
Stats 310B / Math 230B Midterm Solutions (7 February 2014)

Problem 1. Write X ” pX1, . . . , Xnq and xa,Xy ”
řn
i“1 aiXi.

(a) By Thm. 4.3.10 it suffices to show that W ”WptXiuiPrnsq is a Hilbert subspace (Defn. 4.3.5)
of L2pΩ,F ,Pq. Clearly W is closed under addition and scalar multiplication, so it remains to
show that every Cauchy sequence in W has a limit in W. Since W is the span of the Xi we
assume without loss that the Xi are linearly independent; in particular, each Xi has L2-norm
}Xi} ą 0. We can also apply Gram–Schmidt orthogonalization to ensure ErXiXjs “ 0 for every
i ‰ j. If Xptq “ xaptq, Xy (t ě 1) defines a Cauchy sequence, then

0 “ lim
sÑ8

´

sup
těs
}Xt ´Xs}2

¯

“ lim
sÑ8

´

sup
těs
}at ´ as}2

¯

where the first equality is by definition of a Cauchy sequence, and the second is by orthogonality.
Therefore patqtě1 is a Cauchy sequence in the Hilbert space Rn, so converges to a limit a P Rn.
It follows that Xt converges to X ” xa,Xy P W. Thm. 4.3.10 then implies the existence of
pY PW satisfying the conditions stated in the problem.

(b) From part (a) we have ErpY ´ pY qW s “ 0 for all W P W. If pX,Y q ” pX1, . . . , Xn, Y q is a
zero-mean jointly-Gaussian vector, then so is pX,Y ´ pY q, with

CovpY ´ pY ,Xiq “ ErpY ´ pY qXis “ 0 for all 1 ď i ď n

by part (a). It follows that Y ´ pY is independent of X, so for any B P F ” σpXq we have

ErpY ´ pY q1Bs “ ErY ´ pY sEr1Bs “ 0,

proving that pY is a version of ErY |Fs ” ErY |Xs.
(c) We wish to show that pPY |F pA,ωq ” γ

pY pωq,σ2pAq where σ2 ” ErpY ´ pY q2s is an rcpd for Y
given F ” σpXq. We check the conditions of Defn. 4.4.2 with pS,Sq “ pR,Lq. It is clear that
for each fixed ω P Ω, the set function A ÞÑ pPY |F pA,ωq defines a probability measure on pR,Lq.
It remains to show that for each fixed A P L, pPY |F pA,ωq is a version of Er1tY P Au|Fs —
equivalently, for all A P L and B P F ,

Er1Bp1tY P Au ´ pPY |F pA,ωqqs “ 0.

Indeed, writing Z for a centered Gaussian random variable with variance σ2 independent of
everything else, it follows from the independence noted in part (b) that Y “ pY ´ pY q` pY where
pY P F , while Y ´ pY independent of F and has the same law as Z. Therefore

Er1B1tY P Aus “ Er1B1tZ ` pY P Aus “ Er1BpPY |F pA,ωqs,
where the last step follows since, conditioned on F , Z` pY is distributed as a Gaussian random
variable with variance σ2 centered at pY . This concludes the proof.

Problem 2. First note that since X and Y are absolutely continuous, PpX “ Y “ Mq “ 0. The
symmetry between X and Y then gives, for any bounded measurable function g,

ErgpMqs “ ErgpMq1tM “ Xus ` ErgpMq1tM “ Y us “ 2ErgpXq1tM “ Xus. (1)

Write F pxq ”
şx
´8

fpxq dx. We will show that the rcpd of X given M is

pPX|M pA,ωq “

$

’

&

’

%

p1{2q1tMpωq P Au ` p1{2q

şMpωq
´8

1Apxqfpxq dx

F pMpωqq
if F pMpωqq ą 0,

ş

A fpxq dx otherwise.

