Stat 310B/Math 230B Theory of Probability
 Homework 5 Solutions

Andrea Montanari

Exercise [5.3.20]

1. We claim that

$$
\begin{equation*}
\mathbf{E}\left[h \mid \mathcal{F}_{n}\right]=2^{n} \sum_{i=1}^{2^{n}}\left[\int_{A_{i, n}} h(u) d u\right] I_{A_{i, n}}(t) . \tag{1}
\end{equation*}
$$

Indeed, integrability and \mathcal{F}_{n}-measurability of the RHS of (1) are obvious. Further, denoting the RHS of (1) by f_{n}, clearly $\mathbf{E}\left[f_{n} I_{A_{i, n}}\right]=\mathbf{E}\left[h I_{A_{i, n}}\right]$ for each value of i and n (as $\left.\mathbf{E}\left(I_{A_{i, n}}\right)=\mathbf{P}\left(A_{i, n}\right)=2^{-n}\right)$, which suffices since $\left\{A_{i, n}: i=1, \ldots, 2^{n}\right\}$ is a π-system.
2. Each function $X_{n}(t)$ is piecewise constant on the intervals generating \mathcal{F}_{n}, having the value $h_{i, n}$ on the interval $A_{i, n}$. Thus, $X_{n}(t)$ is \mathcal{F}_{n} measurable and further integrable with

$$
c_{n}=\mathbf{E}\left|X_{n}\right|=2^{-n} \sum_{i=1}^{2^{n}}\left|h_{i, n}\right|
$$

finite. It is easy to check that $h_{i, n}=\left(h_{2 i-1, n+1}+h_{2 i, n+1}\right) / 2$, namely, the constant value of $X_{n}(t)$ on each interval $A_{i, n}$ is the average of the values that $X_{n+1}(t)$ take on the two adjacent intervals $A_{2 i-1, n+1}$ and $A_{2 i, n+1}$ into which $A_{i, n}$ split. By part (a)

$$
\mathbf{E}\left[X_{n+1} \mid \mathcal{F}_{n}\right]=\sum_{i=1}^{2^{n}} g_{i, n} I_{A_{i, n}}(t),
$$

where $g_{i, n}$ is the expected value of $X_{n+1}(t)$ with respect to the uniform measure on $A_{i, n}$. Since $A_{i, n}$ is the disjoint union of the intervals $A_{2 i-1, n+1}$ and $A_{2 i, n+1}$ of same length on each of which $X_{n+1}(t)$ is constant, it follows that $g_{i, n}=h_{i, n}$ and consequently, that X_{n} is a martingale.
3. Let $c_{n}=\mathbf{E}\left|X_{n}\right|$ and $c=\sup _{n} c_{n}$. If $c=\infty$ then there exist $n_{k} \geq k$ such that $c_{n_{k}} \geq 2^{k}$. Taking for each k the collection of intervals $A_{i, n_{k}}$ with the $m=m^{(k)}=2^{n_{k}-k}$ largest values of $\left|h_{i, n_{k}}\right|$ then yields some $s_{1}^{(k)}<t_{1}^{(k)} \leq s_{2}^{(k)}<t_{2}^{(k)} \cdots t_{m}^{(k)}$ for which

$$
\sum_{\ell=1}^{m}\left|t_{\ell}^{(k)}-s_{\ell}^{(k)}\right| \leq 2^{-k} \underset{k \rightarrow \infty}{\longrightarrow} 0 \quad \text { while } \quad \sum_{\ell=1}^{m}\left|x\left(t_{\ell}^{(k)}\right)-x\left(s_{\ell}^{(k)}\right)\right| \geq 1
$$

contradicting the absolute continuity of $x(\cdot)$. Therefore, $c<\infty$ and hence for all $\rho>0$ by Markov's inequality

$$
\begin{equation*}
2^{-n} \sum_{j=1}^{2^{n}} I_{\left|h_{j, n}\right|>\rho}=\mathbf{P}\left(\left|X_{n}\right|>\rho\right) \leq \mathbf{E}\left|X_{n}\right| / \rho \leq c / \rho \tag{2}
\end{equation*}
$$

