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Summary. We show the dynamics of diverse beliefs is the primary propagation
mechanism of volatility in asset markets. Hence, we treat the characteristics of the
market beliefs as a primary, primitive, explanation of market volatility. We study
an economy with stock and riskless bond markets and formulate a financial equi-
librium model with diverse and time varying beliefs. Agents’ states of belief play
a key role in the market, requiring an endogenous expansion of the state space.
To forecast prices agents must forecast market states of belief which are beliefs of
“others” hence our equilibrium embodies the Keynes “Beauty Contest.” A “market
state of belief” is a vector which uniquely identifies the distribution of conditional
probabilities of agents.

Restricting beliefs to satisfy the rationality principle of Rational Belief (see
Kurz, 1994, 1997) our economy replicates well the empirical record of the (i)
moments of the price/dividend ratio, risky stock return, riskless interest rate and
the equity premium; (ii) Sharpe ratio and the correlation between risky returns and
consumption growth; (iii) predictability of stock returns and price/dividend ratio as
expressed by: (I) Variance Ratio statistic for long lags, (II) autocorrelation of these
variables, and (III) mean reversion of the risky returns and the predictive power of
the price/dividend ratio. Also, our model explains the presence of stochastic vola-
tility in asset prices and returns. Two properties of beliefs drive market volatility:
(i) rationalizable over confidence implying belief densities with fat tails, and (ii)
rationalizable asymmetry in frequencies of bull or bear states.
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1 Introduction

The forces which determine equilibrium market volatility and risk premia are prob-
ably the most debated topics in the analysis of financial markets. The debate is
driven, in part, by empirical evidence of market “anomalies” which have chal-
lenged students of the subject. Consumption based asset pricing theory has had a
profound impact on our view of financial markets. Early work of Leroy (1973),
Lucas (1978), Breeden (1979), Grossman and Shiller (1981), Mehra and Prescott
(1985), Hansen and Singleton (1983) and others show how intertemporal optimi-
zation of investor incorporates a subtle relationship between consumption growth
and asset returns. However, when examined empirically, this simple relationship
fails to provide a correct quantitative measure of risk premia. The Equity Premium
Puzzle (see, Mehra and Prescott, 1985) is a special case of the fact that assets prices
are more volatile than can be explained by “fundamental” shocks.

Difficult to account for risk premia are not confined to the consumption based
asset pricing theory; they arise in many asset pricing models. Three examples will
illustrate. The Expectations Hypothesis is rejected by most studies of the term struc-
ture (e.g. Backus, Gregory and Zin, 1989; Campbell and Shiller, 1991) implying an
excessive risk premium on longer maturity debt. Foreign exchange markets exhibit
a “Forward Discount Bias” (see Froot and Frankel, 1989; Engel, 1996) implying
an unaccounted for risk premium for holding foreign exchange. The pricing of
derivatives generates excess implied volatility of underlying securities, resulting
in unaccounted for risk premia. Some treat these as unusual anomalies and give
them distinct labels, presuming standard models of asset pricing can account for
all normal premia. Our perspective is different.

We suggest market volatility and risk premia are primarily determined by the
structure of agents’ expectations called “market state of belief.” Diversity and
dynamics of beliefs are then the root cause of price volatility and the key factor
explaining risk premia. Agents may be “bulls” or “bears.” A bull at date t expects
the date t+1 rate of return on investments to be higher than normal, where “nor-
mal” is defined by the empirical distribution of past returns. Date t bears expect
returns at t+1 to be lower than normal. Agents do not hold Rational Expectations
(in short RE) since the environment is dynamically changing, non stationary, and
true probabilities are unknown to anyone. In such complex environment agents use
subjective models. Some consider these agents irrational, but one cannot require
them to know what they cannot know: there is a wide gulf between an RE agent
and irrational behavior. We explore the structure of economies with diverse beliefs
and show they must have an expanded state space. Our computing models assume
agents hold rational beliefs in accord with the theory of Rational Belief Equilib-
rium (in short, RBE) due to Kurz (1994) and explored in Kurz (1996, 1997). This
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rationality principle strikes a proper balance between RE and irrational behavior.
To assist readers unfamiliar with this theory, we briefly explain it.

The Rational Belief Principle. “Rational Belief” (in short, RB) is not a theory
that demonstrates rational agents should adopt any particular belief. Indeed, since
the RB theory explains the observed belief heterogeneity, it would be a contradic-
tion to propose that a particular belief is the “correct” belief agents should adopt.
The RB theory starts by observing that the true stochastic law of motion of the
economy is non-stationary with structural breaks and complex dynamics hence the
probability law of the process is not known. Agents have a long history of past data
generated by the process which they use to compute relative frequencies of finite
dimensional events hence all finite moments. With this knowledge they compute
the empirical distribution and use it to construct an empirical probability measure
over sequences. Kurz (1994) shows the estimated probability model is stationary
and hence it is called the “empirical measure” or the “stationary measure.”

In contrast with a Rational Expectations Equilibrium (in short, REE) where the
true law of motion is known, agents in an RBE who do not know the truth, form
subjective beliefs based only on observed data. Hence, any principle on the basis
of which agents can be judged as rational must be based only on the data. Since a
“belief” is a model of the economy together with a probability over sequences of
variables, it can be used to generate artificial data. With simulated data an agent can
compute the empirical distribution of observed variables. The RB theory then pro-
poses a simple Principle of Rationality. It says that if an agent’s model generates an
empirical distribution which is not the same as the one known for the economy, then
the agent’s model (i.e. “belief”) is irrational. The RB rationality declares a belief
to be rational only if it is a model which cannot be disproved with the empirical
evidence. Since diverse theories are compatible with the evidence, this rational-
ity principle allows diversity of beliefs among equally informed rational agents.
For agents holding RB date t theoretical moments may deviate from the empirical
moments but the RB rationality principle requires the time average of all theoretical
moments to equal the empirical moments. In particular, date t forecasts may deviate
from empirical forecasts but the time average of all forecasts must agree with the
empirical forecasts. It follows as a theorem that agents who hold rational beliefs
must have forecast functions which vary over time. The tool we use to describe the
beliefs of agents is the “market state of belief.” It is explained in details in this paper.

The RB rationality is compatible with several known theories. An REE is a spe-
cial case of an RBE. Most models of Bayesian learning satisfy the RB rationality
principle. Also, several models of Behavioral Economics satisfy this principle for
some parameter values.

Earlier papers using the RBE rationality principle have also argued that agents’
beliefs are central to explaining market volatility (e.g. Kurz, 1996, 1997a; Kurz and
Schneider, 1996; Kurz and Beltratti, 1997; Kurz and Motolese, 2001; Kurz and Wu,
1996; Nielsen, 1996). These papers aimed to explain a list of financial “anomalies.”
(for a unified treatment see Kurz and Motolese, 2001). The RBE theory was used by
Kurz (1997b) and Nielsen (2003) to explain the volatility of foreign exchange rates.
These papers used OLG models where exogenous shocks are discrete and agents
have a finite set of belief states. Wu and Guo (2003, 2004) study speculation and
trading in the steady state of an infinite horizon model. This paper’s contribution
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consists of four parts: (i) ours is an infinite horizon model, (ii) all random variables
are continuous, (iii) AR(1) processes describe beliefs and exogenous shocks, and
(iv) we explicitly model agents’ beliefs about the market state of belief, which are
beliefs about the beliefs of others. We argue that this is the crucial property needed
for understanding the volatility and risk premia in financial markets.

The Main Results. First, “Belief states” are developed as a tool for equilibria with
diverse belief. Next, our method is to use properties of market beliefs as primitive
explanation of volatility. Two characteristics of beliefs fully account for all features
of volatility and premia observed in markets:

(A) high intensity of fat tails in the belief densities of agents;
(B) asymmetry in the proportion of bull and bear states in the market over time.

High intensity means agents exhibit rationalizable over confidence with fat tails
in their subjective densities. Asymmetry in frequency of belief is a characteristic
which says that on average, at more than half of the time agents do not expect to
make excess returns. Our model also implies market returns must exhibit stochastic
volatility which is generated by the dynamics of market belief.

2 The economic environment

The economy has two types of agents and a large number of identical agents within
each type. An agent is a member of one of the two types of infinitely lived dynas-
ties identified by their endowment, utility (defined over consumption) and by their
belief. A dynasty member lives a fixed short life and during his life makes decisions
based on his own belief without knowing the states of belief of his predecessors.
He is replaced by an identical member. There are two assets: a stock and a riskless,
one period, bond. There is an aggregate output process {Yt, t=1,2, . . .} which is
divided between dividends {Dt, t=1,2, . . .} paid to owners of the common stocks
and non - dividend endowment which is paid to the agents. The dividend process
is described by

Dt+1 =Dte
xt+1 (1)

where {xt, t=1,2, . . .} is a stochastic process under a true probability which is
non-stationary with structural breaks and time dependent distribution. This time
varying probability is not known by any agent and is not specified. Instead, we
assume {xt, t=1,2, . . .} is a stable process1 hence it has an empirical distribution

1 A Stable Process is defined in Kurz (1994). It is a stochastic process which has an empirical dis-
tribution of the observable variables defined by the limits of relative frequencies of finite dimensional
events. These limits are used to define the empirical distribution which, in turn, induces a probability
measure over infinite sequences of observables which we refer to as the “stationary measure” or the
“empirical measure.” A general definition and existence of this probability measure is given in Kurz
(1994), (1997) or Kurz and Motolese (2001) where it is shown that this probability must be stationary.
Statements in the text about “the stationary measure” or “the empirical distribution” is always a reference
to this probability. Its centrality arises from the fact that it is derived from public information and hence
the stationary measure is known to all agents and agreed upon by all to reflect the empirical distribution
of observable equilibrium variables.
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which is known to all agents who learn it from the data. This empirical distribution
is represented by a stationary Markov process, with a year as a unit of time, defined
by2

xt+1 =(1−λx)x∗ +λxxt +ρx
t+1 with ρx

t+1∼N(0, σ2
x) i.i.d. (2)

The infinitely lived agents are enumerated j = 1, 2 and we use the following
notation:

Cj
t - consumption of j at t;

θ
j
t - amount of stock purchased by j at t;

B
j
t - amount of one period bond purchased at discount by agent j at t;

q̃s
t - stock price at date t;

qb
t - the discount price of a one period bond at t;

Λj
t - non capital income of agent j at date t;

Ht - information at t, recording the history of all observables up to t.

Given probability belief Qj
t , agent j selects portfolio and consumption plans to

solve the problem

Max
(Cj ,θj ,Bj)

EQj [
∞∑

t=0

βt 1
1−γ

(Cj
t )1−γ |Ht] (3a)

subject to:

Cj
t + q̃s

t θ
j
t + qb

tB
j
t =Λj

t +(q̃s
t +Dt)θ

j
t−1 +Bj

t−1. (3b)

We assume additively separable, power utility over consumption, a model that failed
to generate premia in other studies (see Campbell and Cochrane, 2000). We focus
on diverse beliefs hence assume the two utility functions are the same. Introduce
the normalization for j =1,2

ωj
t ≡ Λ

j
t

Dt
, c

j
t ≡ C

j
t

Dt
, qs

t ≡ q̃s
t

Dt
, b

j
t ≡ B

j
t

Dt
.

