Mechanism Design in Large Games: Incentives and Privacy.

Aaron Roth

Joint work with

Michael Kearns, Mallesh Pai, Jon Ullman

GPS assisted navigation.

- You type in your destination, Google tells you a strategy for getting there.
- What strategy should Google compute?
- Right now, a best response.

GPS assisted navigation.

But what if everyone uses Google Navigation?

Now Google creates traffic.

GPS assisted navigation.

But what if everyone uses Google Navigation?

Could compute a solution to minimize average congestion...

GPS assisted navigation.

But what if everyone uses Google Navigation?

But this leaves the door open to a competing GPS service.

GPS assisted navigation.

But what if everyone uses Google Navigation?

Instead, Google should compute an *equilibrium*.

Two Concerns

1. Privacy!

- Alice's directions depend on my input!
- Can she learn about where I am going?

Two Concerns

2. Incentives!

- Alice's directions depend on my input!
- Can I benefit by misreporting my destination?
 - Causes Google to compute an equilibrium to the wrong game.
 - Might reduce traffic along the route I really want.

Both Addressed by (Differential) Privacy

Both Addressed by (Differential) Privacy

An algorithm A with domain X and range R is ϵ -private if for every utility function $u: R \to \mathbb{R}$ and for every pair of databases $D, D' \subset X$ differing in a single record:

$$\mathbb{E}_{x \sim A(D)}[u(x)] \le (1 + \epsilon) \cdot \mathbb{E}_{x \sim A(D')}[u(x)]$$

Game Theoretic Implications

- [MT07] A mechanism that is ϵ -private is also ϵ -approximately truthful.
- Simple Corollary:

A mechanism which computes an α -approximate equilibrium while preserving ϵ -privacy makes truthful reporting, followed by suggested play, an $(\epsilon + \alpha)$ -Nash equilibrium.

Most interesting when $(\epsilon + \alpha) \rightarrow 0$

What can we hope for?

We shouldn't expect to be able to privately solve "small" games.

(Alice's best response reveals Bob's action, and therefore potentially his utility function)

Woman

Man		Baseball	Ballet	
	Baseball	(3, 2)	(1, 1)	
	Ballet	(0, 0)	(2, 3)	

What can we hope for?

Instead, focus on large games.

(In which no player has a substantial impact on the utility of others...)

Large Games

A game is Δ -large if for all players $i \neq j \in [n]$, for all action profiles $s \in [k]^n$ and for all pairs of actions $s_i, s_i' \in [k]$:

$$\left|u_i(s_j, s_{-j}) - u_i(s_j', s_{-j})\right| \le \Delta$$

- Think of $\Delta = o(1)$. In this talk, $\Delta = O\left(\frac{1}{n}\right)$.
- Your action can have a large effect on your own payoff, but not on that of others.

- Input: n utility functions u_i : $[k]^n \rightarrow [0,1]$
- Output: n actions $a_i \in [k]$ which are draws from an approximate correlated equilibrium.
 - In fact, we prove that privacy would still be preserved even if we output the full marginal distribution.

- Input: n utility functions u_i : $[k]^n \rightarrow [0,1]$
- Output: n actions $a_i \in [k]$ which are draws from an approximate correlated equilibrium.
 - Since a_i can be highly sensitive to u_i , can't just publish the whole output...

We require that for all players i, the joint distribution over the actions a_j for all $j \neq i$ is differentially private in u_i .

 i.e. privacy is preserved even if all other players collude and share their outputs, so long as you don't share yours.

So what can we do?

First, what we can't do:

Theorem: No differentially private mechanism can compute an α -approximate coarse correlated equilibrium for $\alpha = \Omega\left(\frac{1}{\sqrt{n}}\right)$, even for games with only k=2 actions.

- Reduce to reconstruction lower bounds for answering subset-sum queries on boolean valued databases, due to [DinurNissim03], [DworkMcsherryTalwar07] [DworkYekhanin08].
- "Any private mechanism which answers O(n) 'subset sum' queries over n bits must have error $\Omega(\sqrt{n})$ "

Answer the queries with a game.

