Stat 310B/Math 230B Theory of Probability
 Homework 3 Solutions

Andrea Montanari

Exercise [5.1.8]

(a). Recall Proposition 5.1.5 that for all $k \geq 1$ a.s. $\mathbf{E}\left[D_{k} \mid \mathcal{F}_{k-1}\right]=0$. Obviously this a.s. zero random variable has zero expectation, which amounts to D_{k} having zero mean. Further, by the tower property, a.s. $\mathbf{E}\left[D_{k} \mid \mathcal{F}_{n}\right]=0$ for all $k>n \geq 0$.

Clearly, the differences $D_{n}=X_{n}-X_{n-1}$ of a square-integrable process $\left\{X_{n}\right\}$ are also square-integrable, from which we deduce by the Cauchy-Schwarz inequality that $D_{k} D_{m}$ is integrable for any $k, m \geq 0$. In case $k>m \geq n$ we thus get by the tower property and taking out the known D_{m}, that

$$
\mathbf{E}\left[D_{k} D_{m} \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[D_{m} \mathbf{E}\left(D_{k} \mid \mathcal{F}_{m}\right) \mid \mathcal{F}_{n}\right]=0
$$

Considering the expectation of the latter identity, we conclude by the trivial tower property (4.2.1) that $\mathbf{E} D_{k} D_{m}=0$, i.e. D_{n} are uncorrelated.
(b). By linearity of the C.E., for any $\ell \geq n \geq 0$,

$$
\mathbf{E}\left[X_{\ell}-X_{n} \mid \mathcal{F}_{n}\right]=\sum_{k=n+1}^{\ell} \mathbf{E}\left[D_{k} \mid \mathcal{F}_{n}\right]=0
$$

The same applies for $\left\{Y_{n}\right\}$, hence upon taking out the known $X_{n}, Y_{n} \in m \mathcal{F}_{n}$, by linearity of the C.E. also

$$
\Delta_{\ell, n}:=\mathbf{E}\left[Y_{n}\left(X_{\ell}-X_{n}\right)+X_{n}\left(Y_{\ell}-Y_{n}\right) \mid \mathcal{F}_{n}\right]=0
$$

Clearly, for any $\ell \geq n \geq 0$,

$$
\mathbf{E}\left[X_{\ell} Y_{\ell} \mid \mathcal{F}_{n}\right]-X_{n} Y_{n}-\Delta_{\ell, n}=\mathbf{E}\left[\left(X_{\ell}-X_{n}\right)\left(Y_{\ell}-Y_{n}\right) \mid \mathcal{F}_{n}\right]
$$

from which we thus get the first claimed identity. In particular, considering $\ell=k$ and $n=k-1$ we have that for any $k \geq 1$,

$$
\mathbf{E}\left[X_{k} Y_{k} \mid \mathcal{F}_{k-1}\right]-\mathbf{E}\left[X_{k-1} Y_{k-1} \mid \mathcal{F}_{k-1}\right]=\mathbf{E}\left[\left(X_{k}-X_{k-1}\right)\left(Y_{k}-Y_{k-1}\right) \mid \mathcal{F}_{k-1}\right]
$$

Taking now $k>n$ and considering the C.E. of both sides given $\mathcal{F}_{n} \subseteq \mathcal{F}_{k-1}$, the preceding identity yields by the tower property that

$$
\mathbf{E}\left[X_{k} Y_{k} \mid \mathcal{F}_{n}\right]-\mathbf{E}\left[X_{k-1} Y_{k-1} \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[\left(X_{k}-X_{k-1}\right)\left(Y_{k}-Y_{k-1}\right) \mid \mathcal{F}_{n}\right]
$$

