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Homework 3 Solutions
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Exercise [5.1.8]

(a). Recall Proposition 5.1.5 that for all £ > 1 a.s. E[D|F,_1] = 0. Obviously this a.s. zero random
variable has zero expectation, which amounts to Dy having zero mean. Further, by the tower property, a.s.
E[Dy|F,] =0 for all k > n > 0.

Clearly, the differences D,, = X,, — X,,—1 of a square-integrable process {X,,} are also square-integrable,
from which we deduce by the Cauchy-Schwarz inequality that Dy D,, is integrable for any k,m > 0. In case
k > m > n we thus get by the tower property and taking out the known D,,, that

E[DyD.,|Fn] = E[DpE(Dy | Fp)|Fn] =0.

Considering the expectation of the latter identity, we conclude by the trivial tower property (4.2.1) that
ED.D,, =0, ie. D, are uncorrelated.
(b). By linearity of the C.E., for any £ > n > 0,

¢
E[X,— X,|F.] = Y E[Di|F,]=0.
k=n-+1

The same applies for {Y,,}, hence upon taking out the known X,,,Y,, € mF,, by linearity of the C.E. also
Ay =EY, (X, - X,)+ X, (Y, - Y,)|F.] =0.
Clearly, for any ¢ > n > 0,
E[X Y| Fn] = XnYn = A = B[(Xe — X0)(Ye = Yo) | Fa]

from which we thus get the first claimed identity. In particular, considering ¢ = k and n = k — 1 we have
that for any k£ > 1,

E[X,Yi|Fr-1] — B[ Xp—1Yeo1|Feo1] = B[( Xk — Xi—1) (Y — Y1) | Fron] -

Taking now k£ > n and considering the C.E. of both sides given F,, C Fi_1, the preceding identity yields by
the tower property that

E[X Y| Fn] —E[Xp_1Ye—1|Fn] = E[( Xk — Xi—1) (Y — Yie—1)|Fn] -

Summing over k =n + 1,...,¢ provides the second claimed identity.
(c). Considering the second identity of part (b) with Dy, = X — X;—1 = Y — Yx—1 we have (by linearity of
the C.E.), that for all £ > n > 0,

14
Zn = E| Z Di|F,) = E[Xg‘fn} - X7 <C?, ()
k=n-+1

where the inequality in (*) is due to the assumed bound X7 < C? (and monotonicity of the C.E.). Next,
applying the tower property and taking out the known D2 € mJF,, it follows from (*) that

0 L L
SE[ Y DD} =) E[DZ,)<C’E[Y_ Di. (s

n=1 k=n+1 n=1 k=1
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Further, considering the expectation of Zy we deduce from (*), by yet another application of the tower
property, that

D3] = E[Zy] < C?. (s % %)

M~

E[
k=1
Next note that by assumption for any k& > 1,

D} < (|Xe| + |Xka])? < (20)° = 4C2,

hence from (***) we get that

~
~

E[> Di] <4C’E[Y_Dj] <4C*.
k=1 k=1

Similarly, combining (**) and (***) we deduce that
¢ ¢
2> E[ Y DiDf <20,
n=1 k=n+1
whereby, upon adding the latter two inequalities we conclude that, as claimed,

B[(3pi)] B[S pt] <2 3B B i) <set

k=1 =1 k=n+1

~

Exercise [5.1.15]

1. Since 7 is an F,-stopping time, the event {r > n} is in F,, for any n. Hence, the hypothesis of the
exercise results for n = (k — 1)r with

P(r>kr) = P(r>kr and 7>n)
= E[Ls,Pr>n+7rF)] <1 —-e)P(r>(k-1)r)

and the stated geometric bound follows by induction on k.

2. The geometric bound on P(7 > kr) implies that 7/r has finite expectation (see part (a) of Lemma
1.4.31), hence so does 7.

