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Abstract

We consider a class of nonlinear mappings FA,N in R
N indexed by symmetric random matrices

A ∈ R
N×N with independent entries. Within spin glass theory, special cases of these mappings

correspond to iterating the TAP equations and were studied by Erwin Bolthausen. Within infor-
mation theory, they are known as ‘approximate message passing’ algorithms.

We study the high-dimensional (large N) behavior of the iterates of F for polynomial functions
F, and prove that it is universal, i.e. it depends only on the first two moments of the entries of
A, under a subgaussian tail condition. As an application, we prove the universality of a certain
phase transition arising in polytope geometry and compressed sensing. This solves –for a broad
class of random projections– a conjecture by David Donoho and Jared Tanner.

1 Introduction and main results

Let A ∈ R
N×N be a random Wigner matrix, i.e. a random matrix with i.i.d. entries Aij satisfying

E{Aij} = 0 and E{A2
ij} = 1/N . Considerable effort has been devoted to studying the distribution of

the eigenvalues of such a matrix [AGZ09, BS05, TV12]. The universality phenomenon is a striking
recurring theme in these studies. Roughly speaking, many asymptotic properties of the joint eigen-
values distribution are independent of the entries distribution as long as the latter has the prescribed
first two moments, and satisfies certain tail conditions. We refer to [AGZ09, BS05, TV12] and ref-
erences therein for a selection of such results. Universality is extremely useful because it allows to
compute asymptotics for one entries distribution (typically, for Gaussian entries) and then export
the results to a broad class of distributions.

In this paper we are concerned with random matrix universality, albeit we do not focus on
eigenvalues properties. Given A ∈ R

N×N , and an initial condition x0 ∈ R
N independent of A, we

consider the sequence (xt)t≥0 t ∈ N defined by letting, for t ≥ 0,

xt+1 = Af(xt; t)− bt f(xt−1; t− 1) , bt ≡
1

N
div(f(x; t))

∣∣
x=xt. (1.1)
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Here, div denotes the divergence operator and, for each t ≥ 0, f( · ; t) : R
N → R

N is a separable
function, i.e. f(z; t) = (f1(z1; t), . . . , f2(zN ; t)) where the functions fi( · ; t) : R → R are polynomials
of bounded degree. In particular bt = N−1

∑N
i=1 f

′
i(x

t
i; t).

The present paper is concerned with the asymptotic distribution of xt as N → ∞ with t fixed,
and establishes the following results:

Universality. As N →∞, the finite-dimensional marginals of the distribution of xt are asymptot-
ically insensitive to the distribution of the entries of Aij.

State evolution. The entries of xt are asymptotically Gaussian with zero mean, and variance that
can be explicitly computed through a one-dimensional recursion, that we will refer to as state
evolution

Phase transitions in polytope geometry. As an application, we use state evolution to prove
universality of a phase transition on polytope geometry, with connections to compressed sens-
ing. This solves –for a broad class of random matrices with independent entries– a conjecture
put forward by David Donoho and Jared Tanner in [Don05a, DT11].

In order to illustrate the usefulness of the first two technical results, we start the presentation of our
results from the third one.

1.1 Universality of polytope neighborliness

A polytope Q is said to be centrosymmetric if x ∈ Q implies −x ∈ Q. Following [Don05b, Don05a]
we say that such a polytope is k-neighborly if the condition below holds:

(I) Every subset of k vertices of Q which does not contain an antipodal pair, spans a (k − 1)
dimensional face.

The neighborliness of Q is the largest value of k for which this condition holds. The prototype of
neighborly polytope is the `1 ball Cn ≡ {x ∈ R

n : ‖x‖1 ≤ 1}, whose neighborliness is indeed equal
to n.

It was shown in a series of papers [Don05b, Don05a, DT05b, DT05a, DT09] that polytope neigh-
borliness has tight connections with the geometric properties of random point clouds, and with
sparsity-seeking methods to solve underdetermined systems of linear equations. The latter are in
turn central in a number of applied domains, including model selection for data analysis and com-
pressed sensing. For the reader’s convenience, these connections will be briefly reviewed in Section
5.

Intuitive images of low-dimensional polytopes suggest that ‘typical’ polytopes are not neighborly:
already selecting k = 2 vertices, does lead to a segment that connects them and passes through the
interior of Q. This conclusion is spectacularly wrong in high dimension. Natural random construc-
tions lead to polytopes whose neighborliness scales linearly in the dimension. Motivated by the above
applications, and following [Don05b, Don05a, DT05b, DT05a], we focus here on a weaker notion of
neighborliness. Roughly speaking, this corresponds to the largest k such that most subsets of k
vertices of Q span a (k− 1)-dimensional face. In order to formalize this notion, we denote by F(Q; `)
the number of b`c-dimensional faces of Q.
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Definition 1. Let Q = {Qn}n≥0 be a sequence of centrosymmetric polytopes indexed by n where Qn

has 2n vertices and has dimension m = m(n): Qn ⊆ R
m. We say that Q has weak neighborliness

ρ ∈ (0, 1) if for any ξ > 0,

lim
n→∞

F(Qn;m(n)ρ(1− ξ))

F(Cn;m(n)ρ(1 − ξ))
= 1,

lim
n→∞

F(Qn;m(n)ρ(1 + ξ))

F(Cn;m(n)ρ(1 + ξ))
= 0 .

If the sequence Q is random, we say that Q has weak neighborliness ρ (in probability) if the above
limits hold in probability.

In other words, a sequence of polytopes {Qn}n≥0 has weak neighborliness ρ, if for large n the m
dimensional polytope Qn has close to the maximum possible number of k faces, for all k < mρ(1−ξ).

Note 1. Note that previously the neighborliness of a polytope was defined to be the largest integer k
satisfying condition (I). However, in our definition weak neighborliness refers to the fraction k/n.
This is due to the fact that weak neighborliness is defined in the limit n→∞.

The existence of weakly neighborly polytope sequences is clear when m(n) = n since in this case
we can take Qn = Cn with ρ = 1, but the existence is highly non-trivial when m is only a fraction
of n.

It comes indeed as a surprise that this is a generic situation as demonstrated by the following
construction. For a matrix A ∈ R

m×n, and S ⊆ R
n, let AS ≡ {Ax ∈ R

m : x ∈ S}. In particular,
ACn is the centrosymmetric m-dimensional polytope obtained by projecting the n-dimensional `1

ball to m dimensions. The following result was proved in [Don05a].

Theorem 1 (Donoho, 2005). There exists a function ρ∗ : (0, 1) → (0, 1) such that the following
holds. Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ R

m(n)×n to be a random
matrix with i.i.d. Gaussian entries.

Then, the sequence of polytopes {A(n)Cn}n≥0 has weak neighborliness ρ∗(δ) in probability.

A characterization of the curve δ 7→ ρ∗(δ) was provided in [Don05a], but we omit it here since a
more explicit expression will be given below.

The proof of Theorem 1 is based on exact expressions for the number of faces F(A(n)Cn; `).
These are in turn derived from earlier works in polytope geometry by Affentranger and Schneider
[AS92] and by Vershik and Sporyshev [VS92]. This approach relies in a fundamental way on the
invariance of the distribution of A(n) under rotations.

Motivated by applications to data analysis and signal processing, Donoho and Tanner [DT11]
carried out extensive numerical simulations for random polytopes of the form A(n)C n for several
choices of the distribution of A(n). They formulated a universality hypothesis according to which
the conclusion of Theorem 1 holds for a far broader class of random matrices. The results of their
numerical simulations were consistent with this hypothesis.

Here we establish the first rigorous result indicating universality of polytope neighborliness for a
broad class of random matrices. Define the curve (δ, ρ∗(δ)), δ ∈ (0, 1), parametrically by letting, for
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α ∈ (0,∞):

δ =
2φ(α)

α+ 2(φ(α) − αΦ(−α))
, (1.2)

ρ = 1− αΦ(−α)

φ(α)
, (1.3)

where φ(z) = e−z2/2/
√

2π is the Gaussian density and Φ(x) ≡
∫ x
−∞ φ(z) dz is the Gaussian distri-

bution. Explicitly, if the above functions on the right-hand side of Eqs. (1.2), (1.3) are denoted by
fδ(α), fρ(α), then1 ρ∗(δ) ≡ fρ(f

−1
δ (δ)).

Here we extend the scope of Theorem 1 from Gaussian matrices to matrices with independent
subgaussian2 entries (not necessarily identically distributed).