Further, note that

$$
\begin{equation*}
\mathbf{E}\left[\left|X_{n}\right| I_{\left|X_{n}\right|>\rho}\right]=\sum_{\left\{j:\left|h_{j, n}\right|>\rho\right\}} 2^{-n}\left|h_{j, n}\right| . \tag{3}
\end{equation*}
$$

Let $\epsilon>0$ be fixed and $\delta=\delta(\epsilon, x)>0$ be determined as in the definition of absolute continuity. Taking $\rho=c / \delta$ observe that (2) and (3) imply by the absolute continuity of $x(\cdot)$ that

$$
\mathbf{E}\left[\left|X_{n}\right| I_{\left|X_{n}\right|>\rho}\right] \leq \epsilon \quad \text { for all } \quad n
$$

hence $\left\{X_{n}\right\}$ is U.I.
4. Assuming hereafter that $x(\cdot)$ is absolutely continuous, hence $\left\{X_{n}\right\}$ is a U.I. martingale, by Corollary ??,

$$
X_{n}=\mathbf{E}\left[h \mid \mathcal{F}_{n}\right] \quad \text { for some } \quad h=X_{\infty} \in L^{1}
$$

Hence, by (1) we see that $x\left(i 2^{-n}\right)-x\left((i-1) 2^{-n}\right)=\int_{(i-1) 2^{-n}}^{i 2^{-n}} h(u) d u$ for $n=0,1, \cdots$ and $i=1, \cdots, 2^{n}$. By linearity of the integral we thus have

$$
\begin{equation*}
x\left(j 2^{-n}\right)-x\left(i 2^{-n}\right)=\int_{i 2^{-n}}^{j 2^{-n}} h(u) d u \quad \text { for all } \quad j \geq i, \quad \text { and all } n \quad \text { values. } \tag{4}
\end{equation*}
$$

Consider now arbitrary $1>t \geq s \geq 0$ and let $j_{m} \geq i_{m}, n_{m}$ be such that $j_{m} 2^{-n_{m}} \rightarrow t$ and $i_{m} 2^{-n_{m}} \rightarrow s$ as $m \rightarrow \infty$. By continuity of $x(\cdot)$, the LHS of (4) for this sequence converges to $x(t)-x(s)$, while the RHS of (4) is $\int_{0}^{1} h(u) I_{\left[i_{m} 2^{-n_{m}}, j_{m} 2^{\left.-n_{m}\right]}\right.}(u) d u$, with the integrand converging a.e. to $h(u) I_{[s, t]}(u)$ and dominated by the integrable function $|h|$. Thus, by dominated convergence these integrals converge to $\int_{s}^{t} h(u) d u$.
5. Consider now

$$
\Delta^{-1}[x(s+\Delta)-x(s)]-h(s)=\Delta^{-1} \int_{s}^{s+\Delta}[h(u)-h(s)] d u
$$

So that

$$
\lim _{\Delta \rightarrow 0}\left|\Delta^{-1}(x(s+\Delta)-x(s))-h(s)\right| \leq \lim _{\Delta \rightarrow 0} \Delta^{-1} \int_{s}^{s+\Delta}|h(u)-h(s)| d u=0 \text { a.e. }[0,1)
$$

Hence $h(t)=\frac{d x}{d t}$ a.e. $[0,1)$ as claimed.

Exercise [5.3.40]

Set $\lambda>0$ and let $\psi=e^{\lambda}-\lambda-1$.

