Stat 310B/Math 230B Theory of Probability
 Homework 1 Solutions

Andrea Montanari

Exercise [4.1.3]

We need to show that $\mathbf{E}\left(X I_{A}\right)=\mathbf{E}\left(Y I_{A}\right)$, for all $A \in \mathcal{G}=\sigma(\mathcal{P})$. Let $\mathcal{L}=\left\{A \in \mathcal{F}: \mathbf{E}\left(X I_{A}\right)=\mathbf{E}\left(Y I_{A}\right)\right\}$. The assumption implies $\mathcal{P} \subseteq \mathcal{L}$. By Dynkin's $\pi-\lambda$ theorem, it suffices to show that \mathcal{L} is λ-system, which we proceed to check.

First, $\Omega \in \mathcal{L}$ since $\Omega \in \mathcal{P} \subseteq \mathcal{L}$. Second, if $A \in \mathcal{L}, B \in \mathcal{L}$ and $A \subseteq B$, then taking the difference of the two integral identities we see that $B \backslash A \in \mathcal{L}$. Finally, if $A_{i} \in \mathcal{L}, A_{i} \uparrow A$ then applying dominated convergence we conclude that $A \in \mathcal{L}$.

Exercise [4.1.8]

1. It suffices to prove the claim for $n=2$ as the general case then follows by $n-1$ iterations. Fixing hereafter $n=2, f\left(x_{1}, x_{2}\right)=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right)$ is a finite valued element of $m \mathcal{F}_{+}$(see Corollary 1.2.19), hence $\widehat{\nu}=f \mu$ is a measure on \mathcal{F} (see Proposition 1.3.56), such that $\widehat{\nu} \ll \mu$. Since $\nu_{k}=f_{k} \mu_{k}$, if $A=A_{1} \times A_{2}$ and $A_{k} \in \mathcal{F}_{k}$, then by Fubini's theorem and the definition of product measures,

$$
\nu(A)=\nu_{1}\left(A_{1}\right) \nu_{2}\left(A_{2}\right)=\mu_{1}\left(f_{1} I_{A_{1}}\right) \mu_{2}\left(f_{2} I_{A_{2}}\right)=\mu\left(f I_{A}\right)=\widehat{\nu}(A)
$$

In conclusion, the measures ν and $\widehat{\nu}$ coincide on the π-system $\mathcal{R}=\left\{A_{1} \times A_{2}: A_{1} \in \mathcal{F}_{1}, A_{2} \in \mathcal{F}_{2}\right\}$. Further, since ν_{k} are σ-finite, there exist $R_{\ell} \in \mathcal{R}$ such that $\nu\left(R_{\ell}\right)<\infty$ and $R_{\ell} \uparrow \mathbb{S}$. In view of the remark following Proposition 1.1.39, $\nu=\widehat{\nu}$ throughout $\mathcal{F}=\sigma(\mathcal{R})$, as claimed.
2. Consider the random variables $X_{k}=f_{k}\left(s_{k}\right)$ in probability space $(\mathbb{S}, \mathcal{F}, \mu)$. By definition $\sigma\left(X_{k}\right)$ consists of all sets of the form $A_{k}=\left\{\left(s_{1}, \ldots, s_{n}\right): f_{k}\left(s_{k}\right) \in B_{k}\right\}$ for some $B_{k} \in \mathcal{B}$. Therefore, $\cap_{k=1}^{n} A_{k}=$ $A_{1} \times \cdots \times A_{n}$ and by the construction of product measure μ we have that

$$
\mu\left(\bigcap_{i=1}^{n} A_{i}\right)=\mu\left(A_{1} \times \cdots \times A_{n}\right)=\prod_{i=1}^{n} \mu\left(A_{i}\right)
$$

(see Eq. (1.4.3)). This is precisely the definition of mutual independence of X_{k} and the same argument applies in the probability space $(\mathbb{S}, \mathcal{F}, \nu)$.