Theorem 2. Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ R
m(n)×n to be an

random matrix with independent subgaussian entries, with zero mean, unit variance, and common
scale factor s independent of n. Further assume Aij(n) = Ãij(n) + ν0Gij(n) where ν0 > 0 is
independent of n and {Gij(n)}i∈[m],j∈[n] is a collection of i.i.d. N(0, 1) random variables independent

of Ã(n).
Then the sequence of polytopes {A(n)Cn}n≥0 has weak neighborliness ρ∗(δ) in probability.

It is likely that this theorem can be improved in two directions. First, a milder tail condition than
subgaussianity is probably sufficient. Second, we are assuming that the distribution of Aij has an
arbitrarily small Gaussian component. This is not necessary for the upper bound on neighborliness,
and appears to be an artifact of the proof of the lower bound.

The proof of Theorem is provided in Section 5. By comparison, the most closely related result
towards universality is by Adamczak, Litvak, Pajor, and Tomczak-Jaegermann [ALPTJ11]. For
a class of matrices A(n) with i.i.d. columns, these authors prove that A(n)Cn has neighborliness
scaling linearly with n. This however does not suggest that a limit weak neighborliness exists, and
is universal, as established instead in Theorem 2.

At the other extreme, universality of compressed sensing phase transitions can be conjectured
from the results of the non-rigorous replica method [KWT09, RFG09].

1.2 Universality of iterative algorithms

We will consider here and below a setting that is somewhat more general than the one described
by Eq. (1.1). Following the terminology of [DMM09], we will refer to such an iteration as to the
approximate message passing (AMP) iteration/algorithm.

We generalize the iteration (1.1) to take place in the vector space Vq,N ≡ (Rq)N ' R
N×q.

Given a vector x ∈ Vq,N , we shall most often regard it as an N -vector with entries in R
q, namely

x = (x1, . . . ,xN ), with xi ∈ R
q. Components of xi ∈ R

q will be indicated as (xi(1), . . . , xi(q)) ≡ xi.
Given a matrix A ∈ R

N×N , we let it act on Vq,N in the natural way, namely for v′, v ∈ Vq,N

letting v′ = Av be given by v′i =
∑N

j=1Aijvj for all i ∈ [N ]. Here and below [N ] ≡ {1, . . . , N} is the
set of first N integers. In other words we identify A with the Kronecker product A⊗ Iq×q.

1It is easy to show that fδ(α) is strictly decreasing in α ∈ [0,∞), with fδ(0) = 1, limα→∞ fδ(α) = 0, and hence f−1
δ

is well defined on [0, 1]. Further properties of this curve can be found in [DMM09, DMM11].

2See Eq. (1.7) for the definition of subgaussian random variables.
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Definition 2. An AMP instance is a triple (A,F , x0) where:

1. A ∈ R
N×N is a symmetric matrix with Ai,i = 0 for all i ∈ [N ].

2. F = {fk : k ∈ [N ]} is a collection of mappings f k : R
q × N → R

q, (x, t) 7→ fk(x, t) that are
locally Lipschitz in their first argument;

3. x0 ∈ Vq,N is an initial condition.

Given F = {fk : k ∈ [N ]}, we define f( · ; t) : Vq,N → Vq,N by letting v′ = f(v; t) be given by
v′i = f i(vi; t) for all i ∈ [N ].

Definition 3. The approximate message passing orbit corresponding to the instance (A,F , x0) is
the sequence of vectors {xt}t≥0, x

t ∈ Vq,N defined as follows, for t ≥ 0,

xt+1 = Af(xt; t)− Bt f(xt−1; t− 1) . (1.4)

Here Bt : Vq,N → Vq,N is the linear operator defined by letting, for v ′ = Btv,

v′i =


∑

j∈[N ]

A2
ij

∂f j

∂x
(xt

j , t)


vi , (1.5)

with ∂fj

∂x
denoting the Jacobian matrix of f j( · ; t) : R

q → R
q.

The above definition can also be summarized by the following expression for the evolution of a
single coordinate under AMP

xt+1
i =

∑

j∈[N ]

Aijf
j(xt

j , t)−
∑

j∈[N ]

A2
ij

∂f j

∂x
(xt

j , t)f
i(xt−1

i , t− 1) . (1.6)

Notice that Eq. (1.1) corresponds to the special case q = 1, in which we replaced A2
ij by E{A2

ij} = 1/N
for simplicity of exposition.

Recall that a centered random variable X is subgaussian with scale factor σ2 if, for all λ > 0, we
have

E

(
eλX

)
≤ e

σ2λ2

2 . (1.7)

Definition 4. Let {(A(N),FN , x
0,N )}N≥1 be a sequence of AMP instances indexed by the dimension

N , with A(N) a random matrix and x0,N a random vector. We say that the sequence is (C, d)-regular
(or, for short, regular) polynomial sequence if

1. For each N , the entries (Aij(N))1≤i<j≤N are independent centered random variables. Further
they are subgaussian with common scale factor C/N .

2. For each N , the functions f i( · ; t) in FN (possibly random, as long as they are independent
from A(N), x0,N ) are polynomials with maximum degree d and coefficients bounded by C.

3. For each N , A(N) and x0,N are independent. Further, we have
∑N

i=1 exp{‖x0,N
i ‖2

2/C} ≤ NC
with probability converging to one as N →∞.
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We state now our universality result for the algorithm (1.4).

Theorem 3. Let (A(N),FN , x
0,N )N≥1 and (Ã(N),FN , x

0,N )N≥1 be any two (C, d)-regular polyno-
mial sequences of instances, that differ only in the distribution of the random matrices A(N) and
Ã(N).

Denote by {xt}t≥0, {x̃t}t≥0 the corresponding AMP orbits. Assume further that for all N and
all i < j, E{A2

ij} = E{Ã2
ij}. Then, for any set of polynomials {pN,i}N≥0,1≤i≤N pN,i : R

q → R, with
degree bounded by D and coefficients bounded by B for all N and i ∈ [N ], we have

lim
N→∞

1

N

N∑

i=1

{
EpN,i(x

t
i)− EpN,i(x̃

t
i)
}

= 0 . (1.8)

1.3 State evolution

Theorem 3 establishes that the behavior of the sequence {xt}t≥0 is, in the high dimensional limit,
insensitive to the distribution of the entries of the random matrix A. In order to characterize this
limit, we need to make some assumption on the collection of functions FN .

Definition 5. We say that the sequence of AMP instances {(A(N),FN , x
0,N )}N≥0 is polynomial

and converging (or simply converging) if it is (C, d)-regular and there exists: (i) An integer k; (ii) A
symmetric matrix W ∈ R

k×k with non-negative entries; (iii) A function g : R
q ×R

q̃ × [k]×N → R
q,

with g(x, Y, a, t) = (g1(x, Y, a, t), . . . , gq(x, Y, a, t)) and, for each r ∈ [q], a ∈ [k], t ∈ N, gr( · , a, t) a
polynomial with degree d and coefficients bounded by C; (iv) k probability measures P1, . . . , Pk on
R

q̃, with Pa a finite mixture of (possibly degenerate) Gaussians for each a ∈ [k]; (v) For each N , a
finite partition CN

1 ∪ CN
2 ∪ · · · ∪ CN

k = [N ]; (vi) k positive semidefinite matrices Σ̂0
1,. . . Σ̂

0
k ∈ R

q×q,
such that the following happens.

1. For each a ∈ [k], we have limN→∞ |CN
a |/N = ca ∈ (0, 1).

2. For each N ≥ 0, each a ∈ [k] and each i ∈ CN
a , we have f i(x, t) = g(x, Y (i), a, t) where

Y (1), . . . , Y (N) are independent random variables with Y (i) ∼ Pa whenever i ∈ CN
a for some

a ∈ [k].

3. For each N , the entries {Aij(N)}1≤i<j≤N are independent subgaussian random variables with
scale factor C/N , EAij = 0, and, for i ∈ CN

a and j ∈ CN
b , E{A2

ij} = Wab/N .

4. For each a ∈ [k], in probability,

lim
N→∞

1

|CN
a |

∑

i∈CN
a

g
(
x0

i , Y (i), a, 0
)
g
(
x0

i , Y (i), a, 0
)

T

= Σ̂0
a . (1.9)

With a slight abuse of notation, we will sometime denote a converging sequence by {(A(N), g, x0,N )}N≥0.
We use capital letters to denote the Y (i)’s to emphasize that they are random and do not change
across iterations.

Our next result establishes that the low-dimensional marginals of {xt} are asymptotically Gaus-
sian. State evolution characterizes the covariance of these marginals. For each t ≥ 1, state evolution
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defines a set of k positive semidefinite matrices Σt = (Σt
1,Σ

t
2, . . . ,Σ

t
k), with Σt

a ∈ R
q×q. These are

obtained by letting, for each t ≥ 1

Σt
a =

k∑

b=1

cbWab Σ̂t−1
b (1.10)

Σ̂t
a = E

{
g(Zt

a, Ya, a, t)g(Z
t
a, Ya, a, t)

T

}
, (1.11)

for all a ∈ [k]. Here Ya ∼ Pa, Z
t
a ∼ N

(
0,Σt

a

)
and Ya and Zt

a are independent.