With this normalization the budget constraint becomes

cj
t + qs

t θ
j
t + qb

t b
j
t =ωj

t +(qs
t +1)θj

t−1 + bj
t−1e

−xt . (3b′)

The Euler equations are

(cj
t )

−γqs
t =βE

Qj
t
[(cj

t+1)
−γ(1+ qs

t+1)e
(1−γ)xt+1 |Ht] (4a)

(cj
t )

−γqb
t =βE

Qj
t
[(cj

t+1)
−γe−γxt+1 |Ht] (4b)

2 The key assumption is then that agents do not know the true probability but have ample past data
from which they deduce that (2) is implied by the empirical distribution. Hence the data reveals a memory
of length 1 and residuals which are i.i.d. normal. This assumption means that even if (2) is the true data
generating process, agents do not know this fact. An agent may believe the true process is non-stationary
and different from (2) and then build his subjective model of the market.
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and the market clearing conditions are then

θ1
t +θ2

t =1 (4c)

b1t + b2t =0. (4d)

3 A Rational Expectations Equilibrium (REE)

Strictly speaking we cannot evaluate the REE since the true output process has
not been specified. We thus define an REE to be the economy in which all agents
believe that (2) is the true output process. To evaluate the volatility of this REE in
an annual model we specify parameters of (2). Unfortunately, different estimates of
the parameter values are available, depending upon time span of data, unit of time
(annual vs. quarterly) and definition of terms (see, for a sample, Backus, Gregory
and Zin, 1989; Campbell, 2000; Rodriguez, 2002 Appendix 2; based on Shiller
in (http://www.econ.yale.edu/shiller)). We use the annual estimates in Campbell
(2000), Table 3, which are consistent with Mehra and Prescott (1984). Hence,
for the rest of this paper we set β =0.96, γ =2.00, x∗ =0.01773, λx =−0.117
and σx =0.03256, all within the empirically estimated range. Ours is a theoretical
paper aiming to draw qualitative conclusions. We use realistic parameter values
since we wish our simulations to result in numerical values which are close to the
observed data. For simplicity we assume ωj

t =ω, a constant hence total resources,
or GNP, equal (1 + 2ω)Dt and the Dividend/GNP ratio is 1

1+2ω . As we model
only income from publically traded stocks, the Dividend/(Household Income) ratio
should include corporate dividends but exclude self employed income and imputed
income from other asset categories. This ratio is about 15% (see survey data in
Heaton and Lucas, 1996) hence we select ω

j
t =3. This fact has very little effect on

the results.
We simulated this REE and report in Table 1 the mean and standard deviations

of (i) the price\dividend ratio qs, (ii) the risky return R, (iii) the riskless rate r; the
equity premium ep, the Sharpe Ratio and the correlation between x and R. Moments
of market data vary with sources reporting and methods of estimation. The market
data reported in Table 1 are based on Shiller (http://www.econ.yale.edu/shiller) and
others. The results are familiar. Note that apart from the low equity premium, the
REE volatility measures are lower than market data by an order of magnitude. The
“Equity Premium” is not the only puzzle; the wider question is how to explain
market volatility.

Table 1. Simulated moments of key variables in REE (all moments are annualized)

qs σqs R σR r σr ep ρRx shrp

Model Data 16.71 0.055 7.94% 3.78% 7.70% 0.79% 0.24% 0.995 0.064

Market Data 25 7.1 7% 18.00% 1.00% 5.70% 6.00% 0.100 0.333

Some have argued in favor of introducing habit formation in utility in order to
generate time variability of risk aversion (e.g. see Abel, 1990, 1991;
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Constantinides, 1990; Campbell and Cochrane, 1999, 2000)3. We are not
persuaded by this model since habit formation can explain the equity premium
only if it assumes unreasonably high degree of risk aversion4. Our alternative view
proposes that risk premia are determined primarily by the structure of market expec-
tations. Our argument is developed in Sections 4, 5 and 6. First, in Section 4 we
develop the general structure of equilibria where agents have time varying and
diverse beliefs. These ideas apply to any model with diverse beliefs, not only to a
Rational Belief framework. We then explain the restrictions which the RB principle
impose on the model and in Sections 5 and 6 we develop the main results.

4 The general structure of equilibria with diverse and time dependent beliefs

Although (2) represent moments of past data, agents believe the economy is not sta-
tionary and past data do not provide adequate guide to the future. With technology
and institutional changes, agents do not believe a fixed stationary model captures
the complexity of society. Hence, they may not agree on a “correct” model that gen-
erated this empirical evidence. Indeed, we would expect that different agents using
the same evidence will come up with different theories to explain the data and hence
with different models to forecast prices. Each investor may have his own model of
market dynamics. But then, one may ask, what are the specific formal belief forma-
tion models agent use to deviate from the empirical forecasts and why do they select
these models? Since agents do not hold RE, how do they rationalize their beliefs?
These are questions which we cannot fully address here. Our methodology is to use
the distribution of beliefs to explain market volatility hence we need to determine
a level of detail at which agents “justify” their beliefs. If we aim at a complete
specification of such modeling, our study is doomed to be bogged down in details

3 Other approaches to the equity premium puzzle were reported by Brennan and Xia (1998), Epstein
and Zin (1990), Cecchetti, Lam and Mark (1990, 1993), Heaton and Lucas (1996), Mankiw (1986),
Reitz (1988), Weil (1989), and others. For more details see Kocherlakota (1996). Some degree of excess
volatility can also be explained with explicit learning mechanism which does not die out (see for example
Timmermann, 1996).

4 Campbell and Cochrane (1999, 2000) assume that at habit the marginal utility of consumption and
degree of risk aversion rise without bound. Hence, when consumption declines to habit, risk aversion
increases, stock prices decline and risk premium rises. Although the model generates moments which
are closer to those observed in the market, the theory is unsatisfactory. First, with Xt = habit, utility is

1
1−γ

(Ct −Xt)1−γ . But why should the marginal utility and risk aversion explode when Ct approaches
the mean of past consumption? Campbell and Cochrane (1999, p. 244) show that for the model to gen-
erate the desired moments, the degree of risk aversion is 80 at steady state and exceeds 300 frequently
along any time path. If instead we use Abel’s (1990, 1999) formulation 1

1−γ
( Ct

Xt
)1−γ , marginal utility

is normalized to be 1 at habit but the model does not generate volatility. Second, big fluctuations of
stock prices are observed during long periods when consumption grows smoothly as was the case during
the volatile period of 1992–2002. Finally, the model predicts perfect correlation between consumption
growth and stock returns but the record (see Table 1) shows date t stock returns have low correlation
with date t consumption growth. Above all, the habit formation model proposes a theory which claims
that asset premia are caused by an unreasonably high degree of risk aversion. This is not credible.
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of inference from small samples and information processing. Although interesting,
from a general equilibrium perspective it is not needed. To study volatility we focus
on a narrow but operational question. Since (4a)–(4b) require specification of con-
ditional probabilities, we need only a tractable way to describe differences among
agents’ beliefs and time variability of their conditional probabilities, without fully
specified models to justify them. From our point of view what matters is the fact
that market beliefs are diverse and time dependent; the reasoning which lead agents
to the subjective models are secondary. The tool we developed for this goal is the
individual and the market “state of belief” which we now explain.

4.1 Market states of belief and anonymity: expansion of the state space

The usual state space for agent j is denoted by Sj but when beliefs change over
time we introduce an additional state variable called “agent j state of belief.” It
is a variable generated by agent j, expressing his date t subjective view of the
future and denoted by g

j
t ∈Gj . It has the property that once specified, the condi-

tional probability function of an agent is uniquely specified and hence has the form
Pr(sj

t+1, g
j
t+1|sj

t , g
j
t ). Changes in j’s conditional probability function are pinned

down by j’s state of belief; gj
t is actually a proxy for j’s conditional probability

function. We note that g
j
t are privately perceived by agent j and have meaning only

to him. Since a dynasty consists of a sequence of decision makers, gj
t used by j has

no impact on the description of beliefs by other dynasty members. In the model of
this paper agents forecast dividend or profit growth rate xt+1 (i.e. the exogenous
variable) hence gj

t ∈R describes agent j conditional probability of profit growth
at t + 1. We shall permit rational agents to be “bulls” who are optimistic about
future excess returns or “bears” who are pessimistic about future excess returns.
To understand the role of g

j
t we introduce later a reference parameter a and then

interpret g
j
t in the following way:

• If g
j
t =a agent j agrees with the empirical distribution and makes profit growth

forecasts in accord with (2);
• If g

j
t �=a agent j disagrees with the empirical distribution. If gj

t >a he is a bear

and makes lower profit growth forecasts than the ones implied by (2); if g
j
t <a

he is a bull and makes higher profit growth forecasts than the ones implied by
(2)5.

5 Note that larger values of g imply a more bearish perspective. In the applications below larger g
will express an agent’s reduced probability belief in making excess returns. This may appear unnatural
but we study equilibria with asymmetry measured by the frequency at which an agent is a bull or a
bear. One of our main results says that the data supports a model where, on average, agents expect to
make excess returns less than 50% of the time or, equivalently, that in a large market a majority of
agents are pessimistic about making excess returns. We thus focus on the market pessimists. Since in the
computational model we use a logistic function to express this asymmetry, it turns out that the use of a
logistic function necessitates the condition that a larger g means more bearishness. Without the desired
asymmetry g could have an opposite interpretation. We discuss this point further in Appendix A.
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As indicated, we do not explain the reasoning used by agents to deviate from
the empirical forecast. It is a common practice among forecasters to use the strict
econometric forecast only as a benchmark. Given such benchmark, a forecaster uses
his own model to add a component reflecting an evaluation of circumstances at a
date t that call for a deviation at t from the benchmark. In short, g

j
t is a description

of how the model of agent j deviates from the statistical forecast implied by (2). In
this paper we assume that at any date the state of belief is a realization of a process
of the form

gj
t+1 =λzg

j
t +λzj

x (xt −x∗)+ ρ̃gj

t+1 , ρ̃gj

t+1∼N(0, σ̃2
gj ). (5)

Persistent states of belief which depends upon current market data fit different cases
of economies with diverse beliefs. We consider three examples to illustrate how one
may think about them.

(i) Measure of Animal Spirit. “Animal Spirit” expresses intensity at which agents
carry out investments and this, in turn, is based upon expected rewards. gj

t
identifies the probability an agent assigns to high or low rates of return hence
g
j
t can be interpreted as a measure of “animal spirit.”

(ii) Learning Unknown Parameters. In a learning context agents use prior distri-
butions on unknown parameters. Since g

j
t defines an agent’s belief about the

profit growth process we can identify g
j
t as a posterior parameter of its mean

value function. A posterior as a linear function of the prior and current data

is familiar. We add ρ̃
gj

t+1 to reflect changes in priors over time due to regime
shifts and changes in structure. Among such changes are decision makers in
the dynasty who are replaced by successors who select new priors. Infinite
horizon is a proxy for a sequence of decision makers in a changing economy.

With diverse beliefs, ρ̃gj

t+1 models a diversity of beliefs over time.

(iii) Privately generated subjective sunspot to depend upon real variables. gj
t may

play the role of a private sunspot with three properties (a) an agent generates
his own g

j
t under a marginal distribution known only to him, (b) it is not

observed by other agents, and (c) it’s distribution may depend upon real vari-
ables. Also, the correlation across agents is a market externality, not known
to anyone. Under this interpretation g

j
t is a major extension of the common

concept of a “sunspot” variable.

