{E}^{\gamma}\left(P, k^{\prime}\right)
$$

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.
- Q not a $k+1$-Nash equilibrium.

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.
- Q not a $k+1$-Nash equilibrium.
- Student i has a profitable deviation Q_{i}^{\prime}.

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.
- Q not a $k+1$-Nash equilibrium.
- Student i has a profitable deviation Q_{i}^{\prime}.
- Let $\hat{Q}_{i}=\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)$.

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.
- Q not a $k+1$-Nash equilibrium.
- Student i has a profitable deviation Q_{i}^{\prime}.
- Let $\hat{Q}_{i}=\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)$.
- $\gamma\left(\hat{Q}_{i}, Q_{-i}\right)(i)=\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)$ —Roth (1982), Roth and Sotomayor (1990).

Gale-Shapley Mechanism

Proof

- Q a k-Nash equilibrium.
- Q not a $k+1$-Nash equilibrium.
- Student i has a profitable deviation Q_{i}^{\prime}.
- Let $\hat{Q}_{i}=\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)$.
- $\gamma\left(\hat{Q}_{i}, Q_{-i}\right)(i)=\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)$ —Roth (1982), Roth and Sotomayor (1990).
- $\hat{Q}_{i} \in \mathcal{Q}(k)$. So Q is not a k-Nash equilibrium, contradiction.

Gale-Shapley Mechanism: stability?

Proposition

$$
S(P)=\mathcal{O}^{\gamma}(P, 1)
$$

Gale-Shapley Mechanism: stability?

Proposition
$S(P)=\mathcal{O}^{\gamma}(P, 1)$.

Proof

If $k=1$ then Gale-Shapley $=$ Boston. Since Boston implements stable matchings so does Gale Shapley for $k=1$.

Gale-Shapley Mechanism: stability?

$P_{i_{1}}$	$P_{i_{2}}$	$P_{i_{3}}$	$f_{s_{1}}$	$f_{s_{2}}$
s_{2}	s_{1}	s_{1}	i_{1}	i_{3}
s_{1}	s_{2}	s_{2}	i_{2}	i_{1}
			i_{3}	i_{2}

For any profile $Q=\left(P_{i_{1}}, Q_{i_{2}}, P_{i_{3}}\right)$ with $Q_{i_{2}} \in \mathcal{Q}(2), \gamma(Q)\left(i_{2}\right)=i_{2}$.
Take $Q_{i_{2}}=s_{2}$, then $\gamma(Q)=\left\{\left\{i_{1}, s_{2}\right\},\left\{i_{3}, s_{1}\right\},\left\{i_{2}\right\}\right\}$.
So, $Q \in \mathcal{E}^{\gamma}(P, 2)$, but... $\gamma\left(Q^{*}\right)$ is not stable w.r.t. P.

Gale-Shapley Mechanism: stability?

- $\gamma(P)$ is a stable matching (Gale and Shapley, 1962).

Gale-Shapley Mechanism: stability?

- $\gamma(P)$ is a stable matching (Gale and Shapley, 1962).
- $\gamma(P)$ may not be efficient.

Gale-Shapley Mechanism: stability?

- $\gamma(P)$ is a stable matching (Gale and Shapley, 1962).
- $\gamma(P)$ may not be efficient.
- Ergin (Econometrica, 2002) introduces the concept of weak acyclicity (of school priorities).

Priorities weakly acyclic $\Rightarrow \gamma(P)$ efficient.

Gale-Shapley Mechanism: stability?

Given f, an Ergin-cycle is constituted of distinct $s, s^{\prime} \in S$ and $i, j, I \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i)$;

Gale-Shapley Mechanism: stability?

Given f, an Ergin-cycle is constituted of distinct $s, s^{\prime} \in S$ and $i, j, I \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i)$;
- scarcity condition there exist disjoint sets $I_{s}, I_{s^{\prime}} \subseteq I \backslash\{i, j, I\}$ such that $I_{s} \subseteq U_{s}^{f}(j), I_{s^{\prime}} \subseteq U_{s^{\prime}}^{f}(i),\left|I_{s}\right|=q_{s}-1$, and $\left|I_{s^{\prime}}\right|=q_{s^{\prime}}-1$.

Gale-Shapley Mechanism: stability?

Given f, an Ergin-cycle is constituted of distinct $s, s^{\prime} \in S$ and $i, j, l \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i)$;
- scarcity condition there exist disjoint sets $I_{s}, I_{s^{\prime}} \subseteq I \backslash\{i, j, I\}$ such that $I_{s} \subseteq U_{s}^{f}(j), I_{s^{\prime}} \subseteq U_{s^{\prime}}^{f}(i),\left|I_{s}\right|=q_{s}-1$, and $\left|I_{s^{\prime}}\right|=q_{s^{\prime}}-1$.

A priority structure is Ergin-acyclic if no cycles exist.

Gale-Shapley Mechanism: stability?

Theorem
Let $k \neq 1$.
f Ergin-acyclic
I
$\Gamma^{\gamma}(P, k)$ implements $S(P)$ in Nash equilibria for any P.

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.
- There are i and j such that $s P_{i} \gamma(Q)(i)$ and $f_{s}(i)<f_{s}(j)$.

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.
- There are i and j such that $s P_{i} \gamma(Q)(i)$ and $f_{s}(i)<f_{s}(j)$.
- Define $Q_{i}^{\prime}=\gamma\left(P_{i}, Q_{-i}\right)(i)$.

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.
- There are i and j such that $s P_{i} \gamma(Q)(i)$ and $f_{s}(i)<f_{s}(j)$.
- Define $Q_{i}^{\prime}=\gamma\left(P_{i}, Q_{-i}\right)(i)$.
- Since $\gamma\left(P_{i}, Q_{-i}\right) R_{i} \gamma(Q)$ and $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(P_{i}, Q_{-i}\right)(i)$, we have $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(Q_{i}, Q_{-i}\right)(i)$. γ strategy-proof $+Q$ equilibrium.