Theorem 4. Let (A(N),FN , x
0)N≥0 be a polynomial and converging sequence of AMP instances,

and denote by {xt}t≥0 the corresponding AMP sequence. Then for each t ≥ 1, each a ∈ [k], and each
locally Lipschitz function ψ : R

q × R
q̃ → R such that |ψ(x, y)| ≤ K(1 + ‖y‖2

2 + ‖x‖2
2)

K, we have, in
probability,

lim
N→∞

1

|CN
a |

∑

j∈CN
a

ψ(xt
j , Y (i)) = E{ψ(Za, Ya)} , (1.12)

where Za ∼ N(0,Σt
a) is independent of Ya ∼ Pa.

We conclude by mentioning that, following [DMM09], generalizations of the algorithm (1.4) were
studied by several groups [Sch10, Ran11, MAYB11], for a number of applications. Universality results
analogous to the one proved here are expected to hold for such generalizations as well.

1.4 Outline of the paper

The paper is organized as follows. After some preliminary facts and notations in Section 2, Section
3 considers the AMP iteration (1.4) and proves Theorems 3 and 4. In order to achieve our goal, we
introduce two different iterations whose analysis provides useful intermediate steps. We also prove a
generalization of Theorem 4 to estimate functions of messages at two distinct times ψ(xt

i,x
s
i , Y (i)).

Section 4 proves a generalization of Theorem 4 to the case of rectangular (non-symmetric) ma-
trices A. This is achieved by effectively embedding the rectangular matrix, into a larger symmetric
matrix and applying our results for symmetric matrices.

The generalization to rectangular matrices is finally used in Section 5 to prove our result on
the universality of polytope neighborliness, Theorem 2. This is done via a correspondence with
compressed sensing reconstruction established in [Don05a], and a sharp analysis of an AMP iteration
that solves this reconstruction problem.

2 Notations and basic simplifications

We will always view vectors as column vectors. The transpose of vector v is the row vector indicated
by vT. Analogously, the transpose of a matrix (or vector) M is denoted by M T. For a vector v ∈ R

m,
we denote its `p norm, p ≥ 1 by ‖v‖p ≡ (

∑m
i=1 |vi|p)1/p. This is extended in the usual way to p = ∞.

We will often omit the subscript if p = 2. For a matrix M , we denote by ‖M‖p the corresponding `p
operator norm. The standard scalar product of u, v ∈ R

m is denoted by 〈u, v〉 =
∑m

i=1 uivi. Given
v ∈ R

m, w ∈ R
n, we denote by [v, w] ∈ R

m+n the (column) vector obtained by concatenating v
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and w. The identity matrix is denoted by I, or Im×m if the dimensions need to be specified. The
indicator function is 1( · ). The set of first m integers is indicated by [m] = {1, . . . ,m}. Finally, given
x = (x(1), x(2), . . . , x(q)) ∈ R

q and m = (m(1), . . . ,m(q)) ∈ N
q, we write

xm ≡
q∏

r=1

x(r)m(r) . (2.1)

Following the common practice, degenerate Gaussian distributions will be considered Gaussian,
without further qualification. In particular, any distribution with finite support in R

k is a finite
mixture of Gaussians.

In our proof of Theorem 4 we will make use of the following simplification, that lightens somewhat
the notation.

Remark 1. For proving Theorem 4, it is sufficient to consider the case in which g : (x, Y, a, t) 7→
g(x, Y, a, t) is independent of Y .

Proof. We can assume without loss of generality that the measures Pa are Gaussian. Indeed if, for
instance, Pa is a mixture of ` gaussians, Pa = w1 Pa,1 + w2 Pa,2 + · · · + w`Pa,` then we can replace
effectively the partition element CN

a by a finer partition CN
a,1, . . . , C

N
a,` whereby CN

a,1∪· · ·∪CN
a,` = CN

a

and |CN
a,1|, . . . , |CN

a,`| are multinomial with parameters (w1, . . . , w`). Notice that this finer partition

is random, but |CN
a,i|/N → cawi almost surely, and therefore the theorem applies.

Assume therefore that the Pa are gaussian. By replacing g(x, Y, a, t) by g ′(x, Y, a, t) = g(x, QaY +
va, a, t) for suitable matrices Qa, and vectors va, we can always assume Ya ∼ N(0, Iq̃×q̃) for all a.
Assume therefore Ya ∼ N(0, Iq̃×q̃). Enlarge the space by letting k′ = k + q̃, N ′ = (q̃ + 1)N and
CN ′

a = {N`+1, . . . , N(`+1)}, for a = k+` > k, while CN ′

a = CN
a for a ≤ k. We further let q′ = q+ q̃

and define new functions g′ : R
q′ × R

q̃ × [k′]× N → R
q′ independent of the second argument (Y ) as

follows. For x ∈ R
q, x̃ ∈ R

q̃, we let

g′r

(
(x, x̃), Y, a, t

)
= gr(x, x̃, a, t) for r ∈ {1, . . . , q} , a ∈ {1, . . . , k} ,

g′r

(
(x, x̃), Y, a, t

)
= 0 for r ∈ {q + 1, . . . , q + q̃} , a ∈ {1, . . . , k} ,

g′r

(
(x, x̃), Y, a, t

)
= 0 for r ∈ {1, . . . , q} , a ∈ {k + 1, . . . , k + q̃} ,

g′q+`

(
(x, x̃), Y, k + `′, t

)
= 1(` = `′) for `, `′ ∈ {1, . . . , q̃} .

We further use matrix A′ constructed as follows: A′
ij = Aij for i, j ≤ N , and Aij ∼ N(0, 1/N) if

i > N or j > N . (Notice that E{(A′
ij)

2} = 2/N ′ but this amounts just to an overall rescaling
and is of course immaterial.) Clearly the functions g ′ do not depend on Y as claimed. Further,
x̃ ∼ N(0, Iq̃×q̃) at all iterations. Hence the new iteration is identical to the original one when
restricted on {xi(r) : i ≤ N, r ≤ q}.

3 Proofs of Theorems 3 and 4

In this section we consider the AMP iteration (1.4), and prove Theorem 3 and Theorem 4, and indeed
generalize the latter.
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We extend the state evolution (1.10) by defining for each t ≥ s ≥ 0 and for all a ∈ [k], a positive
semidefinite matrix Σt,s

a ∈ R
(2q)×(2q) as follows. For boundary conditions, we set

Σ̂0,0
a =

(
Σ̂0

a Σ̂0
a

Σ̂0
a Σ̂0

a

)
, Σ̂t,0

a =

(
Σ̂t

a 0

0 Σ̂0
a

)
, Σ̂0,t

a =

(
Σ̂0

a 0

0 Σ̂t
a

)
, (3.1)

with Σ̂t
a defined per Eq. (1.10). For any s, t ≥ 1, we set recursively

Σt,s
a =

k∑

b=1

cbWabΣ̂
t−1,s−1
b , (3.2)

Σ̂t,s
a = E

{
XaX

T

a

}
, Xa ≡ [g(Zt

a, Ya, a, t), g(Z
s
a , Ya, a, s)] , (Z t

a, Z
s
a) ∼ N(0,Σt,s

a ) . (3.3)

Recall that [g(Z t
a, Ya, a, t), g(Z

s
a , Ya, a, s)] ∈ R

2q is the vector obtained by concatenating g(Z t
a, Ya, a, t)

and g(Zs
a, Ya, a, s). Note that taking s = t in (3.2), we recover the recursion for Σt

a given by Eq. (1.10).
Namely, for all t we have

Σt,t
a =

(
Σt

a Σt
a

Σt
a Σt

a

)
. (3.4)

Theorem 5. Let {(A(N),FN , x
0,N )}N≥1 be a polynomial and converging sequence of instances and

denote by {xt}t≥0 the corresponding AMP orbit.
Fix s, t ≥ 1. If s 6= t, further assume that the initial condition x0,N is obtained by letting

x
0,N
i ∼ Qa independent and identically distributed, with Qa a finite mixture of Gaussians for each
a. Then, for each a ∈ [k], and each locally Lipschitz function ψ : R

q × R
q × R

q̃ → R such that
|ψ(x,x′, y)| ≤ K(1 + ‖y‖2

2 + ‖x‖2
2 + ‖x′‖2

2)
K, we have, in probability,

lim
N→∞

1

|CN
a |

∑

j∈CN
a

ψ(xt
j ,x

s
j , Y (j)) = E

[
ψ(Zt

a, Z
s
a, Ya)

]
,

where (Z t
a, Z

s
a) ∼ N(0,Σt,s

a ) is independent of Ya ∼ Pa.