Summing over $k=n+1, \ldots, \ell$ provides the second claimed identity.
(c). Considering the second identity of part (b) with $D_{k}=X_{k}-X_{k-1}=Y_{k}-Y_{k-1}$ we have (by linearity of the C.E.), that for all $\ell \geq n \geq 0$,

$$
\begin{equation*}
Z_{n}:=\mathbf{E}\left[\sum_{k=n+1}^{\ell} D_{k}^{2} \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[X_{\ell}^{2} \mid \mathcal{F}_{n}\right]-X_{n}^{2} \leq C^{2} \tag{*}
\end{equation*}
$$

where the inequality in $\left(^{*}\right)$ is due to the assumed bound $X_{\ell}^{2} \leq C^{2}$ (and monotonicity of the C.E.). Next, applying the tower property and taking out the known $D_{n}^{2} \in m \mathcal{F}_{n}$, it follows from (*) that

$$
\begin{equation*}
\sum_{n=1}^{\ell} \mathbf{E}\left[\sum_{k=n+1}^{\ell} D_{n}^{2} D_{k}^{2}\right]=\sum_{n=1}^{\ell} \mathbf{E}\left[D_{n}^{2} Z_{n}\right] \leq C^{2} \mathbf{E}\left[\sum_{k=1}^{\ell} D_{k}^{2}\right] \tag{**}
\end{equation*}
$$

Further, considering the expectation of Z_{0} we deduce from $\left(^{*}\right)$, by yet another application of the tower property, that

$$
\mathbf{E}\left[\sum_{k=1}^{\ell} D_{k}^{2}\right]=\mathbf{E}\left[Z_{0}\right] \leq C^{2} . \quad(* * *)
$$

Next note that by assumption for any $k \geq 1$,

$$
D_{k}^{2} \leq\left(\left|X_{k}\right|+\left|X_{k-1}\right|\right)^{2} \leq(2 C)^{2}=4 C^{2}
$$

hence from $\left({ }^{* * *}\right)$ we get that

$$
\mathbf{E}\left[\sum_{k=1}^{\ell} D_{k}^{4}\right] \leq 4 C^{2} \mathbf{E}\left[\sum_{k=1}^{\ell} D_{k}^{2}\right] \leq 4 C^{4}
$$

Similarly, combining $\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$ we deduce that

$$
2 \sum_{n=1}^{\ell} \mathbf{E}\left[\sum_{k=n+1}^{\ell} D_{n}^{2} D_{k}^{2}\right] \leq 2 C^{4}
$$

whereby, upon adding the latter two inequalities we conclude that, as claimed,

$$
\mathbf{E}\left[\left(\sum_{k=1}^{\ell} D_{k}^{2}\right)^{2}\right]=\mathbf{E}\left[\sum_{k=1}^{\ell} D_{k}^{4}\right]+2 \sum_{n=1}^{\ell} \mathbf{E}\left[\sum_{k=n+1}^{\ell} D_{n}^{2} D_{k}^{2}\right] \leq 6 C^{4}
$$

Exercise [5.1.15]

1. Since τ is an \mathcal{F}_{n}-stopping time, the event $\{\tau>n\}$ is in \mathcal{F}_{n} for any n. Hence, the hypothesis of the exercise results for $n=(k-1) r$ with

$$
\begin{aligned}
\mathbf{P}(\tau>k r) & =\mathbf{P}(\tau>k r \text { and } \tau>n) \\
& =\mathbf{E}\left[I_{\tau>n} \mathbf{P}\left(\tau>n+r \mid \mathcal{F}_{n}\right)\right] \leq(1-\varepsilon) \mathbf{P}(\tau>(k-1) r)
\end{aligned}
$$

and the stated geometric bound follows by induction on k.
2. The geometric bound on $\mathbf{P}(\tau>k r)$ implies that τ / r has finite expectation (see part (a) of Lemma 1.4.31), hence so does τ.

