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Exercise [5.3.20]

1. We claim that

E[h|Fn] = 2n
2n∑
i=1

[ ∫
Ai,n

h(u)du
]
IAi,n

(t) . (1)

Indeed, integrability and Fn-measurability of the RHS of (1) are obvious. Further, denoting the RHS
of (1) by fn, clearly E[fnIAi,n

] = E[hIAi,n
] for each value of i and n (as E(IAi,n

) = P(Ai,n) = 2−n),
which suffices since {Ai,n : i = 1, . . . , 2n} is a π-system.

2. Each function Xn(t) is piecewise constant on the intervals generating Fn, having the value hi,n on the
interval Ai,n. Thus, Xn(t) is Fn measurable and further integrable with

cn = E|Xn| = 2−n
2n∑
i=1

|hi,n|

finite. It is easy to check that hi,n = (h2i−1,n+1 + h2i,n+1)/2, namely, the constant value of Xn(t) on
each interval Ai,n is the average of the values that Xn+1(t) take on the two adjacent intervals A2i−1,n+1

and A2i,n+1 into which Ai,n split. By part (a)

E[Xn+1|Fn] =

2n∑
i=1

gi,nIAi,n
(t) ,

where gi,n is the expected value of Xn+1(t) with respect to the uniform measure on Ai,n. Since Ai,n is
the disjoint union of the intervals A2i−1,n+1 and A2i,n+1 of same length on each of which Xn+1(t) is
constant, it follows that gi,n = hi,n and consequently, that Xn is a martingale.

3. Let cn = E|Xn| and c = supn cn. If c = ∞ then there exist nk ≥ k such that cnk
≥ 2k. Taking for

each k the collection of intervals Ai,nk
with the m = m(k) = 2nk−k largest values of |hi,nk

| then yields

some s
(k)
1 < t

(k)
1 ≤ s(k)

2 < t
(k)
2 · · · t

(k)
m for which

m∑
`=1

|t(k)
` − s

(k)
` | ≤ 2−k −→

k→∞
0 while

m∑
`=1

|x(t
(k)
` )− x(s

(k)
` )| ≥ 1

contradicting the absolute continuity of x(·). Therefore, c < ∞ and hence for all ρ > 0 by Markov’s
inequality

2−n
2n∑
j=1

I|hj,n|>ρ = P(|Xn| > ρ) ≤ E|Xn|/ρ ≤ c/ρ (2)

Further, note that

E[|Xn|I|Xn|>ρ] =
∑

{j:|hj,n|>ρ}

2−n|hj,n| . (3)
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Let ε > 0 be fixed and δ = δ(ε, x) > 0 be determined as in the definition of absolute continuity. Taking
ρ = c/δ observe that (2) and (3) imply by the absolute continuity of x(·) that

E[|Xn|I|Xn|>ρ] ≤ ε for all n,

hence {Xn} is U.I.

4. Assuming hereafter that x(·) is absolutely continuous, hence {Xn} is a U.I. martingale, by Corollary
??,

Xn = E[h|Fn] for some h = X∞ ∈ L1.

Hence, by (1) we see that x(i2−n)−x((i−1)2−n) =
∫ i2−n

(i−1)2−n h(u)du for n = 0, 1, · · · and i = 1, · · · , 2n.

By linearity of the integral we thus have

x(j2−n)− x(i2−n) =

∫ j2−n

i2−n

h(u)du for all j ≥ i, and all n values. (4)

Consider now arbitrary 1 > t ≥ s ≥ 0 and let jm ≥ im, nm be such that jm2−nm → t and im2−nm → s
as m→∞. By continuity of x(·), the LHS of (4) for this sequence converges to x(t)− x(s), while the

RHS of (4) is
∫ 1

0
h(u)I[im2−nm ,jm2−nm ](u)du, with the integrand converging a.e. to h(u)I[s,t](u) and

dominated by the integrable function |h|. Thus, by dominated convergence these integrals converge to∫ t
s
h(u)du.

