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Homework 1 Solutions
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Exercise [4.1.3]

We need to show that E(XI4) = E(Y1,4), forall A€ G =0(P). Let L={A € F:E(XIs) =EYI4)}.
The assumption implies P C £. By Dynkin’s m — A theorem, it suffices to show that £ is A-system, which
we proceed to check.

First, Q € L since Q € P C L. Second, if A € L,B € L and A C B, then taking the difference of the two
integral identities we see that B\ A € L. Finally, if A; € £, A; 1 A then applying dominated convergence we
conclude that A € L.

Exercise [4.1.8]

1. It suffices to prove the claim for n = 2 as the general case then follows by n — 1 iterations. Fixing
hereafter n = 2, f(x1,22) = fi(x1)f2(z2) is a finite valued element of mF, (see Corollary 1.2.19),
hence U = fu is a measure on F (see Proposition 1.3.56), such that ¥ < p. Since vy = frug, if
A=Ay X Ay and Ay, € Fy, then by Fubini’s theorem and the definition of product measures,

v(A) = vi(A1)va(Az) = p(fila, ) pa(fala,) = p(fla) = V(A).

In conclusion, the measures v and 7 coincide on the w-system R = {A; x Ay : A1 € F1, Ay € Fol.
Further, since vy are o-finite, there exist Ry € R such that v(Ry) < oo and Ry 1 S. In view of the
remark following Proposition 1.1.39, v = ¥ throughout F = ¢(R), as claimed.

2. Consider the random variables X = fi(sy) in probability space (S, F, u). By definition o(Xj) consists
of all sets of the form Ay = {(s1,...,5n) : fu(sx) € By} for some By € B. Therefore, N}_; A =
Ay X -+ x A, and by the construction of product measure p we have that

n

p(() 40 = (A x -+ x Ag) = [T )

i=1

(see Eq. (1.4.3)). This is precisely the definition of mutual independence of X} and the same argument
applies in the probability space (S, F,v).

Exercise [4.2.16]
1. Expanding both sides of the inequality, you see that it amounts to showing that
E[E(X|61)%] < E[E(X|G2)?]

Let Y = E(X|G;) and Z = E(X|Gs). From Example 4.2.20 of the notes we know that both Y and Z
are square integrable. Further, by the tower property E(Z|G;) = Y so after also taking out what is
known

E(YZ)=EE(YZ|G)) = E(YE(Z|G)) = E(Y?).
Consequently,
0 <E[(Z-Y)?] = E(Z%) - 2E(ZY) +E(Y?) = E(Z?) - E(Y?)

which is precisely what you are asked to prove. Note that this result is also a direct consequence of
Proposition 4.3.1.
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2. Let Y = E(X|G). You get the stated identity by adding the equations
Var(Y) = EY? - (EY)? = EY? - (EX)?

and
E(Var(X|G)) =E(X —Y)? = EX? - 2EXY + EY? = EX? - EY?

Exercise [4.2.22]
1. Fix p > 0 and A € G. Then, setting Y = |X|I4 and U, = P(|X| > z|G) we have from part (a) of
Lemma 1.4.31 and the definition of U, that
EIXPL) = BY? = [ pr PO > )y
0
= / pxpilE[I{‘X|>w}IA]d,I = / pl‘pilE[UxIA}dl‘.
0 0

Recall that U,l4 € mG for each x > 0. Without loss of generality we further assume that the non-
negative function h(x,w) = pzP~U,I4 is measurable on the product space B x G (the easiest way
to see this is by taking the version of U, given by the measure of the open interval (x,c0) under the
R.C.P.D. of | X| given G, which exists by Proposition 4.4.3).

Thus, by Fubini’s theorem Z = fooo pxP~ U, dz is measurable on G and
E[|X|P 4] = / Efh(z,w)]dz — | / h(z,w)da] = B[Z14].
0 0
In particular, EZ = E|X|P is finite and as the preceding applies for all A € G, it follows by definition

of conditional expectation that Z = E[|X|P|G].