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.
- There are i and j such that $s P_{i} \gamma(Q)(i)$ and $f_{s}(i)<f_{s}(j)$.
- Define $Q_{i}^{\prime}=\gamma\left(P_{i}, Q_{-i}\right)(i)$.
- Since $\gamma\left(P_{i}, Q_{-i}\right) R_{i} \gamma(Q)$ and $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(P_{i}, Q_{-i}\right)(i)$, we have $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(Q_{i}, Q_{-i}\right)(i)$.
γ strategy-proof $+Q$ equilibrium.
- f Ergin-acyclic, so γ non-bossy (Ergin, 2002).

Gale-Shapley Mechanism: stability?

Proof of \Rightarrow

- Q a Nash equilibrium but $\gamma(Q) \notin S(P)$.
- There are i and j such that $s P_{i} \gamma(Q)(i)$ and $f_{s}(i)<f_{s}(j)$.
- Define $Q_{i}^{\prime}=\gamma\left(P_{i}, Q_{-i}\right)(i)$.
- Since $\gamma\left(P_{i}, Q_{-i}\right) R_{i} \gamma(Q)$ and $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(P_{i}, Q_{-i}\right)(i)$, we have $\gamma\left(Q_{i}^{\prime}, Q_{-i}\right)(i)=\gamma\left(Q_{i}, Q_{-i}\right)(i)$.
γ strategy-proof $+Q$ equilibrium.
- f Ergin-acyclic, so γ non-bossy (Ergin, 2002).
- Rewriting we get $\gamma\left(P_{i}, Q_{-i}\right) \notin S\left(P_{i}, Q_{-i}\right)$, contradiction.

TTC

Theorem
For any quotas $k<k^{\prime}$,

$$
\mathcal{E}^{\tau}(P, k) \subseteq \mathcal{E}^{\tau}\left(P, k^{\prime}\right)
$$

proof

- We first show that if a mechanism φ is individually idempotent then the equilibria are nested:

$$
\varphi\left(\varphi(Q)(i), Q_{-i}\right)=\varphi(Q) \Rightarrow \mathcal{E}^{\varphi}(P, k) \subseteq \mathcal{E}^{\varphi}\left(P, k^{\prime}\right)
$$

proof

- We first show that if a mechanism φ is individually idempotent then the equilibria are nested:

$$
\varphi\left(\varphi(Q)(i), Q_{-i}\right)=\varphi(Q) \Rightarrow \mathcal{E}^{\varphi}(P, k) \subseteq \mathcal{E}^{\varphi}\left(P, k^{\prime}\right)
$$

- TTC is individually idempotent: show that under Q and $\left(\tau(Q)(i), Q_{-i}\right)$ the same cycles form.

Theorem
For any quota $k \geq 2$,

$$
\emptyset \neq \mathcal{O}^{\tau}(P, 1)=\mathcal{O}^{\tau}(P, k)
$$

Note: we can have $S(P) \cap \mathcal{O}^{\tau}(P, 1)=\emptyset$.

TTC: stability?

- $\tau(P)$ is an efficient matching. (Gale and Shapley, 1962)

TTC: stability?

- $\tau(P)$ is an efficient matching. (Gale and Shapley, 1962)
- $\tau(P)$ may not be stable.

TTC: stability?

- $\tau(P)$ is an efficient matching. (Gale and Shapley, 1962)
- $\tau(P)$ may not be stable.
- Priorities Kesten-acyclic $\Rightarrow \tau(P)$ stable. (Kesten, JET, 2006)

Given f, a Kesten-cycle (Kesten, JET, 2006) is constituted of distinct $s, s^{\prime} \in S$ and $i, j, I \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i), f_{s^{\prime}}(j)$;

Given f, a Kesten-cycle (Kesten, JET, 2006) is constituted of distinct $s, s^{\prime} \in S$ and $i, j, I \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i), f_{s^{\prime}}(j)$;
- scarcity condition there exists a set $I_{s} \subseteq I \backslash\{i, j, I\}$ with $I_{s} \subseteq U_{s}^{f}(i) \cup\left[U_{s}^{f}(j) \backslash U_{s^{\prime}}^{f}(I)\right]$ and $\left|I_{s}\right|=q_{s}-1$.

Given f, a Kesten-cycle (Kesten, JET, 2006) is constituted of distinct $s, s^{\prime} \in S$ and $i, j, I \in I$ such that:

- cycle condition $f_{s}(i)<f_{s}(j)<f_{s}(I)$ and $f_{s^{\prime}}(I)<f_{s^{\prime}}(i), f_{s^{\prime}}(j)$;
- scarcity condition there exists a set $I_{s} \subseteq I \backslash\{i, j, I\}$ with $I_{s} \subseteq U_{s}^{f}(i) \cup\left[U_{s}^{f}(j) \backslash U_{s^{\prime}}^{f}(I)\right]$ and $\left|I_{s}\right|=q_{s}-1$.

A priority structure is Kesten-acyclic if no cycles exist.

TTC: stability?

Theorem
Let $k \geq 1$.
f Kesten-acyclic
§
$\Gamma^{\tau}(P, k)$ implements $S(P)$ in Nash equilibria for any P.

TTC: stability?

Proof of \Rightarrow

- f Kesten-acyclic $\Rightarrow \tau=\gamma$ (Theorem 1 of Kesten, 2006).

TTC: stability?

Proof of \Rightarrow

- f Kesten-acyclic $\Rightarrow \tau=\gamma$ (Theorem 1 of Kesten, 2006).
- f is Ergin-acyclic (Lemma 1 of Kesten, 2006).

TTC: stability?

Proof of \Rightarrow

- f Kesten-acyclic $\Rightarrow \tau=\gamma$ (Theorem 1 of Kesten, 2006).
- f is Ergin-acyclic (Lemma 1 of Kesten, 2006).
- Since $O^{\gamma}(P, k) \in S(P)$ (our result about γ), we have $O^{\tau}(P, k) \in S(P)$.

TTC: stability?

Proof of \Leftarrow

- f Kesten-cyclic \Rightarrow there exists P such that $\tau(P) \notin S(P)$
(Theorem 1 of Kesten, 2006).