Exercise [4.2.16]

1. Expanding both sides of the inequality, you see that it amounts to showing that

$$
\mathbf{E}\left[\mathbf{E}\left(X \mid \mathcal{G}_{1}\right)^{2}\right] \leq \mathbf{E}\left[\mathbf{E}\left(X \mid \mathcal{G}_{2}\right)^{2}\right]
$$

Let $Y=\mathbf{E}\left(X \mid \mathcal{G}_{1}\right)$ and $Z=\mathbf{E}\left(X \mid \mathcal{G}_{2}\right)$. From Example 4.2 .20 of the notes we know that both Y and Z are square integrable. Further, by the tower property $\mathbf{E}\left(Z \mid \mathcal{G}_{1}\right)=Y$ so after also taking out what is known

$$
\mathbf{E}(Y Z)=\mathbf{E}\left(\mathbf{E}\left(Y Z \mid \mathcal{G}_{1}\right)\right)=\mathbf{E}\left(Y \mathbf{E}\left(Z \mid \mathcal{G}_{1}\right)\right)=\mathbf{E}\left(Y^{2}\right)
$$

Consequently,

$$
0 \leq \mathbf{E}\left[(Z-Y)^{2}\right]=\mathbf{E}\left(Z^{2}\right)-2 \mathbf{E}(Z Y)+\mathbf{E}\left(Y^{2}\right)=\mathbf{E}\left(Z^{2}\right)-\mathbf{E}\left(Y^{2}\right)
$$

which is precisely what you are asked to prove. Note that this result is also a direct consequence of Proposition 4.3.1.
2. Let $Y=\mathbf{E}(X \mid \mathcal{G})$. You get the stated identity by adding the equations

$$
\operatorname{Var}(Y)=\mathbf{E} Y^{2}-(\mathbf{E} Y)^{2}=\mathbf{E} Y^{2}-(\mathbf{E} X)^{2}
$$

and

$$
\mathbf{E}(\operatorname{Var}(X \mid \mathcal{G}))=\mathbf{E}(X-Y)^{2}=\mathbf{E} X^{2}-2 \mathbf{E} X Y+\mathbf{E} Y^{2}=\mathbf{E} X^{2}-\mathbf{E} Y^{2}
$$

Exercise [4.2.22]

1. Fix $p>0$ and $A \in \mathcal{G}$. Then, setting $Y=|X| I_{A}$ and $U_{x}=\mathbf{P}(|X|>x \mid \mathcal{G})$ we have from part (a) of Lemma 1.4.31 and the definition of U_{x} that

$$
\begin{aligned}
\mathbf{E}\left[|X|^{p} I_{A}\right] & =\mathbf{E} Y^{p}=\int_{0}^{\infty} p y^{p-1} \mathbf{P}(Y>y) d y \\
& =\int_{0}^{\infty} p x^{p-1} \mathbf{E}\left[I_{\{|X|>x\}} I_{A}\right] d x=\int_{0}^{\infty} p x^{p-1} \mathbf{E}\left[U_{x} I_{A}\right] d x
\end{aligned}
$$

Recall that $U_{x} I_{A} \in m \mathcal{G}$ for each $x \geq 0$. Without loss of generality we further assume that the nonnegative function $h(x, \omega)=p x^{p-1} U_{x} I_{A}$ is measurable on the product space $\mathcal{B} \times \mathcal{G}$ (the easiest way to see this is by taking the version of U_{x} given by the measure of the open interval (x, ∞) under the R.C.P.D. of $|X|$ given \mathcal{G}, which exists by Proposition 4.4.3).

Thus, by Fubini's theorem $Z=\int_{0}^{\infty} p x^{p-1} U_{x} d x$ is measurable on \mathcal{G} and

$$
\mathbf{E}\left[|X|^{p} I_{A}\right]=\int_{0}^{\infty} \mathbf{E}[h(x, \omega)] d x=\mathbf{E}\left[\int_{0}^{\infty} h(x, \omega) d x\right]=\mathbf{E}\left[Z I_{A}\right]
$$

In particular, $\mathbf{E} Z=\mathbf{E}|X|^{p}$ is finite and as the preceding applies for all $A \in \mathcal{G}$, it follows by definition of conditional expectation that $Z=\mathbf{E}\left[|X|^{p} \mid \mathcal{G}\right]$.
2. Fixing $a>0$ let $V_{a}=\mathbf{P}(|X| \geq a \mid \mathcal{G})$. By the monotonicity of the conditional expectation $U_{x} \geq 0$ for any $x \geq 0$ and further $U_{x} \geq V_{a}$ whenever $x \in[0, a)$. Hence, for any $a>0$ and $A \in \mathcal{G}$ we have from our proof of part (a) that

$$
\mathbf{E}\left[|X|^{p} I_{A}\right]=\int_{0}^{\infty} p x^{p-1} \mathbf{E}\left[U_{x} I_{A}\right] d x \geq \int_{0}^{a} p x^{p-1} d x \mathbf{E}\left[V_{a} I_{A}\right]=a^{p} \mathbf{E}\left[V_{a} I_{A}\right]
$$

To conclude that almost surely $V_{a} \leq a^{-p} \mathbf{E}\left[|X|^{p} \mid \mathcal{G}\right]$ consider the above inequality for $A_{n}=\left\{\omega: a^{p} V_{a} \geq\right.$ $\left.n^{-1}+\mathbf{E}\left[|X|^{p} \mid \mathcal{G}\right]\right\}$, then take $n \rightarrow \infty$.