1. Obviously, N_{n} is measurable on \mathcal{F}_{n}. By our assumptions about the L^{2} martingale $\left(M_{n}, \mathcal{F}_{n}\right)$, part (a) of Exercise ?? applies for the law of $Y=\lambda\left(M_{n+1}-M_{n}\right)$ conditional on \mathcal{F}_{n}, taking there $\kappa=\lambda$ and

$$
\lambda^{-2} \mathbb{E}\left[Y^{2} \mid \mathcal{F}_{n}\right]=\mathbb{E}\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right]=\langle M\rangle_{n+1}-\langle M\rangle_{n}
$$

With $\langle M\rangle_{n+1} \in m \mathcal{F}_{n}$, we consequently have that

$$
\mathbb{E}\left[N_{n+1} \mid \mathcal{F}_{n}\right]=N_{n} \exp \left(-\psi\left(\langle M\rangle_{n+1}-\langle M\rangle_{n}\right)\right) \mathbb{E}\left[e^{Y} \mid \mathcal{F}_{n}\right] \leq N_{n}
$$

implying that $\left(N_{n}, \mathcal{F}_{n}\right)$ is a non-negative sup-MG.
2. Since $\lambda>0$, for any finite $n \geq 0$, the event $A_{n}:=\left\{M_{n \wedge \tau}>u,\langle M\rangle_{n \wedge \tau} \leq r\right\}$ implies that $N_{n \wedge \tau} \geq a$ for $a=\exp (\lambda u-\psi r)$. Fixing an \mathcal{F}_{n}-stopping time τ, since $\left\{N_{n \wedge \tau}\right\}$ is a sup-MG, it follows by Markov's inequality that for any $n \geq 0$,

$$
\mathbf{P}\left(A_{n}\right) \leq \mathbf{P}\left(N_{n \wedge \tau} \geq a\right) \leq a^{-1} \mathbb{E} N_{n \wedge \tau} \leq a^{-1} \mathbb{E} N_{0}=a^{-1}
$$

Thus, by Fatou's lemma also $\mathbf{P}\left(\lim \inf A_{n}\right) \leq a^{-1}$. Since $\langle M\rangle_{n \wedge \tau} \uparrow\langle M\rangle_{\tau}$, the event $\left\{M_{\tau}>u,\langle M\rangle_{\tau} \leq\right.$ $r\}$ is contained in $\lim \inf A_{n}$, yielding the bound

$$
\mathbf{P}\left(M_{\tau}>u,\langle M\rangle_{\tau} \leq r\right) \leq a^{-1}=\exp (-\lambda u+r \psi)
$$

To complete the proof, consider the preceding for $u_{\ell} \uparrow u$.
3. Recall that the L^{2} bounded martingale S_{n} of Example ?? converge a.s. (and in L^{2}) to a finite limit S_{∞}. As the martingale S_{n} has independent increments, we deduce that $\langle S\rangle_{n}=\mathbb{E}\left(S_{n}^{2}\right)$ is a non-random sequence which converges to the finite constant $\langle S\rangle_{\infty}=\sum_{k} \mathbb{E} \xi_{k}^{2}$. By part (a) and our assumption that $\left|\xi_{k}\right| \leq 1$ we further have that $N_{n}=\exp \left(\lambda S_{n}-\psi\langle S\rangle_{n}\right)$ is a non-negative sup-MG for any $\lambda>0$. Thus, by Doob's convergence theorem $N_{n} \rightarrow N_{\infty}$ almost surely and $\mathbb{E} N_{\infty} \leq \mathbb{E} N_{0}=1$. Since necessarily $N_{\infty}=\exp \left(\lambda S_{\infty}-\psi\langle S\rangle_{\infty}\right)$, it follows that $\mathbb{E}\left[\exp \left(\lambda S_{\infty}\right)\right] \leq \exp \left(\psi\langle S\rangle_{\infty}\right)$ is finite. This conclusion extends to all $\lambda \in \mathbb{R}$ since the same argument applies also for the martingale $-S_{n}$.

Exercise [5.4.12]

This is the strictly positive product martingale M_{n} of Example ??, for the positive i.i.d. variables $Y_{k}=$ $e^{\lambda \xi_{k}} / M(\lambda)$ of mean one.

