Problem 1. Write $X \equiv\left(X_{1}, \ldots, X_{n}\right)$ and $\langle a, X\rangle \equiv \sum_{i=1}^{n} a_{i} X_{i}$.
(a) By Thm. 4.3.10 it suffices to show that $\mathcal{W} \equiv \mathcal{W}\left(\left\{X_{i}\right\}_{i \in[n]}\right)$ is a Hilbert subspace (Defn. 4.3.5) of $L^{2}(\Omega, \mathcal{F}, \mathbb{P})$. Clearly \mathcal{W} is closed under addition and scalar multiplication, so it remains to show that every Cauchy sequence in \mathcal{W} has a limit in \mathcal{W}. Since \mathcal{W} is the span of the X_{i} we assume without loss that the X_{i} are linearly independent; in particular, each X_{i} has L^{2}-norm $\left\|X_{i}\right\|>0$. We can also apply Gram-Schmidt orthogonalization to ensure $\mathbb{E}\left[X_{i} X_{j}\right]=0$ for every $i \neq j$. If $X^{(t)}=\left\langle a^{(t)}, X\right\rangle(t \geqslant 1)$ defines a Cauchy sequence, then

$$
0=\lim _{s \rightarrow \infty}\left(\sup _{t \geqslant s}\left\|X^{t}-X^{s}\right\|^{2}\right)=\lim _{s \rightarrow \infty}\left(\sup _{t \geqslant s}\left\|a^{t}-a^{s}\right\|^{2}\right)
$$

where the first equality is by definition of a Cauchy sequence, and the second is by orthogonality. Therefore $\left(a^{t}\right)_{t \geqslant 1}$ is a Cauchy sequence in the Hilbert space \mathbb{R}^{n}, so converges to a limit $a \in \mathbb{R}^{n}$. It follows that X^{t} converges to $X \equiv\langle a, X\rangle \in \mathcal{W}$. Thm. 4.3.10 then implies the existence of $\widehat{Y} \in \mathcal{W}$ satisfying the conditions stated in the problem.
(b) From part (a) we have $\mathbb{E}[(Y-\widehat{Y}) W]=0$ for all $W \in \mathcal{W}$. If $(X, Y) \equiv\left(X_{1}, \ldots, X_{n}, Y\right)$ is a zero-mean jointly-Gaussian vector, then so is $(X, Y-\hat{Y})$, with

$$
\operatorname{Cov}\left(Y-\hat{Y}, X_{i}\right)=\mathbb{E}\left[(Y-\hat{Y}) X_{i}\right]=0 \quad \text { for all } 1 \leqslant i \leqslant n
$$

by part (a). It follows that $Y-\hat{Y}$ is independent of X, so for any $B \in \mathcal{F} \equiv \sigma(X)$ we have

$$
\mathbb{E}\left[(Y-\widehat{Y}) \mathbf{1}_{B}\right]=\mathbb{E}[Y-\widehat{Y}] \mathbb{E}\left[\mathbf{1}_{B}\right]=0,
$$

proving that \hat{Y} is a version of $\mathbb{E}[Y \mid \mathcal{F}] \equiv \mathbb{E}[Y \mid X]$.
(c) We wish to show that $\widehat{\mathbb{P}}_{Y \mid \mathcal{F}}(A, \omega) \equiv \gamma_{\hat{Y}(\omega), \sigma^{2}}(A)$ where $\sigma^{2} \equiv \mathbb{E}\left[(Y-\hat{Y})^{2}\right]$ is an RCPD for Y given $\mathcal{F} \equiv \sigma(X)$. We check the conditions of Defn. 4.4.2 with $(\mathbb{S}, \mathcal{S})=(\mathbb{R}, \mathcal{L})$. It is clear that for each fixed $\omega \in \Omega$, the set function $A \mapsto \widehat{\mathbb{P}}_{Y \mid \mathcal{F}}(A, \omega)$ defines a probability measure on $(\mathbb{R}, \mathcal{L})$. It remains to show that for each fixed $A \in \mathcal{L}, \widehat{\mathbb{P}}_{Y \mid \mathcal{F}}(A, \omega)$ is a version of $\mathbb{E}[\mathbf{1}\{Y \in A\} \mid \mathcal{F}]-$ equivalently, for all $A \in \mathcal{L}$ and $B \in \mathcal{F}$,

$$
\mathbb{E}\left[\mathbf{1}_{B}\left(\mathbf{1}\{Y \in A\}-\widehat{\mathbb{P}}_{Y \mid \mathcal{F}}(A, \omega)\right)\right]=0
$$

Indeed, writing Z for a centered Gaussian random variable with variance σ^{2} independent of everything else, it follows from the independence noted in part (b) that $Y=(Y-\widehat{Y})+\widehat{Y}$ where $\widehat{Y} \in \mathcal{F}$, while $Y-\widehat{Y}$ independent of \mathcal{F} and has the same law as Z. Therefore

$$
\mathbb{E}\left[\mathbf{1}_{B} \mathbf{1}\{Y \in A\}\right]=\mathbb{E}\left[\mathbf{1}_{B} \mathbf{1}\{Z+\hat{Y} \in A\}\right]=\mathbb{E}\left[\mathbf{1}_{B} \widehat{\mathbb{P}}_{Y \mid \mathcal{F}}(A, \omega)\right],
$$

where the last step follows since, conditioned on $\mathcal{F}, Z+\widehat{Y}$ is distributed as a Gaussian random variable with variance σ^{2} centered at \widehat{Y}. This concludes the proof.