Exercise [5.1.26]

We start with the integrability of $f\left(S_{n}\right)$. To this end, recall that $\left|S_{n}\right| \leq n$ so by the hint we know that $f\left(S_{n}\right) \geq \inf _{|y| \leq n+|x|} f(y)$ is bounded below. You can easily check that if $f(\cdot)$ is super-harmonic, so is $f(\cdot)+c$ for any $c \in \mathbb{R}$ and hence assume hereafter without loss of generality that $f(y) \geq 0$ whenever $|y| \leq n+|x|$. Then, since $S_{k}=S_{k-1}+\xi_{k}$ with ξ_{k} uniform on $B(0,1)$ and independent of S_{k-1}, we have by Fubini's theorem that

$$
\begin{aligned}
\mathbf{E} f\left(S_{k}\right) & =\mathbf{E}\left[\frac{1}{|B(0,1)|} \int_{B(0,1)} f\left(S_{k-1}+z\right) d z\right] \\
& =\mathbf{E}\left[\frac{1}{|B(0,1)|} \int_{B\left(S_{k-1}, 1\right)} f(y) d y\right] \leq \mathbf{E} f\left(S_{k-1}\right)
\end{aligned}
$$

since $f(\cdot)$ is super-harmonic. Iterating this inequality over $k=n, \ldots, 1$ we deduce that $\mathbf{E} f\left(S_{n}\right) \leq f(x)$ is finite, i.e. $f\left(S_{n}\right)$ is integrable.

Obviously, S_{n} is adapted to the filtration $\mathcal{F}_{n}=\sigma\left(\xi_{k}, k \leq n\right)$ and hence so is $f\left(S_{n}\right)$. Further, as we have seen already, the R.C.P.D. of S_{n+1} given \mathcal{F}_{n} is precisely the uniform measure on the ball $B\left(S_{n}, 1\right)$. Hence,

$$
\mathbf{E}\left[f\left(S_{n+1}\right) \mid \mathcal{F}_{n}\right]=\frac{1}{|B(0,1)|} \int_{B\left(S_{n}, 1\right)} f(y) d y \leq f\left(S_{n}\right)
$$

by the fact that $f(\cdot)$ is a super-harmonic function.
Finally, recall that if $f\left(S_{n}\right)$ is a sup-MG with respect to some filtration \mathcal{F}_{n} then it is also a sup-MG (with respect to its canonical filtration), see the remark following Definition 5.1.4.

Exercise [5.1.35]

(a). Since τ is an \mathcal{F}_{n}-stopping-time, clearly $\Omega \cap\{\omega: \tau(\omega) \leq n\}=\{\omega: \tau(\omega) \leq n\} \in \mathcal{F}_{n}$ for all n, hence $\Omega \in \mathcal{F}_{\tau}$.
Next, if $A \in \mathcal{F}_{\tau}$ then for each n both the event $A \cap\{\omega: \tau(\omega) \leq n\}$ and its complement are in the σ-algebra \mathcal{F}_{n}. Consequently, with τ an \mathcal{F}_{n}-stopping time we deduce that

$$
A^{c} \cap\{\omega: \tau(\omega) \leq n\}=\{\omega: \tau(\omega) \leq n\} \cap(A \cap\{\omega: \tau(\omega) \leq n\})^{c} \in \mathcal{F}_{n}
$$

This applies for all n, so by definition $A^{c} \in \mathcal{F}_{\tau}$.
Finally, consider events $\left\{A_{\ell}\right\}_{\ell=1}^{\infty}$ such that each $A_{i} \in \mathcal{F}_{\tau}$, namely $A_{i} \cap\{\omega: \tau(\omega) \leq n\} \in \mathcal{F}_{n}$ for each i and n.
Then, for any n,

$$
\left(\bigcup_{\ell} A_{\ell}\right) \bigcap\{\omega: \tau(\omega) \leq n\}=\bigcup_{\ell}\left(A_{\ell} \bigcap\{\omega: \tau(\omega) \leq n\}\right) \in \mathcal{F}_{n}
$$