Exercise [4.2.21]

1. Taking out what is known,

$$
\mathbf{E}(X Z)=\mathbf{E}(\mathbf{E}(X Z \mid \mathcal{G}))=\mathbf{E}(Z \mathbf{E}(X \mid \mathcal{G}))=\mathbf{E} Z^{2}
$$

Therefore,

$$
\mathbf{E}(X-Z)^{2}=\mathbf{E} X^{2}-2 \mathbf{E} X Z+\mathbf{E} Z^{2}=\mathbf{E} X^{2}-\mathbf{E} Z^{2}=0
$$

from which we deduce that $Z=X$ a.s.
2. We know from (cJENSEN) that almost surely $|Z|=|\mathbf{E}(X \mid \mathcal{G})| \leq \mathbf{E}(|X| \mid \mathcal{G})$. Hence, if $\mathbf{P}(|Z|<$ $\mathbf{E}(|X| \mid \mathcal{G}))>0$ then $\mathbf{E}(|\mathbf{E}(X \mid \mathcal{G})|)<\mathbf{E}(\mathbf{E}(|X| \mid \mathcal{G}))=\mathbf{E}(|X|)$, in contradiction with our hypothesis that $|Z|=|\mathbf{E}(X \mid \mathcal{G})|$ has the same law as $|X|$ (hence the same expected value). We thus conclude that
$|Z|=\mathbf{E}(|X| \mid \mathcal{G})$ almost surely. Note that $A=\{Z \geq 0\}$ is by definition of Z in \mathcal{G} and further by the preceding,

$$
\mathbf{E}\left[X I_{A}\right]=\mathbf{E}\left[Z I_{A}\right]=\mathbf{E}\left[|Z| I_{A}\right]=\mathbf{E}\left[\mathbf{E}(|X| \mid \mathcal{G}) I_{A}\right]=\mathbf{E}\left[|X| I_{A}\right]
$$

That is, $\mathbf{E}\left[(|X|-X) I_{A}\right]=0$, namely, $X \geq 0$ for almost every $\omega \in A$. Our hypothesis that $\mathbf{E}[X \mid \mathcal{G}]$ has the same law as X implies that the same hypothesis holds for $Y=X-c$ and any non-random constant c. Therefore, by the preceding we get that

$$
\mathbf{P}(\{X<c \leq E(X \mid \mathcal{G})\})=\mathbf{P}(\{Y<0 \leq E(Y \mid \mathcal{G})\})=0
$$

Since $\{X<\mathbf{E}(X \mid \mathcal{G})\}=\bigcup_{c \in \mathbf{Q}}\{X<c \leq \mathbf{E}(X \mid \mathcal{G})\}$, it follows that $X \geq \mathbf{E}(X \mid \mathcal{G})$ a.s. To complete the proof re-run the above argument for $-X$ instead of X.

Exercise [4.2.23]

For $\varepsilon \geq 0$, let $U_{\varepsilon}=\left[\mathbf{E}\left(|X|^{p} \mid \mathcal{G}\right)+\varepsilon\right]^{1 / p}$ in $L^{p}(\Omega, \mathcal{G}, \mathbf{P})$ and $V_{\varepsilon}=\left[\mathbf{E}\left(|Y|^{q} \mid \mathcal{G}\right)+\varepsilon\right]^{1 / q}$, in $L^{q}(\Omega, \mathcal{G}, \mathbf{P})$, that per $\varepsilon>0$ are both uniformly bounded below away from zero. Recall that

$$
\frac{x^{p}}{p}+\frac{y^{q}}{q}-x y \geq 0, \quad \text { for all } x, y \geq 0
$$

(which you verify by considering the first two derivatives in x of the function on the left side). Hence, for each ω and $\varepsilon>0$,

$$
\left|\frac{X(\omega) Y(\omega)}{U_{\varepsilon}(\omega) V_{\varepsilon}(\omega)}\right| \leq \frac{1}{p}\left|\frac{X(\omega)}{U_{\varepsilon}(\omega)}\right|^{p}+\frac{1}{q}\left|\frac{Y(\omega)}{V_{\varepsilon}(\omega)}\right|^{q}
$$

