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Exercise [4.3.11]

In the proof of Theorem 4.1.2 we use the Radon-Nikodym theorem only for showing the existence of C.E. in
case X ∈ L1(Ω,F ,P) and X ≥ 0.

So, assuming that X is non-negative and integrable we proceed to provide the existence of its C.E.
without invoking the Radon-Nikodym theorem. To this end, let Xn = min(X, n), which is bounded, hence in
L2(Ω,F ,P). Applying Theorem 4.3.10 as in the notes, we have Yn ∈ L2(Ω,G,P) such that E((Xn−Yn)Z) = 0
for all Z ∈ L2(Ω,G,P). In particular, setting Z = IA for an arbitrary A ∈ G, we deduce that Yn = E[Xn|G].
Since n 7→ Xn is a non-decreasing sequence of non-negative random variables, by the monotonicity and
positivity of the C.E. the same applies for n 7→ Yn. Consequently, its limit Y = supn Yn exists as a non-
negative R-valued element of mG (see Theorem 1.2.22). Recall that EYn = EXn ≤ EX for all n, so by
monotone convergence EY ≤ EX is finite and in particular Y ∈ L1(Ω,G,P) is R-valued. By monotone
convergence of YnIA to Y IA and XnIA to XIA it further holds that for all A ∈ G

E[Y IA] = lim
n→∞

E[YnIA] = lim
n→∞

E[XnIA] = E[XIA] .

Thus, Y satisfies (4.1.1) and we conclude that the C.E. E[X|G] = Y exists.

Exercise [4.4.4]

1. By Definition 4.4.2, for any R.C.P.D. two conditions have to be met. As g(S) ⊆ T, we have that
E[I{Y ∈T}|G] = 1 and thus taking P̂Y |G(T, ω) = 1 for all ω ∈ Ω will be a version of the relevant C.E.
For the same reason, this choice does not violate the requirement that the set function P̂Y |G(·, ω) is a
probability measure for each ω ∈ Ω.

2. If X(ω) ∈ A then clearly Y (ω) = g(X(ω)) ∈ g(A). Conversely, if Y (ω) ∈ g(A) then X(ω) =
g−1(Y (ω)) ∈ g−1(g(A)) = A because the mapping g is one to one. Furthermore, setting B = g(A)
we have that A = h(B) ∈ SS for the one to one h = g−1 : T 7→ S, and since h is also a measurable
mapping it follows that B = h−1(A) ∈ T ⊆ B.

3. For any A ∈ SS we have that

Q̂(A, ·) = P̂Y |G(g(A), ·) = E[I{Y ∈g(A)}|G] = E[I{X∈A}|G]

as we have seen in part (b) that I{Y ∈g(A)} = I{X∈A}.

Also, Q̂(·, ω) is a probability measure on (S, SS) for any fixed ω. Indeed, first by part (b) for any
A ∈ SS, g(A) ∈ T so by the non-negativity of the R.C.P.D. P̂Y |G(·, ω),

Q̂(A,ω) = P̂Y |G(g(A), ω) ≥ P̂Y |G(∅, ω) = 0 = Q̂(∅, ω) .

Second, since g is one to one, for any disjoint An ∈ SS we also have that g(An) ∈ T are disjoint, hence
by countable additivity of the R.C.P.D. P̂Y |G(·, ω),

Q̂(∪nAn, ω) = P̂Y |G(∪ng(An), ω) =
∑

n

P̂Y |G(g(An), ω) =
∑

n

Q̂(An, ω) .

Finally, g is onto hence g(S) = T and so Q̂(S, ω) = P̂Y |G(T, ω) = 1 by part (a).

In conclusion, by Definition 4.4.2, Q̂(·, ·) is the R.C.P.D. of X given G.
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Exercise [4.4.5]

Let g be the one to one and onto mapping associated with the B-isomorphism. Then, by Proposition 4.4.3,
for the random variable g(X) and the σ-algebra σ(g(Y )), there exists an R.C.P.D. P̂g(X)|σ(g(Y )).

We claim that σ(Y ) = σ(g(Y )). To show this, note first that any A ∈ σ(Y ) is of the form A = Y −1(S)
for some S ∈ SS. While solving part (b) of Exercise 4.4.4 we noted that S = g−1(B) with B = g(S) ∈ B,
hence A = (g(Y ))−1(B) is in σ(g(Y )). Conversely, since (g(Y ))−1(B) = Y −1(g−1(B)) for any B ∈ B, if
A ∈ σ(g(Y )) then A = Y −1(g−1(B)) for some B ∈ B. By measurability of g we have that S = g−1(B) ∈ SS
and hence A = Y −1(S) ∈ σ(Y ).

Furthermore, by Definition 4.4.2, we know that P̂g(X)|σ(g(Y ))(B, ·) is a σ(g(Y )) measurable function for
each B ∈ B fixed. Therefore, by Theorem 1.2.26 there exists a Borel function f(B, ·) : T 7→ [0, 1] such that
P̂g(X)|σ(g(Y )) = f(B, g(Y (ω))). Now let P̂X|Y (y, A) = h(y, A) for the [0, 1]-valued h(y, A) = f(g(A), g(y)).
Note that per fixed A ∈ SS the set g(A) is in B and h(·, A) being the composition of the measurable f and
g is measurable on (S, SS). Further, by part (b) of Exercise 4.4.4 and since σ(g(Y )) = σ(Y ),

P̂X|Y (Y (ω), A) = f(g(A), g(Y (ω))) = P̂g(X)|σ(g(Y ))(g(A), ·)
= E[I{g(X)∈g(A)}|σ(g(Y ))] = E[I{X∈A}|σ(Y )] ,

hence establishing part (a). For part (b), note that for any fixed ω ∈ Ω, the set function

P̂X|Y (Y (ω), ·) = P̂g(X)|σ(g(Y ))(g(·), g(Y (ω)))

is a probability measure on (S, SS) in view of part (c) of Exercise 4.4.4.
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