Throughout this section, we will assume that {(A(N),FN , x
0,N )}, {(Ã(N),FN , x

0,N )}, etc. are
(C, d)-regular polynomial sequences of AMP instances. We will often omit explicit mention of this
hypothesis. Notice that Theorem 3 holds per realization of the functions FN . Because of this, and
of Remark 1, we will consider hereafter FN to be non-random.

The rest of this section is organized as follows. In subsection 3.1 we introduce two new itera-
tions that are useful intermediary steps for our analysis. We show that the corresponding variables
admit representations as sums over trees in Sec. 3.2 and use them to prove basic properties of these
recursions in Secs. 3.3, 3.4, and 3.5. Theorems 3 and 5 are then proved in Secs. 3.6, 3.7. Because
of Eq. (3.4), Theorem 4 follows as a special case of Theorem 5. Indeed, we will show that both
statements are equivalent through a reduction argument. Depending on the application, Theorem 5
might be a more convenient formulation of the state evolution and will be used in Section 4.
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3.1 Message passing iteration

We define two new message passing sequences corresponding to the instance (A,F , x0,N ). For each
i ∈ [N ] we use the short notation [N ] \ i to denote the set [N ] \ {i}. We now define the sequence of
vectors (zt

i→j)t∈N, where for each i 6= j ∈ [N ], zt
i→j is a vector in R

q or equivalently for each t ∈ N, we
can see (zt

i→j) as an N ×N matrix with entries in R
q (diagonal elements are never used). The initial

condition is denoted by z0
i→j ∈ R

q for any i, j ∈ [N ] and is independent of j, such that z0
i→j = x

0,N
i

for all j 6= i. The r-th coordinate of the vector zt+1
i→j is defined by the following recursion for t ≥ 0,

zt+1
i→j(r) =

∑

`∈[N ]\j

A`i f
`
r(z

t
`→i, t) , (3.5)

where f `
r(·, t) : R

q → R is the rth coordinate of f `(·, t).
We also define for each i ∈ [N ] and t ≥ 0, the vector zt+1

i ∈ R
q by

zt+1
i (r) =

∑

`∈[N ]

A`i f
`
r(z

t
`→i, t). (3.6)

Our first result establishes universality of the moments of zt
i→j for polynomial sequences of instances.

Proposition 6. Let (A(N),FN , x
0,N )N≥1 and (Ã(N),FN , x

0,N )N≥1 be any two (C, d)-regular poly-
nomial sequences of AMP instances, that differ only in the distribution of the random matrices A(N)
and Ã(N). Assume that for all N and all i < j, E{A2

ij} = E{Ã2
ij}. Denote by zt

i the orbit (respec-

tively z̃t
i) defined by (3.6) while iterating (3.5) with matrix A (respectively Ã). Then for any t ≥ 1

and any m = (m(1), . . . ,m(q)) ∈ N
q, there exists K independent of N such that, for any i ∈ [N ]:

∣∣∣E
[
(zt

i

)m]− E

[(
z̃t

i

)m]∣∣∣ ≤ KN−1/2. (3.7)

The proof of this proposition is provided in Section 3.3.

Note 2. In this statement and and in the rest of this section, K is always understood as a function
of d, t, q,m,C which may vary from line to line but which is independent of N .

Our second message passing sequence is defined as follows: for a (C, d)-regular sequence of in-
stances (A(N),FN , x

0,N )N≥1, we define for each N , an i.i.d. sequence of N × N random matrices

{At}t∈N such that A0 = A(N). Then we define (yt
i→j) by y0

i→j = x
0,N
i and for t ≥ 0

yt+1
i→j(r) =

∑

`∈[N ]\j

At
`i f

`
r (y

t
`→i, t), (3.8)

and

yt+1
i (r) =

∑

`∈[N ]

At
`i f

`
r(y

t
`→i, t). (3.9)

The asymptotic analysis of yt is particularly simple because an independent random matrix At is
used at each iteration. In particular, it is easy to establish state evolution for y t. Our next result
shows that yt provides a good approximation for zt.
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Proposition 7. Let (A(N),FN , x
0,N )N≥1 be a (C, d)-regular polynomial sequence of instances. Let

zt
i and yt

i be the sequences of vectors obtained by iterating (3.5)-(3.6) and (3.8)-(3.9) respectively.
Then for any t ≥ 1 and any m = (m(1), . . . ,m(q)) ∈ N

q, there exists K independent of N such that,
for any i ∈ [N ]:

∣∣∣E
[(

zt
i

)m]− E

[(
yt

i

)m]∣∣∣ ≤ KN−1/2.

The proof of this proposition is provided in Section 3.4.
Finally, recall that we defined the sequences (xt

i)t∈N with xt
i ∈ R

q, by x0
i and for t ≥ 0,

xt+1
i (r) =

∑

`

A`if
`
r (x

t
`, t)−

∑

`

A2
`i

∑

s

f i
s(x

t−1
i , t− 1)

∂f `
r

∂x(s)
(xt

`, t)

Proposition 8. Let (A(N),FN , x
0,N )N≥1 be a (C, d)-regular sequence of instances. Denote by

{xt}t≥0 the corresponding AMP sequence and by {zt}t≥0 the sequence defined by (3.6) while iter-
ating (3.5). Then for any t ≥ 1 and m(1), . . . ,m(q) ≥ 0, there exists K independent of N such that,
for any i ∈ [N ],:

∣∣∣E
[(

xt
i

)m]− E

[(
zt

i

)m]∣∣∣ ≤ KN−1/2.

The proof of this proposition is provided in Section 3.5.

3.2 Tree representation

By assumption of Proposition 6, we have for each ` ∈ [N ] and r ∈ [q],

f `
r (z, t) =

∑

i1+···+iq≤d

c`i1,...,iq(r, t)

q∏

s=1

z(s)is , (3.10)

where each coefficient c`i1,...,iq
(r, t) belongs to R and has absolute value bounded by C (uniformly in

` ∈ [N ], i1, . . . , iq, and t ∈ N).
We now introduce families of finite rooted labeled trees that will allow us to get a simple expression

for the zt
i→j(r)’s and zt

i(r), see Lemma 1 below. For a vertex v in a rooted tree T different from the
root, we denote by π(v) the parent of v in T . We denote the root of T by ◦. We consider that the
edges of T are directed towards the root and write (u→ v) ∈ E(T ) if π(u) = v. The unlabeled trees
that we consider are such that the root and the leaves have degree one; each other vertex has degree
at most d + 1, i.e. has at mostd children. We now describe the possible labels on such trees. The
label of the root is in [N ], the label of a leaf is in [N ] × [q] × N

q and all other vertices have a label
in [N ] × [q]. For a vertex v different from the root or a leaf, we denote its label by (`(v), r(v)) and
call `(v) its type and r(v) its mark. The label (or type) of the root is also denoted by `(◦); the label
of a leaf v is denoted by (`(v), r(v), v[1], . . . v[q]). For a vertex u ∈ T , we denote |u| its generation
in the tree, i.e. its graph-distance from the root. Also for a vertex u ∈ T (which is not a leaf), we
denote by u[r] the number of children of u with mark r ∈ [q] (with the convention u[0] = 0). The
children of such a node are ordered with respect to their mark: the labels of the children of u are then
(`1, 1), . . . , (`u[1], 1), (`u[1]+1, 2), . . . , (`u[1]+···+u[q], q), where each (`u[0]+···+u[i], . . . , `u[0]+···+u[i+1]−1) is a
u[i + 1]-tuple with coordinates in [N ]. We denote by L(T ) the set of leaves of a tree T , i.e. the set
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of vertices of T with no children. For v ∈ L(T ), its label (`(v), r(v), v[1], . . . v[q]) is such that for all
i ∈ [q], v[i] ∈ N and v[1] + · · · + v[q] ≤ d. We will distinguish between two types of leaves: those
with maximal depth t = max{|v|, v ∈ L(T )} and the remaining ones. If v ∈ L(T ) and |v| ≤ t− 1,
then we impose v[1] = · · · = v[q] = 0. This case corresponds to ‘natural’ leaves and since they have
no children, the notation is consistent with the notation introduced for other nodes of the tree. For
all other leaves, we do not make this assumption so that v[1] + · · · + v[q] can take any value in [d].
These leaves are ‘artificial’ and can be thought of as leaves resulting from cutting a larger tree after
generation t so that the vector of the v[r]’s keeps the information on the number of children with
mark r in the original tree.