With $1 / U_{\varepsilon}$ and $1 / V_{\varepsilon}$ uniformly bounded, the expectation of both sides conditional upon \mathcal{G} is well defined, and it follows from monotonicity of the C.E. (i.e. Corollary 4.2.6), upon taking out what is known that for any $\varepsilon>0$ and a.e. ω,

$$
\frac{\mathbf{E}(|X Y| \mid \mathcal{G})}{U_{\varepsilon} V_{\varepsilon}} \leq \frac{1}{p} \frac{U_{0}^{p}}{U_{\varepsilon}^{p}}+\frac{1}{q} \frac{V_{0}^{q}}{V_{\varepsilon}^{q}} \leq \frac{1}{p}+\frac{1}{q}=1 .
$$

Multiplying both sides by $U_{\varepsilon} V_{\varepsilon}$ and considering $\varepsilon_{k} \downarrow 0$ yields the stated claim that $\mathbf{E}(|X Y| \mid \mathcal{G}) \leq U_{0} V_{0}$.

Exercise [4.2.27]

(a) implies (b): (b) holds for indicator functions h_{1} and h_{2} by (a). By linearity of $\mathbf{E}(\cdot \mid \mathcal{G})$ and (cDOM), upon using the standard machine (see Definition 1.3.6), we see that (b) holds for all bounded Borel functions h_{1} and h_{2}.
(b) implies (c): We know that $\mathcal{G} \subseteq \mathcal{H}=\sigma\left(\mathcal{G}, \sigma\left(X_{2}\right)\right)$ and have to show that for any $A \in \mathcal{H}$,

$$
\mathbf{E}\left(\mathbf{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right) I_{A}\right)=\mathbf{E}\left(h_{1}\left(X_{1}\right) I_{A}\right)
$$

We use Dynkin's $\pi-\lambda$ theorem for the generating class $\left\{A=B \cap C: B \in \mathcal{G}, C \in \sigma\left(X_{2}\right)\right\}$ of \mathcal{H}, which is closed under finite intersection. Then, by (b),

$$
\mathbf{E}\left[h_{1}\left(X_{1}\right) I_{B} I_{C}\right]=\mathbf{E}\left[\mathbf{E}\left(h_{1}\left(X_{1}\right) I_{C} \mid \mathcal{G}\right) I_{B}\right]=\mathbf{E}\left[\mathbf{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right) \mathbf{E}\left(I_{C} \mid \mathcal{G}\right) I_{B}\right]
$$

Thus, using the tower property and taking out the \mathcal{G}-measurable $I_{B} \mathbf{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right)$,

$$
\mathbf{E}\left\{\mathbf{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right) I_{A}\right\}=\mathbf{E}\left\{\mathbf{E}\left[\mathbf{E}\left(h_{1}\left(X_{1}\right) \mid \mathcal{G}\right) I_{B} I_{C} \mid \mathcal{G}\right]\right\}=\mathbf{E}\left(h_{1}\left(X_{1}\right) I_{A}\right)
$$

(c) implies (a): By the tower property,

$$
\mathbf{P}\left(X_{1} \in B_{1}, X_{2} \in B_{2} \mid \mathcal{G}\right)=\mathbf{E}\left[\mathbf{E}\left(I_{B_{1}}\left(X_{1}\right) I_{B_{2}}\left(X_{2}\right) \mid \mathcal{H}\right) \mid \mathcal{G}\right]
$$

As $I_{B_{2}}\left(X_{2}\right)$ is \mathcal{H}-measurable, using (c) for $h(x)=I_{B_{1}}(x)$ and taking out the \mathcal{G}-measurable $\mathbf{E}\left(I_{B_{1}}\left(X_{1}\right) \mid \mathcal{G}\right)$ we also have that

$$
\begin{aligned}
\mathbf{E}\left[\mathbf{E}\left(I_{B_{1}}\left(X_{1}\right) I_{B_{2}}\left(X_{2}\right) \mid \mathcal{H}\right) \mid \mathcal{G}\right] & =\mathbf{E}\left[I_{B_{2}}\left(X_{2}\right) \mathbf{E}\left(I_{B_{1}}\left(X_{1}\right) \mid \mathcal{H}\right) \mid \mathcal{G}\right] \\
& =\mathbf{E}\left[I_{B_{2}}\left(X_{2}\right) \mathbf{E}\left(I_{B_{1}}\left(X_{1}\right) \mid \mathcal{G}\right) \mid \mathcal{G}\right]=\prod_{i=1,2} \mathbf{P}\left(X_{i} \in B_{i} \mid \mathcal{G}\right)
\end{aligned}
$$