In equilibria with diverse beliefs agents’decision rules are functions of g
j
t hence

equilibrium prices depend upon gt =(g1
t , g2

t , . . . , gN
t ), the agents’conditional prob-

abilities. But then, should j be allowed to recognize his gj
t is the jth coordinate of

gt and thus give him some market power? The principle of anonymity introduced
in Kurz, Jin and Motolese (2003a,b) requires competitive agents to assume they
cannot affect endogenous variables. It is analogous to requiring a competitive firm
to assume it has no effect on prices. The issue here is the specification of how
agents forecast prices. To that end we define the “market state of belief ” as a vec-
tor zt =(z1

t , z2
t , . . . , zN

t ), keeping in mind the model consistency condition zt =gt

which is not recognized by agents. This makes market state of belief a macroeco-
nomic state variable and equilibrium prices actually become functions of zt and
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not functions of gt. Agent j views zt as “market belief” and as unrelated to him
since it is the belief of other agents. In small economies prices depend upon the
distribution zt =(z1

t , z2
t , . . . , zN

t ) but in many applications only a few moments
matter. In some models of diverse beliefs writers focus only on the average, and

define the market state of belief by the mean belief 6 zt = 1
N

N∑
j=1

z
j
t . Anonymity is

so central to our approach that we use three notational devices to highlight it:

(i) g
j
t denotes the state of belief of j as known by the agent only.

(ii) zt =(z1
t , z2

t , . . . , zN
t ) denotes market state of belief, observed by all. Com-

petitive behavior means j does not associate gj
t with zt although gj

t =zj
t is a

model consistency condition.
(iii) z

j
t+1 =(zj1

t+1, z
j2
t+1, . . . , zjN

t+1) is agent j’s forecast of the market state of belief
at future date t+1.

The introduction of individual and market states of belief has two central impli-
cations:

(A) The economy has an expanded state space, including market belief zt.
zt =(z1

t , z2
t )∈R

2 in this paper. Hence diverse beliefs create new uncertainty which
is the uncertainty of what others may do. This adds a component of volatility which
cannot be explained by “fundamental” shocks. Denoting usual state variables by
st, the price process {(qs

t , q
b
t ), t=1,2, . . .} is defined by a map like

[
qs
t

qb
t

]
=Ξ(st, z

1
t , z2

t , . . . , zN
t ). (6)

Our equilibrium is thus an incomplete Radner (1972) equilibrium with an expanded
state space.

(B) To forecast prices agents must forecast market beliefs. Although all use (6)
to forecast prices, agents’ forecasts are different since each forecasts (st+1, zt+1)
given his own state gj

t . This is a feature of the Keynes Beauty Contest: to forecast
equilibrium prices you must forecast beliefs of other agents. A Beauty Contest does
not entail higher order of beliefs: at t you form belief about market belief zt+1 but
the date t+1 market belief is not a probability about your date t belief state7.

We now return to the economy with two agent types and simplify by assum-
ing the market belief (z1

t , z2
t ) is observable. This assumption is entirely reasonable

since there is a vast amount of public data on the distribution of forecasts in the mar-
ket and on the dynamics of this distribution. Indeed, using forecast data obtained
from the Blue Chip Economic Indicators and the Survey of Professional Forecast-
ers we constructed various measures of market states of belief. Since (z1

t , z2
t ) is

6 See Woodford (2003), Morris and Shin (2002), Allen, Morris and Shin (2003), and others.
7 Allen, Morris and Shin (2003) seem to suggest the Beauty Contest is associated with the failure

of the market belief to satisfy the law of iterated expectations (see title of their paper). It is clear the
average market probability beliefs does not satisfy the law of iterated expectations since the average
conditional probability is not a proper conditional probability. However, this fact is independent of the
problem defined by the Keynes Beauty Contest which requires agents in an economy with diverse beliefs
to forecast the future average market state of belief.
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observable we need to modify the empirical distribution (2) and include (z1
t , z2

t ) in
it. We assume the empirical distribution of profit growth and the states of belief is
an AR process of the form

xt+1 =(1−λx)x∗ +λxxt +ρx
t+1 (7a)

z1
t+1 =λz1z1

t +λz1

x (xt −x∗)+ρz1

t+1 (7b)

z2
t+1 =λz2z2

t +λz2

x (xt −x∗)+ρz2

t+1 (7c)



ρx
t+1

ρz1

t+1
ρz2

t+1



∼N




0
0
0,

,




σ2

x, 0, 0
0, 1, σz1z2

0, σz1z2 , 1



=Σ



 , i.i.d.

In any application one assumes the parameters of (7a)–(7c) are known by all. With
regard to x, we have set values for (λx, x∗, σx) in Section 2. We normalize by set-
ting variances of ρzj

t+1 equal to 1. To specify parameters of the zj equations recall
that z measures how optimistic agents are about future returns on investment. With
this in mind we used forecasts reported by the Blue Chip Economic Indicators and
the Survey of Professional Forecasters, and “purged” them of observables. We then
estimated principal components to handle multitude of forecasted variables (for
details, see Fan, 2003). The extracted indexes of beliefs imply regression coeffi-
cients around 0.5–0.8 hence we set λz1 =λz2 =0.7. Investors’forecasts of financial
variables such as corporate profits, are highly correlated and a value of σz1z2 =0.90
is realistic. In this paper we study only symmetric economies where agents differ
only in their beliefs hence we assume λz1

x =λz2
x =λz

x. The evidence shows that
positive profit shocks lead agents to revise upward their economic growth forecasts
implying λz

x >0. Our best guess of this parameter leads us to set λz
x =0.9 but we

discuss it again later.
To write (7a)–(7c) in a more compact notation let wt =(xt −x∗, z1

t , z2
t ), ρt =

(ρx
t , ρz1

t , ρz2

t ) and denote by A the 3×3 matrix of parameters in (7a)–(7c). We then
write (7a)–(7c) as

wt+1 =Awt +ρt+1 , ρt+1∼N(0,Σ). (8)

Denote by V the 3×3 unconditional covariance of w defined by V =Em(ww′).
We use the value of V and compute it here as a solution of the equation

V =AV A′ +Σ. (9)

Finally, denote by m the probability measure on infinite sequences implied
by (8) with the invariant distribution as the initial distribution. We then write
Em(wt+1|Ht)=Awt where Ht is the history at t. To complete the description
of an equilibrium we need to specify the individual beliefs. However, we stress that
the description to follow is general, applying to any model with diverse beliefs.
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4.2 The general structure of beliefs and the problem of parameters

A perception model is a set of transition functions of state variables, expressing an
agent’s belief about date t+1 conditional probability. We first explain the general
form of a perception model, and provide details later. Letwj

t+1 =(xj
t+1, z

1j
t+1, z

2j
t+1)

be date t+1 variables as perceived by j and let Ψt+1(g
j
t ) be a 3 dimensional vector

of date t+1 random variables conditional upon g
j
t .

Definition 1. A perception model in the economy under study has the general form

wj
t+1 =Awt +Ψt+1(g

j
t ) (9a)

together with (5).

Since Em(wt+1|Ht)=Awt, we write (9a) in the simpler form

wj
t+1 −Em(wt+1|Ht)=Ψt+1(g

j
t ). (9b)

(9b) reveals that Ej [Ψt+1|gj
t ] is j’s deviation in forecasting wj

t+1 from Em

(wt+1|Ht). In general we have Ej [Ψt+1|gj
t ] �=0 and the mean of the agent’s fore-

cast changes with g
j
t . If Ψt+1(g

j
t )=ρt+1 as in (8), j uses the empirical probability

m as his belief. Condition (9b) shows that we model Ψt+1(g
j
t ) so that agents may

be over-confident by being optimistic or pessimistic relative to the empirical fore-
casts.We now postulate a random variable η

j
t+1(g

j
t ) with which we model Ψt+1(g

j
t )

simply by

Ψt+1(g
j
t )=





λx
gηj

t+1(g
j
t )+ ρ̃xj

t+1

λz1
g ηj

t+1(g
j
t )+ ρ̃zj1

t+1

λz2
g ηj

t+1(g
j
t )+ ρ̃zj2

t+1



 , ρ̃j
t+1∼N(0,Ωj

ρρ), i.i.d. (10)

where ρ̃j
t+1 =(ρ̃xj

t+1, ρ̃
zj1

t+1, ρ̃
zj2

t+1). By (9a) a perception model includes g
j
t+1 as a

fourth dimension with an innovation ρ̃j
t+1 and a covariance matrix denoted by Ωj ,

reflecting the vector ri
j =Cov(wi, gj) for i = 1, 2, 3. For simplicity we use only one

random variable ηj
t+1(g

j
t ) to define all components of Ψt+1(g

j
t ). In addition, we

study only symmetric markets where agents differ at any t only in two respects: they
may have different date t states of belief and different portfolios due to difference
in histories. Hence, we assume λg =(λx

g , λz1
g , λz2

g ) are common to both agents.
These describe how an agent’s forecasts vary with his beliefs. To specify agents’
beliefs in any particular model one needs to specify Ψt+1(g

j
t ), λg =(λx

g , λz1
g , λz2

g )
and ri

j =Cov(wi, gj) for i = 1, 2, 3. Combining all these parts we can formulate
the final form of the perception models of agent j:
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x
j
t+1 =(1−λx)x∗ +λxxt +λx

gη
j
t+1(g

j
t )+ ρ̃xj

t+1 (11a)

zj1
t+1 =λzz

1
t +λz

x(xt −x∗)+λz
gηj

t+1(g
j
t )+ ρ̃zj1

t+1 (11b)

z
j2
t+1 =λzz

2
t +λz

x(xt −x∗)+λz
gη

j
t+1(g

j
t )+ ρ̃zj2

t+1 (11c)

gj
t+1 =λzg

j
t +λz

x(xt −x∗)+ ρ̃
gj

t+1 (11d)

ρ̃j
t+1 =(ρ̃xj

t+1, ρ̃
zj1

t+1, ρ̃
zj2

t+1, ρ̃
gj

t+1) is i.i.d. Normal with mean zero and covariance

matrix Ωj of the form

Ωj =

(
Ωj

ρρ, Ωwgj

Ω′
wgj , σ2

gj

)
(11e)

where Ωwgj = [Cov(ρ̃x
t+1, ρ̃

gj

t+1),Cov(ρ̃z1

t+1, ρ̃
gj

t+1),Cov(ρ̃z2

t+1, ρ̃
gj

t+1)]. Note two

facts. First, λx
gηj

t+1(g
j
t ) in the first equation reflects diverse beliefs about profit

shocks. The agent’s forecast of xj
t+1 is E

Qj
t
(xj

t+1 −x∗)=λx(xt −x∗)+λx
gE

Qj
t

ηj
t+1(g

j
t ), not λx(xt −x∗) as in (7a). The term λx

gE
Qj

t
ηj
t+1(g

j
t ) measures

the agent’s forecast deviation from (7a). Second, (λz
gη

j
t+1(g

j
t ), λ

z
gη

j
t+1(g

j
t )) in the

second and third equations measure the effect of j’s belief on his forecast of the
belief of others (zj1

t+1, z
j2
t+1) at t+1. Since prices depend on(z1

t+1, z
2
t+1), the terms

λz
gη

j
t+1(g

j
t ) and λz

gη
j
t+1(g

j
t ) contribute to diversity of t+1 price forecasts. These

are the key forces which generate market volatility.
(11a)–(11e) show that given the assumed symmetry, the case of λg =

(λx
g , λz1

g , λz2
g )= (0,0,0) fully characterizes an economy where all agents believe

the empirical distribution is the truth. This case has the essential property of an
REE since there is no diversity of beliefs. In such an economy the volatility of
equilibrium quantities is determined only by the volatility of xt in (2).

