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Homework 4 Solutions
Andrea Montanari Due on February 15, 2022

Exercise [5.2.10]

It is easy to check that {S? — s2} is a martingale (but you should do it). Let A = {max}_, |Skx| > z} and
7 =inf{k : |Sk| > 2} An. Then

(z 4+ K)*P(A) > E(S%14) > E((S2 — s2)14) = E((S2 — s2)14),

since 7 is bounded by n implies E(S2% — s2) = E(52 — s2) (see Corollary 5.1.33), and 7 = n on A°. Now add
E(S%14:) to both sides to get

(z+ K)?P(A) + E(S;14c) > E(S}) — s, P(A).
But E(S%14:) < (z + K)?P(A°) so
(z+K)?=(z+ K)’P(A) + (z + K)’P(A°) > E(5?%) — s2P(A) = s2P(A°).
Exercise [5.2.14]

1. Note that .
log M,, = S, = ZXi
1=1

for the i.i.d. variables X; = logY;. Let Xfm) = max(X;,—m). Since
exp(Xl(m)) =max(Y1,e ™) <Y1 +e ™
and EY; = 1, it follows from Jensen’s inequality that
EX™ < log Efexp(X{™)] < log(1+e™™).

Since (X1)4 = X{O) we thus deduce that E[(X7)4] is finite, which suffices for the strong law of large
numbers to apply (c.f. Theorem ??). That is, n~!log M,, converges almost sure to

p=EX; < lim EX™ <0.
m— o0

Further, if 4 = 0 then yet another application of Jensen’s inequality results with

1= exp(p/2) <Eexp(X1/2) =EVY: < VEY; =1

i.e. with Var(y/Y7) = 0, which is ruled out by our assumption that Y; is a non-constant random
variable.

2. Since a.s. n"tlog M,, — p < 0, we have that with probability one n~!log M,, < u/2 for all n large
enough. That is, M,, < exp(un/2) — 0 as n — oo. For {M,,} uniformly integrable this would imply
that M,, — 0 in L' and in particular that EM, — 0 as n — oo. However, clearly EM,, = 1 for all n,
so necessarily {M,,} is not U.L



3. If Doob’s LP maximal inequality applies for p = 1, then for any non-negative martingale X,

E[Igl?XXk] < ¢EX, = ¢EX(y < 00.

Taking n — oo it then follows that sup, X} is integrable, hence that {X,} is uniformly integrable.
As we have seen in part (b) a counter example to the latter statement, we conclude that Doob’s LP
maximal inequality can not extend as is to p = 1.

Exercise [5.3.9]

For part (a) let X,, = —1/n (non-random), so X2 = 1/n?. Then, obviously {X,,} is a submartingale whereas
{X2} is a super-martingale. No contradiction with Proposition ?? since ®(x) = z? is a decreasing function
on the support (—o0,0) of the sequence {X,,}. For part (b) consider S, = Y_;_, & and independent {&;}
such that & = k? — 1 with probability 1/k? and otherwise &, = —1. Clearly, E¢; = 0 for all k so {S,,} is a
martingale. However, by Borel-Cantelli II we have that P(£; = —1,e.v.) = 1 hence S;, = —o0o almost surely.
Theorem ?? does not apply for this example as E(S,,)— is unbounded. Indeed, take ¢ finite and large enough
S0 Yo k2 < 1/2 and set b = Zi:l k2. Then, with probability at least half, & = —1 for all k > ¢ hence
S, < b—n. Consequently, E[(S,)_] > 3(n — b); — 0o as n — <.

Exercise [5.3.10]

Consider the adapted processes @, = [[/_;(1+Y;) > Qo =1and W,, = (1 + X,,)/Qn—1. Since )., Y; < 00
a.s. and Y; are non-negative, @),, converges a.s. to a finite limit, say Qs = sup,, @n. Therefore, if W,
converges a.s. to a finite limit then so does X,, = W,,Q,,_1 — 1. Note that W,, is integrable and

E(Wn+1|-7:n) < (1 + Yn)(l =+ Xn)/Qn =W, 5

implying that W,, is a super-martingale. Further, X,, is non-negative, hence so is W, which by Doob’s
convergence theorem then converges a.s. to a finite limit.

