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Homework 5 Solutions
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Exercise [5.3.20]
1. We claim that

on

Eh|F,]=2"Y [/

B()du L4, (1) (1)
i=1 Y Ain

Indeed, integrability and F,,-measurability of the RHS of (1) are obvious. Further, denoting the RHS
of (1) by fn, clearly E[f,14, ] = E[hl4, ] for each value of i and n (as E(l4,,) = P(4;,) =27"),
which suffices since {4, ,, :4=1,...,2"} is a m-system.

2. Each function X, (t) is piecewise constant on the intervals generating F,,, having the value h; , on the
interval A; . Thus, X, (t) is F,, measurable and further integrable with

2"’L
e =EIX,| =27 |h;

i=1

finite. It is easy to check that h;, = (hoi—1n+1 + hoin+1)/2, namely, the constant value of X, (t) on
each interval A; ,, is the average of the values that X,,;1(¢) take on the two adjacent intervals Ag;_1 511
and Ag; n4+1 into which A, ,, split. By part (a)

n+1|-F Zgz nIAln t

where g; , is the expected value of X, 11 (t) with respect to the uniform measure on A4, ,,. Since A4, is
the disjoint union of the intervals Ag;_1 ,4+1 and Ag; 41 of same length on each of which X, 41 (¢) is
constant, it follows that g; , = h;, and consequently, that X, is a martingale.

3. Let ¢, = E|X,,| and ¢ = sup,, ¢,. If ¢ = oo then there exist ny > k such that ¢,, > 2k Taking for
each k the collection of intervals A; ,, with the m = m*) = 27—k largest values of |hin, | then yields

some sgk) < t§k) < s(Qk) < ték) -t for which
>l =Pl <27k — 0 while Z () — 2(s8)) > 1
=1

contradicting the absolute continuity of z(-). Therefore, ¢ < co and hence for all p > 0 by Markov’s

inequality
2’71
27" I, sp = P(IXal > p) S EIX,|/p < c/p (2)
Further, note that
E[Xullix, 5ol = Y 27" hyal. (3)

{3:1hj,ml>p}



Let € > 0 be fixed and § = d(e, z) > 0 be determined as in the definition of absolute continuity. Taking
p = ¢/d observe that (2) and (3) imply by the absolute continuity of x(-) that

E[|X,|l|x, >, <€ forall n,
hence {X,,} is U.L

4. Assuming hereafter that x(-) is absolutely continuous, hence {X,,} is a U.I. martingale, by Corollary
?7

X, = E[h|F,] forsome h=X, €L

Hence, by (1) we see that z(i27") —z((¢ —1)27") = f(if__l;_n h(u)du forn =0,1,--- andi =1,--- ,2™.
By linearity of the integral we thus have
j2 "
x(j27") —x(i27") = / h(u)du for all j >4, andall n values. (4)

i2—n

Consider now arbitrary 1 > ¢ > s > 0 and let j,, > im, 7y, be such that 7,27 — t and ,27"™ — s
as m — 0o0. By continuity of z(-), the LHS of (4) for this sequence converges to z(t) — x(s), while the

RHS of (4) is fol h(u)lj;, 2-nm j,,2-nm)(w)du, with the integrand converging a.e. to h(u)ljs(u) and
dominated by the integrable function |h|. Thus, by dominated convergence these integrals converge to
5. Consider now
s+A
A7 Ma(s + A) —z(s)] — h(s) = A7 / [A(u) — h(s)]du.
So that
s+A
lim [A™ (z(s + A) — 2(s)) — h(s)| < lim A™? |h(u) — h(s)|du =0 a.e. [0,1).
A—0 A—0

S

Hence h(t) = ‘fi—‘f a.e. [0,1) as claimed.

Exercise [5.3.40]
Set A >0 and let ¢ =e* — X\ — 1.

1. Obviously, N,, is measurable on F,,. By our assumptions about the L? martingale (M,,, F,,), part (a)
of Exercise 77 applies for the law of Y = A(M,,4+1 — M,,) conditional on F,,, taking there x = A and

AizE[Y2|}—n] = E[(Mn+1 - Mn)2|-7:n] - <M>n+1 - <M>n
With (M), +1 € mF,, we consequently have that
E[Npi1|Fn] = Npexp(—=((M)n41 — <M>n))E[eY|}—n] < Na,
implying that (N, F,) is a non-negative sup-MG.