5. Consider now

∆−1[x(s+ ∆)− x(s)]− h(s) = ∆−1

∫ s+∆

s

[h(u)− h(s)]du.

So that

lim
∆→0

|∆−1(x(s+ ∆)− x(s))− h(s)| ≤ lim
∆→0

∆−1

∫ s+∆

s

|h(u)− h(s)|du = 0 a.e. [0, 1).

Hence h(t) = dx
dt a.e. [0, 1) as claimed.

Exercise [5.3.40]

Set λ > 0 and let ψ = eλ − λ− 1.

1. Obviously, Nn is measurable on Fn. By our assumptions about the L2 martingale (Mn,Fn), part (a)
of Exercise ?? applies for the law of Y = λ(Mn+1 −Mn) conditional on Fn, taking there κ = λ and

λ−2E[Y 2|Fn] = E[(Mn+1 −Mn)2|Fn] = 〈M〉n+1 − 〈M〉n .

With 〈M〉n+1 ∈ mFn, we consequently have that

E[Nn+1|Fn] = Nn exp(−ψ(〈M〉n+1 − 〈M〉n))E[eY |Fn] ≤ Nn ,

implying that (Nn,Fn) is a non-negative sup-MG.

2. Since λ > 0, for any finite n ≥ 0, the event An := {Mn∧τ > u, 〈M〉n∧τ ≤ r} implies that Nn∧τ ≥ a for
a = exp(λu − ψr). Fixing an Fn-stopping time τ , since {Nn∧τ} is a sup-MG, it follows by Markov’s
inequality that for any n ≥ 0,

P(An) ≤ P(Nn∧τ ≥ a) ≤ a−1ENn∧τ ≤ a−1EN0 = a−1 .

Thus, by Fatou’s lemma also P(lim inf An) ≤ a−1. Since 〈M〉n∧τ ↑ 〈M〉τ , the event {Mτ > u, 〈M〉τ ≤
r} is contained in lim inf An, yielding the bound

P(Mτ > u, 〈M〉τ ≤ r) ≤ a−1 = exp(−λu+ rψ) .

To complete the proof, consider the preceding for u` ↑ u.
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3. Recall that the L2 bounded martingale Sn of Example ?? converge a.s. (and in L2) to a finite limit
S∞. As the martingale Sn has independent increments, we deduce that 〈S〉n = E(S2

n) is a non-random
sequence which converges to the finite constant 〈S〉∞ =

∑
k Eξ2

k. By part (a) and our assumption that
|ξk| ≤ 1 we further have that Nn = exp(λSn − ψ〈S〉n) is a non-negative sup-MG for any λ > 0. Thus,
by Doob’s convergence theorem Nn → N∞ almost surely and EN∞ ≤ EN0 = 1. Since necessarily
N∞ = exp(λS∞ − ψ〈S〉∞), it follows that E[exp(λS∞)] ≤ exp(ψ〈S〉∞) is finite. This conclusion
extends to all λ ∈ R since the same argument applies also for the martingale −Sn.

Exercise [5.4.12]

This is the strictly positive product martingale Mn of Example ??, for the positive i.i.d. variables Yk =
eλξk/M(λ) of mean one.

1. For p = 1 − q ≥ 1/2 we know from parts (c) and (d) of Exercise ?? that τb is finite a.s. Further, by
definition Sn∧τb ≤ b for all n and as M(λ) = peλ + qe−λ ≥ 1 whenever λ ≥ 0, in this case

Mn∧τb = exp(λSn∧τb − (n ∧ τb) logM(λ)) ≤ exp(λb) .

Thus, {Mn∧τb} is a uniformly bounded, hence U.I. martingale. With Sτb = b, it then follows from
Doob’s optional stopping theorem that

1 = EM0 = EMτb = eλbE[M(λ)−τb ] .

2. Setting 0 < s < 1 there exists for p ≥ 1/2 a unique λ > 0 such that M(λ) = peλ + qe−λ = 1/s. Indeed,
solving qsx2 − x+ ps = 0 for x = e−λ in (0, 1), we find from part (a) that E[sτb ] = xb and

E[sτ1 ] = x =
1−
√

1− 4pqs2

2qs
,

when q ∈ (0, 1/2], whereas x = s in the trivial case q = 0.