Exercise [5.2.11]

The same line of reasoning applies in all three parts of this exercise. Namely, for a certain convex non-
negative function ®(-) the relevant inequality trivially holds when E®(Y},) is infinite. In part (a) assuming
E®(Y,) < oo for the non-decreasing ®(y) = (y)., we have from the LP-maximal inequalities that E®(Y}) is
finite for all k < n, so {X = ®(Yy),k < n} is a sub-MG (by Proposition ??). In parts (b) and (c) we start
with a martingale {Y3} so again X; = ®(Y%) is a sub-MG although the relevant functions ®(y) = |y|” and
®(y) = (y + ¢)?, for ¢ > 0, respectively, are non-decreasing only for y > 0. In all three cases if Y3, >y > 0
then Xj > z = ®(y), so we bound P(maxy Y > y) by P(maxy X > ) which in turn is further bounded
via Doob’s inequality. This procedure results with the stated bounds of (a) and (b), whereas in part (c) it
provides the bound
P(I}ﬁng >y) < (y+¢) E(Yn +¢)?.

However, here EY,, = EY; = 0, so the preceding bound simplifies to (y + ¢)"2(EY,? + ¢?) and setting
c =EY?/y yields after a bit of algebra the stated bound of part (c).

Exercise [5.2.19]

1. Since |W,| and |Y,,| are both bounded by |X}|+|X?2|, the integrability of W,, and Y,, follows from that
of X! and X2. It is also easy to see that for an F,-stopping time 7 and F,-adapted {X}}, {X2} the
processes {W,,} and {Y,,} are also F,-adapted. Our assumption that X! > X2 implies that

Wy < W+ (X} = X))oy =Y.



Further, 7 is an F,,-stopping time, so the event {7 < n} = {7 < n — 1} and its complement {7 > n} =
{r > n — 1} are both in F,,_;. Hence, taking out the known I¢, .3 and I{;>,} we deduce from the
sup-MG property of X} and X2 that

E[Wn|]:n—1] < E[Yn|fn—1]
= I{TZn}E[XM]:n*l] + I{T<n}]E[X’?L|‘7:’I’L71]
< XrlL—lj{T>n—1} + X2—1I{T§n—1} =W,.1<Y,_1.

That is, both {W,,} and {Y,} are sup-MGs for F,.

. Fixing a positive integer n, consider the partition of § to the disjoint events {Ay, By, ¢ > 0} where
A ={w : m(w) < n < O(w)} and By = {w : Op(w) < n < 7p41(w)} for £ =0,1,.... As 7, £ >0
and 0y, £ > 0 are stopping time for the filtration {F,} it is easy to check that each of these events
is in F,_1. We claim that if the event A, occurs, then Z,, — Z,_1 < 0. Indeed, for w € Ay either
Zp = Zn_1 = a""b" or in case n = 0y, by definition X,, < a and Z,, — Z,_; = a~b*(X,,/a — 1) < 0.
We further claim that if the event By occurs, then Z,, — Z,,_1 < a_e_lbé(Xn — Xp—1). Indeed, for
w € By the preceding inequality holds with equality except when n = 7¢41 in which case it follows from
the fact that X, , > 0. Thus, decomposing Z, — Z,,_1 according to this partition of €, we deduce
that Z,, — Z,—1 < Vo (X,, — X,—1) with V,, = Z;io a*Z*IbZIBe non-negative and measurable on F,,_1.
Further, as 6, > 2/, the disjoint events B, are empty for £ > n/2, hence V,, < a~'(b/a)"™/? is bounded.
Taking out the known V;, and recalling that (X,,F,) is a sup-MG, we see that V,,(X,, — X,,—1) is
integrable with
E[‘/n(Xn - Xn—1)|]:n—1] = VnE[Xn - Xn—l‘fn—l] <0.

Consequently, as Zy < 1, the non-negative

Zn < Zo+ Y Ve(Xe — Xio1)
k=1

are integrable, with
E[Zn - Zn71|]:n71] < VnE[Xn - Xn71|]:n71] < 07
establishing that (Z,, F,) is a sup-MG, as claimed.
. We have that 6y = 0 if and only if Xy < a and consequently, Zy = min(1, Xo/a). Recall that Z,, > 0

and Z,, = a~*b"* when 7, is finite, that is, when U (a,b) > £. Further from part (b) we have that
EZy > E[Zyp+,] for any n,¢ > 1. Thus, taking n — oo and applying Fatou’s lemma we see that

. . by
Efmin (Xo/a, 1)] > Efliminf Zuar,] > E[Zr, L7, <o0)] = (5) P (Uss(a,b) > 0).



	