That is $\cup_{\ell} A_{\ell} \in \mathcal{F}_{\tau}$, completing the proof that \mathcal{F}_{τ} is a σ-algebra.
We finish this part by considering non-random $\tau(\omega)=m$, in which case $A \cap\{\omega: \tau(\omega) \leq n\}=A$ for any $A \in \mathcal{F}_{\infty}$ and integer $n \geq m$, whereas $A \cap\{\omega: \tau(\omega) \leq n\}=\emptyset$ in case $n<m$. Thus, the requirement that $A \cap\{\omega: \tau(\omega) \leq n\} \in \mathcal{F}_{n}$ for all $n \geq 0$ is equivalent to $A \in \mathcal{F}_{n}$ for all $n \geq m$, i.e. to $A \in \mathcal{F}_{m}$. That is, in this case $\mathcal{F}_{\tau}=\mathcal{F}_{m}$, as claimed.
(b). To prove that $X_{\tau} \in m \mathcal{F}_{\tau}$, fix a Borel set B and note that for any finite n,

$$
\begin{aligned}
\left\{X_{\tau} \in B\right\} \cap\{\omega: \tau(\omega) \leq n\} & =\bigcup_{\ell=1}^{n}\left(\left\{X_{\tau} \in B\right\} \cap\{\omega: \tau(\omega)=\ell\}\right) \\
& =\bigcup_{\ell=1}^{n}\left(\left\{X_{\ell} \in B\right\} \cap\{\omega: \tau(\omega)=\ell\}\right)
\end{aligned}
$$

Since $\left\{X_{\ell}\right\}$ is adapted to the filtration $\left\{\mathcal{F}_{\ell}\right\}$ with respect to which τ is a stopping time, we deduce from the latter identity that $\left\{X_{\tau} \in B\right.$ and $\left.\tau \leq n\right\} \in \mathcal{F}_{n}$ for any finite n, so it only remains to show that $\left\{X_{\tau} \in B\right\} \in \mathcal{F}_{\infty}$. To see this, note that since $\left\{X_{\tau} \in B, \tau \leq n\right\} \uparrow\left\{X_{\tau} \in B, \tau<\infty\right\}$, the latter set is in \mathcal{F}_{∞}, whereas by definition

$$
\left\{X_{\tau} \in B, \tau=\infty\right\}=\left\{X_{\infty} \in B\right\} \bigcap\{\tau<\infty\}^{c}
$$

is the intersection of two elements of \mathcal{F}_{∞}, hence also in \mathcal{F}_{∞}.
Next note that $\{\tau \leq \ell \wedge n\} \in m \mathcal{F}_{n}$ for any two finite integers $\ell \geq 0, n \geq 0$. Consequently the π-system of sets $\{\tau \leq \ell\}, \ell \geq 1$, is contained in \mathcal{F}_{τ}, from which it follows that the $\bar{\sigma}$-algebra $\sigma(\tau)$ generated by this π-system, is also contained in \mathcal{F}_{τ}.
Finally, $X_{k} I_{\{\tau=k\}}=X_{\tau} I_{\{\tau=k\}}$, so with $X_{\tau} \in m \mathcal{F}_{\tau}$ and $\tau \in m \mathcal{F}_{\tau}$, we conclude that $X_{k} I_{\{\tau=k\}} \in m \mathcal{F}_{\tau}$.
(c). Considering part (b) for $X_{k}:=\mathbf{E}\left[Y_{k} \mid \mathcal{F}_{k}\right] \in m \mathcal{F}_{k}$, we have that $\mathbf{E}\left[Y_{k} \mid \mathcal{F}_{k}\right] I_{\{\tau=k\}} \in m \mathcal{F}_{\tau}$, and so it suffices to show that for any $A \in \mathcal{F}_{\tau}$,

$$
\begin{equation*}
\mathbf{E}\left[\mathbf{E}\left[Y_{\tau} \mid \mathcal{F}_{\tau}\right] I_{\{\tau=k\}} I_{A}\right]=\mathbf{E}\left[\mathbf{E}\left[Y_{k} \mid \mathcal{F}_{k}\right] I_{\{\tau=k\}} I_{A}\right] \tag{*}
\end{equation*}
$$

