STATS 375: Homework 2 Solutions

Problem (1)

As before, we assume that an empty set is an independent set, by definition. An independent set
not containing the root @ is formed by choosing an independent set from each subtree rooted at
one of the children of @. Also, an independent set containing the root @ cannot have any of the
children of @ and thus is formed of @ in addition to independent sets not containing the root in
the subtrees of the children of @. This yields the following recursion equations:

Z141(0) = (Z1(0) + Z;(1))*
Z11(1) = Z,(0)*
with Zo(O) = Zo(l) =1

Problem (2)
We have the following immediately:

Z141(1)
Z141(0) + Z141(1)
Z(0)F
(Z1(0) + Z,(1))k + Z;(0)*
1
1+ (1 — pl>_k

Pi+1 =

Problem(3)

The following code plots p; for the relevant values of k and I:

k_vals = [1 2 3 10];
iters = length(k_vals);
l_vals = 1:50;

p = zeros(iters, l+length(l_vals));
p(:, 1) = 0.5%ones(iters, 1); %initialization



hold on
for i = 1:iters
k = k_vals(i);
for 1 = 1:length(1_vals)
p(i, 1+1) = (1_p(i7 l))Ak/(l—l-(l—p(l, 1))Ak)7
end
plot ([0 l_vals], p(i,:), spec{i});
end
hold off
legend (17, 27, 73’7, '107);

The plot is as follows:
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The recursion converges to a fixed point for k = 1,2, 3 but fails to (or appears to fail to) converge
for k£ = 10.

Proof of convergence for £ =1,2,3
Let fi : [0,1] — [0,1] be the mapping (as in the recursion) parametrized by k:

(1—=)"

fre(z) = m

We use Banach’s fixed point theorem to prove convergence.

Theorem 1 (Banach). Let X be a complete metric space and f : X — X be a contraction mapping.
Then f has a unique fized point x*. Also the sequence {x;}5°, generated by x; = f(x;—1) converges
to x*.

Definition 1. Let X be a metric space and d(-,-) be the associated metric. f : X — X is a
contraction mapping with parameter 5 on X if 30 < 8 < 1 such that:

Vxl,l’g e X: d(f(fl,’l), f(xz)) < Bd(xl,xg)



In our case, the space is the interval [0, 1] with the associated metric being the absolute value
of the difference: d(x1,x2) = |z1 — x2|.

We know that a fixed point exists as the mappings fi are continuous, decreasing and map onto
[0,0.5] for all k. However, this does not guarantee that the recursion converges. To use the fixed
point theorem, we prove that for & = 1,2,3, fi are contraction mappings. For this we use the
following lemma:

Lemma 1. Let f : [a,b] — [a,b] be a differentiable function such that |f'(z)| is bounded uniformly
by B < 1 in its domain. Then f is a contraction mapping with parameter 3, the distance metric
being the absolute value of the difference.

Proof. Consider a < z1 < z3 < b. By the intermediate value theorem, 3¢ € [z1,x2] such that

f(x2) = f(z1) = f'(c)(z2 — 21). Thus |f(22) — f(z1)| = [f'(O)|[(v2 — z1)| < Bl(z2 — 21)|. O

Sl

A little calculus shows that the maximum value of | f'x(x)| occurs at x =1 — (%) , whereby

we get:

i) < B <k—1>k:

4k k+1

For k = 2,3 this yields that f; is indeed a contraction map by Lemma 1. Thus, by the fixed

point theorem, the recursion converges to its unique fixed point. For £ = 1, we cannot use this

directly as the maximum is at = 0 and f’1(0) = —1. However this can be remedied by restricting

the domain of f; to [e, 1] for some small € > 0 whereupon it becomes a contraction map on the
1

restricted domain since |f'1| < e

Non-convergence for k > 4

One argument for the non-convergence of the recursion for larger k is the following condition: there
must exist a neighborhood around the fixed point z* in which |f’x(z)| < 1 holds. This is because
the linearization of f; around its fixed point must be a stable linear system, i.e. have eigenvalues
within the unit circle. For values of & > 4, in particular for the value k£ = 10, this condition fails to
hold.



