Stat 310B/Math 230B Theory of Probability
 Homework 4 Solutions

Andrea Montanari

Exercise [5.2.10]

It is easy to check that $\left\{S_{n}^{2}-s_{n}^{2}\right\}$ is a martingale (but you should do it). Let $A=\left\{\max _{k=1}^{n}\left|S_{k}\right|>x\right\}$ and $\tau=\inf \left\{k:\left|S_{k}\right|>x\right\} \wedge n$. Then

$$
(x+K)^{2} \mathbf{P}(A) \geq \mathbf{E}\left(S_{\tau}^{2} I_{A}\right) \geq \mathbf{E}\left(\left(S_{\tau}^{2}-s_{\tau}^{2}\right) I_{A}\right)=\mathbf{E}\left(\left(S_{n}^{2}-s_{n}^{2}\right) I_{A}\right),
$$

since τ is bounded by n implies $\mathbf{E}\left(S_{\tau}^{2}-s_{\tau}^{2}\right)=\mathbf{E}\left(S_{n}^{2}-s_{n}^{2}\right)$ (see Corollary 5.1.33), and $\tau=n$ on A^{c}. Now add $\mathbf{E}\left(S_{n}^{2} I_{A^{c}}\right)$ to both sides to get

$$
(x+K)^{2} \mathbf{P}(A)+\mathbf{E}\left(S_{n}^{2} I_{A^{c}}\right) \geq \mathbf{E}\left(S_{n}^{2}\right)-s_{n}^{2} \mathbf{P}(A) .
$$

But $\mathbf{E}\left(S_{n}^{2} I_{A^{c}}\right) \leq(x+K)^{2} \mathbf{P}\left(A^{c}\right)$ so

$$
(x+K)^{2}=(x+K)^{2} \mathbf{P}(A)+(x+K)^{2} \mathbf{P}\left(A^{c}\right) \geq \mathbf{E}\left(S_{n}^{2}\right)-s_{n}^{2} \mathbf{P}(A)=s_{n}^{2} \mathbf{P}\left(A^{c}\right) .
$$

Exercise [5.2.14]

1. Note that

$$
\log M_{n}=S_{n}=\sum_{i=1}^{n} X_{i}
$$

for the i.i.d. variables $X_{i}=\log Y_{i}$. Let $X_{1}^{(m)}=\max \left(X_{1},-m\right)$. Since

$$
\exp \left(X_{1}^{(m)}\right)=\max \left(Y_{1}, e^{-m}\right) \leq Y_{1}+e^{-m}
$$

and $\mathbb{E} Y_{1}=1$, it follows from Jensen's inequality that

$$
\mathbb{E} X_{1}^{(m)} \leq \log \mathbb{E}\left[\exp \left(X_{1}^{(m)}\right)\right] \leq \log \left(1+e^{-m}\right) .
$$

Since $\left(X_{1}\right)_{+}=X_{1}^{(0)}$ we thus deduce that $\mathbb{E}\left[\left(X_{1}\right)_{+}\right]$is finite, which suffices for the strong law of large numbers to apply (c.f. Theorem ??). That is, $n^{-1} \log M_{n}$ converges almost sure to

$$
\mu=\mathbb{E} X_{1} \leq \lim _{m \rightarrow \infty} \mathbb{E} X_{1}^{(m)} \leq 0 .
$$

Further, if $\mu=0$ then yet another application of Jensen's inequality results with

$$
1=\exp (\mu / 2) \leq \mathbb{E} \exp \left(X_{1} / 2\right)=\mathbb{E} \sqrt{Y_{1}} \leq \sqrt{\mathbb{E} Y_{1}}=1
$$

i.e. with $\operatorname{Var}\left(\sqrt{Y_{1}}\right)=0$, which is ruled out by our assumption that Y_{1} is a non-constant random variable.
2. Since a.s. $n^{-1} \log M_{n} \rightarrow \mu<0$, we have that with probability one $n^{-1} \log M_{n} \leq \mu / 2$ for all n large enough. That is, $M_{n} \leq \exp (\mu n / 2) \rightarrow 0$ as $n \rightarrow \infty$. For $\left\{M_{n}\right\}$ uniformly integrable this would imply that $M_{n} \rightarrow 0$ in L^{1} and in particular that $\mathbb{E} M_{n} \rightarrow 0$ as $n \rightarrow \infty$. However, clearly $\mathbb{E} M_{n}=1$ for all n, so necessarily $\left\{M_{n}\right\}$ is not U.I.
3. If Doob's L^{p} maximal inequality applies for $p=1$, then for any non-negative martingale X_{n}

$$
\mathbb{E}\left[\max _{k \leq n} X_{k}\right] \leq q \mathbb{E} X_{n}=q \mathbb{E} X_{0}<\infty .
$$