TTC: stability?

Proof of \Leftarrow

- f Kesten-cyclic \Rightarrow there exists P such that $\tau(P) \notin S(P)$
(Theorem 1 of Kesten, 2006).
- τ strategy-proof, so P is an m-equilibrium.

TTC: stability?

Proof of \Leftarrow

- f Kesten-cyclic \Rightarrow there exists P such that $\tau(P) \notin S(P)$ (Theorem 1 of Kesten, 2006).
- τ strategy-proof, so P is an m-equilibrium.
- For each $k \leq m$, there exists a k-equilibrium Q such that $\tau(Q)=\tau(P) \notin S(P)$ (our result about τ).

Eq. of undominated "truncations"

$P_{i_{1}}$	$P_{i_{2}}$	$P_{i_{3}}$	$P_{i_{4}}$	$f_{s_{1}}$	$f_{s_{2}}$	$f_{s_{3}}$
s_{1}	s_{2}	s_{3}	s_{1}	i_{3}	i_{1}	i_{2}
s_{2}	s_{3}	s_{1}	s_{2}	i_{1}	i_{2}	i_{4}
s_{3}	s_{1}	s_{2}	s_{3}	i_{2}	i_{3}	i_{3}
				i_{4}	i_{4}	i_{1}

Let $k=2$. Let Q be such that each student submits his 2 best schools. Then,

$$
\gamma(Q)=\tau(Q)=\left\{\left\{i_{1}, s_{1}\right\},\left\{i_{2}, s_{2}\right\},\left\{i_{3}, s_{3}\right\},\left\{i_{4}\right\}\right\} .
$$

Eq. of undominated "truncations"

$P_{i_{1}}$	$P_{i_{2}}$	$P_{i_{3}}$	$P_{i_{4}}$	$f_{s_{1}}$	$f_{s_{2}}$	$f_{s_{3}}$
s_{1}	s_{2}	s_{3}	s_{1}	i_{3}	i_{1}	i_{2}
s_{2}	s_{3}	s_{1}	s_{2}	i_{1}	i_{2}	i_{4}
s_{3}	s_{1}	s_{2}	s_{3}	i_{2}	i_{3}	i_{3}
				i_{4}	i_{4}	i_{1}

Let $k=2$. Let Q be such that each student submits his 2 best schools. Then,
$\gamma(Q)=\tau(Q)=\left\{\left\{i_{1}, s_{1}\right\},\left\{i_{2}, s_{2}\right\},\left\{i_{3}, s_{3}\right\},\left\{i_{4}\right\}\right\}$.
So, even (strong) Nash equilibria in (undominated) "truncations" may yield unstable matchings!

Conclusion

Nash Implementation of the stable correspondence through mechanism

- Boston: for $k \geq 1$: YES.

Conclusion

Nash Implementation of the stable correspondence through mechanism

- Boston: for $k \geq 1$: YES.
- DA: for $k=1$: YES;

Conclusion

Nash Implementation of the stable correspondence through mechanism

- Boston: for $k \geq 1$: YES.
- DA: for $k=1$: YES;
for $k>1$: if and only if priority structure is acyclic à la Ergin (Econometrica, 2002).

Conclusion

Nash Implementation of the stable correspondence through mechanism

- Boston: for $k \geq 1$: YES.
- DA: for $k=1$: YES;
for $k>1$: if and only if priority structure is acyclic à la Ergin (Econometrica, 2002).
- TTC: for $k \geq 1$: if and only if priority structure is acyclic à la Kesten (JET, 2006).

Conclusion

- Chen and Sönmez (JET, 2006): experimental study shows that γ and τ outperform β in terms of efficiency.

Conclusion

- Chen and Sönmez (JET, 2006): experimental study shows that γ and τ outperform β in terms of efficiency.
- Ergin and Sönmez (J. Pub. Ec., 2006): β implements set of stable matchings in NE \rightarrow transition from β to γ would lead to unambiguous efficiency gains.

Conclusion

- Chen and Sönmez (JET, 2006): experimental study shows that γ and τ outperform β in terms of efficiency.
- Ergin and Sönmez (J. Pub. Ec., 2006): β implements set of stable matchings in NE \rightarrow transition from β to γ would lead to unambiguous efficiency gains.
- As the acyclicity conditions are restrictive, current transitions from β to γ or τ with quota are unlikely to be as successful as they could be.

Conclusion

Equilibrium analysis of matching games

			Players Students-Schools
β	Ergin-Sönmez	\varnothing	Schools
	(J. Pub. Econ., 2005)		\varnothing
γ	This paper	Alcalde	Roth
		IET, 1996)	$(J E T, 1984)$
			$S(P)$
τ	This paper	\varnothing	\varnothing

The experiment

Reconduct the Chen-Sönmez experiment with two treatments:

- First treatment: like Chen-Sönmez, no constraint.
- Second treatment: a quota k on the length of submittable ordered lists is imposed.

Note: No after market for unassigned students.

The experiment

- 36 students to be matched to 7 schools (2 schools of capacity 3,5 schools of capacity 6).

The experiment

- 36 students to be matched to 7 schools
(2 schools of capacity 3,5 schools of capacity 6).
- Constrained case: can put only 3 schools.

The experiment

- 36 students to be matched to 7 schools
(2 schools of capacity 3,5 schools of capacity 6).
- Constrained case: can put only 3 schools.
- 2 sets of payoffs: one designed, one random.

The experiment

- 36 students to be matched to 7 schools (2 schools of capacity 3,5 schools of capacity 6).
- Constrained case: can put only 3 schools.
- 2 sets of payoffs: one designed, one random.
- For each mechanism (BOS, SOSM, TTC) and each payoff matrix, 2 sessions.

The experiment

- 36 students to be matched to 7 schools
(2 schools of capacity 3,5 schools of capacity 6).
- Constrained case: can put only 3 schools.
- 2 sets of payoffs: one designed, one random.
- For each mechanism (BOS, SOSM, TTC) and each payoff matrix, 2 sessions.
- A total of $2 \times 3 \times 2 \times 2 \times 36=872$ subjects

The district school and priorities

Each student was assigned a "district school"

The district school and priorities

Each student was assigned a "district school"

- For each school, the number of students whose district school is this school = capacity of the school.

