STAT 375 Homework 4 Solutions

Problem (1)

The naive mean field energy is given by
Farr(b) = Ep log tror + H (D)

where the belief b factorizes into a product of beliefs over the individual vertices. For the homogenous
Ising model over the torus, we get:

Farr(d) =Y By (Ouzi) + Y By, (exizy) + > H(b)

ieV] (i,4)EE; %
With the restriction that the belief is independent of the vertex the above expression simplifies to:
Farr(by) = 0,12Ey, () + 40,12 (By, (2))° + 12 (b,)

where h(b,) := —b,(+1)logb,(+1) — b,(—1)logb,(—1) is the binary entropy function. The mean field
free energy obtained is plotted below:
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Figure 1: The naive mean field energy as a function of b,(+1) — b,(—1)

Problem (2)

The explicit expression for the Bethe free energy is given by:

F(b)= Y By, (Oexiz;)+ > By (Bpa;) + > (1—deg(i)H(b;)+ Y H(bij)
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Figure 2: b}(+1) versus 6, for the naive mean field and Bethe free energy approximations

If the belief is independent of the vertex, the above expression simplifies to:
F(b) = 20%0.Ey, (z122) + I°0,Es, (x1) — 31°H (b,) + 20> H (b.)
where H(-) denotes the entropy of the argument distribution. Reparametrizing the problem with b, =

D1 D2 P1— P2 . . .
and b, = ields the following expression for the free energy:
[1 - pJ C pr—p2 1-2p1+ PJ Y & Xp &Y

F(b) = 21260,(1 — 4p; + 4po) + 126, (2p1 — 1) + —31%(g(p1) + g(1 — p1))
+ 212 (g(p2) + 29(p1 — p2) + g(1 — 2p1 + p2))

where g(x) := —xlog(z). The above function can be maximized to obtain the optimal free energy.

For proving the existence of multiple stationary points, we use the log-likelihood representation of the

BP update equations. Let [, = % log (ZEE;) denote the message (in the log-likelihood domain) along an

edge. By symmetry, the messages are the same for all edges. Let [, denote marginal b, in log-likelihood
domain. Then, at a stationary point we have:

l. = 6, + 3arctanh(tanh(d,) tanh(l.))
l, = 0, + 4 arctanh(tanh(f. ) tanh(l.))

In particular, we can write the first equation as:

tanh (le _3 0”) = tanh(f.) tanh(l)

We plot the left and right hand sides of the above equation with . = 1 in the plot in figure 4, demon-
strating the existence of two stationary points.
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Figure 3: Optimal free energy versus 6. for the naive mean field and Bethe free energy approximations
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Figure 4: The points of intersection represent fixed points for the BP iteration