1. For $p=1-q \geq 1 / 2$ we know from parts (c) and (d) of Exercise ?? that τ_{b} is finite a.s. Further, by definition $S_{n \wedge \tau_{b}} \leq b$ for all n and as $M(\lambda)=p e^{\lambda}+q e^{-\lambda} \geq 1$ whenever $\lambda \geq 0$, in this case

$$
M_{n \wedge \tau_{b}}=\exp \left(\lambda S_{n \wedge \tau_{b}}-\left(n \wedge \tau_{b}\right) \log M(\lambda)\right) \leq \exp (\lambda b) .
$$

Thus, $\left\{M_{n \wedge \tau_{b}}\right\}$ is a uniformly bounded, hence U.I. martingale. With $S_{\tau_{b}}=b$, it then follows from Doob's optional stopping theorem that

$$
1=\mathbf{E} M_{0}=\mathbf{E} M_{\tau_{b}}=e^{\lambda b} \mathbf{E}\left[M(\lambda)^{-\tau_{b}}\right] .
$$

2. Setting $0<s<1$ there exists for $p \geq 1 / 2$ a unique $\lambda>0$ such that $M(\lambda)=p e^{\lambda}+q e^{-\lambda}=1 / s$. Indeed, solving $q s x^{2}-x+p s=0$ for $x=e^{-\lambda}$ in (0,1), we find from part (a) that $\mathbf{E}\left[s^{\tau_{b}}\right]=x^{b}$ and

$$
\mathbf{E}\left[s^{\tau_{1}}\right]=x=\frac{1-\sqrt{1-4 p q s^{2}}}{2 q s},
$$

when $q \in(0,1 / 2]$, whereas $x=s$ in the trivial case $q=0$.
3. Since $\tau_{a, b}=\min \left(\tau_{b}, \tau_{-a}\right)$ is finite a.s. and $\tau_{-a} \geq a$ we have that

$$
\mathbf{P}\left(\tau_{b}<a\right) \leq \mathbf{P}\left(\tau_{b}<\tau_{-a}\right) \leq \mathbf{P}\left(\tau_{b}<\infty\right) .
$$

Consequently, $\mathbf{P}\left(\tau_{b}<\tau_{-a}\right) \rightarrow \mathbf{P}\left(\tau_{b}<\infty\right)$ as $a \rightarrow \infty$. To complete the proof recall that from Corollary ?? we have that

$$
\mathbf{P}\left(\tau_{b}<\tau_{-a}\right)=1-r=\frac{1-e^{-\lambda_{*} a}}{e^{\lambda_{*} b}-e^{-\lambda_{*} a}} \rightarrow e^{-\lambda_{*} b}
$$

when $a \rightarrow \infty\left(\right.$ as $\left.\lambda_{*}>0\right)$.
4. Clearly, $\left\{\tau_{b}<\infty\right\}$ if and only if $\{Z \geq b+1\}$. Hence, for any positive integer b,

$$
\mathbf{P}(Z=b)=\mathbf{P}(Z \geq b)-\mathbf{P}(Z \geq b+1)=\left(1-e^{-\lambda_{*}}\right) e^{-\lambda_{*}(b-1)} .
$$

Exercise [5.4.14]

Recall that ξ_{k} are i.i.d. random variables taking values in $\{A, B, \ldots, Z\}$ such that $\mathbf{P}\left(\xi_{k}=x\right)=1 / 26$ if $x \in\{A, B, \ldots, Z\}$ and 0 otherwise.
(a). The amount of money the gamblers have collectively earned by time n is $M_{n}=\sum_{i=1}^{n} Z_{i, n}$, where $Z_{i, n}$ is the amount of money that the gambler who enters the game just before time step i earns by time step n. For example, if the letter the monkey types at time i is P then $Z_{i, i}=\$ 25$, since this gambler paid $\$ 1$ to bet and received $\$ 26$ upon successfully betting on P .