Since $A \cap\{\tau=k\} \in \mathcal{F}_{\tau}$ (by part (b)), by definition of the C.E. the LHS of $\left(^{*}\right.$) equals to $\mathbf{E}\left[Y_{\tau} I_{\{\tau=k\}} I_{A}\right]$. As $A \in \mathcal{F}_{\tau}$, we have that $A \cap\{\tau=k\} \in \mathcal{F}_{k}$, so again by definition of the C.E. the RHS of (*) equals to $\mathbf{E}\left[Y_{k} I_{\{\tau=k\}} I_{A}\right]$. Clearly, $Y_{k} I_{\{\tau=k\}}=Y_{\tau} I_{\{\tau=k\}}$ so by the preceding we conclude that $\left.{ }^{*}\right)$ holds for any $A \in \mathcal{F}_{\tau}$. (d). Since $\theta \leq \tau$, we have that $\{\tau \leq n\} \subseteq\{\theta \leq n\}$ for any non-random n. Hence,

$$
A \cap\{\tau \leq n\}=(A \cap\{\theta \leq n\}) \cap\{\tau \leq n\}
$$

for any $A \in \mathcal{F}_{\theta}$, for which we have by definition that $A \cap\{\theta \leq n\} \in \mathcal{F}_{n}$. Further, $\{\tau \leq n\} \in \mathcal{F}_{n}$, so the same applies for the LHS of the preceding identity. That is, $A \cap\{\tau \leq n\} \in \mathcal{F}_{n}$. This holds for any non-random $n \geq 0$, which by definition of \mathcal{F}_{τ} amounts to $A \in \mathcal{F}_{\tau}$. In conclusion, any set $A \in \mathcal{F}_{\theta}$ is also in \mathcal{F}_{τ}, as claimed.

Exercise [5.1.13]

For any n the event $\{\tau \leq n\}=\bigcup_{k=0}^{n}\left\{X_{k} \in B\right\}$ is clearly in $\mathcal{F}_{n}=\sigma\left(X_{k}, k \leq n\right)$. Hence, τ is a stopping time with respect to this filtration. In contrast, $\{\theta \leq n\}=\bigcap_{k>n}\left\{X_{k} \notin B\right\}$ which for independent, non-degenerate random variables X_{k} is certainly not in $\sigma\left(X_{k}, k \leq n\right)$.

Exercise [5.1.14]

(a). Clearly, if $Z \stackrel{\text { d }}{=}-Z$ then

$$
\mathbf{P}(Z \geq 0) \geq \mathbf{P}(Z>0)+\frac{1}{2} \mathbf{P}(Z=0)=\frac{1}{2}
$$

This applies for $Z=S_{n}-S_{k}=\sum_{i=k+1}^{n} \xi_{i}$ since $\xi_{i} \stackrel{\mathrm{~d}}{=}-\xi_{i}$ are independent random variables. Indeed, the characteristic function $\Phi_{\xi_{i}}(\theta)=\Phi_{-\xi_{i}}(\theta)=\Phi_{\xi_{i}}(-\theta)$ is then real valued by part (b) of Proposition 3.3.2, hence by Lemma 3.3.8 the characteristic function of $S_{n}-S_{k}$ is also real valued, and applying once more part (b) of Proposition 3.3 .2 we conclude that $S_{n}-S_{k} \stackrel{\text { d }}{=}-\left(S_{n}-S_{k}\right)$.
(b). If $S_{n}>x>0=S_{0}$ then necessarily $1 \leq \tau \leq n$. By definition $x-S_{\tau}$ is negative, hence