Data Players

Query Players

Answer the queries with a game.

Data Players

Two actions: {0, 1}

Parameterized by a bit b_i .

$$u_i(s) = \begin{cases} 1 & if \ s_i = b_i \\ 0 & otherwise \end{cases}$$

Answer the queries with a game.

Query Players

 $\frac{1}{\alpha}$ actions: $\{0, \alpha, 2\alpha, ..., 1\}$

Parameterized by a subset of data players T.

$$u_i(s) = 1 - \left| s_i - \frac{1}{T} \sum_{j \in T} s_j \right|$$

- From every α -approximate CCE, can recover α -approximate answers to all of the query players' subset sum queries.
 - Recall that even if the query players share their equilibrium strategies, the privacy of all the data players is still preserved.
 - Lower bound now follows from [DN03,DMT07,DY08]
 - A little more work can reduce query players action set to 2.

So what can we do?

Theorem: There exists a computationally efficient algorithm which computes an α -approximate CE of a large game with n players and k actions, while preserving ϵ -privacy for:

$$\alpha = O\left(\frac{k^{\frac{3}{2}}}{\epsilon \cdot \sqrt{n}}\right)$$

• Tight for games with k = O(1) actions.

- Computing a correlated equilibrium can be reduced to approximately answering a small number of numeric valued queries (We'll see this)
- Can use tools from the privacy literature to do this privately.

So what can we do?

Theorem: There exists a computationally *inefficient* algorithm which computes an α -approximate CE of a large game with n players and k actions and T types, while preserving ϵ -privacy for:

$$\alpha = O\left(\frac{\log(k) \cdot \log(T)^{3/2}}{\epsilon \cdot \sqrt{n}}\right)$$

• Nontrivial even for exponential k.

- Same as before, but use more sophisticated methods [RR10,HR10] to estimate utilities privately. With less noise.
 - Less computationally efficient.

Approximately Truthful Equilibrium Selection

- Recall that everyone truthfully reporting their utility function, and then taking the suggested equilibrium action from an $(\epsilon + \alpha)$ -Nash equilibrium

Approximately Truthful Equilibrium Selection

Theorem: In any large game, there is a computationally efficient, η -approximately truthful equilibrium selection mechanism for:

$$\eta = O\left(\frac{k^{3/4}}{n^{1/4}}\right)$$

Approximately Truthful Equilibrium Selection

Theorem: In any large game, there is a computationally inefficient, η -approximately truthful equilibrium selection mechanism for:

$$\eta = O\left(\frac{\sqrt{\log(k) \cdot \log(T)^{3/2}}}{n^{1/4}}\right)$$

- Approaches exact truthfulness as the population grows.
- "Equilibrium selection is a problem of small games"

Reducing Equilibrium Computation to Estimating A Small Number of Numeric Queries.

Using "expert" advice

Say we want to predict the stock market.

- We solicit N "experts" for their advice. (Will the market go up or down?)
- We then want to use their advice somehow to make our prediction. E.g.,

Expt 1	Expt 2	Expt 3	neighbor's dog	truth
down	up	ир	up	ир
down	up	up	down	down

Can we do nearly as well as best in hindsight?

["expert" 'someone with an opinion. Not necessarily someone who knows anything.]

Simpler question

- We have N "experts".
- One of these is perfect (never makes a mistake). We just don't know which one.
- Can we find a strategy that makes no more than lg(N) mistakes?

Answer: sure. Just take majority vote over all experts that have been correct so far.

- Each mistake cuts # available by factor of 2.
- ➤ Note: this means ok for N to be very large.

Using "expert" advice

But what if none is perfect? Can we do nearly as well as the best one in hindsight?

Strategy #1:

- Iterated halving algorithm. Same as before, but once we've crossed off all the experts, restart from the beginning.
- Makes at most lg(N)[OPT+1] mistakes, where OPT is #mistakes of the best expert in hindsight.