2. Since X\ > 0, for any finite n > 0, the event A,, := {Muar > u, (M)par < r} implies that Nyar > a for
a = exp(Au — ¢r). Fixing an F,,-stopping time 7, since {N,a,} is a sup-MG, it follows by Markov’s
inequality that for any n > 0,

P(A,) <P(Nurr > a) <a 'ENypr <a 'ENg=a'.

Thus, by Fatou’s lemma also P(liminf A,,) < a~!. Since (M),r, T (M),, the event {M, > u, (M), <
r} is contained in lim inf A,,, yielding the bound

P(M; > u, (M), <r) <a' =exp(—=Au+ry).

To complete the proof, consider the preceding for u, 1 u.



3. Recall that the L? bounded martingale S,, of Example ?? converge a.s. (and in L?) to a finite limit
Ss- As the martingale S, has independent increments, we deduce that (S),, = E(S2) is a non-random
sequence which converges to the finite constant (S)oo = >, E€2. By part (a) and our assumption that
|€k] < 1 we further have that N,, = exp(AS,, — ¥(S),) is a non-negative sup-MG for any A > 0. Thus,
by Doob’s convergence theorem N,, — N, almost surely and EN,, < ENy = 1. Since necessarily
Noo = exp(ASe — ¥(S)x), it follows that E[exp(ASs)] < exp(¥(S)eo) is finite. This conclusion
extends to all A € R since the same argument applies also for the martingale —S,,.

Exercise [5.4.12]

This is the strictly positive product martingale M,, of Example 7?7, for the positive i.i.d. variables Y, =
e?r /M ()) of mean one.

1. For p=1—¢ > 1/2 we know from parts (c) and (d) of Exercise ?? that 7, is finite a.s. Further, by
definition Syar, < b for all n and as M (\) = pe)‘ + qe_’\ > 1 whenever A > 0, in this case

Monr, = exp(ASpar, — (n A1) log M(N)) < exp(Ab) .

Thus, {M,r,} is a uniformly bounded, hence U.I. martingale. With S;, = b, it then follows from
Doob’s optional stopping theorem that

1 =EM, =EM,, = MNE[M(\)"™].

2. Setting 0 < s < 1 there exists for p > 1/2 a unique A > 0 such that M()\) = pe* +ge~ = 1/s. Indeed,
solving gsz? — z + ps = 0 for x = e~ in (0, 1), we find from part (a) that E[s™] = x® and

1 — /1 —4pqs?

E[s"] =
[sh] == 205

)

when ¢ € (0,1/2], whereas & = s in the trivial case ¢ = 0.

3. Since 7, = min(7,, 7_g) is finite a.s. and 7—, > a we have that
P <a)<P(m <7_q) <P(m < 20).

Consequently, P(1, < 7—,) = P(7, < o0) as a — co. To complete the proof recall that from Corollary
7?7 we have that
1 —e Mo

P(Tb<77a):1_r:m—>e

—Axb

when a — oo (as A, > 0).

4. Clearly, {7y < oo} if and only if {Z > b+ 1}. Hence, for any positive integer b,

P(Z=b)=P(Z>b)—P(Z>b+1)=(1—e ) b1,

Exercise [5.4.14]

Recall that & are i.i.d. random variables taking values in {A, B,...,Z} such that P({ = x) = 1/26 if
x€{A,B,...,Z} and 0 otherwise.

(a). The amount of money the gamblers have collectively earned by time n is M,, = E?:l Zin, where Z; p,
is the amount of money that the gambler who enters the game just before time step ¢ earns by time step n.
For example, if the letter the monkey types at time 4 is P then Z; ; = $25, since this gambler paid $1 to bet
and received $26 upon successfully betting on P.



