
STAT375: Homework 1 Solutions

Problem (1)

We define the following functions for all (i, j) ∈ E:

ψij(xi, xj) =

{
0 if xi = xj = 1

1 otherwise

We then have:

µG(x) =
1

Z(G)

∏
(i,j)∈E

ψij(xi, xj)

since the product of the ψij ’s yields the indicator function I(S ∈ IS(G)) for the subset S encoded
by x. Thus µG(x) is a pairwise graphical model.

Problem (2)

We assume throughout that the empty set is, by definition, an independent set. This is merely
for convenience of representation. Now Z(Ln) is the number of independent sets in the graph Ln.
Let Z(Ln) = An + Bn where An (Bn) denotes the number of independent sets in Ln containing
(excluding) the vertex n. We can then write the following recurrences for An and Bn:

An = Bn−1

Bn = An−1 +Bn−1

The first recurrence follows from the fact that if S ⊆ [n] containing n is an independent set of Ln,
then S\{n} is an independent set of Ln−1. The second, similarly, is because an independent set of
Ln not containing vertex n is basically an independent set of Ln−1.

Defining Xn = [An Bn]T , we can write the recurrence relation as:

Xn = PXn−1

where P =

[
0 1
1 1

]
and X1 =

[
1
1

]
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This yields:

Xn = Pn−1X1

As Z(Ln) = [1 1]TXn, diagonalizing P yields the following closed form solution:

Z(Ln) = c1

(
1 +
√

5

2

)n−1

+ c2

(
1−
√

5

2

)n−1

where c1 = 1 +
2√
5
, c2 = 1− 2√
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Another solution is to write a second order recurrence relation for Z(Ln) (using similar arguments
as above):

Z(Ln) = Z(Ln−1) + Z(Ln−2)

Z(L0) = 1, Z(L1) = 2

Problem (3)

For i ∈ {1, n}, i.e. i being an end vertex, the number of independent sets containing i is simply
Z(Ln−2). If i is an intermediate vertex, then an independent set containing i is formed by choosing
an independent set from [i−2] and an independent set from [n]\[i+1]. Thus we obtain the marginal
as:

µLn(xi = 1) =

{
Z(Ln−2)
Z(Ln)

if i ∈ {1, n}
Z(Li−2)Z(Ln−i−1)

Z(Ln)
otherwise

The following MATLAB code produces the required values and plots:

n = 11 ;
n range = 0 : n ;
c1 = 1+2/sqrt ( 5 ) ;
c2 = 1−2/sqrt ( 5 ) ;
r1 = (1+sqrt ( 5 ) ) / 2 ;
r2 = (1−sqrt ( 5 ) ) / 2 ;

%z (1) . . . z (12) conta ins Z 0 to Z 11
z = c1∗ r1 . ˆ ( n range−1) + c2∗ r2 . ˆ ( n range −1);

%compute margina ls mu
mu = zeros (1 , n ) ;
mu(1) = z (end−2)/z (end ) ;
mu(n) = mu( 1 ) ;

for i = 2 : ( n−1)
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mu( i ) = z ( i −1)∗z (n−i )/ z (n+1);
end

plot ( 1 : n , mu)

The plot is as follows:
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The exponent in the numerator is constant for i = 2, . . . n − 1, hence we see a relatively flat
marginal curve in this region. The marginal increases at either end, since the end vertices impose
fewer restrictions on the inclusion of other vertices in the independent set.

Problem (4)

By the law of conditional probability, we have:

µLn(x) = µLn(x1)µLn(x2|x1)µLn(x3|x2x1) · · ·µLn(xn|x1 · · ·xn−1)

Since the inclusion of vertex i is dependent only on its neighbors, we have µLn(xi|x1 · · ·xi−1) =
µLn(xi|xi−1). This is equivalent to creating a Bayesian network by directing all the edges in Ln

towards the larger index, i.e. letting the parent π(k) of a vertex k be k − 1, k = 2, . . . n. Using
similar arguments as before, we have that:

µLn(xi = 1|xi−1) =

{
0 if xi−1 = 1
Z(Ln−i−1)
Z(Ln−i+1)

otherwise
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