Exercise [5.1.26]

We start with the integrability of f(S,). To this end, recall that |S,| < n so by the hint we know that
f(Sn) > inf|y|<ptje) f(y) is bounded below. You can easily check that if f(-) is super-harmonic, so is f(-) +c
for any ¢ € R and hence assume hereafter without loss of generality that f(y) > 0 whenever |y| < n + |z|.
Then, since Sy = Sk—1+E&k with & uniform on B(0, 1) and independent of S_1, we have by Fubini’s theorem
that

1
Ef(Sk) = E[m /B(O,l) J(Sk—1 + 2)dz]

1
FIBOD] Jags, T =B

since f(-) is super-harmonic. Iterating this inequality over k = n,...,1 we deduce that Ef(S,) < f(x) is
finite, i.e. f(Sy) is integrable.



Obviously, S,, is adapted to the filtration F,, = o(&, k < n) and hence so is f(S,,). Further, as we have
seen already, the R.C.P.D. of S,,1 given F,, is precisely the uniform measure on the ball B(S,,1). Hence,

1
1B(0, )| J(s,,1)
by the fact that f(-) is a super-harmonic function.

Finally, recall that if f(S,,) is a sup-MG with respect to some filtration F,, then it is also a sup-MG (with
respect to its canonical filtration), see the remark following Definition 5.1.4.

E[f(Sn+1)|Fa] = fy)dy < f(Sn)

Exercise [5.1.35]

(a). Since 7 is an F,-stopping-time, clearly Q N {w : 7(w) < n} = {w : 7(w) < n} € F, for all n, hence
Qe F..

Next, if A € F, then for each n both the event AN {w : 7(w) < n} and its complement are in the o-algebra
Fn. Consequently, with 7 an F,,-stopping time we deduce that

Acﬂ{w:T(w)Sn}:{w:T(w)Sn}ﬁ(Aﬁ{w:T(w)Sn})cefn.

This applies for all n, so by definition A€ € F..
Finally, consider events {A,}7°, such that each A; € F,, namely A; N{w : 7(w) < n} € F, for each ¢ and n.
Then, for any n,

(UA@) ﬂ{w (T(w) <n} = U (A[ ﬂ{w (T(w) < n}) € Fn.
¢ ¢

That is UgAy € F., completing the proof that F, is a o-algebra.

We finish this part by considering non-random 7(w) = m, in which case AN {w : 7(w) < n} = A for any
A € Fy and integer n > m, whereas AN {w : 7(w) < n} = 0 in case n < m. Thus, the requirement that
AN{w:7(w) < n} € F, for all n > 0 is equivalent to A € F,, for all n > m, i.e. to A € F,,. That is, in this
case Fr = Fp, as claimed.

(b). To prove that X, € mJF,, fix a Borel set B and note that for any finite n,

{X; eB}n{w:7(w) <n}

Il
C=

({XT €B}N{w:T(w) = 12})

o~
Il
a

Il
C=

({X@ e BN {w:T(w) = e}).

o~
Il
—

Since {X,} is adapted to the filtration {Fy} with respect to which 7 is a stopping time, we deduce from
the latter identity that {X, € B and 7 < n} € F, for any finite n, so it only remains to show that
{X; € B} € Fw. To see this, note that since {X; € B,7 <n} 1 {X; € B,7 < oo}, the latter set is in F,
whereas by definition

{X, € B,r =00} = {Xo € B} |{r < o0}

is the intersection of two elements of F,, hence also in F.

Next note that {7 < £ An} € mF, for any two finite integers £ > 0, n > 0. Consequently the 7-system
of sets {7 < ¢}, £ > 1, is contained in F,, from which it follows that the o-algebra o(7) generated by this
m-system, is also contained in F;.

Finally, Xy I(;—ry = X7 I[7—k), so with X; € mF; and 7 € mF;, we conclude that Xyl¢,—ry € mF;.