The district school and priorities

Each student was assigned a "district school"

- For each school, the number of students whose district school is this school = capacity of the school.
- Once subjects' choices were collected, a random order of the student was drawn from an urn.

The district school and priorities

Each student was assigned a "district school"

- For each school, the number of students whose district school is this school = capacity of the school.
- Once subjects' choices were collected, a random order of the student was drawn from an urn.
- For each school, the students of the district were placed on the top of the school priority list, in the order given by the draw.

The district school and priorities

Each student was assigned a "district school"

- For each school, the number of students whose district school is this school = capacity of the school.
- Once subjects' choices were collected, a random order of the student was drawn from an urn.
- For each school, the students of the district were placed on the top of the school priority list, in the order given by the draw.
- Other students were ranked in the school priority list below the district students in the order given by the draw.

District Schools

- For SOSM and TTC, the district school is a "safety" school.
- For Boston, the district school is a "safety" school only if put first in choices.

Sub-samples

We split the set of subjects into two sub-samples:

- High district: the district school is ranked 1st, 2nd or 3rd in the subject's preferences.
- Low district: the district school is ranked 4th or less in the subject's preferences.

The experiment

- During a session, each subject was given his payoff vector (her gain depending on the school she would be matched to)

The experiment

- During a session, each subject was given his payoff vector (her gain depending on the school she would be matched to)
- Subjects were given a mini-course on about the mechanism at hand.

The experiment

- During a session, each subject was given his payoff vector (her gain depending on the school she would be matched to)
- Subjects were given a mini-course on about the mechanism at hand.
- Subjects had to make a choice list (7 schools in one treatment and 3 schools in another treatment).

The experiment

- During a session, each subject was given his payoff vector (her gain depending on the school she would be matched to)
- Subjects were given a mini-course on about the mechanism at hand.
- Subjects had to make a choice list (7 schools in one treatment and 3 schools in another treatment).
- Choices were collected and a matching was computed. Subjects were paid just at the end of the experiment. Average duration: 45 minutes.

Hypothesis 1

For SOSM and TTC:
Constraint implies more rational behavior.
(relative order of schools in choices same as in preference)

Hypothesis 2

For SOSM and TTC:
Constraint implies less truncated truthtelling. (choices are the 3 most preferred.)

For BOS:
Constraint implies less (but not significant) truncated truthtelling.

Hypothesis 3

For SOSM and TTC:
Constraint implies more District School Bias and more Small School Bias.

For BOS:
Constraint implies more (but not significant) District School Bias and more Small School Bias.

Hypothesis 4

For BOS, SOSM and TTC:
Constraint implies more Safety School Effect.

Effect smaller for BOS than for SOSM and TTC.

Hypothesis 5

Under all three mechanisms, the constraint produces an efficiency loss.

The inefficiency of the three mechanisms in the constrained case is similar.

Hypothesis 6

SOSM is "more stable" than TTC or Boston in the unconstrained case.

SOSM more stable in the unconstrained case.

Hypothesis 7

Individuals will be assigned to their district school more often in the constrained than in the unconstrained case.

Rational Behavior

More rationality under constrained SOSM and TTC

	Constrained	Unconstrained	p-value
BOS_{d}	34.7	37.5	.37
BOS_{r}	37.5	44.4	.2
SOSM $_{d}$	95.8	73.6	.0001
SOSM $_{r}$	91.7	81.9	.043
TTC $_{d}$	93.1	84.7	.057
TTC $_{r}$	90.3	88.9	.4

Rational Behavior

Low-district subjects more sensitive to the constraint.

	Low-district sample		High-district sample	
	Cons.	Uncons.	Cons.	Uncons.
SOSM $_{d}$	95.2	57.1	96.7	96.7
SOSM $_{r}$	88.6	81.8	96.4	82.1
TTC $_{d}$	90.5	78.6	96.7	93.3
TTC $_{r}$	90.9	86.4	89.3	92.9

Rational behavior

Without low capacity schools

Treat.	SOSM $_{d}$	SOSM $_{r}$	TTC $_{d}$	TTC $_{r}$
Cons. (\%)	100	100	100	100
Unons. (\%)	100	100	100	100

Truncated truthtelling

Less truncated truthtelling under constrained choice

	Constrained	Unconstrained	p-value
BOS_{d}	18.1	18.1	.5
BOS_{r}	8.3	22.2	.0102
SOSM_{d}	25.0	58.3	.000
SOSM_{r}	18.1	56.9	.000
TTC_{d}	22.2	62.5	.000
TTC_{r}	19.4	73.6	.000

In the constrained setting, the level of truncated truthtelling does not significantly vary among SOSM, TTC and BOS-d.

Truncated truthtelling

Low-district optimize more.

	Low-district sample		High-district sample	
	Cons.	Uncons.	Cons.	Uncons.
$\mathrm{BOS}_{\boldsymbol{d}}$	16.7	19.0	20.0	16.7
BOS_{r}	9.1	25.0	7.1	17.9
$\mathrm{SOSM}_{\boldsymbol{d}}$	2.4	45.2	56.7	76.7
SOSM_{r}	6.8	26.8	35.7	57.1
TTC_{d}	0	64.3	53.3	60.0
TTC_{r}	6.8	79.5	39.3	64.3

Two types of misrepresentation

- District School Bias (DSB)

A participant puts his district school into a higher position than that in the true preference order.

Two types of misrepresentation

- District School Bias (DSB)

A participant puts his district school into a higher position than that in the true preference order.

- Small School Bias (SSB)

A participant puts school A or B (or both) into lower positions than those in the true preference ordering.