Clearly, M_{n} is measurable on $\mathcal{F}_{n}^{\boldsymbol{\xi}}=\sigma\left(\xi_{k}, k \leq n\right)$ and since each $Z_{i, n}$ is bounded, so is M_{n}. To show that M_{n} is a MG with respect to $\mathcal{F}_{n}^{\boldsymbol{\xi}}$ observe that

$$
\mathbf{E}\left(M_{n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)=\sum_{i=1}^{n} \mathbf{E}\left(Z_{i, n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)+\mathbf{E}\left(Z_{n+1, n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)
$$

The gambler who enters the game at time $n+1$ is independent of all the events through time n, hence

$$
\mathbf{E}\left(Z_{n+1, n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)=\mathbf{E}\left(Z_{n+1, n+1}\right)=25 \frac{1}{26}+(-1) \frac{25}{26}=0
$$

The earnings of a gambler who entered the game at time $i \leq n$ and has either lost by the end of time step n, or left the game upon wining all 11 rounds, are unchanged from time n to $n+1$. Any other gambler who entered the game at time $i \leq n$ bets all he has, that is $1+Z_{i, n}$, on the outcome of Monkey's typing at step $n+1$. With probability $1 / 26$ he will have as a result $26\left(Z_{i, n}+1\right)$ and otherwise, he loses everything and departs. Since he initially paid $\$ 1$ for his first gamble, his total earnings after time step $n+1$ are $Z_{i, n+1}=26\left(Z_{i, n}+1\right)-1$ with probability $1 / 26$ and -1 with probability $25 / 26$. Thus,

$$
\mathbf{E}\left(Z_{i, n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)=\frac{1}{26} \mathbf{E}\left[26\left(Z_{i, n}+1\right)-1 \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right]-\frac{25}{26}=Z_{i, n}
$$

Consequently, $\mathbf{E}\left(M_{n+1} \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right)=M_{n}$ with $M_{0}=0$. (b). Let $\xi_{i}^{j}=\left(\xi_{i}, \xi_{i+1}, \ldots, \xi_{j}\right)$ for $j>i$ noting that the monkey first types PROBABILITY at the stopping time
$\widehat{\tau}=\inf \left\{n: \xi_{n-10}^{n}=(P, R, O, B, A, B, I, L, I, T, Y)\right\}$ with respect to the filtration $\left\{\mathcal{F}_{n}^{\xi}\right\}$. Setting $a=26^{11}$, at time $\widehat{\tau}$ exactly one player have won and all the others have lost, from which it follows that $M_{\widehat{\tau}}=a-\widehat{\tau}$. As each gambler quits after he wins the entire word, we have that always $\left|M_{n+1}-M_{n}\right| \leq a$, so $\left\{M_{n}\right\}$ is a MG of bounded increments. Since $\mathbf{P}\left(\widehat{\tau} \leq n+r \mid \mathcal{F}_{n}^{\boldsymbol{\xi}}\right) \geq \varepsilon$ for $\varepsilon=26^{-11}$ and $r=11$ we further know that $\mathbf{E} \widehat{\tau}$ is finite (see part (c) of Exercise ??). Consequently, $\left\{M_{n \wedge \widehat{\tau}}\right\}$ is U.I. (see part (a) of Proposition ??), and by Doob's optional stopping theorem, $\mathbf{E} M_{\widehat{\tau}}=\mathbf{E} M_{0}=0$. Equivalently, $\mathbf{E} \widehat{\tau}=a$. Since the word ABRACADABRA has partial repeats (ABRA and A), the answer for the stopping time τ corresponding to the first time that the monkey produces ABRACADABRA, is different. Indeed, following the preceding analysis in case of gambling scheme for ABRACADABRA, at time τ we have that three gamblers won, betting on ABRACADABRA, ABRA, and A (with all others losing), leading to $M_{\tau}=a^{\prime}-\tau$ for $a^{\prime}=26^{11}+26^{4}+26$, and consequently, to $\mathbf{E} \tau=a^{\prime}>a$.
(c). Let $T_{0}=0$ and $T_{k}=\inf \left\{n \geq 11: L_{n}=k\right\}, k \geq 1$, denote the k-th time the monkey typed PROBABILITY. These are almost surely finite $\left\{\mathcal{F}_{n}^{\xi}\right\}$-stopping times and their increments $\tau_{k}=T_{k}-T_{k-1}$ are independent (iteratively apply part (a) of Exercise ?? to get the independence of $T_{k} \in m \mathcal{F}_{T_{k}}^{\boldsymbol{\xi}}$ and $\left.\tau_{k+1} \in \operatorname{mo}\left(\xi_{T_{k}+r}, r \geq 1\right)\right)$. Further, the word PROBABILITY has no partial repeats, so $\tau_{k} \geq 11$ for all k. That is, at each time T_{k} the monkey has to start afresh and type by chance this word, from which we deduce that τ_{k} are identically distributed as $\widehat{\tau}$ of part (b). We are thus in the renewal theory setting of Example ?? with $L_{n}=\sup \left\{k \geq 0: T_{k} \leq n\right\}$ and from Exercise ?? we know that $n^{-1} L_{n} \stackrel{a . s .}{=} 1 / \mathbf{E} \widehat{\tau}$. Further, recall part (b) and Exercise ?? (b) that $\mathbf{P}(\widehat{\tau}>k r) \leq(1-\varepsilon)^{k}$ for some r finite and $\varepsilon>0$, hence by part (a) of Lemma ??,