2. Fixing a > 0 let V,, = P(|X]| > a|G). By the monotonicity of the conditional expectation U, > 0 for
any x > 0 and further U, >V, whenever z € [0,a). Hence, for any a > 0 and A € G we have from our
proof of part (a) that

E[|X|P14] = / prP E[U, I 4]dx > / prP tda B[V, 14] = a’E[V,14].
0 0

To conclude that almost surely V, < a PE[|X|? |G] consider the above inequality for A, = {w : a?V, >
n~! + E[|X|P |G] }, then take n — oo.
Exercise [4.2.21]

1. Taking out what is known,
E(XZ) =E(E(XZ|G)) = E(ZE(X|G)) = EZ*.

Therefore,
E(X - 2)? = EX? -2EXZ+EZ? = EX?-EZ?=0,
from which we deduce that Z = X a.s.
2. We know from (cJENSEN) that almost surely |Z| = |E(X|G)| < E(|X||G). Hence, if P(|Z] <

E(|X]|G)) > 0 then E(|E(X|G)|) < E(E(|X]|G)) = E(|X]), in contradiction with our hypothesis
that |Z| = |E(X|G)| has the same law as | X| (hence the same expected value). We thus conclude that



|Z] = E(|X||G) almost surely. Note that A = {Z > 0} is by definition of Z in G and further by the
preceding,
E[X1a] = E[Z14] = E[|Z|14] = E[E(|X]|G)14] = E[|X|L4].

That is, E[(|]X]| — X)I4] = 0, namely, X > 0 for almost every w € A. Our hypothesis that E[X|G]
has the same law as X implies that the same hypothesis holds for Y = X — ¢ and any non-random
constant c. Therefore, by the preceding we get that

P({X < ¢ < B(X|G)}) = P{Y <0 < BE(Y|G)}) = 0.

Since {X < E(X[G)} = U.eq{X < ¢ < E(X|G)}, it follows that X > E(X|G) a.s. To complete the
proof re-run the above argument for —X instead of X.

Exercise [4.2.23]

For e > 0, let U. = [E(|X|P|G) +¢]"/P in LP(Q,G,P) and V. = [E(|Y|?G) +€]'/9, in L9(Q2, G, P), that per
€ > 0 are both uniformly bounded below away from zero. Recall that
» q
$—+y——xyzo, for all x,y >0
p q
(which you verify by considering the first two derivatives in  of the function on the left side). Hence, for

each w and € > 0,
q

X (w)Y (w) ) -1 X(w) " 11 Y(w)
Us(@)Ve(w)! ~ plU(w) ] qlVe(w)
With 1/U. and 1/V; uniformly bounded, the expectation of both sides conditional upon G is well defined,

and it follows from monotonicity of the C.E. (i.e. Corollary 4.2.6), upon taking out what is known that for
any € > 0 and a.e. w,

P q
wgl% 1V70§1+1:1.
U.V. pUl  qVZ —p ¢

Multiplying both sides by U.V; and considering ¢, | 0 yields the stated claim that E(|XY||G) < UyVj.

Exercise [4.2.27]

(a) implies (b): (b) holds for indicator functions h; and hs by (a). By linearity of E(-|G) and (cDOM), upon
using the standard machine (see Definition 1.3.6), we see that (b) holds for all bounded Borel functions hy
and hg.

(b) implies (c): We know that G C H = 0(G,0(X2)) and have to show that for any A € H,
E(E(h1(X1)[9)14) = E(h1(X1)14).

We use Dynkin’s 7-A theorem for the generating class {A = BNC : B € G, C € o(X3)} of H, which is
closed under finite intersection. Then, by (b),

E[h1(X1)Iplc] = E[E(h1(X1)Ic|G)1s] = E[E(h1(X1)|G)E(Ic|G) 18]
Thus, using the tower property and taking out the G-measurable IgE(hi(X7)|G),
E{E(h1(X1)|G)1a} = E{E[E(h1(X1)|6)I51c|G]} = E(h1(X1)1a).
(c) implies (a): By the tower property,

P(X1 € By, X3 € B|G) = E[E(Ip, (X1)Ip,(X2)[H) | G].



As Ip,(X32) is H-measurable, using (c) for h(z) = I, (x) and taking out the G-measurable E(Ip, (X1)|G) we
also have that
E[E(Ip, (X1)Ip,(X2)|H)|G] = E[lp,(X2)E(, (X1)[H)|d]
= Ellg,(X2)E(I5(X1)|9) 6] = [ P(X, € Bil9).

i=1,2



	