3. Since τa,b = min(τb, τ−a) is finite a.s. and τ−a ≥ a we have that

P(τb < a) ≤ P(τb < τ−a) ≤ P(τb <∞) .

Consequently, P(τb < τ−a)→ P(τb <∞) as a→∞. To complete the proof recall that from Corollary
?? we have that

P(τb < τ−a) = 1− r =
1− e−λ∗a

eλ∗b − e−λ∗a
→ e−λ∗b

when a→∞ (as λ∗ > 0).

4. Clearly, {τb <∞} if and only if {Z ≥ b+ 1}. Hence, for any positive integer b,

P(Z = b) = P(Z ≥ b)−P(Z ≥ b+ 1) = (1− e−λ∗)e−λ∗(b−1) .

Exercise [5.4.14]

Recall that ξk are i.i.d. random variables taking values in {A,B, . . . , Z} such that P(ξk = x) = 1/26 if
x ∈ {A,B, . . . , Z} and 0 otherwise.
(a). The amount of money the gamblers have collectively earned by time n is Mn =

∑n
i=1 Zi,n, where Zi,n

is the amount of money that the gambler who enters the game just before time step i earns by time step n.
For example, if the letter the monkey types at time i is P then Zi,i = $25, since this gambler paid $1 to bet
and received $26 upon successfully betting on P.
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Clearly, Mn is measurable on Fξ
n = σ(ξk, k ≤ n) and since each Zi,n is bounded, so is Mn. To show that

Mn is a MG with respect to Fξ
n observe that

E(Mn+1|Fξ
n) =

n∑
i=1

E(Zi,n+1|Fξ
n) + E(Zn+1,n+1|Fξ

n) .

The gambler who enters the game at time n+ 1 is independent of all the events through time n, hence

E(Zn+1,n+1|Fξ
n) = E(Zn+1,n+1) = 25

1

26
+ (−1)

25

26
= 0 .

The earnings of a gambler who entered the game at time i ≤ n and has either lost by the end of time step
n, or left the game upon wining all 11 rounds, are unchanged from time n to n + 1. Any other gambler
who entered the game at time i ≤ n bets all he has, that is 1 + Zi,n, on the outcome of Monkey’s typing at
step n + 1. With probability 1/26 he will have as a result 26(Zi,n + 1) and otherwise, he loses everything
and departs. Since he initially paid $1 for his first gamble, his total earnings after time step n + 1 are
Zi,n+1 = 26(Zi,n + 1)− 1 with probability 1/26 and −1 with probability 25/26. Thus,

E(Zi,n+1|Fξ
n) =

1

26
E[26(Zi,n + 1)− 1|Fξ

n]− 25

26
= Zi,n .

Consequently, E(Mn+1|Fξ
n) = Mn with M0 = 0.

(b). Let ξji = (ξi, ξi+1, . . . , ξj) for j > i noting that the monkey first types PROBABILITY at the stopping
time
τ̂ = inf{n : ξnn−10 = (P,R,O,B,A,B, I, L, I, T, Y )} with respect to the filtration {Fξ

n}. Setting a = 2611, at
time τ̂ exactly one player have won and all the others have lost, from which it follows that Mτ̂ = a− τ̂ . As
each gambler quits after he wins the entire word, we have that always |Mn+1−Mn| ≤ a, so {Mn} is a MG of
bounded increments. Since P(τ̂ ≤ n+ r | Fξ

