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Exercise [5.2.10]

It is easy to check that {S2
n − s2n} is a martingale (but you should do it). Let A = {maxnk=1 |Sk| > x} and

τ = inf{k : |Sk| > x} ∧ n. Then

(x+K)2P(A) ≥ E(S2
τ IA) ≥ E((S2

τ − s2τ )IA) = E((S2
n − s2n)IA),

since τ is bounded by n implies E(S2
τ − s2τ ) = E(S2

n − s2n) (see Corollary 5.1.33), and τ = n on Ac. Now add
E(S2

nIAc) to both sides to get

(x+K)2P(A) +E(S2
nIAc) ≥ E(S2

n)− s2nP(A).

But E(S2
nIAc) ≤ (x+K)2P(Ac) so

(x+K)2 = (x+K)2P(A) + (x+K)2P(Ac) ≥ E(S2
n)− s2nP(A) = s2nP(Ac).

Exercise [5.2.14]

1. Note that

logMn = Sn =

n∑
i=1

Xi

for the i.i.d. variables Xi = log Yi. Let X
(m)
1 = max(X1,−m). Since

exp(X
(m)
1 ) = max(Y1, e

−m) ≤ Y1 + e−m

and EY1 = 1, it follows from Jensen’s inequality that

EX(m)
1 ≤ logE[exp(X(m)

1 )] ≤ log(1 + e−m) .

Since (X1)+ = X
(0)
1 we thus deduce that E[(X1)+] is finite, which suffices for the strong law of large

numbers to apply (c.f. Theorem ??). That is, n−1 logMn converges almost sure to

µ = EX1 ≤ lim
m→∞

EX(m)
1 ≤ 0 .

Further, if µ = 0 then yet another application of Jensen’s inequality results with

1 = exp(µ/2) ≤ E exp(X1/2) = E
√
Y1 ≤

√
EY1 = 1

i.e. with Var(
√
Y1) = 0, which is ruled out by our assumption that Y1 is a non-constant random

variable.

2. Since a.s. n−1 logMn → µ < 0, we have that with probability one n−1 logMn ≤ µ/2 for all n large
enough. That is, Mn ≤ exp(µn/2) → 0 as n → ∞. For {Mn} uniformly integrable this would imply
that Mn → 0 in L1 and in particular that EMn → 0 as n → ∞. However, clearly EMn = 1 for all n,
so necessarily {Mn} is not U.I.
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3. If Doob’s Lp maximal inequality applies for p = 1, then for any non-negative martingale Xn

E[max
k≤n

Xk] ≤ qEXn = qEX0 < ∞ .

Taking n → ∞ it then follows that supk Xk is integrable, hence that {Xn} is uniformly integrable.
As we have seen in part (b) a counter example to the latter statement, we conclude that Doob’s Lp

maximal inequality can not extend as is to p = 1.

Exercise [5.3.9]

For part (a) let Xn = −1/n (non-random), so X2
n = 1/n2. Then, obviously {Xn} is a submartingale whereas

{X2
n} is a super-martingale. No contradiction with Proposition ?? since Φ(x) = x2 is a decreasing function

on the support (−∞, 0) of the sequence {Xn}. For part (b) consider Sn =
∑n

k=1 ξk and independent {ξk}
such that ξk = k2 − 1 with probability 1/k2 and otherwise ξk = −1. Clearly, Eξk = 0 for all k so {Sn} is a
martingale. However, by Borel-Cantelli II we have that P(ξk = −1, e.v.) = 1 hence Sn → −∞ almost surely.
Theorem ?? does not apply for this example as E(Sn)− is unbounded. Indeed, take ℓ finite and large enough

so
∑

k>ℓ k
−2 ≤ 1/2 and set b =

∑ℓ
k=1 k

2. Then, with probability at least half, ξk = −1 for all k > ℓ hence
Sn ≤ b− n. Consequently, E[(Sn)−] ≥ 1

2 (n− b)+ → ∞ as n → ∞.

Exercise [5.3.10]

Consider the adapted processes Qn =
∏n

i=1(1 + Yi) ≥ Q0 = 1 and Wn = (1 +Xn)/Qn−1. Since
∑

i Yi < ∞
a.s. and Yi are non-negative, Qn converges a.s. to a finite limit, say Q∞ = supn Qn. Therefore, if Wn

converges a.s. to a finite limit then so does Xn = WnQn−1 − 1. Note that Wn is integrable and

E(Wn+1|Fn) ≤ (1 + Yn)(1 +Xn)/Qn = Wn ,

implying that Wn is a super-martingale. Further, Xn is non-negative, hence so is Wn which by Doob’s
convergence theorem then converges a.s. to a finite limit.