Misrepresentations

District School Bias:
SOSM and TTC: $15(\mathrm{~d})-20(\mathrm{r}) \% \rightarrow 70(\mathrm{~d})-75(\mathrm{r}) \%$
BOS: $60(r)-70(d) \% \rightarrow 75(r)-80(d) \%$

Small School Bias:
SOSM and TTC: $20(\mathrm{~d})-35(r) \% \rightarrow 60(d)-40(r) \%$
BOS: 37 (r) - 70 (d) $\% \rightarrow 52(r)-77(d) \%$

Low-district more biased than high-district.

Misrepresentations

Low-district and high-district subjects exhibit different patterns of manipulation:

- Low-district subjects: DSB dominates in the constrained case, SSB dominates in the unconstrained case.
- High-district subjects: DSB dominates in both cases (const./unconst.), and SSB \Rightarrow DSB.

Safety school effect

Proportion of subjects having the district school ranked 4th or more in preferences (low-district subjects) and ranked 3rd or less in choices.

Mechanism	Constrained	Unconstrained	p-value
SOSM $_{\boldsymbol{d}}$	91	12	$\mathbf{0 . 0 0 9}$
SOSM $_{r}$	89	18	$\mathbf{0 . 0 0 7 6}$
TTC $_{\boldsymbol{d}}$	86	14	$\mathbf{0 . 0 0}$
TTC $_{r}$	89	9	$\mathbf{0 . 0 0}$
BOS $_{d}$	81	57	$\mathbf{0 . 0 0 0}$
BOS $_{r}$	75	50	$\mathbf{0 . 0 0 0}$

Safety School effect

- Constrained case: DSB \equiv Safety School Effect (by definition).
- Unconstrained case: DSB and Safety School Effect do not measure the same thing.
However, we observe DSB \approx Safety School Effect.
\Rightarrow First three choices are "focal".

Safety School Efffect even if the district school is the worst school (constrained case).

Recombinant technique

- Each treatment $=$ one shot game
- Each treatment was run twice, so we have two strategy profiles.
\Rightarrow to compute the outcomes for a treatment, we can use any
combination of the two strategy profiles, i.e., 2^{36} different combinations (Mullin-Reiley, Games Econ. Behav., 2006).

We use 14,400,000 recombinations.

Efficiency

	Observed	$1-2$	$2-3$	$1-3$
Uncons.-d	TTC $>$ SOSM $>$ Bos	R	R	A
Uncons.-r	TTC \gg SOSM $>$ Bos	A	R	A
Cons.-d	TTC $>$ SOSM \gg Bos	R	A	A
Cons.-r	TTC $>$ SOSM \gg Bos	R	A	A

The efficiency loss between the unconstrained an unconstrained cases is significant for the three mechanisms.

Stability

Average number of blocking pairs.

	Constrained	Unconstrained	p-value
BOS_{d}	10.6	11.4	.2
BOS_{r}	14.9	12.6	.05
SOSM_{d}	7.6	4.7	.001
SOSM_{r}	9.6	7.8	.07
TCC_{d}	10.4	15.5	.04
TTC_{r}	13.4	9.8	.01

Segregation

Proportion of students assigned to their district school.

Mechanism	Constrained	Unconstrained	p-value
$\mathrm{SOSM}_{\boldsymbol{d}}$	65	54	$\mathbf{0 . 0 0 8}$
SOSM $_{r}$	44	28	$\mathbf{0 . 0 0 0 2}$
TTC $_{d}$	59	46	$\mathbf{0 . 0 0 7}$
TTC $_{r}$	31	23	$\mathbf{0 . 0 3 9}$
BOS $_{d}$	68	31	$\mathbf{0 . 0 2 6}$
BOS $_{r}$	45	50	$\mathbf{0 . 0 0 8}$

Increase milder than for District School Bias.

Conclusion

- Experimental study of a situation in which agents are constrained: some of their strategies are "deleted".
- Agents tend to choose "safe" strategies:
- Secure their prospects (district school),
- Flee competition (small school bias).
- Subjects without easily (easily identifiable) dominant strategy tend to show greater signs of optimizing behavior.
- Trade-off when restricting agents' strategies:
- Increase agents' rationality,
- Efficiency loss.

Two-Sided Matching with One-Sided Preferences

(or how take advantage short preference lists)
with Vincent lehlé (Université Paris-Dauphine)

The student-optimal stable matching μ_{I}

- students' most preferred stable matching;
- Strategyproof (for the students)
- Not necessarily Pareto optimal

The student-optimal stable matching $\mu_{\text {I }}$

- students' most preferred stable matching;
- Strategyproof (for the students)
- Not necessarily Pareto optimal

Proposition (Kesten, 2010, QJE)
There is no Pareto-efficient and strategy-proof mechanism that selects the Pareto-efficient and stable matching whenever it exists.

The origin of inefficiency

$$
\begin{array}{lll}
i_{1} & i_{2} & i_{3} \\
\hline s_{2} & s_{1} & s_{1} \\
\underline{s_{1}} & \underline{s_{2}} & \underline{s_{3}}
\end{array}
$$

$$
\begin{array}{ccc}
s_{1} & s_{2} & s_{3} \\
\hline i_{1} & i_{2} & i_{3}
\end{array}
$$

$$
i_{3} \quad i_{1}
$$

$$
i_{2}
$$

The origin of inefficiency

Not asking a school I won't get can make other students better off.

The origin of inefficiency

Not asking a school I won't get can make other students better off.

Kesten's mechanism finds those "critical" students, eliminates them, but looses strategy-proofness.

A matching μ is not stable if there exists a pair of agents (i, j) such that

$$
i P_{j} \mu(j) \quad \text { and } \quad j P_{i} \mu(i)
$$

or there is an agent i such that $i P_{i} \mu(i)$.

A matching μ is not stable if there exists a pair of agents (i, j) such that

$$
i P_{j} \mu(j) \quad \text { and } \quad j P_{i} \mu(i)
$$

or there is an agent i such that $i P_{i} \mu(i)$.
\Rightarrow Checking stability involves preferences from both sides of the market.

Objective of the paper

Propose a mechanism that:

- Pareto dominates the Student-Optimal Stable Matching (SOSM)
- Selects SOSM whenever it is efficient
- that is "pseudo strategyproof."