Seems wasteful. Constantly forgetting what we've "learned". Can we do better?

Weighted Majority Algorithm

Intuition: Making a mistake doesn't completely disqualify an expert. So, instead of crossing off, just lower its weight.

Weighted Majority Alg:

- Start with all experts having weight 1.
- Predict based on weighted majority vote.
- Penalize mistakes by cutting weight in half.

					prediction	correct
weights	1	1	1	1		
predictions	Y	Y	Y	N	Y	Y
weights	1	1	1	.5		
predictions	Y	N	N	Y	N	Y
weights	1	.5	.5	.5		

Analysis: do nearly as well as best expert in hindsight

- M = # mistakes we've made so far.
- m = # mistakes best expert has made so far.
- W = total weight (starts at N).
- After each mistake, W drops by at least 25%.
 So, after M mistakes, W is at most N(3/4)^M.
- Weight of best expert is (1/2)^m. So,

$$(1/2)^m \leq N(3/4)^M$$
 constant $(4/3)^M \leq N2^m$ ratio $M \leq 2.4(m + \lg N)$

Randomized Weighted Majority

- 2.4(m + lg N) not so good if the best expert makes a mistake 20% of the time. Can we do better? Yes.
- Instead of taking majority vote, use weights as probabilities. (e.g., if 70% on up, 30% on down, then pick 70:30)
 Idea: smooth out the worst case.
- Also, generalize ½ to 1- ε.

Solves to:
$$M \leq \frac{-m \ln(1-\varepsilon) + \ln(N)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon} \ln(N)$$

$$M = \text{expected } \\ \# \text{mistakes}$$

$$M \leq 1.39m + 2 \ln N \quad \leftarrow \varepsilon = 1/2$$

$$M \leq 1.15m + 4 \ln N \quad \leftarrow \varepsilon = 1/4$$

$$M \leq 1.07m + 8 \ln N \quad \leftarrow \varepsilon = 1/8$$

Analysis

- Say at time ${\bf t}$ we have fraction ${\bf F}_{\bf t}$ of weight on experts that made mistake.
- So, we have probability F_t of making a mistake, and we remove an ϵF_t fraction of the total weight.
 - $$\begin{split} &- W_{\text{final}} = N(1-\epsilon \, F_1)(1-\epsilon \, F_2)... \\ &- \ln(W_{\text{final}}) = \ln(N) + \sum_t \left[\ln(1-\epsilon \, F_t)\right] < \ln(N) \epsilon \sum_t F_t \\ &\quad (\text{using } \ln(1-x) < -x) \\ &= \ln(N) \epsilon \, M. \end{split}$$
 $(\sum F_t = E[\# \text{ mistakes}])$
- If best expert makes m mistakes, then $ln(W_{final}) > ln((1-\epsilon)^m)$.
- Now solve: $ln(N) \varepsilon M > m ln(1-\varepsilon)$.

$$M \leq \frac{-m\ln(1-\varepsilon)+\ln(N)}{\varepsilon} \approx (1+\varepsilon/2)m + \frac{1}{\varepsilon}\log(N)$$

Summarizing

• E[# mistakes] $< (1+\varepsilon)m + \varepsilon^{-1}\log(N)$.

- If set $\varepsilon = (\log(N)/m)^{1/2}$ to balance the two terms out and get bound of E[mistakes] = m+2(mlog N)^{1/2}
- Since m < T, this is at most m + 2(Tlog(N))^{1/2}.

•
$$\frac{M}{T} < \frac{m}{T} + \sqrt{\frac{\log(N)}{T}}$$

What if we have N options, not N predictors?

- We're not combining N experts, we're choosing one. Can we still do it?
- Nice feature of RWM: can still apply.
 - Choose expert i with probability $p_i = w_i/W$.
 - Still the same algorithm!
 - Can apply to choosing N options, so long as costs are {0,1}.
 - What about costs in [0,1]?

