Stat 310B/Math 230B Theory of Probability

Homework 2 Solutions

Andrea Montanari

Exercise [4.3.11]

In the proof of Theorem 4.1.2 we use the Radon-Nikodym theorem only for showing the existence of C.E. in case $X \in L^{1}(\Omega, \mathcal{F}, \mathbf{P})$ and $X \geq 0$.

So, assuming that X is non-negative and integrable we proceed to provide the existence of its C.E. without invoking the Radon-Nikodym theorem. To this end, let $X_{n}=\min (X, n)$, which is bounded, hence in $L^{2}(\Omega, \mathcal{F}, \mathbf{P})$. Applying Theorem 4.3.10 as in the notes, we have $Y_{n} \in L^{2}(\Omega, \mathcal{G}, \mathbf{P})$ such that $\mathbf{E}\left(\left(X_{n}-Y_{n}\right) Z\right)=0$ for all $Z \in L^{2}(\Omega, \mathcal{G}, \mathbf{P})$. In particular, setting $Z=I_{A}$ for an arbitrary $A \in \mathcal{G}$, we deduce that $Y_{n}=\mathbf{E}\left[X_{n} \mid \mathcal{G}\right]$. Since $n \mapsto X_{n}$ is a non-decreasing sequence of non-negative random variables, by the monotonicity and positivity of the C.E. the same applies for $n \mapsto Y_{n}$. Consequently, its limit $Y=\sup _{n} Y_{n}$ exists as a nonnegative $\overline{\mathbb{R}}$-valued element of $m \mathcal{G}$ (see Theorem 1.2.22). Recall that $\mathbf{E} Y_{n}=\mathbf{E} X_{n} \leq \mathbf{E} X$ for all n, so by monotone convergence $\mathbf{E} Y \leq \mathbf{E} X$ is finite and in particular $Y \in L^{1}(\Omega, \mathcal{G}, \mathbf{P})$ is \mathbb{R}-valued. By monotone convergence of $Y_{n} I_{A}$ to $Y I_{A}$ and $X_{n} I_{A}$ to $X I_{A}$ it further holds that for all $A \in \mathcal{G}$

$$
\mathbf{E}\left[Y I_{A}\right]=\lim _{n \rightarrow \infty} \mathbf{E}\left[Y_{n} I_{A}\right]=\lim _{n \rightarrow \infty} \mathbf{E}\left[X_{n} I_{A}\right]=\mathbf{E}\left[X I_{A}\right] .
$$

Thus, Y satisfies (4.1.1) and we conclude that the C.E. $\mathbf{E}[X \mid \mathcal{G}]=Y$ exists.

Exercise [4.4.4]

1. By Definition 4.4.2, for any R.C.P.D. two conditions have to be met. As $g(\mathbb{S}) \subseteq \mathbb{T}$, we have that $\mathbf{E}\left[I_{\{Y \in \mathbb{T}\}} \mid \mathcal{G}\right]=1$ and thus taking $\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\mathbb{T}, \omega)=1$ for all $\omega \in \Omega$ will be a version of the relevant C.E. For the same reason, this choice does not violate the requirement that the set function $\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\cdot, \omega)$ is a probability measure for each $\omega \in \Omega$.
2. If $X(\omega) \in A$ then clearly $Y(\omega)=g(X(\omega)) \in g(A)$. Conversely, if $Y(\omega) \in g(A)$ then $X(\omega)=$ $g^{-1}(Y(\omega)) \in g^{-1}(g(A))=A$ because the mapping g is one to one. Furthermore, setting $B=g(A)$ we have that $A=h(B) \in S S$ for the one to one $h=g^{-1}: \mathbb{T} \mapsto \mathbb{S}$, and since h is also a measurable mapping it follows that $B=h^{-1}(A) \in \mathcal{T} \subseteq \mathcal{B}$.
3. For any $A \in S S$ we have that

$$
\widehat{\mathbf{Q}}(A, \cdot)=\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(g(A), \cdot)=\mathbf{E}\left[I_{\{Y \in g(A)\}} \mid \mathcal{G}\right]=\mathbf{E}\left[I_{\{X \in A\}} \mid \mathcal{G}\right]
$$

as we have seen in part (b) that $I_{\{Y \in g(A)\}}=I_{\{X \in A\}}$.
Also, $\widehat{\mathbf{Q}}(\cdot, \omega)$ is a probability measure on $(\mathbb{S}, S S)$ for any fixed ω. Indeed, first by part (b) for any $A \in S S, g(A) \in \mathcal{T}$ so by the non-negativity of the R.C.P.D. $\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\cdot, \omega)$,

$$
\widehat{\mathbf{Q}}(A, \omega)=\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(g(A), \omega) \geq \widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\emptyset, \omega)=0=\widehat{\mathbf{Q}}(\emptyset, \omega) .
$$