Definition 9. We denote by T t the set of labeled trees T with t generations as above that satisfy the
following conditions:

1. If v1 = ◦, v2, . . . , vk is a path starting from the root (i.e. with π(vi+1) = vi for i ≥ 1), then the
corresponding sequence of types `(vi) is non-backtracking. i.e., for any 1 ≤ i ≤ k− 2, the three
labels `(vi), `(vi+1) and `(vi+2) are distinct.

2. If u ∈ L(T ) and |u| ≤ t− 1 (i.e. u is a ‘natural’ leaf), then we have v[1] + · · ·+ v[q] = 0.

3. If u ∈ L(T ) and |u| = t (i.e. u is an ‘artificial’ leaf) then we have v[1] + · · ·+ v[q] ≤ d.

We also denote by T t
the set of trees that satisfy conditions 2 and 3, but not necessarily the non-

backtracking condition 1. Hence T t ⊆ T t
.

We also let U t be the same set of trees in which marks have been removed (i.e. we identify any

two trees that differ in the marks but not on type). Analogously, U t
is the set of trees in which marks

have been removed, but do not necessarily the non-backtracking condition 1.

For a labeled tree T ∈ T t and a set of coefficients c = (c`i1,...,iq
(r, t)), we define three weights:

A(T ) =
∏

(u→v)∈E(T )

A`(u)`(v),

Γ(T, c, t) =
∏

(u→v)∈E(T )

c
`(u)
u[1],...,u[q]

(r(u), t− |u|),

x(T ) =
∏

v∈L(T )

q∏

s=1

(
x0,N

`(v)(s)
)v[s]

.

We define

(a) T t
i→j(r) ⊂ T t the family of trees such that: (i) The root has type i; (ii) The root has only one

child, call it v; (iii) The type of v is `(v) /∈ {i, j} and its mark is r(v) = r.

(b) T t
i (r) ⊂ T t the family of trees such that: (i) The root has type i; (ii) The root has only one

child, call it v; (iii) The type of v is `(v) 6= i and its mark is r(v) = r.

The sets of trees U t
i (r) and U t

i→j(r) are obtained from T t
i (r) and T t

i→j(r) by removing marks.
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Lemma 1. Let (A(N),FN , x
0,N )N≥1 be a polynomial sequence of AMP instances. Denote by zt

i the
orbit defined by (3.6) while iterating (3.5) with matrix A. Then,

zt
i→j(r) =

∑

T∈T t
i→j (r)

A(T )Γ(T, c, t)x(T ), (3.11)

zt
i(r) =

∑

T∈T t
i (r)

A(T )Γ(T, c, t)x(T ). (3.12)

Proof. We first prove (3.11) by induction on t. For t = 1 we have, by definition

z1
i→j(r) =

∑

`∈[N ]\j

∑

i1+···+iq≤d

A`i c
`
i1,...,iq (r, 0)

q∏

s=1

(
x0,N

`→i(s)
)is

This expression corresponds exactly to equation (3.11) since trees in T 1
i→j(r) have a root with label

i and with one child with label (`, r, i1, . . . , iq) for some ` /∈ {i, j} and i1 + · · ·+ iq ≤ d.
To prove the induction, we start with Eq. (3.5), which yields

zt+1
i→j(r) =

∑

`∈[N ]\j

A`i

∑

i1+···+iq≤d

c`i1,...,iq(r, t)

q∏

s=1

(
zt
`→i(s)

)is

Using the induction hypothesis, we get

q∏

s=1

(
zt
`→i(s)

)is =

q∏

s=1


 ∑

T∈T t
`→i(s)

A(T )Γ(T, c, t)x(T )




is

=
∑

[T t
`→i

(s)]i1+···+iq

q∏

s=1

is∏

k=1

A(T s
k )Γ(T s

k , c, t)x(T
s
k ),

where the last expression is a sum over all (i1 + · · · + iq)-tuples of trees with the first i1 trees in
T t

`→i(1), the following i2 in T t
`→i(2), and so on.

Hence, we get

zt+1
i→j(r) =

∑

`∈[N ]\j

∑

i1...iq

∑

[T t
`→i(s)]

i1+···+iq

A`i c
`
i1,...,iq (r, t)

q∏

s=1

is∏

k=1

A(T s
k )Γ(T s

k , c, t)x(T
s
k ). (3.13)

The claim now follows by observing that the set of trees in T t+1
i→j (r) is in bijection with the set of

pairs constituted by a label (`, r) with ` /∈ {i, j} and a (i1 + · · · + iq)-tuple of trees with exactly is
trees belonging to T k

`→i(s) for s ∈ [q]. Indeed, take a root with label i and one child say v, with label
(`, r) for some ` /∈ {i, j} and with a (i1 + · · · + iq)-tuple of trees with exactly is trees belonging to
T t

`→i(s) for s ∈ [q]. Now take v as the root of these (i1 + · · ·+ iq) trees, the order in the tuple giving
the order of the subtrees of v. Note that the root of each subtree in T t

`→i(s) has type ` and in the
resulting tree will get mark r. The proof of (3.12) follows by the same argument, the only change is
that in the sum in (3.13), we need now to include ` = j.
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3.3 Proof of Proposition 6

We are now in position to prove Proposition 6.

Proof. For notational simplicity, we consider the case m(r) = m, and m(s) = 0 for all s ∈ [q] \ r.
Thanks to Lemma 1, we have

E
[(
zt
i(r)

)m]
=

∑

T1,...,Tm∈T t
i (r)

[
m∏

`=1

Γ(T`, c, t)

]
E

[
m∏

`=1

x(T`)

]
E

[
m∏

`=1

A(T`)

]
. (3.14)

Since c is fixed in this section, we omit to write it in Γ(T, t). Notice that the general case m =
(m(1), . . . ,m(q)) ∈ N

q admits a very similar representation whereby the sum over T1, . . . , Tm ∈ T t
i (r)

is replaced by sums over T1, . . . , Tm(1) ∈ T t
i (1), T1, . . . , Tm(2) ∈ T t

i (2), . . . , T1, . . . , Tm(q) ∈ T t
i (q)/

The argument goes through essentially unchanged.
We have Γ(T`, t) ≤ Cdt+1

. We first concentrate on the term E [
∏m

`=1A(T`)]. Recall that, from

subgaussian property of entries of A: E
(
eλAij

)
≤ e

Cλ2

2N . Now using Lemma 12 from Appendix D we
get for all i < j ∈ [N ]

E [|Aij |s] ≤ 2
(s
e

)s
λ−se

Cλ2

2N ≤ 2C
s
2

(s
e

) s
2
N− s

2 , (3.15)

obtained by taking λ =
√
Ns/C.

For a labeled tree T , we define φ(T ) = {φ(T )ij ∈ N, i ≤ j ∈ [N ]} where φ(T )ij is the number of
occurrences in T of an edge (u→ v) with endpoints having types `(u), `(v) ∈ {i, j}. Hence we have

A(T ) =
∏

i<j∈[N ]

A
φ(T )ij

ij and E

[
m∏

`=1

A(T`)

]
=

∏

i<j∈[N ]

E

[
A

Pm
`=1 φ(T`)ij

ij

]
. (3.16)

Since the mean of each entry of the matrix A is zero, in Equation (3.14), we can restrict the sum
to T1, . . . , Tm such that for all i < j ∈ [N ],

∑m
`=1 φ(T`)ij < 2 implies

∑m
`=1 φ(T`)ij = 0.

We now concentrate on the sum restricted to T1, . . . , Tm such that moreover there exists i < j ∈
[N ] such that

∑m
`=1 φ(T`)ij ≥ 3. For such a m-tuple T1, . . . , Tm, we denote µ = µ(T1, . . . , Tm) =∑

i<j

∑m
`=1 φ(T`)ij . Let G be the graph obtained by taking the union of the T`’s and identifying ()

vertices v with the same type `(v). We define e(T1, . . . , Tm) =
∑

i<j 1(
∑m

`=1 φ(T`)ij ≥ 1) which is the
number of edges counted without multiplicity in G. Since there exists i < j with

∑m
`=1 φ(T`)ij ≥ 3,

we have 3 + 2(e(T1, . . . , Tm)− 1) ≤ µ, i.e. e(T1, . . . , Tm) ≤ µ−1
2 . Using Eq. (3.15), we get

∣∣∣∣∣E
[ m∏

`=1

A(T`)
]∣∣∣∣∣ ≤

∏

i<j∈[N ]

E

[
|Aij |

Pm
`=1 φ(T`)ij

]

≤
(

2C
µ
2

(µ
e

)µ
2

)(µ−1)/2

N−µ
2 , (3.17)

since in the product on the right-hand side of (3.16), there are e(T1, . . . , Tm) terms different form
one, i.e. at most (µ− 1)/2 contributing terms.
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We now compute an upper bound on

(µ)∑

T1,...,Tm

E

[ ∣∣∣∣∣

m∏

`=1

x(T`)

∣∣∣∣∣

]
,

where the sum
(µ)∑

ranges on m-tuple of trees in T t
i (r) such that

∑
i<j

∑m
`=1 φ(T`)ij = µ. First note

that for any x ∈ R
q, we have for any p ≥ 2:

‖x‖p
p ≤ ‖x‖p

2 ≤ max
(
exp(‖x‖2

2), p
p
)
.

