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Exercise [5.1.8]

(a). Recall Proposition 5.1.5 that for all k ≥ 1 a.s. E[Dk|Fk−1] = 0. Obviously this a.s. zero random
variable has zero expectation, which amounts to Dk having zero mean. Further, by the tower property, a.s.
E[Dk|Fn] = 0 for all k > n ≥ 0.

Clearly, the differences Dn = Xn −Xn−1 of a square-integrable process {Xn} are also square-integrable,
from which we deduce by the Cauchy-Schwarz inequality that DkDm is integrable for any k, m ≥ 0. In case
k > m ≥ n we thus get by the tower property and taking out the known Dm, that

E[DkDm|Fn] = E[DmE(Dk|Fm)|Fn] = 0 .

Considering the expectation of the latter identity, we conclude by the trivial tower property (4.2.1) that
EDkDm = 0, i.e. Dn are uncorrelated.
(b). By linearity of the C.E., for any ` ≥ n ≥ 0,

E[X` −Xn|Fn] =
∑̀

k=n+1

E[Dk|Fn] = 0 .

The same applies for {Yn}, hence upon taking out the known Xn, Yn ∈ mFn, by linearity of the C.E. also

∆`,n := E[Yn(X` −Xn) + Xn(Y` − Yn)|Fn] = 0 .

Clearly, for any ` ≥ n ≥ 0,

E[X`Y`|Fn]−XnYn −∆`,n = E[(X` −Xn)(Y` − Yn)|Fn] ,

from which we thus get the first claimed identity. In particular, considering ` = k and n = k − 1 we have
that for any k ≥ 1,

E[XkYk|Fk−1]−E[Xk−1Yk−1|Fk−1] = E[(Xk −Xk−1)(Yk − Yk−1)|Fk−1] .

Taking now k > n and considering the C.E. of both sides given Fn ⊆ Fk−1, the preceding identity yields by
the tower property that

E[XkYk|Fn]−E[Xk−1Yk−1|Fn] = E[(Xk −Xk−1)(Yk − Yk−1)|Fn] .

Summing over k = n + 1, . . . , ` provides the second claimed identity.
(c). Considering the second identity of part (b) with Dk = Xk −Xk−1 = Yk − Yk−1 we have (by linearity of
the C.E.), that for all ` ≥ n ≥ 0,

Zn := E[
∑̀

k=n+1

D2
k|Fn] = E[X2

` |Fn]−X2
n ≤ C2 , (∗)

where the inequality in (*) is due to the assumed bound X2
` ≤ C2 (and monotonicity of the C.E.). Next,

applying the tower property and taking out the known D2
n ∈ mFn, it follows from (*) that

∑̀
n=1

E[
∑̀

k=n+1

D2
nD2

k] =
∑̀
n=1

E[D2
nZn] ≤ C2E[

∑̀
k=1

D2
k] . (∗∗)
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Further, considering the expectation of Z0 we deduce from (*), by yet another application of the tower
property, that

E[
∑̀
k=1

D2
k] = E[Z0] ≤ C2 . (∗ ∗ ∗)

Next note that by assumption for any k ≥ 1,

D2
k ≤ (|Xk|+ |Xk−1|)2 ≤ (2C)2 = 4C2 ,

hence from (***) we get that

E[
∑̀
k=1

D4
k] ≤ 4C2E[

∑̀
k=1

D2
k] ≤ 4C4 .

Similarly, combining (**) and (***) we deduce that

2
∑̀
n=1

E[
∑̀

k=n+1

D2
nD2

k] ≤ 2C4 ,

whereby, upon adding the latter two inequalities we conclude that, as claimed,

E
[( ∑̀

k=1

D2
k

)2
]

= E
[ ∑̀

k=1

D4
k

]
+ 2

∑̀
n=1

E
[ ∑̀

k=n+1

D2
nD2

k

]
≤ 6C4 .

Exercise [5.1.15]

1. Since τ is an Fn-stopping time, the event {τ > n} is in Fn for any n. Hence, the hypothesis of the
exercise results for n = (k − 1)r with

P(τ > kr) = P(τ > kr and τ > n)
= E[Iτ>nP(τ > n + r|Fn)] ≤ (1− ε)P(τ > (k − 1)r)

and the stated geometric bound follows by induction on k.

2. The geometric bound on P(τ > kr) implies that τ/r has finite expectation (see part (a) of Lemma
1.4.31), hence so does τ .