How we do it

Given a matching problem:

How we do it

Given a matching problem:

- We go to a more general problem where we ignore students' preferences

How we do it

Given a matching problem:

- We go to a more general problem where we ignore students' preferences
- Extract information about stable matchings

How we do it

Given a matching problem:

- We go to a more general problem where we ignore students' preferences
- Extract information about stable matchings
- Feed back that information to the original problem.
- Take the preferences from both sides of a matching market (schools and students).
- Take the preferences from both sides of a matching market (schools and students).
- Consider only school's preferences and for each student the list of acceptable schools (but not their preferences)
- Take the preferences from both sides of a matching market (schools and students).
- Consider only school's preferences and for each student the list of acceptable schools (but not their preferences)
- for each pair student-school, (i, s), say whether there exists a student preference profile such that i can be matched to s for some stable matching. If not, i is a dummy for s.
- Take the preferences from both sides of a matching market (schools and students).
- Consider only school's preferences and for each student the list of acceptable schools (but not their preferences)
- for each pair student-school, (i,s), say whether there exists a student preference profile such that i can be matched to s for some stable matching. If not, i is a dummy for s.
- A new mechanism: If a student is a dummy for a school, delete that student from that school's preferences. Then run Gale-Shapley.

This paper adds to a series of paper that extract information from partial matching data:

- Stable matchings \longrightarrow preferences:

Roth and Sotomayor (1985), Echenique, Lee, Shum and Yenmez (2012).

- Preferences \longrightarrow stable matchings: Martínez, Massó, Neme and Oviedo (2012), Rastegari, Condon, Immorlica, and Leyton-Brown (2012).

Example

There is no preference profile and a stable matching (for that profile) such that i_{1} is matched to s_{2}.

A matching problem, $\left(I, S, \succ_{I}, \succ_{S}, q_{S}\right)$, is defined by:

- A set S of schools
- A set / of students.
- A vector q_{s} of schools' capacities.
- Each school s has a preference relation \succ_{s} over the set of students. (responsive prefs. over sets of students)
- Each student i has a preference relation \succ_{i} over the set of schools and himself.

A pre-matching problem, $\left(I, S, P_{S}, q_{S}\right)$, is defined by:

- A set S of schools
- A set I of students.
- A vector q_{S} of schools' capacities.
- Each school s has a preference relation P_{s} over a set $A_{s} \subseteq I$ of students. (responsive prefs. over sets of students)
$A_{s}=$ set of students acceptable for s
$\Rightarrow \quad A_{i}=$ set of acceptable schools for i.

Example

Example

$$
\begin{array}{cccccc}
P_{s_{1}} & P_{s_{2}} & P_{s_{3}} & P_{s_{4}} & P_{s_{5}} & P_{s_{6}} \\
\hline i_{1} & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & i_{2} & i_{3} & i_{4} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & i_{1} & i_{2} & i_{3} & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \\
\cdot & i_{4} & \cdot & \cdot & \cdot & \\
\hline
\end{array}
$$

Given a pre-matching problem P, a matching problem \succ is P-compatible if

- for each student i and each school s,

$$
s \succ_{i} i \Leftrightarrow i \in A_{s}
$$

Given a pre-matching problem P, a matching problem \succ is P-compatible if

- for each student i and each school s,

$$
s \succ_{i} i \Leftrightarrow i \in A_{s}
$$

- for each pair of students $i, i^{\prime} \in I$ such that $i, i^{\prime} \in A_{s}$,

$$
i P_{s} i^{\prime} \Leftrightarrow i \succ_{s} i^{\prime}
$$

Given a pre-matching problem P, a matching problem \succ is P -compatible if

- for each student i and each school s,

$$
s \succ_{i} i \Leftrightarrow i \in A_{s}
$$

- for each pair of students $i, i^{\prime} \in I$ such that $i, i^{\prime} \in A_{s}$,

$$
i P_{s} i^{\prime} \Leftrightarrow i \succ_{s} i^{\prime}
$$

$\Theta(P)=$ the set of matching problems that are P-compatible.

For a matching problem \succ, a matching μ is stable if

- it is individually rational: I prefer my match than being unmatched.

For a matching problem \succ, a matching μ is stable if

- it is individually rational: I prefer my match than being unmatched.
- it is non wasteful: If I prefer a school to my match, that school is full.

For a matching problem \succ, a matching μ is stable if

- it is individually rational: I prefer my match than being unmatched.
- it is non wasteful: If I prefer a school to my match, that school is full.
- there is no justified envy: If I prefer a school to my match, that school has no student less preferred than me.

For a pre-matching problem P, a pre-matching μ is stable if

For a pre-matching problem P, a pre-matching μ is stable if

- it is non-wasteful: If a school does not fill its capacity, all the students acceptable for that school are matched to some school.

For a pre-matching problem P, a pre-matching μ is stable if

- it is non-wasteful: If a school does not fill its capacity, all the students acceptable for that school are matched to some school.
- there is no justified envy: If a student is matched to a school, all the students preferred to him by that school are matched to a school.

Example

$P_{s_{1}}$	$P_{s_{2}}$	$P_{s_{3}}$	$P_{s_{4}}$	$P_{s_{5}}$	$P_{s_{6}}$	$P_{s_{7}}$	$P_{s_{8}}$	$P_{s_{9}}$	$P_{s_{10}}$	$P_{s_{11}}$	$P_{s_{12}}$
\bullet											
\bullet											
\bullet											
\bullet											
\bullet		\bullet		\bullet							
\bullet		\bullet		\bullet							
\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet								

Example

$P_{s_{1}}$	$P_{s_{2}}$	$P_{s_{3}}$	$P_{s_{4}}$	$P_{s_{5}}$	$P_{s_{6}}$	$P_{s_{7}}$	$P_{s_{8}}$	$P_{s_{9}}$	$P_{s_{10}}$	$P_{s_{11}}$	$P_{s_{12}}$
\bullet											
\bullet											
\bullet											
\bullet											
\bullet		\bullet		\bullet							
\bullet		\bullet		\bullet							
\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet								

Example

$P_{s_{1}}$	$P_{s_{2}}$	$P_{s_{3}}$	$P_{s_{4}}$	$P_{s_{5}}$	$P_{s_{6}}$	$P_{s_{7}}$	$P_{s_{8}}$	$P_{s_{9}}$	$P_{s_{10}}$	$P_{s_{11}}$	$P_{s_{12}}$
\bullet											
\bullet											
\bullet											
\bullet											
\bullet		\bullet		\bullet							
\bullet		\bullet		\bullet							
\bullet		\bullet	\bullet		\bullet	\bullet	\bullet	\bullet	\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet			\bullet		\bullet	\bullet	\bullet		\bullet		\bullet
\bullet	\bullet										

Dummy students

A student i is a dummy for school s at the pre-profile P if for any matching problem $\succ \in \Theta(P)$, there is no matching μ stable for \succ such that $\mu(i)=s$.

