Stat 375 Inference in Graphical Models

Homework 3

Due - 4/23/2012

Please return this homework in class or in the bin in Packard second floor, or by e-mail to Yiqun Liu (liuyiqun1124@gmail.com).

For $\ell \in \mathbb{N}$, let $G_{\ell} = (V_{\ell}, E_{\ell})$ be an $\ell \times \ell$ two-dimensional grid¹. We consider an Ising model on G_{ℓ} with parameters $\theta = \{\theta_{ij}, \theta_i : (i, j) \in E, i \in V_{\ell}\}$. This is the probability distribution over $x \in \{+1, -1\}^{V_{\ell}}$

$$\mu(x) = \frac{1}{Z_G} \exp\left\{ \sum_{(i,j)\in E_\ell} \theta_{ij} x_i x_j + \sum_{i\in V_\ell} \theta_i x_i \right\}$$
 (1)

- (1) Write the belief propagation (BP) update equations for this model.
- (2) Write a program that implements these update. You are requested to return a printout of the code (Matlab, R, C, C++, Java, ..., are accepted).
- (3) Consider the case $\ell = 10$ (and hence n = 100 nodes). For each $\beta \in \{0.2, 0.4, \dots, 2.8, 3.0\}$, generate an instance by drawing θ_i, θ_{ij} uniformly random in $[0, \beta]$. Run the BP iteration and monitor convergence by computing the quantity

$$\Delta(t) \equiv \frac{1}{|\vec{E}_{\ell}|} \sum_{(i,j) \in \vec{E}_{\ell}} \left| \nu_{i \to j}^{(t+1)}(+1) - \nu_{i \to j}^{(t+1)}(+1) \right|. \tag{2}$$

Here \vec{E}_{ℓ} denotes the set of directed edges in G_{ℓ} , in particular $|\vec{E}_{\ell}| = 2 |E_{\ell}|$.

Plot $\Delta(t=40)$ and $\Delta(t=80)$ versus β , for the random instances generated with $\beta \in \{0.2, 0.4, \dots, 2.8, 3.0\}$. Comment on the results.

(4) Repeat the calculation at the precious point, with now θ_i, θ_{ij} uniformly random in $[-\beta, +\beta]$, with $\beta \in \{0.2, 0.4, \dots, 2.8, 3.0\}$. Comment on the results.