$$
\begin{aligned}
\mathbf{P}\left(S_{n}>x\right) & =\mathbf{P}\left(1 \leq \tau \leq n, S_{n}-S_{\tau}>x-S_{\tau}\right) \\
& \geq \mathbf{P}\left(1 \leq \tau \leq n, S_{n}-S_{\tau} \geq 0\right)=\sum_{k=1}^{n} \mathbf{P}\left(\tau=k, S_{n}-S_{k} \geq 0\right)
\end{aligned}
$$

since the events $\left\{\tau=k, S_{n}-S_{k} \geq 0\right\}$ are disjoint.
Further, $\left\{\xi_{i}\right\}$ are independent variables, so for any $1 \leq k \leq n$ the event $\left\{S_{n}-S_{k} \geq 0\right\} \in \sigma\left(\xi_{i}, i>k\right)$ is independent of $\{\tau=k\}$ and by part (a)

$$
\frac{1}{2} \mathbf{P}(\tau=k) \leq \mathbf{P}(\tau=k) \mathbf{P}\left(S_{n}-S_{k} \geq 0\right)=\mathbf{P}\left(\tau=k, S_{n}-S_{k} \geq 0\right)
$$

(c). With $S_{0}=0<x$, we have from part (b) that

$$
\mathbf{P}\left(\max _{k=1}^{n} S_{k}>x\right)=\mathbf{P}(\tau \leq n)=\sum_{k=1}^{n} \mathbf{P}(\tau=k) \leq 2 \mathbf{P}\left(S_{n}>x\right)
$$

(d). Here we set $\tau=\inf \left\{k \geq 0: S_{k} \geq x\right\}$ and note that for integer $x>0=S_{0}$ and increments $\xi_{i} \in\{-1,1\}$, necessarily $S_{\tau}=x$. Thus, for each $k=0,1, \ldots, n$,

$$
\left\{S_{n} \geq x, \tau=k\right\}=\left\{S_{n} \geq x, \tau=k, S_{k}=x\right\}=\left\{S_{n}-S_{k} \geq 0, \tau=k\right\}
$$

Further, since $\{\tau=k\} \in \mathcal{F}_{k}^{\mathbf{S}}$ is independent of $S_{n}-S_{k}=\sum_{i=k+1}^{n} \xi_{i}$ and the event $\left\{S_{n} \geq x\right\}$ implies that $\{\tau \leq n\}$, we have that

$$
\mathbf{P}\left(S_{n} \geq x\right)=\sum_{k=0}^{n} \mathbf{P}\left(S_{n} \geq x, \tau=k\right)=\sum_{k=0}^{n} \mathbf{P}(\tau=k) \mathbf{P}\left(S_{n}-S_{k} \geq 0\right)
$$

Recall that for symmetric SRW $S_{n}-S_{k} \stackrel{\text { d }}{=}-\left(S_{n}-S_{k}\right)$ is integer valued (see solution of part (a)), hence

$$
\mathbf{P}\left(S_{n}-S_{k} \geq 1\right)=\mathbf{P}\left(S_{n}-S_{k} \leq-1\right)=1-\mathbf{P}\left(S_{n}-S_{k} \geq 0\right)
$$

and by the same argument as before,

$$
\mathbf{P}\left(S_{n} \geq x+1\right)=\sum_{k=0}^{n} \mathbf{P}(\tau=k) \mathbf{P}\left(S_{n}-S_{k} \geq 1\right)=\sum_{k=0}^{n} \mathbf{P}(\tau=k)-\mathbf{P}\left(S_{n} \geq x\right)
$$