Exercise [5.1.26]

We start with the integrability of f(Sn). To this end, recall that |Sn| ≤ n so by the hint we know that
f(Sn) ≥ inf |y|≤n+|x| f(y) is bounded below. You can easily check that if f(·) is super-harmonic, so is f(·)+ c
for any c ∈ R and hence assume hereafter without loss of generality that f(y) ≥ 0 whenever |y| ≤ n + |x|.
Then, since Sk = Sk−1+ξk with ξk uniform on B(0, 1) and independent of Sk−1, we have by Fubini’s theorem
that

Ef(Sk) = E[
1

|B(0, 1)|

∫
B(0,1)

f(Sk−1 + z)dz]

= E[
1

|B(0, 1)|

∫
B(Sk−1,1)

f(y)dy] ≤ Ef(Sk−1)

since f(·) is super-harmonic. Iterating this inequality over k = n, . . . , 1 we deduce that Ef(Sn) ≤ f(x) is
finite, i.e. f(Sn) is integrable.
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Obviously, Sn is adapted to the filtration Fn = σ(ξk, k ≤ n) and hence so is f(Sn). Further, as we have
seen already, the R.C.P.D. of Sn+1 given Fn is precisely the uniform measure on the ball B(Sn, 1). Hence,

E[f(Sn+1)|Fn] =
1

|B(0, 1)|

∫
B(Sn,1)

f(y)dy ≤ f(Sn)

by the fact that f(·) is a super-harmonic function.
Finally, recall that if f(Sn) is a sup-MG with respect to some filtration Fn then it is also a sup-MG (with

respect to its canonical filtration), see the remark following Definition 5.1.4.

Exercise [5.1.35]

(a). Since τ is an Fn-stopping-time, clearly Ω ∩ {ω : τ(ω) ≤ n} = {ω : τ(ω) ≤ n} ∈ Fn for all n, hence
Ω ∈ Fτ .
Next, if A ∈ Fτ then for each n both the event A ∩ {ω : τ(ω) ≤ n} and its complement are in the σ-algebra
Fn. Consequently, with τ an Fn-stopping time we deduce that

Ac ∩ {ω : τ(ω) ≤ n} = {ω : τ(ω) ≤ n} ∩
(
A ∩ {ω : τ(ω) ≤ n}

)c

∈ Fn .

This applies for all n, so by definition Ac ∈ Fτ .
Finally, consider events {A`}∞`=1 such that each Ai ∈ Fτ , namely Ai ∩ {ω : τ(ω) ≤ n} ∈ Fn for each i and n.
Then, for any n, ( ⋃

`

A`

) ⋂
{ω : τ(ω) ≤ n} =

⋃
`

(
A`

⋂
{ω : τ(ω) ≤ n}

)
∈ Fn .

That is ∪`A` ∈ Fτ , completing the proof that Fτ is a σ-algebra.
We finish this part by considering non-random τ(ω) = m, in which case A ∩ {ω : τ(ω) ≤ n} = A for any
A ∈ F∞ and integer n ≥ m, whereas A ∩ {ω : τ(ω) ≤ n} = ∅ in case n < m. Thus, the requirement that
A∩ {ω : τ(ω) ≤ n} ∈ Fn for all n ≥ 0 is equivalent to A ∈ Fn for all n ≥ m, i.e. to A ∈ Fm. That is, in this
case Fτ = Fm, as claimed.
(b). To prove that Xτ ∈ mFτ , fix a Borel set B and note that for any finite n,

{Xτ ∈ B} ∩ {ω : τ(ω) ≤ n} =
n⋃

`=1

(
{Xτ ∈ B} ∩ {ω : τ(ω) = `}

)
=

n⋃
`=1

(
{X` ∈ B} ∩ {ω : τ(ω) = `}

)
.

Since {X`} is adapted to the filtration {F`} with respect to which τ is a stopping time, we deduce from
the latter identity that {Xτ ∈ B and τ ≤ n} ∈ Fn for any finite n, so it only remains to show that
{Xτ ∈ B} ∈ F∞. To see this, note that since {Xτ ∈ B, τ ≤ n} ↑ {Xτ ∈ B, τ < ∞}, the latter set is in F∞,
whereas by definition

{Xτ ∈ B, τ = ∞} = {X∞ ∈ B}
⋂
{τ < ∞}c

is the intersection of two elements of F∞, hence also in F∞.
Next note that {τ ≤ ` ∧ n} ∈ mFn for any two finite integers ` ≥ 0, n ≥ 0. Consequently the π-system
of sets {τ ≤ `}, ` ≥ 1, is contained in Fτ , from which it follows that the σ-algebra σ(τ) generated by this
π-system, is also contained in Fτ .
Finally, XkI{τ=k} = XτI{τ=k}, so with Xτ ∈ mFτ and τ ∈ mFτ , we conclude that XkI{τ=k} ∈ mFτ .
(c). Considering part (b) for Xk := E[Yk|Fk] ∈ mFk, we have that E[Yk|Fk]I{τ=k} ∈ mFτ , and so it suffices
to show that for any A ∈ Fτ ,