Summary of belief parameters. Given symmetry, parameters specifying belief of
j are then (λg,Ωj) and parameters defining the variable η

j
t+1(g

j
t ) explained next.

A theory with unrestricted beliefs would specify these parameters and some may
consider it to be Bounded Rationality. Our models below assume agents satisfy the
RB rationality conditions and we explain in Section 4.4 the restrictions imposed by
RB. Note that anonymity requires the idiosyncratic component of an agent’s belief
not to be correlated with market beliefs. This is translated to the requirement that

Ωz1gj =Cov(ρ̃z1

t+1, ρ̃
gj

t+1)=0

Ωz2gj =Cov(ρ̃z2

t+1, ρ̃
gj

t+1)=0.

Hence, anonymity restricts two components of Ωwgj even in a theory without
restrictions on belief.
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4.3 Modeling tractable and computable functions Ψt+1(g
j
t )

We model Ψt+1(g
j
t ) so as to permit agents to be over confident by assigning to some

events higher probability than the empirical frequency. Evidence from the psycho-
logical literature (e.g. Svenson, 1981; Camerer and Lovallo, 1999; and references)
shows agents exhibit such behavior.

In some cases this behavior may be irrational but this is not generally true.
Institutional and technical changes are central to an economy and past statistics do
not provide the best forecasts for the future. Deviations from empirical frequencies
reflect views based on limited recent data about changed conditions. Agents have
financial incentive to make such judgments since major financial gains are available
to those who bet on the correct market changes. We now discuss the asymmetries
built into modeling Ψt+1(g

j
t ).

Asymmetry and intensity of fat tails in Ψt+1(g
j
t ). Asymmetry and “fat” tails, reflect-

ing over confidence, is introduced into the computational model through η
j
t+1(g

j
t ).

We define ηj
t+1(g

j
t ) by its density, conditional on gj

t , as a step function

p(ηj
t+1|gj)=

{
φ1(gj)f(ηj

t+1) if ηj
t+1 ≥0

φ2(gj)f(ηj
t+1) if ηj

t+1 <0
(12)

where ηj
t+1 and ρ̃

gj

t+1 (in (10)) are independent and where f(η)= [1/
√

2π]e− η2

2 .
The functions (φ1(g), φ2(g)) are defined by a logistic function with two parameters
a and b

φ(gj)=
1

1+eb(gj−a)
, and define G≡Egφ(gj), (13)

a<0, b<0 and φ1(gj)=
φ(gj)

G
,φ2(gj)=2−φ1(gj). (14)

The parameter a measures asymmetry and the parameter b measures intensity
of fat tails in beliefs. Details of this construction and the implied moments are
discussed in Appendix A.

To explain (12)–(14), note that for gj
t large, φ(gj) goes to one, implying that

φ1(gj) goes to 1/G. Hence, by (12) large gj
t > a implies high probability that

η
j
t+1 >0. Similarly, small g

j
t <a implies high probability that η

j
t+1 <0. To inter-

pret what gj
t > a means requires a model convention. A convention must spec-

ify what ηj
t+1 >0 means and this depends upon Ψt+1(g

j
t ). In an economy with

λx
g >0, ηj

t+1 >0 raises j’s forecast of xj
t+1 but in an economy with λx

g <0, ηj
t+1 >0

lowers j’s forecast of xj
t+1. We have thus motivated a formal definition of bull and

bear states:
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Definition 2. Let Qj be the probability belief of agent j. Then g
j
t is said to be

a bear state for agent j if EQj [xj
t+1|gj

t ,Ht]<Em(xt+1|Ht);

a bull state for agent j if EQj [xj
t+1|gj

t ,Ht]>Em(xt+1|Ht).

Now recall that x
j
t+1 =(1−λx)x∗ +λxxt +λx

gη
j
t+1(g

j
t )+ ρ̃xj

t+1. From (12)

we know (see Appendix A for detail) that if gj
t >a then Ej [η

j
t+1(g

j
t )|gj

t ]>0 hence

we have two cases. If λx
g <0 then gj

t >a means agent j is in a bear state and expects
profit growth below normal at date t+1. Since a<0 this also means that bear states
occur with frequency higher than 50%. If λx

g >0 then gj
t >a means agent j is in

a bull state and is optimistic about t+1 profit growth being above normal. Again,
since a<0 this also implies that bull states occur with frequency higher than 50%.
“Normal” is defined relative to the empirical forecast. In sum, we have two basic
economies:

Economy 1. for all agents λx
g <0 and bear states are more frequent, hence

gj
t >a means agent j is pessimistic about profit growth and excess stock returns

at t+1
gj
t <a means agent j is optimistic about profit growth and excess stock returns

at t+1.

Economy 2. for all agents λx
g >0 and bull states are more frequent, hence

gj
t >a means agent j is optimistic about profit growth and excess stock returns

at t+1
gj
t <a means agent j is pessimistic about profit growth and excess stock returns

at t+1.

What are the beliefs in bull and bear states? Consider Economy I. As (gj
t −a)

increase, φ1(g
j
t ) rises and φ2(g

j
t ) declines. Hence when gj

t >a an agent increases

the positive part of a normal density in (12) by a factor φ1(g
j
t )>1 and decreases

the negative part by φ2(g
j
t )<1. When g

j
t <a the opposite occurs: the negative part

is shifted up by φ2(g
j
t )>1 and the positive part is shifted down by φ1(g

j
t )<1. The

amplifications (φ1(gj), φ2(gj)) are defined by gj , by a and by the“fat tails” param-
eter b. The parameter b measures the degree by which the distribution is shifted per
unit of (gj

t −a). In Figure 1 we draw densities of ηj(gj) for gj >a and for gj <a.

These are not normal densities. As g
j
t varies, the densities of η

j
t+1(g

j
t ) change.

However, the empirical distribution of gj
t is normal with zero unconditional mean

and hence the empirical distribution of η
j
t+1(g

j
t ), averaged over time (including

over gj
t ), also has these same properties.

The parameter a measures asymmetry. It determines the frequency at which
agents are bears. To see why note that if a=0, (13) is symmetric around 0 and the
probability of gj > 0 is 50%. When a< 0 the probability of gj >a is more than
50% and if λx

g <0, the frequency at which j is pessimistic, is more than 50%. In a
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Figure 1. Non-normal belief densities

Figure 2. Density Ψ(gj
t ) with fat tails

large market this would mean that, on average, a majority of traders are bears about
t+1 excess returns. Similarly, when λx

g >0, bulls are in the majority.

Each component of Ψt+1(g
j
t ) is a sum of two random variables: one as in

Figure 1 and the second is normal. In Figure 2 we draw two densities of Ψt+1(g
j
t ),

each being a convolution of the two constituent distributions with λx
g <0. One

density for gj >a and a second for gj <a, showing both have “fat tails.” Since b
measures intensity by which the positive portion of the distribution in Figure 1 is
shifted, it measures the degree of fat tails in the distributions of Ψt+1(g

j
t ).
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4.4 Restrictions on beliefs under the rational belief principle

We now define a Rational Belief (due to Kurz, 1994, 1996) and discuss the restric-
tions which the theory imposes on the belief parameters.

Definition 3. A perception model as defined in (11a)–(11e) is a Rational Belief if
the agent’s model wj

t+1 =Awt +Ψt+1(g
j
t ) together with (5) has the same empirical

distribution as wt+1 =Awt +ρt+1 in (8).

Definition 3 implies that Ψt+1(g
j
t ) together with (5) must have the same empir-

ical distribution as ρt+1 in (8), i.e. N(0,Σ). An RB is a model which cannot be
rejected by the data as it matches all moments of the observables. Agents hold-
ing RB may exhibit over confidence by deviating from the empirical frequencies
but their behavior is rationalizable if the time average of the probabilities of an
event equals it’s empirical frequency. What are the restrictions implied by the RB
principle?

Theorem Let the beliefs of an agent be a Rational Belief. Then the belief is
restricted as follows:

(i) For any feasible vector of parameters (λx
g , λz

g, a, b) the Variance-Covariance

matrix Ωj is fully defined and is not subject to choice;
(ii) The condition that Ωj is a positive definite matrix establishes a feasibility

region for the vector (λx
g , λz

g, a, b). In particular it requires |λx
g |≤σx, |λz

g|≤1.

(iii) Ψt+1(g
j
t ) cannot exhibit serial correlation and this restriction pins down the

vector

Ωwgj =[Cov(ρ̃x
t+1, ρ̃

gj

t+1),Cov(ρ̃z1

t+1, ρ̃
gj

t+1),Cov(ρ̃z2

t+1, ρ̃
gj

t+1)].

The proof is in Appendix B. As to implications of (iii), since {g
j
t , t=1,2, . . .}

exhibit serial correlation, to isolate the subjective component of belief we exclude
from g

j
t information which is in the market at t. Define a pure belief index u

j
t (g

j
t )

as follows. Recall that rj =Cov(w,gj) is agent j’s covariance vector and, keeping

in mind (8), define u
j
t (g

j
t ) by a standard regression filter

uj
t (g

j
t )=gj

t − r′
jV

−1wt. (15)

The index u
j
t (g

j
t ) now replaces g

j
t everywhere and is uncorrelated with pub-

lic information. In all equations we replace Ψt+1(g
j
t ) with Ψt+1(u

j
t ) and show in

Appendix B that it is serially uncorrelated.
Under the RB restrictions we can thus select only (λx

g , λz
g, a, b) subject to feasi-

bility conditions imposed by the Theorem. In practice these restrictions imply that

• σx =0.03256 implies |λx
g |<0.03. The covariance structure further restricts

|λx
g |<0.028.

• The covariance structure implies that |λz
g|<0.30.

• The parameter b has a feasible range between 0 and −16.
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We finally offer some some additional considerations to restrict the parameter
λz

g .

4.4.1 Selecting λz
g: the principle of maintaining relative market position

We assumed nothing regarding belief of agents about the beliefs of others and we

have only very limited data on it. To examine this question let zt = 1
N

N∑
j=1

z
j
t be the

mean market belief and we ask the following question. Suppose an agent is a bear
about profit growth. What would be his position about the mean belief of others?
In principle we need a second belief index to define a separate belief about “oth-
ers.” Thus, suppose that, in addition, agent j is more bearish than the average so
that g

j
t >zj

t . How would his bearish outlook about profit growth alter the expected
relative position of his belief in relation to the mean market belief? There is no
uniform answer to this question but the data suggests a relative inertia which can
be expressed by the following:

Definition 4. Agent j expects to Enhance his Relative Position within the belief
distribution given his current state of belief if his belief about others takes the form

Ej
t (gj

t+1 −zj
t+1)>λz(g

j
t −zj

t ) if gj
t >a; (16a)

[Note: if λx
g <0 then j is in a bear state]

Ej
t (gj

t+1 −zj
t+1)<λz(g

j
t −zj

t ) if gj
t <a; (16b)

[Note: if λx
g <0 then j is in a bull state].