Hence the condition 1
N

∑N
i=1 exp(‖x0,N

i ‖2
2/C) ≤ C ensures that for any p ≥ 2,

1

N

N∑

i=1

‖x0,N
i ‖p

p ≤ Cp.

Therefore,

(µ)∑

T1,...,Tm

m∏

`=1

|x(T`)| ≤


qm

N∑

j=1

q∑

s=1

(
1 + |x0,N

j (s)|+ · · ·+ |x0,N
j (s)|md

)



µ−1
2

(3.18)

= (qmN)
µ−1

2


q +

md∑

k=1

1

N

N∑

j=1

‖x0,N
j ‖k

k




µ−1
2

≤
(
qm(q +

md∑

k=1

Ck)

) µ−1
2

N
µ−1

2 ,

where the last inequality is valid for N ≥ C. To see why (3.18) is true, note that the graph G

is connected since all trees T1, . . . , Tm have the same type i at the root. Therefore, the number of
vertices in G is at most e(T1, . . . , Tm) + 1 ≤ µ−1

2 + 1. Since all T`’s have the same root which has

type i, G has at most µ−1
2 distinct vertices which are distinct from the one associated to the root.

In particular, all trees T1, . . . , Tm together have at most µ−1
2 distinct types among their leaves. The

factor qm comes from the fact that for each type j there are at most qm choices for its m marks r

corresponding to the m trees. Now each leaf with type j will contribute a factor
∏q

s=1

(
x0,N

j (s)
)ns

with
∑

s ns ≤ md.
It is now easy to conclude, since we can decompose the sum in (3.14) in two terms, the first term

say S1(A) consists of the contribution of the m-tuples T1, . . . , Tm such that for all i, j,
∑m

`=1 φ(T`)ij ∈
{0, 2} while the second term denoted by S2(A) consists of the remaining contribution. We have
S1(A) = S1(Ã) and, using (3.17) and (3.18), we get:

|S2(A)| ≤
∑

µ≤mdt+1

Cdt+1+µ−1
2 C ′N

µ−1
2 N−µ

2 = O
(
N− 1

2

)
, (3.19)

which concludes the proof Proposition 6. Here we used the fact that all values µ, q, and {Ck}md
k=0 are

independent of N .
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We end this section by showing that the term S1(A) can be further reduced. This result will be
useful in the sequel and we state it as the following lemma.

Lemma 2. Recall that we denoted by S1(A) the term in the sum (3.14), consisting of the contribution
of the m-tuples T1, . . . , Tm such that for all i, j,

∑m
`=1 φ(T`)ij ∈ {0, 2}. We further decompose S1(A) =

T (A)+R(A) in two terms where the first term T (A) corresponds to the sum over trees T1, . . . Tm such
that the resulting graph G obtained by taking the union of the T`’s and identifying vertices v with
the same type `(v), is a tree (each edge having multiplicity two). Then there exists K (independent
of N) such that:

∣∣∣E
[
zt
i(r)

m
]
− T (A)

∣∣∣ = KN−1/2 ,
∣∣E
[
zt
i(r)

m
]∣∣ ≤ K ,

∣∣E
[
zt
i→j(r)

m
]∣∣ ≤ K.

Proof. We have by definition E
[(
zt
i(r)

m
)]

= T (A)+R(A)+S2(A), so that thanks to (3.19), we need

only to show that R(A) = O
(
N−1/2

)
.

For any m-tuple T1, . . . , Tm such that for all i, j,
∑m

`=1 φ(T`)ij ∈ {0, 2}, we have with the same
notation as above: e(T1, . . . , Tm) = µ

2 . The number of vertices in G is at most 1 + e(T1, . . . , Tm)
with equality if and only if G is a tree (remember that G is always connected as all trees T`’s share
the same root). Hence for the cases that G is not a tree it has at most µ

2 − 1 vertices that serve as
leaves of a tree among T1, . . . , Tm. By the same argument as above we get

|T (A)| ≤
∑

µ≤mdt+1

KN
µ
2N−µ

2 = O(1) (3.20)

|R(A)| ≤
∑

µ≤mdt+1

KN
µ
2
−1N−µ

2 = O(N−1), (3.21)

and the claim follows.

3.4 Proof of Proposition 7

The proof follows the same approach as for Proposition 6. For notational simplicity, we consider the
case m(r) = m, and m(s) = 0 for all s ∈ [q] \ r. The general case follows by the same argument. For
y, we are using a different matrix at each iteration and we need to define a new weight associated
to trees T ∈ T t as follows:

A(T, t) =
∏

(u→v)∈E(T )

A
t−|u|
`(u)`(v). (3.22)

In the particular case where the sequence {At}t∈N is constant (i.e., equals to A), this expression
reduces to A(T ) defined previously. Similar to Lemma 1 for x, we have now

yt
i→j(r) =

∑

T∈T t
i→j (r)

A(T, t)Γ(T, c, t)x(T ),

yt
i(r) =

∑

T∈T t
i (r)

A(T, t)Γ(T, c, t)x(T ),
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so that we get

E
[(
yt

i(r)
)m]

=
∑

T1,...,Tm∈T t
i (r)

[
m∏

`=1

Γ(T`, c, t)

]
E

[
m∏

`=1

x(T`)

]
E

[
m∏

`=1

A(T`, t)

]
. (3.23)

For a labeled tree T , we define ϕ(T ) = {ϕ(T )g
ij ≥ 0, i ≤ j ∈ [N ], d ≥ 1} where ϕ(T )g

ij is the number
of occurrences in T of an edge (u → v) with endpoints having labels `(u), `(v) ∈ {i, j} and with
generation |u| = g. In particular, we have

∑
g ϕ(T )g

ij = φ(T )ij which was defined in the proof of
Proposition 6. Hence we have with µ =

∑
i<j

∑m
`=1 φ(T`)ij ,

∣∣∣∣∣E
[ m∏

`=1

A(T`, t)
]∣∣∣∣∣

(a)
=

∏

i<j∈[N ]

∏

g

∣∣∣∣E
[
A

Pm
`=1 ϕ(T`)

g
ij

ij

]∣∣∣∣

≤
∏

i<j∈[N ]

∏

g

E

[
|Aij |

Pm
`=1 ϕ(T`)

g
ij

]

(b)

≤
(

2C
µ
2

(µ
e

)µ
2

)(µ−1)/2

N−µ
2 (3.24)

where (a) holds since {At}t∈N is an iid sequence with the same distribution as A(N), and (b) follows
by the same argument as in (3.17). The inequality (3.24) implies that the bounds (3.19) and (3.21)
are still valid with the weight of a tree given by (3.22) (the term E [

∏m
`=1 x(T`)] can be treated as in

previous section).
As in the proof of Proposition 6, we define the graph G obtained by taking the union of the T`’s

and identifying vertices v with the same type `(v). By Lemma 2, we need only to concentrate on the
term T (A) corresponding to m-tuples T1, . . . , Tm such that each edge in G has multiplicity 2 and
such that G is a tree. Indeed, the proposition will follow, once we prove

T (A) = T (A), (3.25)

where T (A) was defined in Lemma 2 and T (A) is the corresponding term with the weight of a tree
given by (3.22). First note that for any T1, . . . , Tm such that E

[∏m
`=1A(T`, t)

]
6= 0, we have

E

[
m∏

`=1

A(T`, t)

]
= E

[
m∏

`=1

A(T`)

]
.