Since S_{n} is integer valued, we deduce from the latter identity that

$$
\begin{align*}
2 \mathbf{P}\left(S_{n} \geq x\right)-\mathbf{P}\left(S_{n}=x\right) & =\mathbf{P}\left(S_{n} \geq x\right)+\mathbf{P}\left(S_{n} \geq x+1\right) \\
& =\mathbf{P}(\tau \leq n)=\mathbf{P}\left(\max _{k=1}^{n} S_{k} \geq x\right) \tag{*}
\end{align*}
$$

as claimed.
With Z_{n} denoting the number of strict sign changes within the sequence $\left\{S_{0}=0, S_{1}, \ldots, S_{n}\right\}$, we proceed to show that $Z_{2 n+1} \stackrel{\mathrm{~d}}{=}\left(\left|S_{2 n+1}\right|-1\right) / 2$, namely, that for any integer $r \geq 1$,

$$
\mathbf{P}\left(Z_{2 n+1} \geq r\right)=\mathbf{P}\left(\left|S_{2 n+1}\right| \geq 2 r+1\right)
$$

(this trivially extends to $r=0$ since $\left|S_{2 n+1}\right| \geq 1$). To this end, recall that $S_{2 n}$ is always an even integer and $S_{2 n+1}=S_{2 n}+\xi_{2 n+1}$ has a symmetric law, hence

$$
\begin{aligned}
& \mathbf{P}\left(\left|S_{2 n+1}\right| \geq 2 r+1\right)=2 \mathbf{P}\left(S_{2 n+1} \geq 2 r+1\right) \\
= & 2\left[\mathbf{P}\left(S_{2 n+1} \geq 2 r+1, \xi_{2 n+1}=1\right)+\mathbf{P}\left(S_{2 n+1} \geq 2 r+1, \xi_{2 n+1}=-1\right)\right] \\
= & 2 \mathbf{P}\left(S_{2 n} \geq 2 r\right) \mathbf{P}\left(\xi_{2 n+1}=1\right)+2 \mathbf{P}\left(S_{2 n} \geq 2 r+2\right) \mathbf{P}\left(\xi_{2 n+1}=-1\right) \\
= & \mathbf{P}\left(S_{2 n} \geq 2 r\right)+\mathbf{P}\left(S_{2 n} \geq 2 r+1\right)=\mathbf{P}\left(\max _{j=1}^{2 n} S_{j} \geq 2 r\right)
\end{aligned}
$$

where the last identity is due to $\left(^{*}\right)$. Further, for any random walk $\left\{S_{j}, j=1, \ldots, 2 n\right\} \stackrel{\text { d }}{=}\left\{S_{k+1}-S_{1}, k=\right.$ $1, \ldots, 2 n\}$, with the latter independent of S_{1}. Thus, for $r \geq 1$,

$$
\begin{aligned}
\mathbf{P}\left(\max _{j=1}^{2 n} S_{j} \geq 2 r\right) & =\mathbf{P}\left(\max _{k=1}^{2 n} S_{k+1}-S_{1} \geq 2 r \mid S_{1}=-1\right) \\
& =\mathbf{P}\left(\max _{k=1}^{2 n+1} S_{k} \geq 2 r-1 \mid S_{1}=-1\right) \quad(* * *)
\end{aligned}
$$

We also note that $Z_{2 n+1}$ is invariant with respect to a global sign change of the path of the symmetric SRW, hence independent of $S_{1} \in\{-1,1\}$. Therefore, upon combining the identities $\left({ }^{* *}\right)$ and $\left({ }^{* * *}\right)$, it suffices to show that for any $r \geq 1$,

$$
\mathbf{P}\left(Z_{2 n+1} \geq r \mid S_{1}=-1\right)=\mathbf{P}\left(\max _{k=1}^{2 n+1} S_{k} \geq 2 r-1 \mid S_{1}=-1\right) . \quad(* * * *)
$$