(11a)–(11e) says E
j
t (gj

t+1 − zj
t+1) − λz(g

j
t − zj

t ) = λz
gEj

t [ηj
t+1(g

j
t )|gj

t ] and

Appendix A shows that Ej
t [ηj

t+1(g
j
t )|gj

t ] > 0 if gj
t > a and Ej

t [ηj
t+1(g

j
t )|gj

t ] < 0

if gj
t <a.
Hence (16a)–(16b) say that if agent j is bear and past market norms predict his

relative position at t+1 to be λz(g
j
t −z

j
t ), his bearish outlook today will motivate

him to predict a persistence of this position and this is what (16a) says. But then the
implication of Definition 4 is that agents who adapt their beliefs in this manner must
satisfy the condition λz

g >0. However if λx
g >0 the reasoning is reversed, leading

to the conclusion that λz
g <0. It then follows that under the condition of Enhancing

Relative Belief Position in the distribution of beliefs our two possible economies
are

Economy I: (λx
g <0, λz

g >0) in which bear states are more frequent
Economy II:(λx

g >0, λz
g <0) in which bull states are more frequent.

We shall conduct a computational test to identify the economy which matches
U.S. volatility data.
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4.4.2 Model parameters and a note on computed equilibria

Our question is now simple: are there feasible parameter values so the model repli-
cates the empirical record in the U.S.? Moreover, what is the economic interpretation
of the behavior implied by these parameter values? Our discussion above shows
we need to study the effect of the belief parameters (λx

g , λz
g, a, b) on volatility and

test which of the two economies (Economy 1 vs. Economy 2) fits the data. For
Economy 1 we select λx

g =−0.027, λz
g =0.25 with absolute values close to the fea-

sible boundary.8 By setting them as high as compatible with rationality we focus on
examining the effect of (a, b). Thus, given a limited choice of (λx

g , λz
g) we search

for values of a and b with which the model generates volatility which matches the
data. We then vary(λx

g , λz
g) in order to understand the qualitative properties of such

economies, aiming for general conclusions.
We compute equilibria with perturbation methods using a program developed

by Hehui Jin (see Jin and Judd, 2002; Jin, 2003). A solution is declared to be an
equilibrium if: (i) a model is approximated by at least second order derivatives;
(ii) errors in market clearing conditions and Euler equations are less than 10−3.
Appendix C provides details on the computational model.

5 Characteristics of volatility I: moments

Intensity of fat tails and asymmetry in beliefs are key components of our theory.
But, what is the role of intensity and asymmetry in propagating volatility and which
of the two economies are compatible with the data?

5.1 The role of intensity is pure volatility

We start with an experiment disabling the asymmetry parameter by setting a=0
while varying b. Keeping in mind that parameters of the real economy imply riskless
steady state values qs∗ =16.58,R∗ = r∗ =7.93, we vary b from b=−1 up to a value
at which the mean riskless rate reaches 0.66%. Table 2 reports the results. These
show that the market exhibits substantial non - linearity in response to rising vola-
tility as qs and σqs do not change monotonically with market volatility. However,
as market volatility increases the following change in a monotonic manner:

• The risky rate R rises from 8.00% to 9.27%
• The standard deviation σR of the risky rate rises from 4.60% to 20.53%
• The riskless rate r declines from 7.88% to 0.66%

8 The feasible set is open as it requires the covariance matrix to be positive definite hence no maximal
values can be taken. The objective is to set the parameters so they are close to the boundary but do not
destabilize the computational procedure, generating error in the Euler Equations.
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• The correlation coefficient ρ(x,R) declines from 0.83 to 0.20
• The Sharpe Ratio (Shrp) rises from 0.02 to 0.42.

Without a detailed demonstration we add the fact that the pattern observed in Table 2
remains the same for all feasible belief parameters (λx

g , λz
g) of the model.

Table 2. The effect of pure intensity (all moments are annualized)

b⇒ −1.00 −5.00 −10.00 −11.00 −12.50 −14.00 −15.50

a=0 Record

qs 16.66 17.59 19.91 20.26 20.51 20.22 19.12 25.00

σqs 0.53 2.06 3.68 3.96 4.29 4.45 4.38 7.10

R 8.00% 8.14% 8.21% 8.26% 8.42% 8.72% 9.27% 7.00%

σR 4.60% 10.36% 15.78% 16.66% 17.92% 19.17% 20.53% 18.00%

r 7.88% 7.73% 6.20% 5.75% 4.82% 3.28% 0.66% 1.00%

σr 2.53% 6.94% 6.78% 6.26% 5.27% 4.39% 5.21% 5.70%

ep 0.11% 0.42% 2.00% 2.51% 3.60% 5.44% 8.62% 6.00%

ρ(x,R) 0.83 0.38 0.25 0.24 0.22 0.21 0.20 0.10

Shrp 0.02 0.04 0.13 0.15 0.20 0.28 0.42 0.33

Table 2 shows the riskless rate declines towards 1% simply because the RBE
becomes more volatile. This affects both the volatility of individual consumption
growth rates as well as their correlation with the growth rate of aggregate consump-
tion. In an REE this correlation is close to 1 but not in an RBE where variability of
individual consumption growth depends upon the agents’beliefs. The low observed
riskless rate has been a central issue in the equity premium puzzle debate (see Weil,
1989) and the effect of the parameter b goes to the heart of this issue. Our theory
offers the intuitive explanation that non normal belief densities with fat tails and
high intensity propagate high market volatility hence risk, making financial safety
costly.

Now compare Table 2 with the empirical record. As volatility increases and
the riskless rate r reaches 0.66% we see that (i) qs declines below 25, (ii) R rises
above 7.0%, (iii) σR rises above 18.0%, (iv) the Sharpe Ratio rises above 0.33.
Some reflection shows that these are reasonable conclusions for a symmetric vol-
atile economy in which bear and bull states mirror each other: each bull state has
an exact opposite bear state. Such symmetry implies that as risk level increases,
the riskless rate should decline since the cost of safety increases and the risky rate
should rise for analogous reasons. These are exactly the results in Table 2! If the
riskless rate declines but the risky rate remains the same as volatility increases,
there must be some belief asymmetry to induce a rise in the price/dividend ratio.
The asymmetry parameter a measures the frequency of bear states over time, which
is 1−Φ( a

σu
). Since a<0, we conclude 1−Φ( a

σu
)> 50% (Φ is a cumulative stan-

dard normal). When a<0 the tail on the bull side must compensate for the higher
frequency on the bear side hence the bull distribution must be more skewed than the
bear distribution. To examine asymmetry we return to the two asymmetric econo-
mies we considered. In Economy 1 bear states are more frequent while in Economy
2 bull states are more frequent.
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5.2 Which asymmetry?

In Table 3 we test for asymmetry with a simple experiment. We fix b = −9.00,
a=−0.40 and pick three random pairs of values λx

g <0, λz
g >0 for Economy 1. We

then simulate the equilibria for these pairs and for the negative values of the same
pairs, defining Economy 2.

The results for λx
g >0, λz

g <0, on the left of Table 3, are counter-factual. Asym-
metry according to which bull states are more frequent imply too low Price/Dividend
ratio and too high risky and riskless rates. These qualitative conclusions remain the
same for all a<0, b<0 and λx

g <0, λz
g >0 for which this experiment is feasible.

Hence we reject the hypothesis that bull states are more frequent. However, we
now give an intuitive explanation for the higher Price/Dividend ratio and the lower
returns on the right hand side of Table 3.

Table 3. Which asymmetry? (all moments are annualized)

Economy 2 Economy 1

λx
g =0.015 λx

g =0.012 λx
g =0.012 λx

g =−0.012 λx
g =−0.012 λx

g =−0.015

λz
g =−0.100 λz

g =−0.120 λz
g =−0.140 λz

g =0.140 λz
g =0.120 λz

g =0.100

7.55 8.20 6.83 qs 21.96 22.10 24.00

1.55 1.33 1.15 σqs 2.27 2.37 3.26

17.34% 15.50% 18.25% R 6.87% 6.87% 6.74%

19.13% 15.24% 16.58% σR 9.28% 9.59% 11.17%

19.42% 18.14% 20.86% r 5.53% 5.36% 4.50%

26.00% 22.35% 26.22% σr 5.19% 5.84% 8.18%

−2.08% −2.63% −2.61% ep 1.34% 1.51% 2.24%

0.19 0.24 0.23 ρ(x,R) 0.42 0.41 0.33

−0.11 −0.17 −0.16 Shrp 0.14 0.16 0.19

Agents in Economy 1 are in bear states at a majority of dates. Hence, at more
than 50% of the time they do not expect to make excess stock returns in the next
date. They expect dividends to grow slower than normal and their stock portfolio
to produce lower than normal returns. The question is: what is the resulting “nor-
mal”equilibrium Price/Dividend ratio? An answer needs to distinguish between the
price of the stock and the Price/Dividend ratio qs. The non - normalized stock Eul-
er equation is (Cj

t )−γ q̃ s
t =βEQt

j [(Cj
t+1)

−γ(Dt+1 + q̃ s
t+1)]. Hence, if an agent

is bullish about future dividend growth his demand for the stock increases and
if most agents are optimistic, the stock price rises. If a majority is bearish about
future dividend growth the price declines. The normalized Euler equation (4a)
(cj

t )
−γqs

t =βE
Qj

t
[(cj

t+1)
−γ(1+ qs

t+1)e
(1−γ)xt+1 ] shows the situation is differ-

ent for qs. Suppose an agents’ perceived conditional distribution of xt+1 shifts
downward. The effect on equilibrium qs depends upon the elasticity of substitution
between ct and ct+1 which is − 1

γ . Being pessimistic about returns is the same as
considering present consumption as cheaper. Since γ = 2, for a pessimistic agent
a 1% decreased relative cost of today’s consumption leads to a 0.5% increase in
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today’s consumption. Equivalently, in an economy where agents are, on average,
more frequently bearish about xt+1 the time average of qs is higher. This implies
that in an economy where agents are, on average, bearish more than 50% of the
time the mean price/dividend ratio is higher and the mean rate of return is lower
than in an economy where agents are, on average, bullish more than 50% of the
time. This is exactly what happens in Table 3.

We do not have direct evidence to support the conclusion that the frequency of
bear states is higher than 50%. It is, however, supported by the fact that in the long
run most above normal stock returns are made over relatively small proportion
of time when asset prices rally strongly (see Shilling, 1992). The empirical fre-
quencies show that agents experience large excess returns only a small proportion
of time. Hence, on average, the proportion of time that one may expect to make
excess returns is much less than 50%9. Additional indirect support comes from the
psychological literature which suggests agents place heavier weight on losses than
on gains. Under our interpretation this is indeed the case at majority of dates since
on those dates agents believe abnormally lower return are more likely than abnor-
mally higher. By the RB principle the higher frequency of bear states implies that
when in bull states, an agent’s intensity of optimism is higher than the intensity
of pessimism. Hence, the average size of the positive tail in the belief densities
is bigger than the average size of the negative tail. This has useful implications
to the appearance of bubbles in an RBE. It is a fact that there is strong positive
correlation in beliefs among agents. Since investors in optimistic states expect to
make abnormal returns, the correlation among them generates correlated demand
and price movements which look much like bubbles.