Now suppose that we have E [
∏m

`=1A(T`)] 6= 0 = E
[∏m

`=1A(T`, t)
]
. This can only happen, if an

edge in G connecting types say i and j has multiplicity 2 but appears at different generations in the
original trees T`’s. Suppose this edge appears twice in say T1 at on the same branch and at different
generations, i.e. there exists (a → b) and (c → d) ∈ E(T1) with {`(a), `(b)} = {`(c), `(d)} = {i, j},
|a| < |c| and the edge (a → b) is on the path that connects c, d to the root. Thanks to the non-
backtracking property, these two edges cannot be adjacent, i.e. a 6= d. But then these edges create a
cycle in G, contradiction. Suppose now that these edge appears in T1 and T2 in different generations,
i.e. there exists (a → b) ∈ E(T1) and (c → d) ∈ E(T2) with {`(a), `(b), `(c), `(d)} = {i, j} and
|a| < |c|. Then the same reasoning shows that they will create a cycle in G since b and d are
connected to the roots of T1 and T2 respectively which are both identify to a single vertex in G. The
latter argument can be used for the case where both edges belong to the same tree T1 but they lie
in different branches. Hence we obtain again a contradiction.

17



3.5 Proof of Proposition 8

Proof. As in the proof of Proposition 6, we will rely on a representation of xt
i(r) based on labeled

trees defined as in Section 3.2. In the present case it is however more convenient to work with trees
from which marks have been removed, i.e. we identify any two trees in which the vertex marks are
different but the types are the same. Notice that Eqs. (3.11), (3.12) imply

zt
i→j(r) =

∑

T∈Ut
i→j (r)

A(T )Γ′(T, c, t)x(T ), (3.26)

zt
i(r) =

∑

T∈Ut
i (r)

A(T )Γ′(T, c, t)x(T ), (3.27)

where Γ′(T, c, t) is obtained by summing Γ(T, c, t) over all trees T that coincide up to marks. In the
following, with a slight abuse of notation, we will write Γ(T, c, t) instead of Γ ′(T, c, t).

In a directed labeled graph, we define a backtracking path of length 3 as a path a→ b→ c→ d
such that `(a) = `(c) and `(b) = `(d). We define a backtracking star as a set of vertices a → b → c
and a′(6= a) → b such that `(a) = `(a′) = `(c). We define Bt as the set of rooted labeled trees T in

U t
, that satisfy the following conditions:

• If u → v ∈ E(T ), then `(u) 6= `(v) and there exists in T at least one backtracking path of
length 3 or one backtracking star.

Then, we define Bt
i as the subset of trees in Bt with root having type i and only one child with type

` with ` 6= i.

Lemma 3. Under the same assumptions as in Proposition 8, we have

xt
i(r) = zt

i(r) +
∑

T∈Bt
i

A(T )Γ̃(T, t, r)x(T ),

for some Γ̃(T, t, r) which is bounded uniformly as |Γ̃(T, t, r)| ≤ K(d,C, t).

Proof. Following the same argument as in Lemma 1, it is easy to prove by induction on t that we
can find Γ̃(T, t, r) such that

xt
i(r) =

∑

T∈U
t
i

A(T )Γ̃(T, t, r)x(T ), (3.28)

with |Γ̃(T, t, r)| ≤ K(d,C, t). The terms Ai`f
`
r (x

t
`, t) can be handled exactly as in Lemma 1. Concern-

ing the terms A2
i`f

i
s(x

t−1
i , t−1) ∂f`

r

∂x(s) (x
t
`, t), it can be interpreted as a sum on the following trees in U :

the type of the root is i and the root has one child with type `. This child has at most d− 1 subtrees

in U t
coming from the term ∂f`

r

∂x(s)(x
t
`, t) (which is a polynomial with degree at most d − 1) and one

child say u with type i. This child u is the root of at most d subtrees in U t−1
coming from the term

f i
s(x

t−1
i , t − 1). We see that the resulting tree is in U t+1

. Now to see that |Γ̃(T, t, r)| ≤ K(d,C, t),

note that each polynomial f `
r( · , t) (resp. ∂f`

r

∂x(s)( · , t)) has coefficients bounded by C (resp. dC) so

that taking into account the contribution of each term in decomposition (3.28), we easily get

|Γ̃(T, t+ 1, r)| ≤ dC2
[
K(d,C, t)d +K(d,C, t)d−1K(d,C, t − 1)d

]
.
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It remains to prove that Γ̃(T, t, r) agrees with the expression in Lemma 1, cf. Eq. (3.26), (3.27),

for T ∈ U t
i (r) and is zero for trees in U t \ Bt

i . The proof of this fact will proceed by induction on t.
The cases t = 0, 1 are clear since Bt

i = ∅. For t ≥ 1, we define

zt
`,i(r) = Ai`f

i
r(z

t−1
i→`, t− 1), et

`(r) =
∑

T∈Bt
`

A(T )Γ̃(T, t, r)x(T ), dt
`,i(r) = zt

`,i(r) + et`(r)

so that we have by the induction hypothesis, xt
` = zt

`→i + zt
`,i + et

` = zt
`→i + dt

`,i.

Since f `
r( · , t) is a polynomial, we have

f `
r(x

t
`, t) = f `

r(z
t
`→i, t) +

∑

s

(
zt
`,i(s) + et`(s)

) ∂f `
r

∂x(s)
(zt

`→i, t)

+
∑

n1+···+nq≥2

q∏

s=1

(
dt

`,i(s)
)ns

ns!

∂n1+···+nqf `
r

∂x(1)n1 . . . ∂z(q)nq
(zt

`→i, t),

where the last sum contains a finite number of non-zero terms.
Multiplying by Ai` and summing over ` ∈ [N ], the first term on the right hand side gives exactly

zt+1
i (r). The second term gives:

∑

`

A2
`i

∑

s

f i
s(z

t−1
i→`, t− 1)

∂f `
r

∂x(s)
(zt

`→i, t) +
∑

`

A`i

∑

s

et`(s)
∂f `

r

∂x(s)
(zt

`→i, t) .

From now on and to lighten the notation, we omit the second argument of the functions f `
r . Hence

we have

xt+1
i (r) = zt+1

i (r)−
∑

`

A2
`i

∑

s

(
f i

s(x
t−1
i )

∂f `
r

∂x(s)
(xt

`)− f i
s(z

t−1
i→`)

∂f `
r

∂x(s)
(zt

`→i)

)

+
∑

`

A`i

∑

s

et`(s)
∂f `

r

∂x(s)
(zt

`→i) (3.29)

+
∑

`

A`i

∑

n1+···+nq≥2

q∏

s=1

(
dt

`,i(s)
)ns

ns!

∂n1+···+nqf `
r

∂x(1)n1 . . . ∂x(q)nq
(zt

`→i).

We now show that each contribution on the right hand side (except z t+1
i (r)) can be written as a sum

of terms A(T )Γ̃(T, t+ 1, r, x0) over trees T ∈ Bt+1
i that we construct explicitly.

First consider the terms of the form: A`ie
t
`(s)

∂f`
r

∂x(s)(z
t
`→i). By definition et

`(s) can be written as a

sum over trees in Bt
` and by Lemma 1, the r-th component of zt

`→i can be written as a sum over trees

in U t
`→i(r). Hence by the same argument as in the proof of Lemma 1, we see that A`ie

t
`(s)

∂f`
r

∂x(s) (x
t
`→i)

can be written as a sum over trees with root having type i, one child say v with type `. This vertex v
is the root of a tree in Bt

` (corresponding to the factor et
`(s)) and a set of trees in U t

`→i(1), . . . ,U t
`→i(q)

(corresponding to the factor ∂f`
r

∂x(s)(z
t
`→i)). This tree clearly belongs to Bt+1

i .
We now treat the terms in the first line. Again, we have

f i
s(x

t−1
i )

∂f `
r

∂x(s)
(xt

`) = f i
s(z

t−1
i→`)

∂f `
r

∂x(s)
(zt

`→i) + g(dt−1
i,` ,d

t
`,i, z

t−1
i→`, z

t
`→i),
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where g is a polynomial with either a positive power of a component of dt−1
i,` or of dt

`,i. Hence, we only

need to construct trees in Bt+1
i (r) corresponding to terms of the following form: for

∑
s(as + bs) ≥ 1,

A2
`i

∏

s

(
dt−1

i,` (s)
)as (

dt
`,i(s)

)bs
(
zt−1
i→`(s)

)cs
(
zt
`→i(s)

)ds .

Let first consider the term: A2
`i

∏
s

(
zt−1
i→`(s)

)cs
(
zt
`→i(s)

)ds . It can be interpreted as a sum on the
following family of trees: the type of the root is i and the root has one child with type `. This
child has ds subtrees in U t

`→i(s) and one child denoted u with type i. This child u has cs subtrees
in U t−1

i→`(s). Note that the only backtracking path in such a tree is the path from u to the root with
types i, `, i. In particular such a tree does not belong to Bt

i(r).
We assume now that there exists s with as ≥ 1. We need to interpret the multiplication by

dt−1
i,` (s) = zt−1

i,` (s) + et−1
i (s). First consider the case of et−1

i (s), this corresponds to add a subtree in

Bt−1
i to the vertex u. As in previous analysis, we clearly obtain a tree in B t+1

i . The term zt−1
i,` (s)

corresponds to adding a child of type ` to the vertex u which is the root of a subtree in U t−2
`→i(s), in

particular we introduce a backtracking path of length 3 so that again the resulting tree is in B t+1
i .