$$
\mathbf{E} \widehat{\tau}^{2}=2 \sum_{y=1}^{\infty} y \mathbf{P}(\widehat{\tau} \geq y) \leq 2 r^{2} \sum_{k=0}^{\infty}(k+1) \mathbf{P}(\widehat{\tau}>k r)
$$

is finite. We thus deduce from the renewal theory CLT that $\left(L_{n}-n / a\right) / \sqrt{v n} \xrightarrow{\mathrm{~d}} G$ for the finite, positive constant $v=a^{-3} \operatorname{Var}(\widehat{\tau})$ (c.f. part (b) of Exercise 3.2.9, applied to $Y_{k}=\tau_{k} / a$).

Exercise [5.5.19]

Since $Y_{n} \rightarrow Y_{-\infty}$ a.s. when $n \rightarrow-\infty$, clearly $\left|Y_{-\infty}\right| \leq \sup _{n}\left|Y_{n}\right|=Z$ is integrable by our assumption that Z is integrable. Further, by (cJensen) and monotonicity of the C.E. we have that for any $n \leq r$ finite,

$$
\left|\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{n}\right]\right| \leq \mathbb{E}\left[\left|Y_{n}-Y_{-\infty}\right| \mid \mathcal{F}_{n}\right] \leq \mathbb{E}\left[W_{r} \mid \mathcal{F}_{n}\right],
$$

where $W_{r}:=\sup _{n<r}\left|Y_{n}-Y_{-\infty}\right|$ is bounded by $2 Z$ hence integrable. By Lévy's downward theorem $\mathbb{E}\left[W_{r} \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[W_{r} \mid \mathcal{F}_{-\infty}\right]$ as $n \rightarrow-\infty$ both a.s. and in L^{1}. Thus, considering the limit $n \rightarrow-\infty$ of the preceding inequality and of the corresponding one between the expectations of both sides, we deduce that for any $r \leq 0$,

$$
\begin{aligned}
\limsup _{n \rightarrow-\infty}\left|\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{n}\right]\right| & \leq \mathbb{E}\left[W_{r} \mid \mathcal{F}_{-\infty}\right], \\
\limsup _{n \rightarrow-\infty}\left\|\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{n}\right]\right\|_{1} & \leq \mathbb{E} W_{r} .
\end{aligned}
$$

The sequence $\left\{W_{r}\right\}$ is dominated by the integrable $2 Z$ and by its construction, $W_{r} \downarrow 0$ as $r \downarrow-\infty$. Hence, by (DOM) and (cDOM), both $\mathbb{E} W_{r} \downarrow 0$ and $\mathbb{E}\left[W_{r} \mid \mathcal{F}_{-\infty}\right] \downarrow 0$ for $r \downarrow-\infty$. We have thus shown that $\mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n}\right]-\mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{n}\right] \rightarrow 0$ both a.s. and in L^{1} when $n \rightarrow-\infty$. We are now done, since from Lévy's downward theorem, when $n \rightarrow-\infty$ also $\mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{n}\right] \rightarrow \mathbb{E}\left[Y_{-\infty} \mid \mathcal{F}_{-\infty}\right]$ (a.s. and in L^{1}).