E
[
E[Yτ |Fτ ]I{τ=k}IA

]
= E

[
E[Yk|Fk]I{τ=k}IA

]
. (∗)
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Since A ∩ {τ = k} ∈ Fτ (by part (b)), by definition of the C.E. the LHS of (*) equals to E[YτI{τ=k}IA].
As A ∈ Fτ , we have that A ∩ {τ = k} ∈ Fk, so again by definition of the C.E. the RHS of (*) equals to
E[YkI{τ=k}IA]. Clearly, YkI{τ=k} = YτI{τ=k} so by the preceding we conclude that (*) holds for any A ∈ Fτ .
(d). Since θ ≤ τ , we have that {τ ≤ n} ⊆ {θ ≤ n} for any non-random n. Hence,

A ∩ {τ ≤ n} =
(
A ∩ {θ ≤ n}

)
∩ {τ ≤ n},

for any A ∈ Fθ, for which we have by definition that A∩{θ ≤ n} ∈ Fn. Further, {τ ≤ n} ∈ Fn, so the same
applies for the LHS of the preceding identity. That is, A ∩ {τ ≤ n} ∈ Fn. This holds for any non-random
n ≥ 0, which by definition of Fτ amounts to A ∈ Fτ . In conclusion, any set A ∈ Fθ is also in Fτ , as claimed.

Exercise [5.1.13]

For any n the event {τ ≤ n} =
⋃n

k=0{Xk ∈ B} is clearly in Fn = σ(Xk, k ≤ n). Hence, τ is a stopping time
with respect to this filtration. In contrast, {θ ≤ n} =

⋂
k>n{Xk /∈ B} which for independent, non-degenerate

random variables Xk is certainly not in σ(Xk, k ≤ n).

Exercise [5.1.14]

(a). Clearly, if Z
d= −Z then

P(Z ≥ 0) ≥ P(Z > 0) +
1
2
P(Z = 0) =

1
2

.

This applies for Z = Sn − Sk =
∑n

i=k+1 ξi since ξi
d= −ξi are independent random variables. Indeed, the

characteristic function Φξi(θ) = Φ−ξi(θ) = Φξi(−θ) is then real valued by part (b) of Proposition 3.3.2,
hence by Lemma 3.3.8 the characteristic function of Sn−Sk is also real valued, and applying once more part
(b) of Proposition 3.3.2 we conclude that Sn − Sk

d= −(Sn − Sk).
(b). If Sn > x > 0 = S0 then necessarily 1 ≤ τ ≤ n. By definition x− Sτ is negative, hence

P(Sn > x) = P(1 ≤ τ ≤ n, Sn − Sτ > x− Sτ )

≥ P(1 ≤ τ ≤ n, Sn − Sτ ≥ 0) =
n∑

k=1

P(τ = k, Sn − Sk ≥ 0)

since the events {τ = k, Sn − Sk ≥ 0} are disjoint.
Further, {ξi} are independent variables, so for any 1 ≤ k ≤ n the event {Sn − Sk ≥ 0} ∈ σ(ξi, i > k) is
independent of {τ = k} and by part (a)

1
2
P(τ = k) ≤ P(τ = k)P(Sn − Sk ≥ 0) = P(τ = k, Sn − Sk ≥ 0).

(c). With S0 = 0 < x, we have from part (b) that

P
(

n
max
k=1

Sk > x

)
= P(τ ≤ n) =

n∑
k=1

P(τ = k) ≤ 2P(Sn > x).

(d). Here we set τ = inf{k ≥ 0 : Sk ≥ x} and note that for integer x > 0 = S0 and increments ξi ∈ {−1, 1},
necessarily Sτ = x. Thus, for each k = 0, 1, . . . , n,

{Sn ≥ x, τ = k} = {Sn ≥ x, τ = k, Sk = x} = {Sn − Sk ≥ 0, τ = k} .
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Further, since {τ = k} ∈ FS
k is independent of Sn − Sk =

∑n
i=k+1 ξi and the event {Sn ≥ x} implies that

{τ ≤ n}, we have that

P(Sn ≥ x) =
n∑

k=0

P
(
Sn ≥ x, τ = k

)
=

n∑
k=0

P(τ = k)P(Sn − Sk ≥ 0) .

Recall that for symmetric SRW Sn − Sk
d= −(Sn − Sk) is integer valued (see solution of part (a)), hence

P(Sn − Sk ≥ 1) = P(Sn − Sk ≤ −1) = 1−P(Sn − Sk ≥ 0) ,

and by the same argument as before,

P(Sn ≥ x + 1) =
n∑

k=0

P(τ = k)P(Sn − Sk ≥ 1) =
n∑

k=0

P(τ = k)−P(Sn ≥ x) .