5.3 Matching the moments

We now combine the effects of intensity and asymmetry to exhibit a region of
parameters where the simulated moments are close to the empirical record. Table
4 provides a summary. The table shows that for values of b around (−14.0,
−15.0)10and a around (−0.15, −0.25) all moments are close to those observed
in the market. Most significant is the fact that around this region of the parameter
space all model statistics match simultaneously the moments and premium in the
empirical record. We show later that the model with these parameter values exhibit
dynamic properties such as forecastability of returns and stochastic volatility which
are similar to those observed in the U.S. data.

The fact our model matches simultaneously the moments and other phenomena
associated with market volatility (see below, Section 5) provides strong support

9 Shilling (1992) shows that during the 552 months from January 1946 through December of 1991
the mean real annual total return on the Dow Jones Industrials was 6.7%. However, if an investor missed
the 50 strongest months the real mean annual return over the other 502 months was −0.8%. Hence the
financial motivation to time the market is very strong, as is the case with the agents in our model.
10 One might think that if b is in the range of (−14, −15) the function φ(gj) in (13) would take only

values of 0 and 1. This is not the case due to the persistence in beliefs. b actually regulates the speed in
which an agent moves from states where φ is close to 1 or φ is close to 0, ending up spending most of
his time in transition between these extremes. Also, even when φ is close to extreme values, the agent
is still uncertain since his transition functions (11a)–(11c) contain the white noise terms ρ̃j

t+1.
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Table 4. The combined effect of intensity and asymmetry (all moments are annualized)

b, a ⇒ −0.15 −0.20 −0.25

⇓
qs 24.44 26.13 27.99

σqs 5.21 5.51 5.84

R 7.69% 7.37% 7.07%

σR 18.47% 18.24% 18.01%

r −14.0 2.73% 2.53% 2.32%

σr 4.84% 5.00% 5.15%

ep 4.96% 4.84% 4.75%

ρ(x,R) 0.22 0.22 0.22

Shrp 0.27 0.27 0.26 Record

qs 24.20 25.91 27.78 25.00

σqs 5.21 5.51 5.83 7.10

R 7.79% 7.46% 7.14% 7.00%

σR 18.80% 18.53% 18.27% 18.00%

r −14.5 2.07% 1.88% 1.67% 1.00%

σr 4.91% 5.11% 5.30% 5.70%

ep 5.73% 5.58% 5.47% 6.00%

ρ(x,R) 0.21 0.22 0.22 0.10

Shrp 0.30 0.30 0.30 0.33

qs 23.84 25.54 27.41

σqs 5.17 5.46 5.78

R 7.92% 7.57% 7.23%

σR 19.12% 18.81% 18.51%

r −15.0 1.26% 1.08% 0.88%

σr 5.22% 5.44% 5.68%

ep 6.66% 6.49% 6.35%

ρ(x,R) 0.21 0.21 0.22

Shrp 0.35 0.34 0.34

for the theory. Indeed, a property of simultaneous explanation of diverse phenom-
ena by a single model rather than a specialized model for each phenomenon, is
a crucial property any good theory of market volatility must have. However, our
deeper conclusion is the results in Table 4 are due to two key factors: intensity of
fat tails and asymmetry. We noted the evidence regarding asymmetry. We add the
well documented fact that the distribution of asset returns exhibit fat tails (e.g. see
Fame, 1965; Shiller, 1981). It is natural to ask where these tails come from. Our
theory proposes that these fat tails in returns come from fat tails in the probability
models of agents’ beliefs.

We do not propose that the exact values of a or b have particular significance.
Indeed, since λx

g <0, λz
g >0 multiply η j

t+1(g
j
t ) they also measure intensity, there is

some substitution between (λx
g , λz

g) and b. Hence, there is a manifold of parameter
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values for which the model simulations would approximate the empirical record.
We used specific values for λx

g <0, λz
g >0 and then found values of (a, b) to match

the data. Other parameter configurations would arrive at similar results but these
economies are qualitatively similar, leading to common qualitative results. The the-
oretical conclusion are general for all models that match the data and consist of
three parts:

1. Asset pricing is a non stationary process reflecting dynamic changes in our econ-
omy. The true underlying process is not known, giving rise to a wide diversity
of beliefs about profitability of investments. This diversity is the main force for
propagating volatility.

2. Thefirst factorofvolatility is thehigh intensityof fat tailsof theagents’conditional
densities: it is the crucial force which generates volatility and low riskless rate.

3. The second component of market volatility is asymmetry in the belief densities
giving rise to markets in which the frequency of bear states is higher than 50%.

We also add that we arrived at our conclusions without specifying the formal
subjective belief formation models of the agents. The RB rationality principle is
central in two ways. First, it provides the restrictions on the belief parameters. Sec-
ond, it implies that asymmetry in frequency of bear or bull states is compensated
by asymmetry in the size of the positive and negative fat tails of the belief densities.
These factors turned out to be important for the way in which our model works.
The available empirical evidence supports this asymmetry.

5.4 Why does the RBE resolve the equity premium puzzle?

Risk premia are compensations for risk perception by risk averse agents. In most
single agent models, the volatility of aggregate consumption is exogenously set.
In such models the market portfolio is identified with a security whose payoff is
aggregate consumption. The Equity Premium Puzzle is an observation that the small
volatility of aggregate consumption growth cannot justify a large equity premium.
Our theory of risk premia takes a very different approach.

Heterogenous beliefs cause diverse individual consumption growth rates even
if aggregate consumption is exogenous, which is the case in our model. Hence,
individual consumption growth rates need not equal the aggregate rate. Since the
agents’ beliefs are as essential to them as the stochastic aggregate growth rate, they
do not seek to own a portfolio whose payoff is aggregate consumption. Moreover,
they disagree on the riskiness of this hypothetical asset. As a result, we do not focus
on the relation between asset returns and aggregate consumption growth but instead,
on the relation between asset returns and the volatility of individual consumption
growth rates. We can thus sum up the factors contributing to the formation of risk
premia in Table 4.

(i) Low riskless rate. We have already seen that low riskless rate is a direct conse-
quence of the high volatility hence riskiness of the RBE. This added riskiness
is called “Endogenous Uncertainty.”

(ii) Higher volatility of individual consumption growth rates and correlation with
x which is less than 1. It is often argued that the Equity Premium Puzzle arises
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because the model’s consumption growth is not sufficiently volatile. Since
this puzzle does not arise in our model, the question is then how volatile do
individual consumption growth rates need to be in order to generate an equity
premium of 6% and a riskless rate of 1%? The answer is: not very much. When
a=−0.20 and b=−15.00 as in Table 4 we find that although σx =0.03256,
the standard deviation of individual consumption growth rates is only 0.039
(i.e. 3.9%) and the correlation between individual consumption growth rate
and x is only 0.83 (compared to 1.00 in a representative household model).
Both figures are compatible with survey data showing individual consumption
growth are more volatile than the aggregate.

6 Characteristics of volatility II: predictability of returns
and stochastic volatility

We turn now to other dimensions of asset price dynamics, aiming to compare predic-
tions of our theory with the empirical evidence. We study the predictability of stock
returns and stochastic volatility, or GARCH, properties of stock prices and returns.
Results reported were computed for a sample of 20,000 data points generated by
Monte Carlo simulation of the model with a=−0.20 and b=−15.00 in Table 4.

6.1 Predictability of stock returns

The problem of predictability of risky returns generated an extensive literature in
empirical finance (e.g. Fame and French, 1988a, 1998b; Poterba and Summers,
1988; Campbell and Shiller, 1988; Paye and Timmermann, 2003). This debate
is contrasted with the simple theoretical observation that under risk aversion asset
prices and returns are not martingales, hence they contain a predictable component.
It appears the disagreement is not about the empirical record but about the inter-
pretation of the record and about the stability of the estimated forecasting models.
Here we focus only on the empirical record.

We examine the following: (i) Variance Ratio statistic; (ii) autocorrelation of
returns and of price/dividend ratios; (iii) regressions of cumulative returns, and
(iv) the predictive power of the dividend yield. We first introduce notation. Let

�t = log[ (q
s
t +1)ext

qs
t−1

] be the log of gross one year stock return, �k
t =
∑k−1

i=0 �t−i be

the cumulative log-return of length k from t−k +1 to t, and �k
t+k =

∑k
j=1 �t+j

be the cumulative log-return over a k-year horizon from t+1 to t+k.

6.1.1 Variance ratio test

Let the variance-ratio be V R(k)= var(	k
t )

(kvar(	t))
. As k rises it converges to one if

returns are uncorrelated. However, if returns are negatively autocorrelated at some
lags, the ratio is less than one. Our results show there exists a significant higher
order autocorrelation in stock returns hence there is a long run predictability which
is consistent with U.S. data on stock returns, as reported in Poterba and Summers
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Figure 3. Variance ratios

Table 5. Variance ratios for NYSE 1926–1985

k 1 2 3 4 5 6 7 8 9 10

V R(k) 1.00 0.85 0.73 0.64 0.57 0.51 0.46 0.41 0.38 0.34

U.S. 1.00 0.96 0.84 0.75 0.64 0.52 0.40 0.35 — —

(1988). In Figure 3 we present a plot of the variance ratios computed from our
model. For k >1 the ratio is less than 1 and declines with k.

In Table 5 we report the computed values of the ratios for k = 1,2, . . . ,10
and compare them with ratios computed for U.S. stocks by Poterba and Summers
((1988), Table 2, line 3) for k=1,2, . . . ,8. Our model’s prediction is very close to
the U.S. empirical record.

6.1.2 The autocorrelation of log-returns and price-dividend ratios

In Table 6 we report the autocorrelation function of log annual returns. Our model
predicts negatively autocorrelated returns at all lags. This implies a long horizon
mean reversion of the kind documented by Poterba and Summers (1988), Fame and
French (1998a) and Campbell and Shiller (1988). Thus, apart from the very short
returns which exhibit positive autocorrelation, the model reproduces the empirical
record reasonably well.

Table 6. Autocorrelation of log-returns

corr(	t, 	t−i) Model Empirical record

i=1 −0.154 0.070

i=2 −0.094 −0.170

i=3 −0.069 −0.050

i=4 −0.035 −0.110

i=5 −0.040 −0.040
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In Table 7 we report the autocorrelation function of the price-dividend ratio.
The table shows the model generates a highly autocorrelated price/dividend ratio
which matches reasonably well the behavior observed in the U.S. stock market
data. The empirical record in Tables 6 and 7 is for NYSE data covering the period
1926–1995 as reported in Barberis et al. (2001).

