STATS 310B / MATH 230B MIDTERM SOLUTIONS (7 FEBRUARY 2014)

Problem 1. Write X = (X1,...,X,) and {a, X) = >" | ; X;.

(a) By Thm. 4.3.10 it suffices to show that W = W({Xi}ic[,)) is a Hilbert subspace (Defn. 4.3.5)
of L?(Q2, F,P). Clearly W is closed under addition and scalar multiplication, so it remains to
show that every Cauchy sequence in W has a limit in WW. Since W is the span of the X; we
assume without loss that the X; are linearly independent; in particular, each X; has L?-norm
| Xi| > 0. We can also apply Gram—Schmidt orthogonalization to ensure E[X;X;]| = 0 for every
i#j. If XO =(® X) (t = 1) defines a Cauchy sequence, then

0 = lim <sup | Xt — XSHQ) = lim (sup la® — a5H2>
50 \ ¢>g 570 N\ t>g

where the first equality is by definition of a Cauchy sequence, and the second is by orthogonality.
Therefore (at);> is a Cauchy sequence in the Hilbert space R™, so converges to a limit a € R™.
It follows that X converges to X = {a,X) € W. Thm. 4.3.10 then implies the existence of
Y € W satisfying the conditions stated in the problem.

(b) From part (a) we have E[(Y —Y)W] =0 for all W e W. If (X,Y) = (X1,...,X,,Y) is a
zero-mean jointly-Gaussian vector, then so is (X,Y —Y), with

Cov(Y =Y, X)) =E[(Y = Y)X;] =0 foralll<i<n
by part (a). It follows that ¥ — Y is independent of X, so for any B € F = o(X) we have
E[(Y — V)15] = E[Y — Y]E[15] = 0,

proving that Y is a version of E[Y|F] = E[Y|X]. R

(c) We wish to show that Py|r(4,w) = 79 (.),02(A4) where 02 = E[(Y — Y)?] is an RcPD for Y
given F = o(X). We check the conditions of Defn. 4.4.2 with (S,S) = (R, £). It is clear that
for each fixed w € 2, the set function A — Py;z(A,w) defines a probability measure on (R, £).

It remains to show that for each fixed A € L, Py z(A,w) is a version of E[1{Y € A}|F] —
equivalently, for all A€ £ and B € F,

E[15(1{Y € A} — Py (4,w))] = 0.
Indeed, writing Z for a centered Gaussian random variable with variance o independent of

everything else, it follows from the independence noted in part (b) that Y = (Y —Y) +Y where
Y € F, while Y — Y independent of F and has the same law as Z. Therefore

E[151{Y € A}] = E[151{Z + ¥ € A}] = E[15Py z(4,0)],

where the last step follows since, conditioned on F, Z + Y is distributed as a Gaussian random
variable with variance o2 centered at Y. This concludes the proof.

Problem 2. First note that since X and Y are absolutely continuous, P(X =Y = M) = 0. The
symmetry between X and Y then gives, for any bounded measurable function g,

Elg(M)] = E[g(M)I{M = X}]| + E[g(M)1{M = Y}] = 2E[g(X)1{M = X}]. (1)
Write F(z) = §*_ f(z)dz. We will show that the RCPD of X given M is

) 14 () f () da
(1/2HM (W) € A} + (1/)=*F5 0

§ 4 f(x)d otherwise.

We verify the conditions of Defn. 4.4.2 with (S,S) = (R, £). It is clear that for each fixed w € €,
the set function A +— Px|5/(A,w) defines a probability measure on (R, £). It remains to show that

@X|M(A7w) = if F(M(w)) > 07
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for each fixed A € L, @X‘M(A, -) is a version of E[1{X € A}|M] — equivalently, for all A, B € L,
E[1{M € B}1{X € A}] = E[1{M € B}I@X|M(A,w)]. (2)
Using the 7-\ theorem it suffices to check (2) for B = (—00,b] and A = (—00,a]. Using (1),
LHS of (2) =P(M <b, X <a, M =X)+PM <bX <a,M=Y)
= (1/2)P (M<a/\b)—|—]P’(Y<bX<Y/\a)
Meanwhile, since P(F (M) = 0) = 0, we have
F(M Aa
RES of (2) = (1/2)P(M < a A b) + (1/2)@[1{1\4 < b}(F(M))]
Using (1) again we can re-express the second term as

F(Y Aa) F(Y Aa)
E[l{M vy <p i 9 ] - E[l{y ) S ALOE ¥ g Y}]
F(Y) F(Y)
FY
(F({/\)G)IP’(X < Y|Y)] =E[I{Y <DF(Y ra)]=PY <b,X <Y nra)
where we repeatedly used the tower property together with the independence of X from Y. This
completes the verification of (2) and proves that the RCPD is as written above.

Problem 3.
(a) From the recursive definition of X, and the bound 0 < f(z) < x A (1 — x) we have

0< X1 — f(anl) <X,<X,1+ f(X — ) <1,

so Xy, is well-defined and [0, 1]-valued for all n > 0. Since &, has zero mean and is independent
of X,,—1 we have E[X,|F,] = Xn—1 + (E&,) f(Xpn—1) = Xp—1 for all n > 1, proving that X, is
an F,-martingale. It follows from Thm. 5.3.12 that X,, — X, both a.s. and in L' for some
[0, 1]-valued random variable Xo,.

(b) Since X,, — Xy a.s., f(X,) = [Xnt1 — Xn| — 0 a.s. On the other hand continuity of f implies
f(X5) = f(Xw) as., so we conclude f(Xy) =0 a.s.

(c) If f(x) > 0 for all x € (0,1) then part (b) implies X, € {0,1} a.s., with mean EX, = EXy =€
(since we saw in part (a) that X, is a martingale, and X,, — X in L'). Therefore X, ~ Ber(e).

- E[1{Y < b}

Problem 4. Write C' = sup,, E[X?2] < 0, and note that Cauchy—Schwarz gives
E[(X) — Xp_1)?] < 2C + 2[E[ X X}, _1]| < 2C + 2E[X2]V2E[ X2 ,]V? < 4C.

Using Cauchy—Schwarz again and recalling Exercise 5.1.8(a) we have, for all n,

(E|Y, )2 <E Z GE[(X; — Xp_1)?] < 4C Z a2 = 4C|al? < .
k=1
In particular, Y,, is integrable, and it is easy to see that it is a martlngale. Since sup,, E|Y,,| < oo,
Doob’s convergence theorem (Thm. 5.3.2) implies Y;, — Yo, a.s. with E|Ys,| < 00 and E[(Ye)?] < o0
(Fatou’s lemma). Also, for n < m,

E[(Ym_yn)2]:1@[( i ak(Xk—Xk_l))Z]zE[ i a2(Xy — Xp_1) ] Y al.

k=n+1 k=n+1 k>n
Thus Y,, defines an L? Cauchy sequence, so it must converge in L? to a limit Z,,. For any € > 0,

P(|Zyp — Y| > €) < P(|Y,, — Zoo| > €/2) + P(|Y,, — Y| > €/2)
< (6/2)2E[(Yn — Z)?] + P(|Yy, — Yoo| > €/2) — 0 as n — o0,

therefore Zy, = Yo a.s. which concludes the proof.