Problem 2. First note that since X and Y are absolutely continuous, $\mathbb{P}(X=Y=M)=0$. The symmetry between X and Y then gives, for any bounded measurable function g,

$$
\begin{equation*}
\mathbb{E}[g(M)]=\mathbb{E}[g(M) \mathbf{1}\{M=X\}]+\mathbb{E}[g(M) \mathbf{1}\{M=Y\}]=2 \mathbb{E}[g(X) \mathbf{1}\{M=X\}] . \tag{1}
\end{equation*}
$$

Write $F(x) \equiv \int_{-\infty}^{x} f(x) d x$. We will show that the RCPD of X given M is

$$
\widehat{\mathbb{P}}_{X \mid M}(A, \omega)= \begin{cases}(1 / 2) \mathbf{1}\{M(\omega) \in A\}+(1 / 2) \frac{\int_{-\infty}^{M(\omega)} \mathbf{1}_{A}(x) f(x) d x}{F(M(\omega))} & \text { if } F(M(\omega))>0 \\ \int_{A} f(x) d x & \text { otherwise }\end{cases}
$$

We verify the conditions of Defn. 4.4.2 with $(\mathbb{S}, \mathcal{S})=(\mathbb{R}, \mathcal{L})$. It is clear that for each fixed $\omega \in \Omega$, the set function $A \mapsto \widehat{\mathbb{P}}_{X \mid M}(A, \omega)$ defines a probability measure on $(\mathbb{R}, \mathcal{L})$. It remains to show that
for each fixed $A \in \mathcal{L}, \widehat{\mathbb{P}}_{X \mid M}(A, \cdot)$ is a version of $\mathbb{E}[\mathbf{1}\{X \in A\} \mid M]$ - equivalently, for all $A, B \in \mathcal{L}$,

$$
\begin{equation*}
\mathbb{E}[\mathbf{1}\{M \in B\} \mathbf{1}\{X \in A\}]=\mathbb{E}\left[\mathbf{1}\{M \in B\} \widehat{\mathbb{P}}_{X \mid M}(A, \omega)\right] . \tag{2}
\end{equation*}
$$

Using the $\pi-\lambda$ theorem it suffices to check (2) for $B=(-\infty, b]$ and $A=(-\infty, a]$. Using (1),

$$
\text { LHS of } \begin{aligned}
(2) & =\mathbb{P}(M \leqslant b, X \leqslant a, M=X)+\mathbb{P}(M \leqslant b, X \leqslant a, M=Y) \\
& =(1 / 2) \mathbb{P}(M \leqslant a \wedge b)+\mathbb{P}(Y \leqslant b, X \leqslant Y \wedge a) .
\end{aligned}
$$

Meanwhile, since $\mathbb{P}(F(M)=0)=0$, we have

$$
\text { RHS of }(2)=(1 / 2) \mathbb{P}(M \leqslant a \wedge b)+(1 / 2) \mathbb{E}\left[\mathbf{1}\{M \leqslant b\} \frac{F(M \wedge a)}{F(M)}\right] \text {. }
$$

Using (1) again we can re-express the second term as

$$
\begin{aligned}
& \mathbb{E}\left[\mathbf{1}\{M=Y\} \mathbf{1}\{Y \leqslant b\} \frac{F(Y \wedge a)}{F(Y)}\right]=\mathbb{E}\left[\mathbf{1}\{Y \leqslant b\} \frac{F(Y \wedge a)}{F(Y)} \mathbf{1}\{X<Y\}\right] \\
& =\mathbb{E}\left[\mathbf{1}\{Y \leqslant b\} \frac{F(Y \wedge a)}{F(Y)} \mathbb{P}(X<Y \mid Y)\right]=\mathbb{E}[\mathbf{1}\{Y \leqslant b\} F(Y \wedge a)]=\mathbb{P}(Y \leqslant b, X \leqslant Y \wedge a)
\end{aligned}
$$

where we repeatedly used the tower property together with the independence of X from Y. This completes the verification of (2) and proves that the RCPD is as written above.

Problem 3.