Table 7. Autocorrelation of price-dividend ratio

corr(qs
t , qs

t−i) Model Empirical record

i=1 0.695 0.700

i=2 0.485 0.500

i=3 0.336 0.450

i=4 0.232 0.430

i=5 0.149 0.400

6.1.3 Mean reversion of log-returns

Mean reversion of stock returns was studied under several models. We compare our
results with the results of Fama and French (1988a). Thus, consider the regression
model

�k
t+k =αk + δk�k

t +υt,k. (17)

The evidence suggests that stock prices have a random-walk and a stationary
component (see Fama and French, 1988a), depending upon the horizon k. If there
was no stationary component the slopes δk in (17) would be 0 for all k. If there
was no random-walk component the slopes would approach −0.5 for large values
of k. When prices have both a random walk and a slowly decaying stationary com-
ponents, the slopes δk in (17) should form a U-shaped pattern, starting around 0
for short horizons, becoming more negative as k increases, and then moving back
to 0 as the random walk component begins to dominate at very long horizons. Our
model produces exactly this pattern which is reported in Figure 4.

Figure 4. Properties of returns from regression (17)
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6.1.4 Dividend yield as a predictor of future stock returns

The papers cited above show that the price/dividend ratio is the best explanatory
variable of long returns. To test this fact in our model we consider the following
regression model

�k
t+k = ζk +χk(Dt/q̃s

t−1)+ϑt,k. (18)

Fama and French (1988b) report that the ability of the dividend yield to fore-
cast stock returns, measured by regression coefficient R2 of (18), increases with the
return horizon. We find that our model captures the main features of the empirical
evidence and we report it in Table 8.

Table 8. The behavior of the regression slopes in (18)

Time horizon Model Empirical record

k χk R2 χk R2

1 5.03 0.08 5.32 0.07

2 8.66 0.14 9.08 0.11

3 11.16 0.18 11.73 0.15

4 13.10 0.21 13.44 0.17

To conclude the discussion of predictability, we observe that the empirical evi-
dence reported by Fama and French (1998a, b) Campbell and Shiller (1988), Poterba
and Summers (1998), and others is consistent with asset price theories in which
time-varying expected returns generate predictable, mean-reverting components
of prices (see Summers, 1986). The important question left unresolved by these
papers is what drives the predictability of returns implied by such mean-reverting
components of prices? Part of the answer is the persistence of the dividend growth
rate via the equilibrium map (6). Our theory offers a second and stronger persistent
mechanism which is also seen in (6). It shows these results are primarily driven
by the dynamics of market state of beliefs which exhibit correlation across agents
and persistence over time. Agents go through bull and bear states causing their per-
ception of risk to change and expected returns to vary over time. Equilibrium asset
prices depend upon states of belief which then exhibit memory and mean reversion.
Hence both prices and returns exhibit these same properties.

6.2 GARCH behavior of the price-dividend ratio and of the risky returns

Stochastic volatility in asset prices and returns is well documented (e.g. Bollerslev,
Engle and Nelson, 1994; Brock and LeBaron, 1996). In partial equilibrium finance
it is virtually standard to model asset prices by stochastic differential equations,
assuming an exogenously driven stochastic volatility. But where does stochastic
volatility come from? Dividends certainly do not exhibit stochastic volatility. One
of the most important implication of our theory is that it explains why asset prices
and returns exhibit stochastic volatility. We start by presenting in Figures 5 and
6 the results of simulated 500 observations: in Figure 5 we report price/dividend
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Figure 5. Log of price-divided ratios

Figure 6. Log of risky rates of return

ratios and in Figure 6 the associated risky rates of return. These figures reveal time
varying volatility reflected in time variability of the variance of prices and returns.
However, GARCH behavior is more subtle than just volatility clustering; it requires
volatility to be persistent and this requires a formal test.

To formally test the GARCH property of the price/dividend ratio and of the
risky returns we used the 20,000 simulated observations discussed in the previous
section. Using these data we estimated the following econometric model of the
dynamics of the log of the price/dividend ratio

log(qs
t )=κq +µq log(qs

t−1)+ ς
q
t

ςq
t ∼N(0, hq

t )
h

q
t = ξq

0 + ξq
1(ςq

t−1)
2 +νq

1hq
t−1. (19)

Since the price dividend ratio is postulated to be an AR(1) process, the process
in (19) is GARCH(1,1). Similarly, for the risky rates of return we postulated the
econometric model

�s
t =κ	 +µ	 log(qs

t )+ ς	
t

ς	
t ∼N(0, h	

t )
h

	
t = ξ

	
0 + ξ

	
1(ς	

t−1)
2 +ν

	
1h

	
t−1. (20)
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For a specification of (19) and (20) we have also tested ARCH(1) and GARCH
(2,1) but have concluded that the proposed GARCH(1,1) as in (19)–(20), describes
best the behavior of the data over time. Due to the large sample we ignore stan-
dard error and report our model implies that the estimated model for the log of the
price-dividend ratio satisfies the GARCH(1,1) specification

log(qs
t )=0.99001+0.69384 log(qs

t−1)+ ςqt

ς
q
t ∼N(0, h

q
t )

h
q
t =0.00592+0.02370(ςq

t−1)
2 +0.73920hq

t−1, R2 =0.481.

For the risky rates of return the estimated model satisfies the GARCH(1,1)
specification

�t =1.13561−0.33355 log(qs
t )+ ς

	
t

ς
	
t ∼N(0, h

	
t )

h
	
t =0.00505+0.01714(ς	

t−1)
2 +0.77596h

q
t−1, R2 =0.180.

Stochastic volatility in our model is a direct consequence of the dynamics of
the market beliefs zt =(z1

t , z2
t ). It is clear that persistence of beliefs and correla-

tion across agents introduce similar patterns into prices and returns. When agents
disagree (i.e z1

t z2
t <0) they offset the demands of each other and as that pattern

persists, prices do not need to change by very much for markets to clear. During
such periods prices exhibit low volatility hence persistence of belief states induce
persistence of low volatility. When agents agree (i.e z1

t z2
t >0) they compete for the

same assets and prices are determined by difference in belief levels. Changes in
the levels of bull or bear states (i.e. values of (g1

t , g2
t )) generate high volatility in

asset prices and returns. Persistence of beliefs cause such high volatility regimes
to exhibit persistence. Market volatility is then time dependent. It changes with the
market state of beliefs and hence it has a predictable component as in (19)–(20).
These results extend the earlier and similar result in Kurz and Motolese (2001).

The virtue of the above argument is that it explains stochastic volatility as an
endogenous consequence of equilibrium dynamics. Some “fundamental” shocks
(i.e. an oil shock) surely cause market volatility, but it has been empirically estab-
lished that market volatility cannot be explained consistently by repeated “funda-
mental” exogenous shocks (see Pesaran and Timmermann, 1995). Our explanation
of stochastic volatility is thus consistent with the empirical evidence.

7 Concluding remarks

This paper presents a unified paradigm which proposes that market volatility is
driven primarily by market expectations. This conclusion extends our previous
work (cited earlier) on the subject. The central new development is the formal
introduction of the state of belief as a key tool of General Equilibrium analysis
and a corresponding requirement for agents to forecast the market state of belief.
Agents forecasting the state of belief of “others” is a precise mathematical structure
which embodies the Keynesian intuitive “Beauty Contest” aspect of asset pricing.
On a deeper level diverse individual forecasts of future market states of belief is
equivalent to heterogenous forecasts of future asset prices. Hence diverse price
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forecasting is the essence of our theory. In a general equilibrium context the tool
of a market state of belief is a formal method for allowing agents to be rational yet
make heterogenous price forecasts. Given the general structure of equilibria with
diverse and time dependent beliefs, we introduced the RB rationality principle and
explored the restrictions it imposes on the beliefs of the agents in the economy.

We have then constructed a simple model and tested it on all aspects of market
volatility and found the model to match well the empirical record. The structure of
the model is applicable to any phenomenon associated with market volatility since
our main results are qualitative rather than quantitative. The volatility results are
driven by two crucial characteristics of the distribution of market beliefs. These are
(i) over confidence of an agent’s forecasts described by amplification of the agent’s
probabilities which, in turn, generate densities with fat tails, and (ii) asymmetry in
the frequency of bull or bear states.

Appendixes

Appendix A: Construction of the random variables η
j
t+1(uj

t )

In the text we defined φ(uj
t )=1/(1+eb(uj

t−a)). Since computations use standard
normal variables we normalize u as follows

φ(uj
t ) =

1

1+ eb(uj
t−a)

=φ(ũj
t )=

1

1+ eb(ũj
t−a)

where b̄= bσ
uj

t
, ā=a/σ

uj
t

and ũ
j
t∼N(0,1). (A1)

A.1 The density function

The variables η
j
t+1(ũ

j
t ) are now defined by specifying their density, conditional on

ũj
t :

p(ηj
t+1|ũj

t )=

{
φ1(ũ

j
t )f(ηj

t+1) if ηj
t+1 ≥0

φ2(ũ
j
t )f(ηj

t+1) if ηj
t+1 <0

where f(ηj
t+1)= 1√

2π
e− (ηj

t+1)2

2 is the standard normal density function and

φ1(ũ
j
t )=

φ(ũj
t )

G
,φ2(ũ

j
t )=2−φ1(ũ

j
t ),G=

∫ ∞

−∞
φ(ũj

t )
1√
2π

e
(ũj

t )2

2 dũj
t .

Note that Eφ1(ũ
j
t )=Eφ2(ũ

j
t )=1, which ensures that the rationality conditions

be satisfied, i.e. let ϕ(ũ) be the empirical density of ũ then
∫ ∞

−∞
p(ηj

t+1|ũj
t )ϕ(ũj

t )dũ
j
t =f(ηj

t+1). (A2)

We need another condition to make sure that p(ηj
t+1|ũj

t ) is a density function

for all ũj
t . This requires φ2(ũ

j
t )≥0 for all ũj

t , which implies G≥1/2.
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A.2 The moments of η
j
t+1(ũ

j
t )

A direct computations of the moments of this random variable leads to

E[ηj
t+1|ũj

t ] =
φ1(ũ

j
t )√

2π

∫ ∞

0
xe− x2

2 dx+
φ2(ũ

j
t )√

2π

∫ 0

−∞
xe− x2

2 dx

=

(
φ(ũj

t )
G

−1

)
2√
2π

(A3)

E[(ηj
t+1)

2|ũj
t ] =

φ1(ũ
j
t )√

2π

∫ ∞

0
x2e

−x2
2 dx+

φ2(ũ
j
t )√

2π

∫ 0

−∞
x2e

−x2
2 dx

= φ1(ũ
j
t )0.5+φ2(ũ

j
t )0.5=1. (A4)

Since Eφ1 = Eφ2 = 1 and Eũj
t = 0 we have E[ηj

t+1] = 0,E[(ηj
t+1)

2] = 1 and

E[ηj
t+1ũ

j
t ]=

2√
2π

E[φ(ũj
t )ũ

j
t ]

G .

Note that, given (A1) and the parameter choice b< 0, E[ηj
t+1|ũj

t ] defined in

(A3) is a monotone increasing function in ũj
t . It is straightforward to show that

φ(ũj
t )>G for any ũ

j
t >a and φ(ũj

t )<G for any ũj
t <a hence E[ηj

t+1|ũj
t ]>0 if

ũj
t >a and E[ηj

t+1|ũj
t ]<0 if ũj

t <a.

