STATS 375: Homework 2 Solutions

Problem (1)

As before, we assume that an empty set is an independent set, by definition. An independent set not containing the root \varnothing is formed by choosing an independent set from each subtree rooted at one of the children of \varnothing . Also, an independent set containing the root \varnothing cannot have any of the children of \varnothing and thus is formed of \varnothing in addition to independent sets not containing the root in the subtrees of the children of \varnothing . This yields the following recursion equations:

$$Z_{l+1}(0) = (Z_l(0) + Z_l(1))^k$$

$$Z_{l+1}(1) = Z_l(0)^k$$
with $Z_0(0) = Z_0(1) = 1$

Problem (2)

We have the following immediately:

$$p_{l+1} = \frac{Z_{l+1}(1)}{Z_{l+1}(0) + Z_{l+1}(1)}$$

$$= \frac{Z_l(0)^k}{(Z_l(0) + Z_l(1))^k + Z_l(0)^k}$$

$$= \frac{1}{1 + (1 - p_l)^{-k}}$$

Problem(3)

The following code plots p_l for the relevant values of k and l:

```
k_vals = [1 2 3 10];
iters = length(k_vals);
l_vals = 1:50;

p = zeros(iters, 1+length(l_vals));
p(:, 1) = 0.5*ones(iters, 1); %initialization

spec = {'b' 'g' 'r' 'k'};

figure(1)
```

```
hold on
for i = 1:iters
    k = k_vals(i);
    for l = 1:length(l_vals)
        p(i, l+1) = (1-p(i, l))^k/(1+(1-p(i, l))^k);
    end
    plot([0 l_vals], p(i,:), spec{i});
end
hold off
legend('1', '2', '3', '10');
```

The plot is as follows:

The recursion converges to a fixed point for k = 1, 2, 3 but fails to (or appears to fail to) converge for k = 10.

Proof of convergence for k = 1, 2, 3

Let $f_k:[0,1]\to[0,1]$ be the mapping (as in the recursion) parametrized by k:

$$f_k(x) = \frac{(1-x)^k}{1+(1-x)^k}$$

We use Banach's fixed point theorem to prove convergence.

Theorem 1 (Banach). Let X be a complete metric space and $f: X \to X$ be a contraction mapping. Then f has a unique fixed point x^* . Also the sequence $\{x_i\}_{i=1}^{\infty}$ generated by $x_i = f(x_{i-1})$ converges to x^* .

Definition 1. Let X be a metric space and $d(\cdot,\cdot)$ be the associated metric. $f: X \to X$ is a contraction mapping with parameter β on X if $\exists 0 \leq \beta < 1$ such that:

$$\forall x_1, x_2 \in X : d(f(x_1), f(x_2)) \le \beta d(x_1, x_2)$$

In our case, the space is the interval [0,1] with the associated metric being the absolute value of the difference: $d(x_1, x_2) = |x_1 - x_2|$.

We know that a fixed point exists as the mappings f_k are continuous, decreasing and map onto [0,0.5] for all k. However, this does not guarantee that the recursion converges. To use the fixed point theorem, we prove that for k=1,2,3, f_k are contraction mappings. For this we use the following lemma:

Lemma 1. Let $f:[a,b] \to [a,b]$ be a differentiable function such that |f'(x)| is bounded uniformly by $\beta < 1$ in its domain. Then f is a contraction mapping with parameter β , the distance metric being the absolute value of the difference.

Proof. Consider $a \le x_1 < x_2 \le b$. By the intermediate value theorem, $\exists c \in [x_1, x_2]$ such that $f(x_2) - f(x_1) = f'(c)(x_2 - x_1)$. Thus $|f(x_2) - f(x_1)| = |f'(c)||(x_2 - x_1)| \le \beta |(x_2 - x_1)|$.

A little calculus shows that the maximum value of $|f'_k(x)|$ occurs at $x = 1 - \left(\frac{k-1}{k+1}\right)^{\frac{1}{k}}$, whereby we get:

$$|f'_k(x)| \le \frac{(k+1)^2}{4k} \left(\frac{k-1}{k+1}\right)^{\frac{k-1}{k}}$$

For k=2,3 this yields that f_k is indeed a contraction map by Lemma 1. Thus, by the fixed point theorem, the recursion converges to its unique fixed point. For k=1, we cannot use this directly as the maximum is at x=0 and $f'_1(0)=-1$. However this can be remedied by restricting the domain of f_1 to $[\epsilon,1]$ for some small $\epsilon>0$ whereupon it becomes a contraction map on the restricted domain since $|f'_1| \leq \frac{1}{(1+\epsilon)^2}$.

Non-convergence for k > 4

One argument for the non-convergence of the recursion for larger k is the following condition: there must exist a neighborhood around the fixed point x^* in which $|f'_k(x)| < 1$ holds. This is because the linearization of f_k around its fixed point must be a stable linear system, i.e. have eigenvalues within the unit circle. For values of k > 4, in particular for the value k = 10, this condition fails to hold.