Exercise [5.4.10]

1. Since τ is a stopping time for \mathcal{F}_{n}^{ξ}, we know that $I_{k \leq \tau}=1-I_{\tau \leq k-1}$ is measurable on \mathcal{F}_{k-1}^{ξ}, and hence independent of ξ_{k}. Consequently, with ξ_{k} identically distributed,

$$
\mathbf{E} \xi_{k} I_{k \leq \tau}=\mathbf{E} \xi_{k} \mathbf{P}(k \leq \tau)=\mathbf{E} \xi_{1} \mathbf{P}(\tau \geq k) .
$$

The representation $S_{\tau}=\sum_{k=1}^{\infty} \xi_{k} I_{k \leq \tau}$ applies when $\tau<\infty$ a.s. (hence when $\mathbf{E} \tau<\infty$ as assumed). Thus, by Fubini's theorem with respect to the product of the probability measure \mathbf{P} and the counting measure on $k \in\{1,2, \ldots\}$, we find that

$$
\mathbf{E} S_{\tau}=\mathbf{E}\left[\sum_{k=1}^{\infty} \xi_{k} I_{k \leq \tau}\right]=\sum_{k=1}^{\infty} \mathbf{E}\left[\xi_{k} I_{k \leq \tau}\right]=\mathbf{E}\left[\xi_{1}\right] \sum_{k=1}^{\infty} \mathbf{P}(\tau \geq k)=\mathbf{E}\left[\xi_{1}\right] \mathbf{E}[\tau],
$$

where the integrability condition for Fubini's theorem is merely that

$$
\sum_{k=1}^{\infty} \mathbf{E}\left[\left|\xi_{k}\right| I_{k \leq \tau}\right]=\sum_{k=1}^{\infty} \mathbf{E}\left[\left|\xi_{1}\right|\right] \mathbf{P}(\tau \geq k)=\mathbf{E}\left[\left|\xi_{1}\right|\right] \mathbf{E}[\tau]
$$

is finite. As the latter follows from the assumed finiteness of $\mathbf{E} \tau$, we are done.
2. Without loss of generality assume that $\mathbf{E} \xi_{1}=0$, for otherwise, we can always work with $\left\{\xi_{i}-\mathbf{E} \xi_{i}\right\}$ which are i.i.d. and have the same variance as $\left\{\xi_{i}\right\}$. Setting $v:=\operatorname{Var}\left(\xi_{1}\right)$, recall that $X_{n}=S_{n}^{2}-v n$ is a martingale with $X_{0}=0$. Since $\mathbf{E} X_{n \wedge \tau}=\mathbf{E} X_{0}=0$ and $\tau<\infty$ a.s., we have by monotone convergence that as $n \rightarrow \infty$

$$
\mathbf{E} S_{n \wedge \tau}^{2}=v \mathbf{E}[n \wedge \tau] \uparrow v \mathbf{E} \tau<\infty .
$$

This shows that the martingale $\left\{S_{n \wedge \tau}\right\}$ is L^{2}-bounded and by Doob's L^{2}-martingale convergence theorem, $S_{n \wedge \tau} \rightarrow S_{\tau}$ in L^{2}, resulting with

$$
\mathbf{E} S_{\tau}^{2}=\lim _{n \rightarrow \infty} \mathbf{E} S_{n \wedge \tau}^{2}=v \mathbf{E} \tau
$$

3. When establishing Wald's identity in part (a) we used the condition $\mathbf{E} \tau<\infty$ only for justifying the representation $S_{\tau}=\sum_{k=1}^{\infty} \xi_{k} I_{k \leq \tau}$ and for establishing Fubini's theorem integrability condition when interchanging the order of summation (over k) and expectation (with respect to \mathbf{P}). For a non-negative sequence ξ_{k} we have a non-negative integrand, in which case Fubini's theorem requires no integrability assumption (under the convention that $0 \times \infty=0$), and the representation for S_{τ} is then valid even when $\tau(\omega)=\infty$.

