STAT 375 Homework 6 Solutions

Yash Deshpande

Problem (1)

The measure is well defined since we have © = L + 41 where L is the Laplacian of the 2-D grid and
I is the identity matrix. Thus, Apin(©) = 4 and it is positive definite.

Problem (2)

The code for generating the samples and running the appropriate regression is included below:

1 clear all

2 k = 10;

3 p = k"2;

4

5 %construct theta for the 2d grid

6 theta = zeros(p);

7 deg = zeros(p, 1);

8 for a = 1:k

9 for b = 1:k

10 if(a "= k)

11 theta (kx (a—1) +b, kxatb) = —1;
12 end

13 if(b "= k)

14 theta (k* (a—1) +b, k*(a—1)+b+1l) = —1;
15 end

16 end

17 end

18 theta = theta +theta';
19

20 for iter = l:p
21 deg (iter) = sum(theta(iter, :) 7 =0);
22 end

23 thetadiag = theta;
24 theta = thetat+diag(deg+4);
25

26 [U, D] = eig(theta);

27 Dinv = diag(sqrt(l./diag(D)));

28

29

30 nvals = [1000 1500];

31 lambdavals = [0.4];

32 err = zeros(length(nvals), length(lambdavals));
33 thetahatall = cell(length(nvals), length (lambdavals));
34 for iter2 = l:length(nvals)

35 n = nvals(iter2)

36

37 %generate samples from the distribution

38 Z = randn(p, n);

39 X = U#Dinv«*7Z;

40

a1

42 tol = le—3;

43

44 for iterl = l:length(lambdavals)

45 lambda=lambdavals (iterl) /sqgrt (n)

46
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end

end

thetahat= zeros(p);

for iter = 1l:p
Xother = X([1l: (iter—1), (iter+l):p]l, :)';
xi = X(iter, :)';

cvx-begin quiet
variable beta (p—1)
minimize (quad-form(beta, Xother'xXother)/ (2xnxlambda) — ...
2xx1i'+xXotherxbeta/ (2+n*lambda) +norm(beta, 1))

$minimize norm(xi — Xotherxbeta, 2) + 2xlambdaxnorm(beta, 1)
cvx_end
thetahat (iter, :) = [beta(l:(iter—1))"' 0 beta((iter): (p—1))"'];

norm (beta)

end
thetahat = abs(thetahat)>=tolx*ones(p);
thetahat = 0.5+ (thetahat + thetahat') >0;
thetahatall{iter2, iterl} = thetahat;

figure (iterl)

spy (thetahat)
err (iter2, iterl) = sum(sum((thetadiag & “thetahat) | ("thetadiag &thetahat)));

save ('hwodataextra.mat');

The results of the analysis are as follow. Let A\, = % We plot in 1 the symmetric set difference versus

n, the number of samples, for different values of A\g. We choose Ay = 0.05,0.1,0.2,0.4 (as opposed the
the values originally given in the homework).
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Figure 1: Symmetric set difference versus number of samples

Problem (3)

Consistency of the edge set is obtained by making (7, j) an edge in FE if at least one of i and 7 yield the
other as a neighbor. The sparsity pattern of © (only the off diagonals) is given in Fig. 2. The recovered
edge set is shown in Fig. 3. As we can see, the recovered structure becomes better with increased
samples.
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Figure 2: Sparsity pattern (off diagonal) for ©
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Figure 3: The recovery becomes progressively better with increasing samples. The above recovery is for
n = 30,60, 120, 240, 1000, 1500 at Ao = 0.4