Second, since g is one to one, for any disjoint $A_{n} \in S S$ we also have that $g\left(A_{n}\right) \in \mathcal{T}$ are disjoint, hence by countable additivity of the R.C.P.D. $\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\cdot, \omega)$,

$$
\widehat{\mathbf{Q}}\left(\cup_{n} A_{n}, \omega\right)=\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}\left(\cup_{n} g\left(A_{n}\right), \omega\right)=\sum_{n} \widehat{\mathbf{P}}_{Y \mid \mathcal{G}}\left(g\left(A_{n}\right), \omega\right)=\sum_{n} \widehat{\mathbf{Q}}\left(A_{n}, \omega\right) .
$$

Finally, g is onto hence $g(\mathbb{S})=\mathbb{T}$ and so $\widehat{\mathbf{Q}}(\mathbb{S}, \omega)=\widehat{\mathbf{P}}_{Y \mid \mathcal{G}}(\mathbb{T}, \omega)=1$ by part (a).
In conclusion, by Definition 4.4.2, $\widehat{\mathbf{Q}}(\cdot, \cdot)$ is the R.C.P.D. of X given \mathcal{G}.

Exercise [4.4.5]

Let g be the one to one and onto mapping associated with the \mathcal{B}-isomorphism. Then, by Proposition 4.4.3, for the random variable $g(X)$ and the σ-algebra $\sigma(g(Y))$, there exists an R.C.P.D. $\widehat{\mathbf{P}}_{g(X) \mid \sigma(g(Y))}$.

We claim that $\sigma(Y)=\sigma(g(Y))$. To show this, note first that any $A \in \sigma(Y)$ is of the form $A=Y^{-1}(S)$ for some $S \in S S$. While solving part (b) of Exercise 4.4.4 we noted that $S=g^{-1}(B)$ with $B=g(S) \in \mathcal{B}$, hence $A=(g(Y))^{-1}(B)$ is in $\sigma(g(Y))$. Conversely, since $(g(Y))^{-1}(B)=Y^{-1}\left(g^{-1}(B)\right)$ for any $B \in \mathcal{B}$, if $A \in \sigma(g(Y))$ then $A=Y^{-1}\left(g^{-1}(B)\right)$ for some $B \in \mathcal{B}$. By measurability of g we have that $S=g^{-1}(B) \in S S$ and hence $A=Y^{-1}(S) \in \sigma(Y)$.

Furthermore, by Definition 4.4.2, we know that $\widehat{\mathbf{P}}_{g(X) \mid \sigma(g(Y))}(B, \cdot)$ is a $\sigma(g(Y))$ measurable function for each $B \in \mathcal{B}$ fixed. Therefore, by Theorem 1.2.26 there exists a Borel function $f(B, \cdot): \mathbb{T} \mapsto[0,1]$ such that $\widehat{\mathbf{P}}_{g(X) \mid \sigma(g(Y))}=f(B, g(Y(\omega)))$. Now let $\widehat{\mathbf{P}}_{X \mid Y}(y, A)=h(y, A)$ for the $[0,1]$-valued $h(y, A)=f(g(A), g(y))$. Note that per fixed $A \in S S$ the set $g(A)$ is in \mathcal{B} and $h(\cdot, A)$ being the composition of the measurable f and g is measurable on $(\mathbb{S}, S S)$. Further, by part (b) of Exercise 4.4.4 and since $\sigma(g(Y))=\sigma(Y)$,

$$
\begin{aligned}
\widehat{\mathbf{P}}_{X \mid Y}(Y(\omega), A) & =f(g(A), g(Y(\omega)))=\widehat{\mathbf{P}}_{g(X) \mid \sigma(g(Y))}(g(A), \cdot) \\
& =\mathbf{E}\left[I_{\{g(X) \in g(A)\}} \mid \sigma(g(Y))\right]=\mathbf{E}\left[I_{\{X \in A\}} \mid \sigma(Y)\right]
\end{aligned}
$$

hence establishing part (a). For part (b), note that for any fixed $\omega \in \Omega$, the set function

$$
\widehat{\mathbf{P}}_{X \mid Y}(Y(\omega), \cdot)=\widehat{\mathbf{P}}_{g(X) \mid \sigma(g(Y))}(g(\cdot), g(Y(\omega)))
$$

is a probability measure on $(S, S S)$ in view of part (c) of Exercise 4.4.4.