Exercise [5.4.12]

This is the strictly positive product martingale M_{n} of Example ??, for the positive i.i.d. variables $Y_{k}=$ $e^{\lambda \xi_{k}} / M(\lambda)$ of mean one.

1. For $p=1-q \geq 1 / 2$ we know from parts (c) and (d) of Exercise ?? that τ_{b} is finite a.s. Further, by definition $S_{n \wedge \tau_{b}} \leq b$ for all n and as $M(\lambda)=p e^{\lambda}+q e^{-\lambda} \geq 1$ whenever $\lambda \geq 0$, in this case

$$
M_{n \wedge \tau_{b}}=\exp \left(\lambda S_{n \wedge \tau_{b}}-\left(n \wedge \tau_{b}\right) \log M(\lambda)\right) \leq \exp (\lambda b)
$$

Thus, $\left\{M_{n \wedge \tau_{b}}\right\}$ is a uniformly bounded, hence U.I. martingale. With $S_{\tau_{b}}=b$, it then follows from Doob's optional stopping theorem that

$$
1=\mathbf{E} M_{0}=\mathbf{E} M_{\tau_{b}}=e^{\lambda b} \mathbf{E}\left[M(\lambda)^{-\tau_{b}}\right] .
$$

2. Setting $0<s<1$ there exists for $p \geq 1 / 2$ a unique $\lambda>0$ such that $M(\lambda)=p e^{\lambda}+q e^{-\lambda}=1 / s$. Indeed, solving $q s x^{2}-x+p s=0$ for $x=e^{-\lambda}$ in (0,1), we find from part (a) that $\mathbf{E}\left[s^{\tau_{b}}\right]=x^{b}$ and

$$
\mathbf{E}\left[s^{\tau_{1}}\right]=x=\frac{1-\sqrt{1-4 p q s^{2}}}{2 q s}
$$

when $q \in(0,1 / 2$], whereas $x=s$ in the trivial case $q=0$.
3. Since $\tau_{a, b}=\min \left(\tau_{b}, \tau_{-a}\right)$ is finite a.s. and $\tau_{-a} \geq a$ we have that

$$
\mathbf{P}\left(\tau_{b}<a\right) \leq \mathbf{P}\left(\tau_{b}<\tau_{-a}\right) \leq \mathbf{P}\left(\tau_{b}<\infty\right)
$$

Consequently, $\mathbf{P}\left(\tau_{b}<\tau_{-a}\right) \rightarrow \mathbf{P}\left(\tau_{b}<\infty\right)$ as $a \rightarrow \infty$. To complete the proof recall that from Corollary ?? we have that

$$
\mathbf{P}\left(\tau_{b}<\tau_{-a}\right)=1-r=\frac{1-e^{-\lambda_{*} a}}{e^{\lambda_{*} b}-e^{-\lambda_{*} a}} \rightarrow e^{-\lambda_{*} b}
$$

when $a \rightarrow \infty\left(\right.$ as $\left.\lambda_{*}>0\right)$.
4. Clearly, $\left\{\tau_{b}<\infty\right\}$ if and only if $\{Z \geq b+1\}$. Hence, for any positive integer b,

$$
\mathbf{P}(Z=b)=\mathbf{P}(Z \geq b)-\mathbf{P}(Z \geq b+1)=\left(1-e^{-\lambda_{*}}\right) e^{-\lambda_{*}(b-1)}
$$