- If μ is stable for \succ then μ is stable for P, with $\succ \in \Theta(P)$.
- If μ is stable for P, then there exists \succ in $\Theta(P)$ such that μ is stable for \succ.
i is dummy for s

there is no pre-matching stable for P such that $\mu(i)=s$.

Identifying dummy students

Given P, let $P^{i, s}$ be P obtained by deleting i to each $P_{s^{\prime}}$ with $s^{\prime} \neq s$.

Proposition

Student i is a dummy for s if, and only if, there is no maximum and stable matching μ for $P^{i, s}$ such that $\mu(i)=s$.

Proof

- Take μ, stable for P^{i} but not maximum.

Proof

- Take μ, stable for P^{i} but not maximum.
\Rightarrow There is an augmenting path π

Proof

- Take μ, stable for P^{i} but not maximum.
\Rightarrow There is an augmenting path π
- If the resulting matching is not stable, then we can select a subpath of π that will avoid the violating the stability condition:

Proof

- Take μ, stable for P^{i} but not maximum.
\Rightarrow There is an augmenting path π
- If the resulting matching is not stable, then we can select a subpath of π that will avoid the violating the stability condition:
$\pi=\left(i_{1}, s_{1}, i_{2}, \ldots, i_{h}, s_{h}, \ldots, i_{k}, s_{k}\right)$, but $i P_{S_{h}} i_{h}, j \notin \pi$, and $\mu(j)=j$
$\pi^{\prime}=\left(j, s_{h}, \ldots, i_{k}, s_{k}\right)$.

Proof

- Take μ, stable for P^{i} but not maximum.
\Rightarrow There is an augmenting path π
- If the resulting matching is not stable, then we can select a subpath of π that will avoid the violating the stability condition:
$\pi=\left(i_{1}, s_{1}, i_{2}, \ldots, i_{h}, s_{h}, \ldots, i_{k}, s_{k}\right)$, but $i P_{S_{h}} i_{h}, j \notin \pi$, and $\mu(j)=j$
$\pi^{\prime}=\left(j, s_{h}, \ldots, i_{k}, s_{k}\right)$.
Keep doing with $\pi^{\prime \prime}, \pi^{\prime \prime \prime}$, etc. until we have a problem-free augmenting path.

A sufficient condition

Intuition we want to capture:
i is a dummy for s and $\mu(i)=s \Longrightarrow$ however we match the other students (filling schools' capacities) there is always a student i^{\prime} and a schools' such that

$$
\mu\left(i^{\prime}\right)=i^{\prime} \quad \text { and } \quad i^{\prime} P_{s^{\prime}} i^{\prime \prime} \text { for some } i^{\prime \prime} \in \mu\left(s^{\prime}\right)
$$

A sufficient condition

Intuition we want to capture:
i is a dummy for s and $\mu(i)=s \Longrightarrow$ however we match the other students (filling schools' capacities) there is always a student i^{\prime} and a schools' such that

$$
\mu\left(i^{\prime}\right)=i^{\prime} \quad \text { and } \quad i^{\prime} P_{s^{\prime}} i^{\prime \prime} \text { for some } i^{\prime \prime} \in \mu\left(s^{\prime}\right)
$$

The truncation of P at i is the pre-profile \bar{P}^{i} such that

- If $i \notin A_{s}$ then $\bar{P}_{s}^{i}=P_{s}$,
- If $i \in A_{s}$ then \bar{P}_{s}^{i} is a truncation of P_{s} at i (including i).

A block at $\left(i_{0}, s_{0}\right)$ is a set $\mathbf{J} \subseteq \Lambda \backslash\left\{i_{0}\right\}$ of students such that:

A block at $\left(i_{0}, s_{0}\right)$ is a set $\mathbf{J} \subseteq \Lambda \backslash\left\{i_{0}\right\}$ of students such that:
(a) $|\mathbf{J}|=\sum_{s \in A_{\boldsymbol{J}}} q_{s}$ and there exists a perfect match between \mathbf{J}
and $A_{\mathbf{J}}$

A block at $\left(i_{0}, s_{0}\right)$ is a set $\mathbf{J} \subseteq \Lambda \backslash\left\{i_{0}\right\}$ of students such that:
(a) $|\mathbf{J}|=\sum_{s \in A_{\boldsymbol{J}}} q_{s}$ and there exists a perfect match between \mathbf{J} and A_{J}
(b) $\mathbf{J}_{0}:=\mathbf{J} \cap\left\{i: i P_{s_{0}} i_{0}\right\} \neq \emptyset$ with $\left|\mathbf{J}_{0}\right| \geq q_{s_{0}}$

A block at $\left(i_{0}, s_{0}\right)$ is a set $\mathbf{J} \subseteq \Lambda \backslash\left\{i_{0}\right\}$ of students such that:
(a) $|\mathbf{J}|=\sum_{s \in A_{\boldsymbol{J}}} q_{s}$ and there exists a perfect match between \mathbf{J} and A_{J}
(b) $\mathbf{J}_{0}:=\mathbf{J} \cap\left\{i: i P_{s_{0}} i_{0}\right\} \neq \emptyset$ with $\left|\mathbf{J}_{0}\right| \geq q_{s_{0}}$
(c) If we match i_{0} to s_{0}, we need to "get rid" of some $j \in \mathbf{J}$.
\Rightarrow For any $j \in \mathbf{J}$, it is not possible to match all students in $\mathbf{J} \backslash\{j\}$ such that j does not block the matching.
\Leftrightarrow For any $j \in \mathbf{J}$, it is not possible to match all students in $\mathbf{J} \backslash\{j\}$ in the pre-profile \bar{P}^{j}.