Taking $n \rightarrow \infty$ it then follows that $\sup _{k} X_{k}$ is integrable, hence that $\left\{X_{n}\right\}$ is uniformly integrable. As we have seen in part (b) a counter example to the latter statement, we conclude that Doob's L^{p} maximal inequality can not extend as is to $p=1$.

Exercise [5.3.9]

For part (a) let $X_{n}=-1 / n$ (non-random), so $X_{n}^{2}=1 / n^{2}$. Then, obviously $\left\{X_{n}\right\}$ is a submartingale whereas $\left\{X_{n}^{2}\right\}$ is a super-martingale. No contradiction with Proposition ?? since $\Phi(x)=x^{2}$ is a decreasing function on the support $(-\infty, 0)$ of the sequence $\left\{X_{n}\right\}$. For part (b) consider $S_{n}=\sum_{k=1}^{n} \xi_{k}$ and independent $\left\{\xi_{k}\right\}$ such that $\xi_{k}=k^{2}-1$ with probability $1 / k^{2}$ and otherwise $\xi_{k}=-1$. Clearly, $\mathbf{E} \xi_{k}=0$ for all k so $\left\{S_{n}\right\}$ is a martingale. However, by Borel-Cantelli II we have that $\mathbf{P}\left(\xi_{k}=-1\right.$, e.v. $)=1$ hence $S_{n} \rightarrow-\infty$ almost surely. Theorem ?? does not apply for this example as $\mathbb{E}\left(S_{n}\right)_{\text {_ }}$ is unbounded. Indeed, take ℓ finite and large enough so $\sum_{k>\ell} k^{-2} \leq 1 / 2$ and set $b=\sum_{k=1}^{\ell} k^{2}$. Then, with probability at least half, $\xi_{k}=-1$ for all $k>\ell$ hence $S_{n} \leq b-n$. Consequently, $\mathbb{E}\left[\left(S_{n}\right)_{-}\right] \geq \frac{1}{2}(n-b)_{+} \rightarrow \infty$ as $n \rightarrow \infty$.

Exercise [5.3.10]

Consider the adapted processes $Q_{n}=\prod_{i=1}^{n}\left(1+Y_{i}\right) \geq Q_{0}=1$ and $W_{n}=\left(1+X_{n}\right) / Q_{n-1}$. Since $\sum_{i} Y_{i}<\infty$ a.s. and Y_{i} are non-negative, Q_{n} converges a.s. to a finite limit, say $Q_{\infty}=\sup _{n} Q_{n}$. Therefore, if W_{n} converges a.s. to a finite limit then so does $X_{n}=W_{n} Q_{n-1}-1$. Note that W_{n} is integrable and

$$
\mathbf{E}\left(W_{n+1} \mid \mathcal{F}_{n}\right) \leq\left(1+Y_{n}\right)\left(1+X_{n}\right) / Q_{n}=W_{n}
$$

implying that W_{n} is a super-martingale. Further, X_{n} is non-negative, hence so is W_{n} which by Doob's convergence theorem then converges a.s. to a finite limit.