Clearly, M,, is measurable on ]-"S = 0(&k, k < n) and since each Z; ,, is bounded, so is M,,. To show that
M,, is a MG with respect to F§ observe that

n

E(M1|F§) =Y E(Zini1|FE) + E(Zni1n11|FS) .
=1

The gambler who enters the game at time n + 1 is independent of all the events through time n, hence

E(Zn+1,n+1|]:7§7,) = E(Zn+1,n+1) = 252716 + (—1)% =0.
The earnings of a gambler who entered the game at time 7 < n and has either lost by the end of time step
n, or left the game upon wining all 11 rounds, are unchanged from time n to n + 1. Any other gambler
who entered the game at time ¢ < n bets all he has, that is 1 + Z; ,,, on the outcome of Monkey’s typing at
step n + 1. With probability 1/26 he will have as a result 26(Z, , + 1) and otherwise, he loses everything
and departs. Since he initially paid $1 for his first gamble, his total earnings after time step n + 1 are
Zimy1 = 26(Z; n, +1) — 1 with probability 1/26 and —1 with probability 25/26. Thus,

E(Zini1|FS) = iE[zﬁ(Z» +1) —1|F8§] — B _yg

wn+1vYn) — 2 7,M n 2 — 4in -

Consequently, E(M,1|F&) = M,, with My = 0.
(b). Let & = (&,&i+1,---,&;) for j > i noting that the monkey first types PROBABILITY at the stopping
time
F=inf{n:¢&"_,,=(P,R,0,B,A,B,I,L,1,T,Y)} with respect to the filtration {F5}. Setting a = 261, at
time 7T exactly one player have won and all the others have lost, from which it follows that Mz =a — 7. As
each gambler quits after he wins the entire word, we have that always |M,,+1 — M, | < a, so {M,,} is a MG of
bounded increments. Since P(7 < n+17|F$) > ¢ for ¢ = 267! and r = 11 we further know that E7 is finite
(see part (c) of Exercise ??). Consequently, {M, 7z} is U.L. (see part (a) of Proposition ??), and by Doob’s
optional stopping theorem, EM> = EMy = 0. Equivalently, ET = a. Since the word ABRACADABRA has
partial repeats (ABRA and A), the answer for the stopping time 7 corresponding to the first time that the
monkey produces ABRACADABRA, is different. Indeed, following the preceding analysis in case of gambling
scheme for ABRACADABRA, at time 7 we have that three gamblers won, betting on ABRACADABRA,
ABRA, and A (with all others losing), leading to M, = a’ — 7 for a’ = 26! + 26* + 26, and consequently,
to Er =d > a.
(¢). Let Tp = 0 and T = inf{n > 11 : L, = k}, k > 1, denote the k-th time the monkey typed
PROBABILITY. These are almost surely finite { % }-stopping times and their increments 75, = T}, — Tj_1
are independent (iteratively apply part (a) of Exercise ?? to get the independence of Ty € m]—"%k and
Ti+1 € mo(&r,4+r,7 > 1)). Further, the word PROBABILITY has no partial repeats, so 7, > 11 for all k.
That is, at each time T the monkey has to start afresh and type by chance this word, from which we deduce
that 75 are identically distributed as 7 of part (b). We are thus in the renewal theory setting of Example 77
with L, = sup{k > 0: Ty < n} and from Exercise ?? we know that n~'L,, =" 1/E7. Further, recall part

(b) and Exercise ?7(b) that P(7 > kr) < (1 — &)* for some 7 finite and ¢ > 0, hence by part (a) of Lemma
77,

EF =2) yP(F>y) <2r* Y (k+1)P(F > kr)
k=0

y=1

is finite. We thus deduce from the renewal theory CLT that (L, — n/a)/\/vn 4, G for the finite, positive
constant v = a~3Var(7) (c.f. part (b) of Exercise 3.2.9, applied to Y;, = 74 /a).



Exercise [5.5.19]

Since Y,, — Y_o a.s. when n — —oo, clearly |Y_| < sup,, |Y,| = Z is integrable by our assumption that Z
is integrable. Further, by (cJensen) and monotonicity of the C.E. we have that for any n < r finite,

where W, := sup, <, |Yn — Y_oo| is bounded by 2Z hence integrable. By Lévy’s downward theorem
E[W,|F,] — E[W,|F_«] as n — —oco both a.s. and in L!. Thus, considering the limit n — —oo of
the preceding inequality and of the corresponding one between the expectations of both sides, we deduce
that for any r <0,

lim sup |E[Y,,|Fn] — E[Y_oo| Fn]| < E[W,|F-x],

n——oo

limsup |[E[Y,|F,] — E[Y_ o |Fu][1 < EW,.

n——oo

The sequence {W,.} is dominated by the integrable 27 and by its construction, W,. | 0 as r | —oo. Hence,
by (DOM) and (¢cDOM), both EW,. | 0 and E[W,|F_«] | 0 for r | —oco. We have thus shown that
E[Y,|F.] — E[Y_x|F.] — 0 both a.s. and in L' when n — —oo. We are now done, since from Lévy’s
downward theorem, when n — —oo also E[Y_|F,] = E[Y_o|F_s] (a.s. and in L1).