n) ≥ ε for ε = 26−11 and r = 11 we further know that Eτ̂ is finite
(see part (c) of Exercise ??). Consequently, {Mn∧τ̂} is U.I. (see part (a) of Proposition ??), and by Doob’s
optional stopping theorem, EMτ̂ = EM0 = 0. Equivalently, Eτ̂ = a. Since the word ABRACADABRA has
partial repeats (ABRA and A), the answer for the stopping time τ corresponding to the first time that the
monkey produces ABRACADABRA, is different. Indeed, following the preceding analysis in case of gambling
scheme for ABRACADABRA, at time τ we have that three gamblers won, betting on ABRACADABRA,
ABRA, and A (with all others losing), leading to Mτ = a′ − τ for a′ = 2611 + 264 + 26, and consequently,
to Eτ = a′ > a.
(c). Let T0 = 0 and Tk = inf{n ≥ 11 : Ln = k}, k ≥ 1, denote the k-th time the monkey typed
PROBABILITY. These are almost surely finite {Fξ

n}-stopping times and their increments τk = Tk − Tk−1

are independent (iteratively apply part (a) of Exercise ?? to get the independence of Tk ∈ mFξ
Tk

and
τk+1 ∈ mσ(ξTk+r, r ≥ 1)). Further, the word PROBABILITY has no partial repeats, so τk ≥ 11 for all k.
That is, at each time Tk the monkey has to start afresh and type by chance this word, from which we deduce
that τk are identically distributed as τ̂ of part (b). We are thus in the renewal theory setting of Example ??

with Ln = sup{k ≥ 0 : Tk ≤ n} and from Exercise ?? we know that n−1Ln
a.s.
= 1/Eτ̂ . Further, recall part

(b) and Exercise ??(b) that P(τ̂ > kr) ≤ (1− ε)k for some r finite and ε > 0, hence by part (a) of Lemma
??,

Eτ̂2 = 2

∞∑
y=1

yP(τ̂ ≥ y) ≤ 2r2
∞∑
k=0

(k + 1)P(τ̂ > kr)

is finite. We thus deduce from the renewal theory CLT that (Ln − n/a)/
√
vn

d−→ G for the finite, positive
constant v = a−3Var(τ̂) (c.f. part (b) of Exercise 3.2.9, applied to Yk = τk/a).
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Exercise [5.5.19]

Since Yn → Y−∞ a.s. when n→ −∞, clearly |Y−∞| ≤ supn |Yn| = Z is integrable by our assumption that Z
is integrable. Further, by (cJensen) and monotonicity of the C.E. we have that for any n ≤ r finite,

|E[Yn|Fn]− E[Y−∞|Fn]| ≤ E[|Yn − Y−∞| | Fn] ≤ E[Wr|Fn] ,

where Wr := supn≤r |Yn − Y−∞| is bounded by 2Z hence integrable. By Lévy’s downward theorem
E[Wr|Fn] → E[Wr|F−∞] as n → −∞ both a.s. and in L1. Thus, considering the limit n → −∞ of
the preceding inequality and of the corresponding one between the expectations of both sides, we deduce
that for any r ≤ 0,

lim sup
n→−∞

|E[Yn|Fn]− E[Y−∞|Fn]| ≤ E[Wr|F−∞] ,

lim sup
n→−∞

‖E[Yn|Fn]− E[Y−∞|Fn]‖1 ≤ EWr .

The sequence {Wr} is dominated by the integrable 2Z and by its construction, Wr ↓ 0 as r ↓ −∞. Hence,
by (DOM) and (cDOM), both EWr ↓ 0 and E[Wr|F−∞] ↓ 0 for r ↓ −∞. We have thus shown that
E[Yn|Fn] − E[Y−∞|Fn] → 0 both a.s. and in L1 when n → −∞. We are now done, since from Lévy’s
downward theorem, when n→ −∞ also E[Y−∞|Fn]→ E[Y−∞|F−∞] (a.s. and in L1).

Exercise [5.4.10]

1. Since τ is a stopping time for Fξ
n, we know that Ik≤τ = 1− Iτ≤k−1 is measurable on Fξ

k−1, and hence
independent of ξk. Consequently, with ξk identically distributed,

EξkIk≤τ = EξkP(k ≤ τ) = Eξ1P(τ ≥ k) .

The representation Sτ =
∑∞
k=1 ξkIk≤τ applies when τ < ∞ a.s. (hence when Eτ < ∞ as assumed).

