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Exercise [4.1.3]

We need to show that E(XIA) = E(Y IA), for all A 2 G = �(P). Let L = {A 2 F : E(XIA) = E(Y IA)}.
The assumption implies P ✓ L. By Dynkin’s ⇡ � � theorem, it su�ces to show that L is �-system, which
we proceed to check.

First, ⌦ 2 L since ⌦ 2 P ✓ L. Second, if A 2 L, B 2 L and A ✓ B, then taking the di↵erence of the two
integral identities we see that B\A 2 L. Finally, if Ai 2 L, Ai " A then applying dominated convergence we
conclude that A 2 L.

Exercise [4.1.8]

1. It su�ces to prove the claim for n = 2 as the general case then follows by n � 1 iterations. Fixing
hereafter n = 2, f(x1, x2) = f1(x1)f2(x2) is a finite valued element of mF+ (see Corollary 1.2.19),
hence b⌫ = fµ is a measure on F (see Proposition 1.3.56), such that b⌫ ⌧ µ. Since ⌫k = fkµk, if
A = A1 ⇥A2 and Ak 2 Fk, then by Fubini’s theorem and the definition of product measures,

⌫(A) = ⌫1(A1)⌫2(A2) = µ1(f1IA1)µ2(f2IA2) = µ(fIA) = b⌫(A) .

In conclusion, the measures ⌫ and b⌫ coincide on the ⇡-system R = {A1 ⇥ A2 : A1 2 F1, A2 2 F2}.
Further, since ⌫k are �-finite, there exist R` 2 R such that ⌫(R`) < 1 and R` " S. In view of the
remark following Proposition 1.1.39, ⌫ = b⌫ throughout F = �(R), as claimed.

2. Consider the random variables Xk = fk(sk) in probability space (S,F , µ). By definition �(Xk) consists
of all sets of the form Ak = {(s1, . . . , sn) : fk(sk) 2 Bk} for some Bk 2 B. Therefore, \n

k=1Ak =
A1 ⇥ · · ·⇥An and by the construction of product measure µ we have that

µ(
n\

i=1

Ai) = µ(A1 ⇥ · · ·⇥An) =
nY

i=1

µ(Ai)

(see Eq. (1.4.3)). This is precisely the definition of mutual independence of Xk and the same argument
applies in the probability space (S,F , ⌫).

Exercise [4.2.16]

1. Expanding both sides of the inequality, you see that it amounts to showing that

E[E(X|G1)2]  E[E(X|G2)2]

Let Y = E(X|G1) and Z = E(X|G2). From Example 4.2.20 of the notes we know that both Y and Z
are square integrable. Further, by the tower property E(Z|G1) = Y so after also taking out what is
known

E(Y Z) = E(E(Y Z|G1)) = E(Y E(Z|G1)) = E(Y 2) .

Consequently,

0  E[(Z � Y )2] = E(Z2)� 2E(ZY ) + E(Y 2) = E(Z2)�E(Y 2)

which is precisely what you are asked to prove. Note that this result is also a direct consequence of
Proposition 4.3.1.
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2. Let Y = E(X|G). You get the stated identity by adding the equations

Var(Y ) = EY 2
� (EY )2 = EY 2

� (EX)2

and
E(Var(X|G)) = E(X � Y )2 = EX2

� 2EXY + EY 2 = EX2
�EY 2

Exercise [4.2.22]

1. Fix p > 0 and A 2 G. Then, setting Y = |X|IA and Ux = P(|X| > x|G) we have from part (a) of
Lemma 1.4.31 and the definition of Ux that

E[|X|
pIA] = EY p =

Z 1

0
pyp�1P(Y > y)dy

=
Z 1

0
pxp�1E[I{|X|>x}IA]dx =

Z 1

0
pxp�1E[UxIA]dx .

Recall that UxIA 2 mG for each x � 0. Without loss of generality we further assume that the non-
negative function h(x,!) = pxp�1UxIA is measurable on the product space B ⇥ G (the easiest way
to see this is by taking the version of Ux given by the measure of the open interval (x,1) under the
R.C.P.D. of |X| given G, which exists by Proposition 4.4.3).
Thus, by Fubini’s theorem Z =

R1
0 pxp�1Uxdx is measurable on G and

E[|X|
pIA] =

Z 1

0
E[h(x,!)]dx = E[

Z 1

0
h(x,!)dx] = E[ZIA] .

In particular, EZ = E|X|
p is finite and as the preceding applies for all A 2 G, it follows by definition

of conditional expectation that Z = E[|X|
p
|G].