(a) From the recursive definition of X_{n} and the bound $0 \leqslant f(x) \leqslant x \wedge(1-x)$ we have

$$
0 \leqslant X_{n-1}-f\left(X_{n-1}\right) \leqslant X_{n} \leqslant X_{n-1}+f\left(X_{n-1}\right) \leqslant 1,
$$

so X_{n} is well-defined and [0,1]-valued for all $n \geqslant 0$. Since ξ_{n} has zero mean and is independent of X_{n-1} we have $\mathbb{E}\left[X_{n} \mid \mathcal{F}_{n}\right]=X_{n-1}+\left(\mathbb{E} \xi_{n}\right) f\left(X_{n-1}\right)=X_{n-1}$ for all $n \geqslant 1$, proving that X_{n} is an \mathcal{F}_{n}-martingale. It follows from Thm. 5.3.12 that $X_{n} \rightarrow X_{\infty}$ both a.s. and in L^{1} for some [0,1$]$-valued random variable X_{∞}.
(b) Since $X_{n} \rightarrow X_{\infty}$ a.s., $f\left(X_{n}\right)=\left|X_{n+1}-X_{n}\right| \rightarrow 0$ a.s. On the other hand continuity of f implies $f\left(X_{n}\right) \rightarrow f\left(X_{\infty}\right)$ a.s., so we conclude $f\left(X_{\infty}\right)=0$ a.s.
(c) If $f(x)>0$ for all $x \in(0,1)$ then part (b) implies $X_{\infty} \in\{0,1\}$ a.s., with mean $\mathbb{E} X_{\infty}=\mathbb{E} X_{0}=\epsilon$ (since we saw in part (a) that X_{n} is a martingale, and $X_{n} \rightarrow X_{\infty}$ in L^{1}). Therefore $X_{\infty} \sim \operatorname{Ber}(\epsilon)$.

Problem 4. Write $C \equiv \sup _{n} \mathbb{E}\left[X_{n}^{2}\right]<\infty$, and note that Cauchy-Schwarz gives

$$
\mathbb{E}\left[\left(X_{k}-X_{k-1}\right)^{2}\right] \leqslant 2 C+2\left|\mathbb{E}\left[X_{k} X_{k-1}\right]\right| \leqslant 2 C+2 \mathbb{E}\left[X_{k}^{2}\right]^{1 / 2} \mathbb{E}\left[X_{k-1}^{2}\right]^{1 / 2} \leqslant 4 C .
$$

Using Cauchy-Schwarz again and recalling Exercise 5.1.8(a) we have, for all n,

$$
\left(\mathbb{E}\left|Y_{n}\right|\right)^{2} \leqslant \mathbb{E}\left[Y_{n}^{2}\right]=\sum_{k=1}^{n} a_{k}^{2} \mathbb{E}\left[\left(X_{k}-X_{k-1}\right)^{2}\right] \leqslant 4 C \sum_{k=1}^{\infty} a_{k}^{2}=4 C\|a\|^{2}<\infty .
$$

In particular, Y_{n} is integrable, and it is easy to see that it is a martingale. Since $\sup _{n} \mathbb{E}\left|Y_{n}\right|<\infty$, Doob's convergence theorem (Thm. 5.3.2) implies $Y_{n} \rightarrow Y_{\infty}$ a.s. with $\mathbb{E}\left|Y_{\infty}\right|<\infty$ and $\mathbb{E}\left[\left(Y_{\infty}\right)^{2}\right]<\infty$ (Fatou's lemma). Also, for $n<m$,

$$
\mathbb{E}\left[\left(Y_{m}-Y_{n}\right)^{2}\right]=\mathbb{E}\left[\left(\sum_{k=n+1}^{m} a_{k}\left(X_{k}-X_{k-1}\right)\right)^{2}\right]=\mathbb{E}\left[\sum_{k=n+1}^{m} a_{k}^{2}\left(X_{k}-X_{k-1}\right)^{2}\right] \leqslant C \sum_{k>n} a_{k}^{2} .
$$

Thus Y_{n} defines an L^{2} Cauchy sequence, so it must converge in L^{2} to a limit Z_{∞}. For any $\epsilon>0$,

$$
\begin{aligned}
& \mathbb{P}\left(\left|Z_{\infty}-Y_{\infty}\right|>\epsilon\right) \leqslant \mathbb{P}\left(\left|Y_{n}-Z_{\infty}\right|>\epsilon / 2\right)+\mathbb{P}\left(\left|Y_{n}-Y_{\infty}\right|>\epsilon / 2\right) \\
& \leqslant(\epsilon / 2)^{-2} \mathbb{E}\left[\left(Y_{n}-Z_{\infty}\right)^{2}\right]+\mathbb{P}\left(\left|Y_{n}-Y_{\infty}\right|>\epsilon / 2\right) \rightarrow 0 \text { as } n \rightarrow \infty,
\end{aligned}
$$

therefore $Z_{\infty}=Y_{\infty}$ a.s. which concludes the proof.