Exercise [5.2.11]

The same line of reasoning applies in all three parts of this exercise. Namely, for a certain convex nonnegative function $\Phi(\cdot)$ the relevant inequality trivially holds when $\mathbb{E} \Phi\left(Y_{n}\right)$ is infinite. In part (a) assuming $\mathbb{E} \Phi\left(Y_{n}\right)<\infty$ for the non-decreasing $\Phi(y)=(y)_{+}^{p}$, we have from the L^{p}-maximal inequalities that $\mathbb{E} \Phi\left(Y_{k}\right)$ is finite for all $k \leq n$, so $\left\{X_{k}=\Phi\left(Y_{k}\right), k \leq n\right\}$ is a sub-MG (by Proposition ??). In parts (b) and (c) we start with a martingale $\left\{Y_{k}\right\}$ so again $X_{k}=\Phi\left(Y_{k}\right)$ is a sub-MG although the relevant functions $\Phi(y)=|y|^{p}$ and $\Phi(y)=(y+c)^{2}$, for $c \geq 0$, respectively, are non-decreasing only for $y \geq 0$. In all three cases if $Y_{k} \geq y>0$ then $X_{k} \geq x=\Phi(y)$, so we bound $\mathbf{P}\left(\max _{k} Y_{k} \geq y\right)$ by $\mathbf{P}\left(\max _{k} X_{k} \geq x\right)$ which in turn is further bounded via Doob's inequality. This procedure results with the stated bounds of (a) and (b), whereas in part (c) it provides the bound

$$
\mathbf{P}\left(\max _{k=0}^{n} Y_{k} \geq y\right) \leq(y+c)^{-2} \mathbb{E}\left(Y_{n}+c\right)^{2}
$$

However, here $\mathbb{E} Y_{n}=\mathbb{E} Y_{0}=0$, so the preceding bound simplifies to $(y+c)^{-2}\left(\mathbb{E} Y_{n}^{2}+c^{2}\right)$ and setting $c=\mathbb{E} Y_{n}^{2} / y$ yields after a bit of algebra the stated bound of part (c).

Exercise [5.2.19]

1. Since $\left|W_{n}\right|$ and $\left|Y_{n}\right|$ are both bounded by $\left|X_{n}^{1}\right|+\left|X_{n}^{2}\right|$, the integrability of W_{n} and Y_{n} follows from that of X_{n}^{1} and X_{n}^{2}. It is also easy to see that for an \mathcal{F}_{n}-stopping time τ and \mathcal{F}_{n}-adapted $\left\{X_{n}^{1}\right\},\left\{X_{n}^{2}\right\}$ the processes $\left\{W_{n}\right\}$ and $\left\{Y_{n}\right\}$ are also \mathcal{F}_{n}-adapted. Our assumption that $X_{\tau}^{1} \geq X_{\tau}^{2}$ implies that

$$
W_{n} \leq W_{n}+\left(X_{\tau}^{1}-X_{\tau}^{2}\right) I_{\{\tau=n\}}=Y_{n}
$$

Further, τ is an \mathcal{F}_{n}-stopping time, so the event $\{\tau<n\}=\{\tau \leq n-1\}$ and its complement $\{\tau \geq n\}=$ $\{\tau>n-1\}$ are both in \mathcal{F}_{n-1}. Hence, taking out the known $I_{\{\tau<n\}}$ and $I_{\{\tau \geq n\}}$ we deduce from the sup-MG property of X_{n}^{1} and X_{n}^{2} that

$$
\begin{aligned}
\mathbb{E}\left[W_{n} \mid \mathcal{F}_{n-1}\right] & \leq \mathbb{E}\left[Y_{n} \mid \mathcal{F}_{n-1}\right] \\
& =I_{\{\tau \geq n\}} \mathbb{E}\left[X_{n}^{1} \mid \mathcal{F}_{n-1}\right]+I_{\{\tau<n\}} \mathbb{E}\left[X_{n}^{2} \mid \mathcal{F}_{n-1}\right] \\
& \leq X_{n-1}^{1} I_{\{\tau>n-1\}}+X_{n-1}^{2} I_{\{\tau \leq n-1\}}=W_{n-1} \leq Y_{n-1}
\end{aligned}
$$