We verify the conditions of Defn. 4.4.2 with pS,Sq “ pR,Lq. It is clear that for each fixed ω P Ω,
the set function A ÞÑ pPX|M pA,ωq defines a probability measure on pR,Lq. It remains to show that

1



2

for each fixed A P L, pPX|M pA, ¨q is a version of Er1tX P Au|M s — equivalently, for all A,B P L,

Er1tM P Bu1tX P Aus “ Er1tM P BupPX|M pA,ωqs. (2)

Using the π-λ theorem it suffices to check (2) for B “ p´8, bs and A “ p´8, as. Using (1),

lhs of (2) “ PpM ď b,X ď a,M “ Xq ` PpM ď b,X ď a,M “ Y q
“ p1{2qPpM ď a^ bq ` PpY ď b,X ď Y ^ aq.

Meanwhile, since PpF pMq “ 0q “ 0, we have

rhs of (2) “ p1{2qPpM ď a^ bq ` p1{2qE
”

1tM ď bu
F pM ^ aq

F pMq

ı

.

Using (1) again we can re-express the second term as

E
”

1tM “ Y u1tY ď bu
F pY ^ aq

F pY q

ı

“ E
”

1tY ď bu
F pY ^ aq

F pY q
1tX ă Y u

ı

“ E
”

1tY ď bu
F pY ^ aq

F pY q
PpX ă Y |Y q

ı

“ Er1tY ď buF pY ^ aqs “ PpY ď b,X ď Y ^ aq

where we repeatedly used the tower property together with the independence of X from Y . This
completes the verification of (2) and proves that the rcpd is as written above.

Problem 3.

(a) From the recursive definition of Xn and the bound 0 ď fpxq ď x^ p1´ xq we have

0 ď Xn´1 ´ fpXn´1q ď Xn ď Xn´1 ` fpXn´1q ď 1,

so Xn is well-defined and r0, 1s-valued for all n ě 0. Since ξn has zero mean and is independent
of Xn´1 we have ErXn|Fns “ Xn´1 ` pEξnqfpXn´1q “ Xn´1 for all n ě 1, proving that Xn is
an Fn-martingale. It follows from Thm. 5.3.12 that Xn Ñ X8 both a.s. and in L1 for some
r0, 1s-valued random variable X8.

(b) Since Xn Ñ X8 a.s., fpXnq “ |Xn`1´Xn| Ñ 0 a.s. On the other hand continuity of f implies
fpXnq Ñ fpX8q a.s., so we conclude fpX8q “ 0 a.s.

(c) If fpxq ą 0 for all x P p0, 1q then part (b) implies X8 P t0, 1u a.s., with mean EX8 “ EX0 “ ε
(since we saw in part (a) thatXn is a martingale, andXn Ñ X8 in L1). ThereforeX8 „ Berpεq.

Problem 4. Write C ” supn ErX2
ns ă 8, and note that Cauchy–Schwarz gives

ErpXk ´Xk´1q
2s ď 2C ` 2|ErXkXk´1s| ď 2C ` 2ErX2

k s
1{2ErX2

k´1s
1{2 ď 4C.

Using Cauchy–Schwarz again and recalling Exercise 5.1.8(a) we have, for all n,

pE|Yn|q2 ď ErY 2
n s “

n
ÿ

k“1

a2kErpXk ´Xk´1q
2s ď 4C

8
ÿ

k“1

a2k “ 4C}a}2 ă 8.

In particular, Yn is integrable, and it is easy to see that it is a martingale. Since supn E|Yn| ă 8,
Doob’s convergence theorem (Thm. 5.3.2) implies Yn Ñ Y8 a.s. with E|Y8| ă 8 and ErpY8q2s ă 8
(Fatou’s lemma). Also, for n ă m,

ErpYm ´ Ynq2s “ E
”´

m
ÿ

k“n`1

akpXk ´Xk´1q

¯2ı

“ E
”

m
ÿ

k“n`1

a2kpXk ´Xk´1q
2
ı

ď C
ÿ

kąn

a2k.

Thus Yn defines an L2 Cauchy sequence, so it must converge in L2 to a limit Z8. For any ε ą 0,

Pp|Z8 ´ Y8| ą εq ď Pp|Yn ´ Z8| ą ε{2q ` Pp|Yn ´ Y8| ą ε{2q
ď pε{2q´2ErpYn ´ Z8q2s ` Pp|Yn ´ Y8| ą ε{2q Ñ 0 as nÑ8,

therefore Z8 “ Y8 a.s. which concludes the proof.