Next, let $T_{0}=1$ and for $j \geq 1$ define the stopping times $T_{2 j-1}:=\inf \left\{k \geq T_{2 j-2}: S_{k}=1\right\}$, and $T_{2 j}:=$ $\inf \left\{k \geq T_{2 j-1}: S_{k}=-1\right\}$, so in case $S_{1}=-1$, the strict sign changes of the SRW are recorded at times $\left\{T_{j}, j \geq 1\right\}$, with

$$
\left\{Z_{2 n+1} \geq r\right\}=\left\{T_{r} \leq 2 n+1\right\}=\left\{\sum_{j=1}^{r} \tau_{j} \leq 2 n\right\}
$$

where $\tau_{j}:=T_{j}-T_{j-1}, j \geq 1$. Further, in this case $S_{T_{j}}=(-1)^{j+1}$ for all $j \geq 0$ and it is not hard to check that the random vectors $\underline{X}_{j}:=\left\{\tau_{j}, \xi_{T_{j-1}+\ell}, \ell=1, \ldots, \tau_{j}\right\}$ are independent of each other (for example, iteratively apply part (a) of Exercise 5.1 .38), with $\left\{\underline{X}_{2 j-1}\right\}$ identically distributed (in j), each having the law of increments of the SRW starting at -1 and run up to its first hitting time of +1 , whereas $\left\{\underline{X}_{2 j}\right\}$ are likewise identically distributed (in j), as such increments for the SRW starting at +1 and run up to its first hitting time of -1 . In particular $\underline{X}_{2} \stackrel{\mathrm{~d}}{=}-\underline{X}_{1}$ (namely, having the same law for these vectors length, while sign reversing their other coordinates). Since increments of the symmetric SRW are uniformly distributed, the path $k \mapsto S_{k}^{\prime}$ induced by $\left\{(-1)^{j-1} \underline{X}_{j}, j=1, \ldots, r\right\}$ has the same joint law as the original SRW $\left\{S_{k}: k \leq T_{r}\right\}$ induced from $\left\{\underline{X}_{j}, j=1, \ldots, r\right\}$. However, in terms of the path $k \mapsto S_{k}^{\prime}$ we have that $T_{j}=\inf \left\{k \geq T_{j-1}: S_{k}^{\prime}=2 j-1\right\}$ for $j \geq 1$. That is, the event $T_{r} \leq 2 n+1$ corresponds now to

$$
\max _{k=1}^{2 n+1} S_{k}^{\prime} \geq 2 r-1
$$

from which $\left({ }^{* * * *)}\right.$ follows.

Exercise [5.1.37]

Theorem 5.1.32 tells us that if $\left(X_{n}, \mathcal{F}_{n}\right)$ is a MG then so is $\left(X_{n \wedge \tau}, \mathcal{F}_{n}\right)$ for any \mathcal{F}_{n}-stopping time τ. Hence, $\left\{X_{n}\right\}$ is also a local martingale.

Conversely, suppose $\left\{X_{n}\right\}$ is an integrable local martingale and let $\tau_{k} \uparrow \infty$ denote the \mathcal{F}_{n}-stopping times such that $\left(X_{n \wedge \tau_{k}}, \mathcal{F}_{n}\right)$ is a MG. Then, by definition

$$
X_{(n+1) \wedge \tau_{k}}-X_{n \wedge \tau_{k}}=\left(X_{n+1}-X_{n}\right) I_{\tau_{k}>n}
$$

and taking out the \mathcal{F}_{n}-known $I_{\left\{\tau_{k}>n\right\}}$ we deduce that

$$
0=\mathbf{E}\left[X_{(n+1) \wedge \tau_{k}}-X_{n \wedge \tau_{k}} \mid \mathcal{F}_{n}\right]=\mathbf{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right] I_{\left\{\tau_{k}>n\right\}}
$$

Taking $k \uparrow \infty$ we further know that $I_{\left\{\tau_{k}>n\right\}} \rightarrow 1$ and conclude that $\mathbf{E}\left[X_{n+1}-X_{n} \mid \mathcal{F}_{n}\right]=0$ a.s. for all n. That is, $\left(X_{n}, \mathcal{F}_{n}\right)$ is a MG.