Thus, by Fubini’s theorem with respect to the product of the probability measure P and the counting
measure on k ∈ {1, 2, . . .}, we find that

ESτ = E[

∞∑
k=1

ξkIk≤τ ] =

∞∑
k=1

E[ξkIk≤τ ] = E[ξ1]

∞∑
k=1

P(τ ≥ k) = E[ξ1]E[τ ] ,

where the integrability condition for Fubini’s theorem is merely that

∞∑
k=1

E[|ξk|Ik≤τ ] =

∞∑
k=1

E[|ξ1|]P(τ ≥ k) = E[|ξ1|]E[τ ]

is finite. As the latter follows from the assumed finiteness of Eτ , we are done.

2. Without loss of generality assume that Eξ1 = 0, for otherwise, we can always work with {ξi − Eξi}
which are i.i.d. and have the same variance as {ξi}. Setting v := Var(ξ1), recall that Xn = S2

n−vn is a
martingale with X0 = 0. Since EXn∧τ = EX0 = 0 and τ <∞ a.s., we have by monotone convergence
that as n→∞

ES2
n∧τ = vE[n ∧ τ ] ↑ vEτ <∞ .

This shows that the martingale {Sn∧τ} is L2-bounded and by Doob’s L2-martingale convergence the-
orem, Sn∧τ → Sτ in L2, resulting with

ES2
τ = lim

n→∞
ES2

n∧τ = vEτ .
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3. When establishing Wald’s identity in part (a) we used the condition Eτ < ∞ only for justifying the
representation Sτ =

∑∞
k=1 ξkIk≤τ and for establishing Fubini’s theorem integrability condition when

interchanging the order of summation (over k) and expectation (with respect to P). For a non-negative
sequence ξk we have a non-negative integrand, in which case Fubini’s theorem requires no integrability
assumption (under the convention that 0 ×∞ = 0), and the representation for Sτ is then valid even
when τ(ω) =∞.

Exercise [5.4.12]

This is the strictly positive product martingale Mn of Example ??, for the positive i.i.d. variables Yk =
eλξk/M(λ) of mean one.

1. For p = 1 − q ≥ 1/2 we know from parts (c) and (d) of Exercise ?? that τb is finite a.s. Further, by
definition Sn∧τb ≤ b for all n and as M(λ) = peλ + qe−λ ≥ 1 whenever λ ≥ 0, in this case

Mn∧τb = exp(λSn∧τb − (n ∧ τb) logM(λ)) ≤ exp(λb) .

Thus, {Mn∧τb} is a uniformly bounded, hence U.I. martingale. With Sτb = b, it then follows from
Doob’s optional stopping theorem that

1 = EM0 = EMτb = eλbE[M(λ)−τb ] .

2. Setting 0 < s < 1 there exists for p ≥ 1/2 a unique λ > 0 such that M(λ) = peλ + qe−λ = 1/s. Indeed,
solving qsx2 − x+ ps = 0 for x = e−λ in (0, 1), we find from part (a) that E[sτb ] = xb and

E[sτ1 ] = x =
1−
√

1− 4pqs2

2qs
,

when q ∈ (0, 1/2], whereas x = s in the trivial case q = 0.

3. Since τa,b = min(τb, τ−a) is finite a.s. and τ−a ≥ a we have that

P(τb < a) ≤ P(τb < τ−a) ≤ P(τb <∞) .

Consequently, P(τb < τ−a)→ P(τb <∞) as a→∞. To complete the proof recall that from Corollary
?? we have that

P(τb < τ−a) = 1− r =
1− e−λ∗a

eλ∗b − e−λ∗a
→ e−λ∗b

when a→∞ (as λ∗ > 0).

4. Clearly, {τb <∞} if and only if {Z ≥ b+ 1}. Hence, for any positive integer b,

P(Z = b) = P(Z ≥ b)−P(Z ≥ b+ 1) = (1− e−λ∗)e−λ∗(b−1) .
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