Exercise [5.4.10]

1. Since 7 is a stopping time for .7—'5, we know that Iy<, =1 — I, <;_1 is measurable on .7-"5_17 and hence
independent of £. Consequently, with & identically distributed,

E¢u i<, = BGP(k < 7) = EGP(r > k).

The representation S, = > po, & k<, applies when 7 < oo a.s. (hence when ET < oo as assumed).
Thus, by Fubini’s theorem with respect to the product of the probability measure P and the counting
measure on k € {1,2,...}, we find that

=E)_ &li<,) = Y Eléilie,] = El61] Y P(r > k) = E[&]E[7],
k=1 k=1 k=1

where the integrability condition for Fubini’s theorem is merely that
oo oo
> El&li<s] = Y E[&4[IP(r > k) = E[|& [|E[7]
k=1 k=1

is finite. As the latter follows from the assumed finiteness of E7, we are done.

2. Without loss of generality assume that E&; = 0, for otherwise, we can always work with {&; — E¢;}
which are i.i.d. and have the same variance as {¢;}. Setting v := Var(&;), recall that X,, = S2 —vn is a
martingale with Xg = 0. Since EX,,or = EXy =0 and 7 < oo a.s., we have by monotone convergence
that as n — oo

ES?

nAT

=vE[nAT] T vET < 00.

This shows that the martingale {S,,} is L?>-bounded and by Doob’s L?-martingale convergence the-
orem, Spar — Sy in L2, resulting with

ES? = hm ES?, =vET.

nAT



3. When establishing Wald’s identity in part (a) we used the condition ET < oo only for justifying the
representation S, = 220:1 &klk<- and for establishing Fubini’s theorem integrability condition when
interchanging the order of summation (over k) and expectation (with respect to P). For a non-negative
sequence & we have a non-negative integrand, in which case Fubini’s theorem requires no integrability
assumption (under the convention that 0 X oo = 0), and the representation for S; is then valid even
when 7(w) = co.

Exercise [5.4.12]

This is the strictly positive product martingale M, of Example 7?7, for the positive i.i.d. variables Y; =
e ek /M (M) of mean one.

1. For p=1—¢q > 1/2 we know from parts (c) and (d) of Exercise 7?7 that 7, is finite a.s. Further, by
definition Spar, < b for all n and as M(\) = pe/\ + qe”‘ > 1 whenever A > 0, in this case

Monr, = exp(ASpar, — (n A1) log M(N)) < exp(Ab) .

Thus, {M,-,} is a uniformly bounded, hence U.I. martingale. With S;, = b, it then follows from
Doob’s optional stopping theorem that

1 =EM, =EM,, = NE[M(\)"™].

2. Setting 0 < s < 1 there exists for p > 1/2 a unique A > 0 such that M (\) = pe* + e~ = 1/s. Indeed,
solving gsz? — z + ps = 0 for x = e~ in (0, 1), we find from part (a) that E[s™] = x* and

1 — /1 —4pqs?

E[s™] =
[s"] == 20

)

when ¢ € (0,1/2], whereas = = s in the trivial case ¢ = 0.

3. Since 7, = min(m, 7_,) is finite a.s. and 7_, > a we have that
P(ry<a) <P < 7—q) <P, < 0).

Consequently, P(7, < 7—,) = P(7, < 00) as a — oo. To complete the proof recall that from Corollary
7?7 we have that
1 — e Aa

Pl <7Tog)=1—-7r= Sy —e

—Axb

when a — oo (as A, > 0).
4. Clearly, {7, < oo} if and only if {Z > b+ 1}. Hence, for any positive integer b,

P(Z=b0)=P(Z>b)—P(Z>b+1)=(1—e )Mt



	