What if we have N options, not N predictors?

What about costs in [0,1]?

- If expert i has cost c_i , do: $w_i = w_i(1-c_i\varepsilon)$.
- Our expected cost = $\sum_{i} c_{i} w_{i}/W$.
- Amount of weight removed = $\varepsilon \sum_{i} w_{i}c_{i}$.
- So, fraction removed = ϵ * (our cost).
- Rest of proof continues as before...

What does this have to do with computing equilibria?

- It is natural to use the weighted majority algorithm to play a game.
 - Identify experts with actions, payoffs with utilities.
- If all players use WM algorithm to play for T rounds, we end up with profiles: $s^1, ..., s^T$ such that for each player i and action a_i :

$$E_{t \sim [T]}[u_i(s^t)] \ge E_{t \sim [T]}[u_i(a_i, s^t_{-i})] - \sqrt{\frac{\log(N)}{T}}$$

What does this have to do with computing equilibria?

- Taking $T = \frac{\ln(N)}{\alpha^2}$ and we get: $E_{t \sim [T]}[u_i(s^t)] \ge E_{t \sim [T]}[u_i(a_i, s^t_{-i})] \alpha$
- An α -approximate "Coarse Correlated Equilibrium"
- A little more work gets convergence to correlated equilibrium.

Computing an Equilibrium with Very Little Information

- The game matrix of an n player k action game has size $\approx k^n$.
- Yet we can compute an α -approximate correlated equilibrium by communicating only $\approx k \frac{\log k}{\alpha^2}$ utilities per player.

Computing an Equilibrium with Very Little Information

- These reported utilities need not be exact...
- Recall what we are bounding is:

$$\max_{a_i} \sum_{t=1}^{T} u_i(a_i, s^t_{-i}) - \sum_{t=1}^{T} u_i(s^t)$$

• What if the algorithm instead observes payoff estimates \hat{u}_i such that for all a_i :

$$\frac{1}{T} \left| \sum_{t=1}^{T} \hat{u}_i(a_i, s^t_{-i}) - \sum_{t=1}^{T} u_i(a_i, s^t_{-i}) \right| \le \beta$$

Computing an Equilibrium with Very Little Information

Then, we get a sequence of action such that:

$$E_{t \sim [T]}[u_i(s^t)] \ge E_{t \sim [T]}[u_i(a_i, s^t_{-i})] - \alpha - 2\beta$$

- i.e. we get an $(\alpha + 2\beta)$ -approximate equilibrium.
- In reality, both α , β will be a function of T.
 - Increasing T decreases α (as we saw) but increases β .
 - Can pick T to optimize the tradeoff...

Briefly...

- We took the perspective of mechanism designers:
 - We simulate play of the game to compute a solution
 - We add noise explicitly.

Briefly...

- Instead, can think of the noise as inherent to the interaction and study the equilibria of the repeated game.
 - Even in the infinitely repeated game, if the noise rate grows...
 - Or if the noise is constant and the population grows
 - ... the observed payoffs of each player $j \neq i$ will be differentially private in i's actions.

Briefly

- Then, all of the "Folk Theorem" equilibrium of the repeated game are eliminated.
 - Intuition: If play is privacy preserving, this removes the power to punish deviations.
 - Equilibrium of the repeated game collapse to equilibrium of the single shot game.
- A little noise can improve the "price of anarchy" of the repeated game by arbitrarily large factors.

Open Questions

- Can we get sub-polynomial dependence on k
 in polynomial time?
- Can we get sub-polynomial dependence on k without dependence on the size of the type space?
- Better equilibrium selection mechanisms via other means?
- What else can privacy say about noise in games?

Open Questions

- Can we get sub-polynomial dependence on k in polynomial time?
- Can we get sub-polynomial dependence on k with the last spale? The last spale is a spale in the last spale in the la
- Better equilibrium selection mechanisms via other means?
- What else can privacy say about noise in games?