(c). Considering part (b) for Xy := E[Yy|Fx] € mFy, we have that E[Yy|Fp]l{;—y € mF;, and so it suffices
to show that for any A € F,

E[E[YTVT]I{T:HM} = E[E[Yk|fk]l{'r:k}IA] (*)



Since AN {7 = k} € F, (by part (b)), by definition of the C.E. the LHS of (*) equals to E[Y;Ir;—j14].
As A € F., we have that AN {r = k} € Fy, so again by definition of the C.E. the RHS of (*) equals to
E[Yil{;—x1a]. Clearly, Yil(—yy = Y- I{;—py so by the preceding we conclude that (*) holds for any A € F.
(d). Since 6 < 7, we have that {T < n} C {# < n} for any non-random n. Hence,

Aﬂ{Tgn}z(Aﬂ{an})ﬁ{Tgn},

for any A € Fp, for which we have by definition that AN{0 < n} € F,. Further, {r <n} € F,, so the same
applies for the LHS of the preceding identity. That is, AN {7 < n} € F,. This holds for any non-random
n > 0, which by definition of F, amounts to A € F,.. In conclusion, any set A € Fy is also in F, as claimed.

Exercise [5.1.13]

For any n the event {7 < n} = J;_,{X» € B} is clearly in F,, = 0(X},, k < n). Hence, 7 is a stopping time
with respect to this filtration. In contrast, {# < n} =, {Xx ¢ B} which for independent, non-degenerate
random variables X}, is certainly not in (X, k < n).

Exercise [5.1.14]

(a). Clearly, if Z 4 _Z then

P(ZZO)2P(Z>O)+%P(Z:O):%.

This applies for Z = S, — S, = Y1, 41 &i since §; 4 —¢&; are independent random variables. Indeed, the

characteristic function ®¢, (0) = ®_¢,(0) = P¢,(—0) is then real valued by part (b) of Proposition 3.3.2,
hence by Lemma 3.3.8 the characteristic function of S,, — S, is also real valued, and applying once more part

(b) of Proposition 3.3.2 we conclude that S, — Sk 4 — (S, — Sk).
(b). If S,, > & > 0 = Sy then necessarily 1 < 7 < n. By definition « — S; is negative, hence

P(S,>z)=P(1<7<n,S,—-S;,>x—-5;)
>P(1<7<nS,—85>0)=Y P(r=FkS,—5;>0)
k=1

since the events {7 = k, S,, — Sy > 0} are disjoint.
Further, {¢;} are independent variables, so for any 1 < k < n the event {S, — S; > 0} € 0(§,7 > k) is
independent of {r = k} and by part (a)

1
§P(T =k)<P(r=kP(S,—S,>0)=P(r=k,S5, — Sk >0).

(c). With Sy = 0 < z, we have from part (b) that
P (r]?aiisk > x) =P(r<n)= kz_lP(q— = k) < 2P(S, > ).

(d). Here we set 7 = inf{k > 0: Sy > x} and note that for integer z > 0 = Sy and increments & € {—1,1},
necessarily S, = x. Thus, for each £ =0,1,...,n,

{Spn >z, 7=k}={Sp >z, 7=k Sy =2} ={5,— S >0,7=k}.



Further, since {7 = k} € F}; is independent of S, — S = .7, | & and the event {S,, > z} implies that
{7 < n}, we have that

P(S, > ) = Zp(sn >, 7= k) =3 " P(r=k)P(S, — Sk > 0).

k=0 k=0

Recall that for symmetric SRW S,, — S 4 —(Sn — Sk) is integer valued (see solution of part (a)), hence
P(S, =S >1)=P(S, =S <—-1)=1-P(S, — Sp > 0),

and by the same argument as before,
P(S,>x+1)=> P(r=kP(S,— S >1)=Y P(r=Fk)—P(S, >1).
k=0

Since S, is integer valued, we deduce from the latter identity that

2P(S, >z)—P(Sp,=2) = P(S,>2)+P(S,>z+1)
= P(r<n)= P(II?EL{(S;C > x) (%)

as claimed.
With Z,, denoting the number of strict sign changes within the sequence {Sy = 0,51, ...,S5,}, we proceed

to show that Zs,11 4 (|S2n+1| — 1)/2, namely, that for any integer r > 1,
P(Zany1 > 1) = P(|S2n41] > 2r + 1)