2. Fixing a > 0 let Va = P(|X| � a|G). By the monotonicity of the conditional expectation Ux � 0 for
any x � 0 and further Ux � Va whenever x 2 [0, a). Hence, for any a > 0 and A 2 G we have from our
proof of part (a) that

E[|X|
pIA] =

Z 1

0
pxp�1E[UxIA]dx �

Z a

0
pxp�1dxE[VaIA] = apE[VaIA] .

To conclude that almost surely Va  a�pE[|X|
p
|G] consider the above inequality for An = {! : apVa �

n�1 + E[|X|
p
|G] }, then take n !1.

Exercise [4.2.21]

1. Taking out what is known,

E(XZ) = E(E(XZ|G)) = E(ZE(X|G)) = EZ2.

Therefore,
E(X � Z)2 = EX2

� 2EXZ + EZ2 = EX2
�EZ2 = 0 ,

from which we deduce that Z = X a.s.

2. We know from (cJENSEN) that almost surely |Z| = |E(X|G)|  E(|X||G). Hence, if P(|Z| <
E(|X||G)) > 0 then E(|E(X|G)|) < E(E(|X||G)) = E(|X|), in contradiction with our hypothesis
that |Z| = |E(X|G)| has the same law as |X| (hence the same expected value). We thus conclude that
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|Z| = E(|X||G) almost surely. Note that A = {Z � 0} is by definition of Z in G and further by the
preceding,

E[XIA] = E[ZIA] = E[|Z|IA] = E[E(|X| |G)IA] = E[|X|IA] .

That is, E[(|X| � X)IA] = 0, namely, X � 0 for almost every ! 2 A. Our hypothesis that E[X|G]
has the same law as X implies that the same hypothesis holds for Y = X � c and any non-random
constant c. Therefore, by the preceding we get that

P({X < c  E(X|G)}) = P({Y < 0  E(Y |G)}) = 0.

Since {X < E(X|G)} =
S

c2Q{X < c  E(X|G)}, it follows that X � E(X|G) a.s. To complete the
proof re-run the above argument for �X instead of X.

Exercise [4.2.23]

For " � 0, let U" =
⇥
E(|X|

p
|G) + "]1/p in Lp(⌦,G,P) and V" =

⇥
E(|Y |q|G) + "]1/q, in Lq(⌦,G,P), that per

" > 0 are both uniformly bounded below away from zero. Recall that

xp

p
+

yq

q
� xy � 0, for all x, y � 0

(which you verify by considering the first two derivatives in x of the function on the left side). Hence, for
each ! and " > 0, ���

X(!)Y (!)
U"(!)V"(!)

��� 
1
p

���
X(!)
U"(!)

���
p

+
1
q

���
Y (!)
V"(!)

���
q

.

With 1/U" and 1/V" uniformly bounded, the expectation of both sides conditional upon G is well defined,
and it follows from monotonicity of the C.E. (i.e. Corollary 4.2.6), upon taking out what is known that for
any " > 0 and a.e. !,

E(|XY | |G)
U"V"


1
p

Up
0

Up
"

+
1
q

V q
0

V q
"


1
p

+
1
q

= 1 .

Multiplying both sides by U"V" and considering "k # 0 yields the stated claim that E(|XY | |G)  U0V0.

Exercise [4.2.27]

(a) implies (b): (b) holds for indicator functions h1 and h2 by (a). By linearity of E(·|G) and (cDOM), upon
using the standard machine (see Definition 1.3.6), we see that (b) holds for all bounded Borel functions h1

and h2.
(b) implies (c): We know that G ✓ H = �(G,�(X2)) and have to show that for any A 2 H,

E(E(h1(X1)|G)IA) = E(h1(X1)IA).

We use Dynkin’s ⇡-� theorem for the generating class {A = B \ C : B 2 G, C 2 �(X2)} of H, which is
closed under finite intersection. Then, by (b),

E[h1(X1)IBIC ] = E[E(h1(X1)IC |G)IB ] = E[E(h1(X1)|G)E(IC |G)IB ] .

Thus, using the tower property and taking out the G-measurable IBE(h1(X1)|G),

E{E(h1(X1)|G)IA} = E{E[E(h1(X1)|G)IBIC |G]} = E(h1(X1)IA).

(c) implies (a): By the tower property,

P(X1 2 B1, X2 2 B2|G) = E[E(IB1(X1)IB2(X2)|H) | G].
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As IB2(X2) is H-measurable, using (c) for h(x) = IB1(x) and taking out the G-measurable E(IB1(X1)|G) we
also have that

E[E(IB1(X1)IB2(X2)|H) | G] = E[IB2(X2)E(IB1(X1)|H) | G]

= E[IB2(X2)E(IB1(X1)|G) | G] =
Y

i=1,2

P(Xi 2 Bi|G).
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