We now reformulate the random variable ηj
t+1(u

j
t ) as used in the computational

model. Let

µ(ũj
t )≡E[ηj

t+1|ũj
t ],

s(ũj
t )≡

√
E[(ηj

t+1)
2|ũj

t ]− (E[ηj
t+1|ũj

t ])2, ν
j
t+1 ≡ η

j
t+1 −µ(ũj

t )

s(ũj
t )

and define

η̂j
t+1(ũ

j
t )=µ(ũj

t )+s(ũj
t )ν

j
t+1. (A5)

Appendix B: Statement of the rationality conditions

The rationality of belief principle requires that

Ψt+1(u
j
t ) =




λx

gηj
t+1(u

j
t )+ ρ̃xj

t+1
λz

gηj
t+1(u

j
t )+ ρ̃zj1

t+1
λz

gηj
t+1(u

j
t )+ ρ̃zj2

t+1



 has the same joint empirical distribution as

ρt+1 =




ρx
t+1

ρz1

t+1
ρz2

t+1



 (B1)

when
{

u
j
t , t=1,2, . . . .

}
is considered part of the variability of the term on the left.
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To understand (B1) keep in mind the consistency conditions g
j
t =z

j
t for all t.

These are macroeconomic consistency condition (like market clearing conditions)
but they do not hold in the agent’s perception model who treats the z

j
t as exogenous

variables. In the agent’s perception model there is nothing to require the covari-
ance between gj and any state variable to be the same as the covariance implied
by (7a)–(7c) between zj and that variable. The presence of η

j
t+1(u

j
t ) in all equa-

tions of (11a)–(11c) generates perceived covariance between gj and observed state
variables that may not be in (7a)–(7c). Any covariance between an agent’s own gj

and other variables in the economy are strictly in the mind of the agent and no
rationality conditions are imposed on them.

We show first that (B1) fully pins down the covariance matrix Ω
j
ρρ of the three

dimensional vector ρ̃j
t+1 in (11a)–(11d). We write Ωj

ρρ =Ωρρ all j because of sym-
metry. To directly demonstrate why Ωρρ is pinned down by (B1), use it to rewrite
(9a) in the form

wj
t+1 =Awt +λgηj

t+1(u
j
t )+ ρ̃j

t+1, λg =(λx
g , λz

g, λz
g)′, and (a, b) given.

(B2)

Now define σ2
η =E[(ηj

t+1(u
j
t ))

2] and recall that V is the covariance matrix of
wt according to the empirical distribution defined in (9). Computing the covari-
ance matrix in (B2) and equating the computed value to V leads to the equality
V =AV A′ +λg(λg)′σ2

η +Ωρρ which means that

Ωρρ =V −AV A′ −λg(λg)′σ2
η . (B3)

For any (a, b, λg), magnitudes on the right of (B3) are known and this pins down
the matrix Ωρρ.

The perception model of an agent includes the transition equation for gj
t+1 in

(5) and this implies that the agent’s model specifies a full joint distribution of four
variables: three observables wt and g

j
t . Hence, we specify a 4×4 covariance matrix

Ω of the innovations which is written as.

Ω =
(

Ωρρ, Ωwg

Ωwg, σ2
g

)

where Ωwg = [Cov(ρ̃x
t+1, ρ̃

gj

t+1),Cov(ρ̃z1

t+1, ρ̃
gj

t+1),Cov(ρ̃z2

t+1, ρ̃
gj

t+1)] is a 3×1
covariance vector. In addition we now define the following

rj ≡Cov(w,gj) - unconditional covariance vector between gj and the three
observables w;
dj =(λzj

x ,0,0)- vector of w parameters in the gj equation (5).

By symmetry, both terms are the same for all j. To compute r we multiply (5) by
the first three equations in (11a)–(11c) and compute the three equations to define
the unconditional covariance as

r =λzAr +AV d+λzλgrηuσu +Ωwg
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hence the 3×1 covariance vector of the innovations of the agent’s belief must satisfy

Ωwg = r −λzAr −AV d+λzλgrηuσu. (B4)

rηu =E[ηt+1(u)g
σu

]=E[ηt+1(u)u
σu

]. By (B4) Ωwg is pinned down when we specify

r ≡Cov(w,gj).A simpler approach is to treat (B4) as a system of 3 equations in the
6 unknowns (r,Ωxg). For now we have only 3 restrictions in (B4). We now show
that our theory provides three additional restrictions to determined (r,Ωxg). To
explore the added implied restrictions we first utilize the definition of anonymity:

Covariance implications of anonymity. Anonymity requires the idiosyncratic com-
ponent of an agent’s belief not to be correlated with market beliefs. It implies that
in a symmetric equilibrium the unconditional correlation between an agent’s state
of belief and the belief of “others’ is the same across agents. We translate this to
require that

Ωz1gj = Cov(ρ̃z1

t+1, ρ̃
gj

t+1)=0 (B5a)

Ωz2gj = Cov(ρ̃z2

t+1, ρ̃
gj

t+1)=0. (B5b)

(B5a)–(B5b) restricts the vector r to satisfy (Ωwg)2 =(Ωwg)3 =0.
We need one more restriction and we show that it is deduced from the ratio-

nality condition requiring Ψt+1(u
j
t ) to be serially uncorrelated. We claim that for

Ψt+1(u
j
t ) to exhibit no serial correlation it is sufficient that it is uncorrelated with

date t public information. To see why, recall Ψt+1(u
j
t )=wt+1 −Awt and suppose

Ψt+1(u
j
t ) is uncorrelated with observables up to date t. Hence

E[Ψt+1(u
j
t )Ψt(u

j
t−1)] = E[Ψt+1(u

j
t )(wt −Awt−1)]

= E[Ψt+1(u
j
t )wt]−E[Ψt+1(u

j
t )Awt−1]=0.

To ensure these conclusions hold we put restrictions on r which imply that u
j
t

are uncorrelated with any wt−i, for all i≥ 0. Recall first that by the definition of

the filter uj
t we have

u
j
t ≡u(gj

t )=gj
t − r′V −1wt.

The requirement Cov(uj
t ,wt)=0 is a simple implication of the filter since

r
j
t ≡Cov(wt, g

j
t ). To examine the requirement Cov(uj

t+1,wt)=0, recall that the
agent’s model (11a)–(11d) specifies

wj
t+1 =Awt +λgηj

t+1(ut)+ ρ̃j
t+1.

Hence we have

u
j
t+1 ≡ u(gj

t+1)=g
j
t+1 − r′V −1w

j
t+1

= λzg
j
t +d′wt + ρ̃

gj

t+1 − r′V −1(Awt +λgη
j
t+1(ut)+ ρ̃

j
t+1).
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Consequently, the condition Cov(uj
t+1,wt)≡E[uj

t+1w
′
t]=0 would be satis-

fied if

λzr
′ +d′V − r′V −1AV =0. (B6)

Although (B6) is a system of 3 equations, we now show that (B6) is actually
the last restriction implied by the rationality of belief conditions. To see this fact
note that since V is an invertible matrix, the equations (B6) can be solved for the
covariance vector r, implying

[A′ −λzI]V −1r′ =d. (B7)

We study only the case λz1 =λz2 =λz . In this case the matrix A′ takes the
following form

A′ =




λx, λz

x, λz
x

0, λz ,0
0,0, λz





hence [A′ −λzI] is singular with the last two rows being zero. This is compati-
ble with the fact that d=(λz

x,0,0) hence, the system (B7) consists of only one
restriction.

We can conclude that (B4) together with the conditions (Ωwg)2 =(Ωwg)3 =0
and (B7) completely determine (r, Ωwg). Finally, when r is known, σ̃2

gj is pinned

down as follows. Since we know that σ2
uj =var(gj)− r′V −1r, we use the condition

var(gj)=var(zj) to compute σ̃2
gj =(1−λ2

z)var(gj)−d′V d−2λzd
′r.

Appendix C: The computational model

This appendix explores several computational issues which have not been discussed
in the text. We want to provide here a complete description of the computed equi-
librium conditions.

C.1 Equilibrium set and indeterminacy in the riskless economy

To ensure the existence of bounded solutions and hence exclude explosive solutions
which violate transversality we impose quadratic utility penalties on deviation of as-
set holdings away from steady state. The penalty functions are: D1−γ

t
τs
2 (θj

t −0.5)2

for stock holdings and D−1−γ
t

τB
2 (Bj

t )2 for bond holdings with τs = τB =0.005.
The penalty functions are then subtracted from utility.

Indeterminacy of the optimal portfolio allocation at the riskless steady state is
also a problem for perturbation models with a number of financial assets greater
or equal to two. This is due to the fact that financial assets exhibit the same rate
of return in the riskless economy hence are perfect substitutes. Penalty functions
ensure the steady state solution θj

t =0.5 and Bj
t =0 is unique.
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C.2 The revised optimization problem and the system of Euler equations

Given the above, the optimization problem of agent j is then reformulated as fol-
lows:

subject to:

Max
(Cj ,θj ,Bj)

EQj

[ ∞∑
t=0

βt 1
1−γ

(Cj
t )1−γ −D1−γ

t

τs

2
(θj

t −0.5)2 −D−1−γ
t

τB

2
(Bj

t )2|Ht, g
j
t

]

subject to:
Cj

t + q̃s
t θ

j
t + qb

tB
j
t =Λj

t +(q̃s
t +Dt)θ

j
t−1 +Bj

t−1

The Euler equations are:

(Cj
t )−γ q̃s

t +D
1−γ
t τs(θ

j
t −0.5)=βE

Qj
t
[(Cj

t+1)
−γ(q̃s

t+1 +Dt+1)|Ht, g
j
t ]

(Cj
t )−γqb

t +D−γ−1
t τB(Bj

t )=βE
Qj

t
[(Cj

t+1)
−γ |Ht, g

j
t ].

After normalization the budget constraint becomes:

cj
t + qs

t θ
j
t + qb

t b
j
t =ω +(qs

t +1)θj
t−1 + bj

t−1e
−xt

and the Euler equations become:

(cj
t )

−γqs
t + τs(θ

j
t −0.5)=βE

Qj
t
[(cj

t+1)
−γ(1+ qs

t+1)e
(1−γ)xt+1 |Ht, g

j
t ]

(cj
t )

−γqb
t + τB(bj

t )=βE
Qj

t
[(cj

t+1)
−γe−γxt+1 |Ht, g

j
t ].

C.3 The riskless steady state

In the riskless steady state quantities are as follows:

b1∗ = b2∗ =0, θ1∗ =θ2∗ =0.5, c1∗ = c2∗ =ω +0.5.

And prices are:

qs =
βex∗(1−γ)

1−βex∗(1−γ)
, qb =βe−γx∗

.

C.4 The perturbation structure

We specify here how we formulated the perturbation model. Let ε be the perturba-
tion variable then the perturbation structure of the agent’s perception model is as
follows:

xj
t+1 =(1−λx)x∗ +λxxt +λx

g η̂j
t+1(ũ

j
t , ε)+ερ̃xj

t+1

z
j1
t+1 =λzz

1
t +λz

x(xt −x∗)+λz
g η̂

j
t+1(ũ

j
t , ε)+ερ̃zj1

t+1

zj2
t+1 =λzz

2
t +λz

x(xt −x∗)+λz
g η̂j

t+1(ũ
j
t , ε)+ερ̃zj2

t+1

gj
t+1 =λzg

j
t +λz

x(xt −x∗)+ερ̃gj

t+1

where η̂j
t+1(ũ

j
t , ε)=µ(ũj

t )+εs(ũj
t )ν

j
t+1 as defined in (A3)–(A5) of Appendix A.
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