A block at $\left(i_{0}, s_{0}\right)$ is a set $\mathbf{J} \subseteq \Lambda \backslash\left\{i_{0}\right\}$ of students such that:
(a) $|\mathbf{J}|=\sum_{s \in A_{\boldsymbol{J}}} q_{s}$ and there exists a perfect match between \mathbf{J} and A_{J}
(b) $\mathbf{J}_{0}:=\mathbf{J} \cap\left\{i: i P_{s_{0}} i_{0}\right\} \neq \emptyset$ with $\left|\mathbf{J}_{0}\right| \geq q_{s_{0}}$
(c) for each $i \in \mathbf{J} \backslash \mathbf{J}_{0}$, for the pre-matching problem P^{i},

$$
\exists T \subseteq \mathbf{J} \backslash\{i\} \text { such that }|T|>\sum_{s \in A_{T}^{i}} \bar{q}_{s}
$$

where $\bar{q}_{s}=q_{s}$ if $s \neq s_{0}$ and $\bar{q}_{s_{0}}=q_{s_{0}}-1$.

Illustration of condition (\star)

Illustration of condition (\star)

There is no block at $\left(i, s_{1}\right): b$ and c can "eliminate" d and let a be matched to s_{2} so that i can be matched to s_{1}.

Here condition (c) is not satisfied for d.

Proposition
Let P_{S} be a profile. If there is a block at $\left(i_{0}, s_{0}\right)$ then student i_{0} is dummy for school s_{0}.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Claim $j_{3} \neq j_{1}$:

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Claim $j_{3} \neq j_{1}$:
- If $\exists h \notin \mathbf{J}$ but $\mu(h) \in A_{\mathbf{J}}$, unmatch h. Then μ not maximum for \mathbf{J}, so there is an augmenting path π

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Claim $j_{3} \neq j_{1}$:
- If $\exists h \notin \mathbf{J}$ but $\mu(h) \in A_{\mathbf{J}}$, unmatch h. Then μ not maximum for \mathbf{J}, so there is an augmenting path π
- π can be chosen such that the resulting matching is compatible with $P^{j_{2}}$, i.e., j_{2} never part of a blocking pair.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Claim $j_{3} \neq j_{1}$:
- If $\exists h \notin \mathbf{J}$ but $\mu(h) \in A_{\mathbf{J}}$, unmatch h. Then μ not maximum for \mathbf{J}, so there is an augmenting path π
- π can be chosen such that the resulting matching is compatible with $P^{j_{2}}$, i.e., j_{2} never part of a blocking pair.
- Now we have j_{1} matched but not j_{2}. Using (\star), $\exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.

Proof

- Take μ such that $\mu\left(i_{0}\right)=s_{0}$ and μ stable
- Then $\exists j_{1} \in \mathbf{J}$ such that $\mu\left(j_{1}\right)=j_{1}$.
- By $(\star), \exists j_{2} \in \mathbf{J} \backslash\left\{j_{1}\right\}$ such that $\mu\left(j_{2}\right)=j_{2}$.
- By $(\star), \exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Claim $j_{3} \neq j_{1}$:
- If $\exists h \notin \mathbf{J}$ but $\mu(h) \in A_{\mathbf{J}}$, unmatch h. Then μ not maximum for \mathbf{J}, so there is an augmenting path π
- π can be chosen such that the resulting matching is compatible with $P^{j_{2}}$, i.e., j_{2} never part of a blocking pair.
- Now we have j_{1} matched but not j_{2}. Using (\star), $\exists j_{3} \in \mathbf{J} \backslash\left\{j_{2}\right\}$ such that $\mu\left(j_{3}\right)=j_{3}$.
- Repeat for j_{4}, j_{5}, \ldots until we hit $j_{k} \in \mathbf{J}_{0}$, contradicting μ being stable.

Corrolary for school choice problems

School choice usually endow each student with a "district school": a school for which the student has the highest priority.

Assumption
Each student always puts his district school in his submitted preference list.

Assumption

There exists an order partition of schools, $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that students whose school district is in S_{h} only put in their submitted preferences schools that are in $S_{1}, S_{2}, \ldots, S_{h}$.

Assumption

There exists an order partition of schools, $\left\{S_{1}, S_{2}, \ldots, S_{k}\right\}$ such that students whose school district is in S_{h} only put in their submitted preferences schools that are in $S_{1}, S_{2}, \ldots, S_{h}$.

Proposition

For any stable matching, students whose district school is in S_{h} are matched to a school in S_{h}.

Dummy-free mechanism

Dummy-free mechanism

1. Students submit preferences;

Dummy-free mechanism

1. Students submit preferences;
2. Identify dummy students and delete the schools for which they are dummies in their preferences;

Dummy-free mechanism

1. Students submit preferences;
2. Identify dummy students and delete the schools for which they are dummies in their preferences;
3. Run students' DA with with the "cleaned" preferences. Output $=\bar{\mu}_{l}$.

Proposition

The dummy-free mechanism weakly Pareto dominates the student-optimal matching.

Proposition

The dummy-free mechanism weakly Pareto dominates the student-optimal matching.

Proposition

Once a student has chosen which schools to put in his submitted preferences, it is a dominant strategy to put them in the correct order.
\rightarrow Students can manipulate but only by declaring some schools as unaccepable.

Wrap up: Look at the data before doing anything

- Under not so severe circumstances, knowing preferences of both sides of the market is not necessary to identify unstable matchings;
- Stable mechanisms are not necessarily the best way to promote district mobility in school choice;
- Scrutinizing the data before running the algorithm can help to enhance one side's welfare.