(this trivially extends to r = 0 since |Sap,41]| > 1). To this end, recall that Ss,, is always an even integer and
Son+1 = Sapn + &2n+1 has a symmetric law, hence

P(|S2n41| > 2r +1) = 2P(S2p41 > 2r +1)
= 2[P(S2nt1>2r + 1,801 = 1) + P(Sony1 > 2r +1,82,41 = —1)]
= 2P(Sgn Z 27’)P(€2n+1 = ].) + QP(SQn Z 2r + 2)P(€2n+1 = 71)

= P(Son >2r) + P(Son >2r+1) = P(n%gf( S; > 2r) (%)
2

where the last identity is due to (*). Further, for any random walk {S;,j =1,...,2n} 4 {Sk4+1 — S1,k =
1,...,2n}, with the latter independent of S;. Thus, for r > 1,

P(H,%glx Sj=2r) = P(Iﬁgf Sk1 — 51 2 2r|S = 1)
J= =
= P(fiax S, > 2r — 1/S; = 1) (4 5 %)

We also note that Zs, 41 is invariant with respect to a global sign change of the path of the symmetric SRW,
hence independent of S; € {—1,1}. Therefore, upon combining the identities (**) and (***), it suffices to
show that for any r > 1,

P(Zopy1 > r|S1=-1)= P(%}%}é‘—% Sk >2r —1|5; = -1). (%  skok)

Next, let 7o = 1 and for j > 1 define the stopping times Th;_; := inf{k > Th;_o : S = 1}, and Ty, =
inf{k > Tp;_1 : S = —1}, so in case S; = —1, the strict sign changes of the SRW are recorded at times
{T;,j > 1}, with

{ZQH+1 ZT} :{Tr SQTL—I—:[} :{ZT]' §2TL},

Jj=1



where 7; := T; — Tj_1, j > 1. Further, in this case Sy, = (—1)?*! for all j > 0 and it is not hard to
check that the random vectors X ; := {7;,&r,_, +¢,¢ = 1,...,7;} are independent of each other (for example,
iteratively apply part (a) of Exercise 5.1.38), with {X,; ;} identically distributed (in j), each having the
law of increments of the SRW starting at —1 and run up to its first hitting time of +1, whereas {X,;}
are likewise identically distributed (in j), as such increments for the SRW starting at +1 and run up to

its first hitting time of —1. In particular X, 4 —X, (namely, having the same law for these vectors
length, while sign reversing their other coordinates). Since increments of the symmetric SRW are uniformly
distributed, the path k — S}, induced by {(—1)j_15j,j = 1,...,r} has the same joint law as the original
SRW {S. : k < T} induced from {X;,j = 1,...,r}. However, in terms of the path k — S} we have that
T; =inf{k > T;_1 : S}, = 2j — 1} for j > 1. That is, the event T, < 2n + 1 corresponds now to

2n+1
max S >2r—1,
=1

from which (¥****) follows.

Exercise [5.1.37]

Theorem 5.1.32 tells us that if (X,,, F,) is a MG then so is (Xpar, Fn) for any Fp,-stopping time 7. Hence,
{X,} is also a local martingale.

Conversely, suppose {X,,} is an integrable local martingale and let 7, T co denote the F,,-stopping times
such that (X,ar,, Fn) is a MG. Then, by definition

*Xv(nJrl)/\T;C - Xn/\'rk - (Xn—i-l - Xn)ITk>TL?
and taking out the F,-known I, -, we deduce that
0= E[X(Tl+1)/\Tk - Xn/\*rk|‘7:n] = E[Xn—H - Xn‘fn}f{r;c>n} .

Taking k 1 oo we further know that I, ~,3 — 1 and conclude that E[X,, 11 — X,|F,] = 0 a.s. for all n.
That is, (X, Fy) is a MG.



	