That is, both $\left\{W_{n}\right\}$ and $\left\{Y_{n}\right\}$ are sup-MGs for \mathcal{F}_{n}.
2. Fixing a positive integer n, consider the partition of Ω to the disjoint events $\left\{A_{\ell}, B_{\ell}, \ell \geq 0\right\}$ where $A_{\ell}=\left\{\omega: \tau_{\ell}(\omega)<n \leq \theta_{\ell}(\omega)\right\}$ and $B_{\ell}=\left\{\omega: \theta_{\ell}(\omega)<n \leq \tau_{\ell+1}(\omega)\right\}$ for $\ell=0,1, \ldots$. As $\tau_{\ell}, \ell \geq 0$ and $\theta_{\ell}, \ell \geq 0$ are stopping time for the filtration $\left\{\mathcal{F}_{n}\right\}$ it is easy to check that each of these events is in \mathcal{F}_{n-1}. We claim that if the event A_{ℓ} occurs, then $Z_{n}-Z_{n-1} \leq 0$. Indeed, for $\omega \in A_{\ell}$ either $Z_{n}=Z_{n-1}=a^{-\ell} b^{\ell}$ or in case $n=\theta_{\ell}$, by definition $X_{n} \leq a$ and $Z_{n}-Z_{n-1}=a^{-\ell} b^{\ell}\left(X_{n} / a-1\right) \leq 0$. We further claim that if the event B_{ℓ} occurs, then $Z_{n}-Z_{n-1} \leq a^{-\ell-1} b^{\ell}\left(X_{n}-X_{n-1}\right)$. Indeed, for $\omega \in B_{\ell}$ the preceding inequality holds with equality except when $n=\tau_{\ell+1}$ in which case it follows from the fact that $X_{\tau_{\ell+1}} \geq b$. Thus, decomposing $Z_{n}-Z_{n-1}$ according to this partition of Ω, we deduce that $Z_{n}-Z_{n-1} \leq V_{n}\left(X_{n}-X_{n-1}\right)$ with $V_{n}=\sum_{\ell=0}^{\infty} a^{-\ell-1} b^{\ell} I_{B_{\ell}}$ non-negative and measurable on \mathcal{F}_{n-1}. Further, as $\theta_{\ell} \geq 2 \ell$, the disjoint events B_{ℓ} are empty for $\ell \geq n / 2$, hence $V_{n} \leq a^{-1}(b / a)^{n / 2}$ is bounded. Taking out the known V_{n} and recalling that $\left(X_{n}, \mathcal{F}_{n}\right)$ is a sup-MG, we see that $V_{n}\left(X_{n}-X_{n-1}\right)$ is integrable with

$$
\mathbb{E}\left[V_{n}\left(X_{n}-X_{n-1}\right) \mid \mathcal{F}_{n-1}\right]=V_{n} \mathbb{E}\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right] \leq 0
$$

Consequently, as $Z_{0} \leq 1$, the non-negative

$$
Z_{n} \leq Z_{0}+\sum_{k=1}^{n} V_{k}\left(X_{k}-X_{k-1}\right)
$$

are integrable, with

$$
\mathbb{E}\left[Z_{n}-Z_{n-1} \mid \mathcal{F}_{n-1}\right] \leq V_{n} \mathbb{E}\left[X_{n}-X_{n-1} \mid \mathcal{F}_{n-1}\right] \leq 0
$$

establishing that $\left(Z_{n}, \mathcal{F}_{n}\right)$ is a sup-MG, as claimed.
3. We have that $\theta_{0}=0$ if and only if $X_{0} \leq a$ and consequently, $Z_{0}=\min \left(1, X_{0} / a\right)$. Recall that $Z_{n} \geq 0$ and $Z_{\tau_{\ell}}=a^{-\ell} b^{\ell}$ when τ_{ℓ} is finite, that is, when $U_{\infty}(a, b) \geq \ell$. Further from part (b) we have that $\mathbb{E} Z_{0} \geq \mathbb{E}\left[Z_{n \wedge \tau_{\ell}}\right]$ for any $n, \ell \geq 1$. Thus, taking $n \rightarrow \infty$ and applying Fatou's lemma we see that

$$
\mathbb{E}\left[\min \left(X_{0} / a, 1\right)\right] \geq \mathbb{E}\left[\liminf _{n \rightarrow \infty} Z_{n \wedge \tau_{\ell}}\right] \geq \mathbb{E}\left[Z_{\tau_{\ell}} I_{\left\{\tau_{\ell}<\infty\right\}}\right]=\left(\frac{b}{a}\right)^{\ell} \mathbf{P}\left(U_{\infty}(a, b) \geq \ell\right)
$$