Since Sn is integer valued, we deduce from the latter identity that

2P(Sn ≥ x)−P(Sn = x) = P(Sn ≥ x) + P(Sn ≥ x + 1)

= P(τ ≤ n) = P(
n

max
k=1

Sk ≥ x) (∗)

as claimed.
With Zn denoting the number of strict sign changes within the sequence {S0 = 0, S1, . . . , Sn}, we proceed
to show that Z2n+1

d= (|S2n+1| − 1)/2, namely, that for any integer r ≥ 1,

P(Z2n+1 ≥ r) = P(|S2n+1| ≥ 2r + 1)

(this trivially extends to r = 0 since |S2n+1| ≥ 1). To this end, recall that S2n is always an even integer and
S2n+1 = S2n + ξ2n+1 has a symmetric law, hence

P(|S2n+1| ≥ 2r + 1) = 2P(S2n+1 ≥ 2r + 1)
= 2[P(S2n+1 ≥ 2r + 1, ξ2n+1 = 1) + P(S2n+1 ≥ 2r + 1, ξ2n+1 = −1)]
= 2P(S2n ≥ 2r)P(ξ2n+1 = 1) + 2P(S2n ≥ 2r + 2)P(ξ2n+1 = −1)

= P(S2n ≥ 2r) + P(S2n ≥ 2r + 1) = P(
2n

max
j=1

Sj ≥ 2r) (∗∗)

where the last identity is due to (*). Further, for any random walk {Sj , j = 1, . . . , 2n} d= {Sk+1 − S1, k =
1, . . . , 2n}, with the latter independent of S1. Thus, for r ≥ 1,

P(
2n

max
j=1

Sj ≥ 2r) = P(
2n

max
k=1

Sk+1 − S1 ≥ 2r|S1 = −1)

= P(
2n+1
max
k=1

Sk ≥ 2r − 1|S1 = −1) (∗ ∗ ∗)

We also note that Z2n+1 is invariant with respect to a global sign change of the path of the symmetric SRW,
hence independent of S1 ∈ {−1, 1}. Therefore, upon combining the identities (**) and (***), it suffices to
show that for any r ≥ 1,

P(Z2n+1 ≥ r|S1 = −1) = P(
2n+1
max
k=1

Sk ≥ 2r − 1|S1 = −1) . (∗ ∗ ∗∗)

Next, let T0 = 1 and for j ≥ 1 define the stopping times T2j−1 := inf{k ≥ T2j−2 : Sk = 1}, and T2j :=
inf{k ≥ T2j−1 : Sk = −1}, so in case S1 = −1, the strict sign changes of the SRW are recorded at times
{Tj , j ≥ 1}, with

{Z2n+1 ≥ r} = {Tr ≤ 2n + 1} = {
r∑

j=1

τj ≤ 2n} ,
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where τj := Tj − Tj−1, j ≥ 1. Further, in this case STj
= (−1)j+1 for all j ≥ 0 and it is not hard to

check that the random vectors Xj := {τj , ξTj−1+`, ` = 1, . . . , τj} are independent of each other (for example,
iteratively apply part (a) of Exercise 5.1.38), with {X2j−1} identically distributed (in j), each having the
law of increments of the SRW starting at −1 and run up to its first hitting time of +1, whereas {X2j}
are likewise identically distributed (in j), as such increments for the SRW starting at +1 and run up to
its first hitting time of −1. In particular X2

d= −X1 (namely, having the same law for these vectors
length, while sign reversing their other coordinates). Since increments of the symmetric SRW are uniformly
distributed, the path k 7→ S′k induced by {(−1)j−1Xj , j = 1, . . . , r} has the same joint law as the original
SRW {Sk : k ≤ Tr} induced from {Xj , j = 1, . . . , r}. However, in terms of the path k 7→ S′k we have that
Tj = inf{k ≥ Tj−1 : S′k = 2j − 1} for j ≥ 1. That is, the event Tr ≤ 2n + 1 corresponds now to

2n+1
max
k=1

S′k ≥ 2r − 1 ,

from which (****) follows.

Exercise [5.1.37]

Theorem 5.1.32 tells us that if (Xn,Fn) is a MG then so is (Xn∧τ ,Fn) for any Fn-stopping time τ . Hence,
{Xn} is also a local martingale.

Conversely, suppose {Xn} is an integrable local martingale and let τk ↑ ∞ denote the Fn-stopping times
such that (Xn∧τk

,Fn) is a MG. Then, by definition

X(n+1)∧τk
−Xn∧τk

= (Xn+1 −Xn)Iτk>n ,

and taking out the Fn-known I{τk>n} we deduce that

0 = E[X(n+1)∧τk
−Xn∧τk

|Fn] = E[Xn+1 −Xn|Fn]I{τk>n} .

Taking k ↑ ∞ we further know that I{τk>n} → 1 and conclude that E[Xn+1 − Xn|Fn] = 0 a.s. for all n.
That is, (Xn,Fn) is a MG.
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