Exercise [5.2.11]

The same line of reasoning applies in all three parts of this exercise. Namely, for a certain convex non-
negative function Φ(·) the relevant inequality trivially holds when EΦ(Yn) is infinite. In part (a) assuming
EΦ(Yn) < ∞ for the non-decreasing Φ(y) = (y)p+, we have from the Lp-maximal inequalities that EΦ(Yk) is
finite for all k ≤ n, so {Xk = Φ(Yk), k ≤ n} is a sub-MG (by Proposition ??). In parts (b) and (c) we start
with a martingale {Yk} so again Xk = Φ(Yk) is a sub-MG although the relevant functions Φ(y) = |y|p and
Φ(y) = (y + c)2, for c ≥ 0, respectively, are non-decreasing only for y ≥ 0. In all three cases if Yk ≥ y > 0
then Xk ≥ x = Φ(y), so we bound P(maxk Yk ≥ y) by P(maxk Xk ≥ x) which in turn is further bounded
via Doob’s inequality. This procedure results with the stated bounds of (a) and (b), whereas in part (c) it
provides the bound

P(
n

max
k=0

Yk ≥ y) ≤ (y + c)−2E(Yn + c)2 .

However, here EYn = EY0 = 0, so the preceding bound simplifies to (y + c)−2(EY 2
n + c2) and setting

c = EY 2
n /y yields after a bit of algebra the stated bound of part (c).

Exercise [5.2.19]

1. Since |Wn| and |Yn| are both bounded by |X1
n|+ |X2

n|, the integrability of Wn and Yn follows from that
of X1

n and X2
n. It is also easy to see that for an Fn-stopping time τ and Fn-adapted {X1

n}, {X2
n} the

processes {Wn} and {Yn} are also Fn-adapted. Our assumption that X1
τ ≥ X2

τ implies that

Wn ≤ Wn + (X1
τ −X2

τ )I{τ=n} = Yn .
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Further, τ is an Fn-stopping time, so the event {τ < n} = {τ ≤ n− 1} and its complement {τ ≥ n} =
{τ > n − 1} are both in Fn−1. Hence, taking out the known I{τ<n} and I{τ≥n} we deduce from the
sup-MG property of X1

n and X2
n that

E[Wn|Fn−1] ≤ E[Yn|Fn−1]

= I{τ≥n}E[X1
n|Fn−1] + I{τ<n}E[X2

n|Fn−1]

≤ X1
n−1I{τ>n−1} +X2

n−1I{τ≤n−1} = Wn−1 ≤ Yn−1 .

That is, both {Wn} and {Yn} are sup-MGs for Fn.

2. Fixing a positive integer n, consider the partition of Ω to the disjoint events {Aℓ, Bℓ, ℓ ≥ 0} where
Aℓ = {ω : τℓ(ω) < n ≤ θℓ(ω)} and Bℓ = {ω : θℓ(ω) < n ≤ τℓ+1(ω)} for ℓ = 0, 1, . . .. As τℓ, ℓ ≥ 0
and θℓ, ℓ ≥ 0 are stopping time for the filtration {Fn} it is easy to check that each of these events
is in Fn−1. We claim that if the event Aℓ occurs, then Zn − Zn−1 ≤ 0. Indeed, for ω ∈ Aℓ either
Zn = Zn−1 = a−ℓbℓ or in case n = θℓ, by definition Xn ≤ a and Zn − Zn−1 = a−ℓbℓ(Xn/a − 1) ≤ 0.
We further claim that if the event Bℓ occurs, then Zn − Zn−1 ≤ a−ℓ−1bℓ(Xn − Xn−1). Indeed, for
ω ∈ Bℓ the preceding inequality holds with equality except when n = τℓ+1 in which case it follows from
the fact that Xτℓ+1

≥ b. Thus, decomposing Zn − Zn−1 according to this partition of Ω, we deduce
that Zn−Zn−1 ≤ Vn(Xn−Xn−1) with Vn =

∑∞
ℓ=0 a

−ℓ−1bℓIBℓ
non-negative and measurable on Fn−1.

Further, as θℓ ≥ 2ℓ, the disjoint events Bℓ are empty for ℓ ≥ n/2, hence Vn ≤ a−1(b/a)n/2 is bounded.
Taking out the known Vn and recalling that (Xn,Fn) is a sup-MG, we see that Vn(Xn − Xn−1) is
integrable with

E[Vn(Xn −Xn−1)|Fn−1] = VnE[Xn −Xn−1|Fn−1] ≤ 0 .

Consequently, as Z0 ≤ 1, the non-negative

Zn ≤ Z0 +

n∑
k=1

Vk(Xk −Xk−1)

are integrable, with
E[Zn − Zn−1|Fn−1] ≤ VnE[Xn −Xn−1|Fn−1] ≤ 0 ,

establishing that (Zn,Fn) is a sup-MG, as claimed.

3. We have that θ0 = 0 if and only if X0 ≤ a and consequently, Z0 = min(1, X0/a). Recall that Zn ≥ 0
and Zτℓ = a−ℓbℓ when τℓ is finite, that is, when U∞(a, b) ≥ ℓ. Further from part (b) we have that
EZ0 ≥ E[Zn∧τℓ ] for any n, ℓ ≥ 1. Thus, taking n → ∞ and applying Fatou’s lemma we see that

E[min (X0/a, 1)] ≥ E[lim inf
n→∞

Zn∧τℓ ] ≥ E[ZτℓI{τℓ<∞}] =
( b

a

)ℓ

P(U∞(a, b) ≥ ℓ).
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