Similarly if bs ≥ 1, the multiplication by dt
`,i(s) will correspond to add a subtree to the child of the

root, resulting in either adding a backtracking path of length 3 or adding a backtracking star.
The last term of the form

A`i

q∏

s=1

(
dt

`,i(s)
)ns

ns!

∂n1+···+nqf `
r

∂x(1)n1 . . . ∂x(q)nq
(zt

`→i),

with n1 + · · · + nq ≥ 2 can be analyzed by the same kind of argument by noticing that the factor
Ai`z

t
`,i(s)z

t
`,i(s

′) corresponds to a backtracking star.

The proof of Proposition 8 follows from the same arguments as in the proof of Proposition 6.
Once more, for simplicity, we only consider the case m(r) = m and m(s) = 0 for s 6= r, the general
case of m = (m(1),m(2), . . . ,m(q)) ∈ N

q being completely analogous. We represent both moments
E[xt

i(r)
m] and E[zt

i(r)
m] using Lemma 1 (in the form given in Eqs. (3.26), (3.27)) and Lemma3. The

expectation E[xt
i(r)

m] is represented as a sum over trees T1, . . . , Tm ∈ U t
i (r) ∪ Bt

i(r), while E[zt
i(r)

m]
is given by a sum over trees T1, . . . , Tm ∈ U t

i (r). In order to complete the proof we need to show that
the contribution of terms that have at least one tree in Bt

i(r) vanishes as N →∞.

The factor
∏m

`=1 Γ̃(T`, t, r) is bounded by K(d,C, t)m. which is independent of N . Hence, we
only need to prove that

∑

T1∈Bt
i(r)

∑

Tj∈T t
i (rj)∪Bt

i (rj),j∈[2,m]

E

[
m∏

`=1

A(T`)x(T`)

]
= O

(
N− 1

2

)
. (3.30)

This statement directly follows from previous analysis, since in the graph G obtained by taking the
union of the T`’s and identifying vertices v with the same type `(v), there is at least one edge with
multiplicity 3, due to the backtracking path of length 3 or the backtracking star in T1. So that

previous analysis shows that the term in (3.30) is of order O
(
N− 1

2

)
.
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3.6 Proof of Theorem 3

Let {pN,i}N≥0,1≤i≤N be a collection of multivariate polynomials pN,i : R
q → R with degrees bounded

by D, and coefficients bounded in magnitude by B:

pN,i(x) =
∑

m(1)+···+m(q)≤D

cN,i
m(1),...,m(q)x(1)

m(1) · · · x(q)m(q) . (3.31)

By Propositions 6 and 8, we have,

|EpN,i(x
t
i)− EpN,i(x̃

t
i)| ≤

∑

m(1)+···+m(q)≤D

|cN,i
m(1),...,m(q)| |E[(xt

i)
m]− E[(x̃t

i)
m]| ≤ KDqBN1/2 (3.32)

whence the thesis follows.

3.7 Proof of Theorem 5

An important simplification is provided by the following.

Remark 2. It is sufficient to prove Theorem 5 for t = s.
(Hence, Theorem 4 implies Theorem 5.)

Proof. Indeed consider a converging sequence {(A(N),FN , x
0,N )}N≥1 and fix h = t − s > 0. For

the sake of simplicity, and in view of Remark 1 we can assume FN to be given by the polynomial
function g : R

q × R
q̃ × [k] × N → R

q, (x, Y, a, t) 7→ g(x, Y, a, t) that does not depend on the random
variable Y . With an abuse of notation we will write g(x, a, t) in place of g(x, Y, a, t).

We will construct a new converging sequence of instances {(A(N), F̃N , x̃
0,N )}N≥1 with variables

x̃t
i ∈ R

2q and such that, letting x̃t
i = (ut

i,v
t
i), ut

i,v
t
i ∈ R

q, the pair (ut
i,v

t
i) is distributed as (xt

i,x
t−h
i )

asymptotically as N →∞.
The new sequence of initial conditions is constructed as follows

1. The initial condition is given by x̃0
i = (0, 0).

2. The independent randomness is given by Y (i) = x0
i . Notice that, for i ∈ CN

a , we have
Y (i) ∼i.i.d. Qa and hence we let Pa = Qa.

3. The partitions CN
a , a ∈ [k] and matrices A(N) are kept unchanged.

4. The collection of functions in F̃N is determined by the polynomial function g̃ : R
2q×R

q̃× [k]×
N → R

2q, (x̃, Y, a, t) 7→ g̃(x̃, Y, a, t). Writing g̃( · ) = [g̃(1)( · ), g̃(2)( · )], with g̃(1)( · ), g̃(2)( · ) ∈ R
q,

we let, for u,v ∈ R
q.

g(1)
(
(u,v), Y, a, t

)
=

{
g(Y, a, t) if t = 0 ,

g(u, a, t) if t > 0,
(3.33)

g(2)
(
(u,v), Y, a, t

)
=

{
g(Y, a, t) if t ≤ h ,

g(v, a, t) if t > h.
(3.34)

As a consequence of this construction, ut
i = xt

i for all i ∈ [N ], t ≥ 1, and vt
i = xt−h

i for all t ≥ h+ 1.
This completes the reduction.
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As a consequence of this remark, it is sufficient to prove Theorem 4, and by Remark 1 we can
limit ourselves to the case in which g : (x, Y, a, t) 7→ g(x, Y, a, t) does not depend on Y and hence
this argument will be dropped. We begin by considering the expectation of moments of xt

i.

Proposition 10. Let (A(N),FN , x
0)N≥0 be a polynomial and converging sequence of AMP instances,

and denote by {xt}t≥0 the corresponding AMP orbit. Then we have for any i = i(N) ∈ CN
a , t ≥ 1,

m = (m(1), . . . ,m(q)) ∈ N
q,

lim
N→∞

E
[(

xt
i

)m]
= E

[(
Zt

a

)m]
,

where Z t
a ∼ N

(
0,Σt

a

)
.

Proof. By Propositions 7 and 8, we need only to prove the statement for the AMP orbit yt. We will
indeed prove by induction on t that for any i ∈ CN

a and any j 6= i,

lim
N→∞

E
[(

yt
i→j

)m]
= E

[(
Zt

a

)m]
, (3.35)

lim
N→∞

1

|CN
a |

∑

i∈CN
a

(
yt

i→j

)m
= E

[(
Zt

a

)m]
in probability . (3.36)

For t ≥ 1, let Ft be the σ-algebra generated by A0, . . . , At−1. We will show, using the central limit
theorem, that the random vector (yt+1

i→j(1), . . . , y
t+1
i→j(q)) given Ft converge in distribution to a centered

Gaussian random vector. More precisely, by (3.8) and the induction hypothesis, the following limit
holds in probability,

lim
N→∞

E

[
yt+1

i→j(r)y
t+1
i→j(s)

∣∣Ft

]
= lim

N→∞

∑

`∈[N]\j

`∈CN
b

E
[
(At

`i)
2
]
gr(y

t
`→i, b, t)gs(y

t
`→i, b, t)

=

k∑

b=1

cbWabE
[
gr(Z

t
b, b, t)gs(Z

t
b, b, t)

]
= Σt+1

a (r, s) .

Since for all r ∈ [q] from (3.8) we have E[yt+1
i→j(r)] = 0, from the central limit theorem, it follows that

yt+1
i→j converges to a centered Gaussian vector with covariance Σt+1

a . Since all the moments of yt+1
i→j

are bounded uniformly in N by Proposition 7 and Lemma 2, the induction claim, Eq. (3.35) follows,
for iteration t+ 1.

In the base case t = 0 the same conclusion holds because

lim
N→∞

E
[
y1

i→j(r)y
1
i→j(s)

]
= lim

N→∞

∑

`∈[N]\j

`∈CN
b

E
[
(A0

`i)
2
]
gr(y

0
`→i, b, 0)gs(y

0
`→i, b, 0)

=

k∑

b=1

cbWabΣ̂
0
b(r, s) ,

where the second identity holds by assumption.
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Next consider the induction claim Eq. (3.36). Recall the representation introduced in Section
3.4:

yt
i→j(r) =

∑

T∈T t
i→j (r)

A(T, t)Γ(T, c, t)x(T ),

A(T, t) =
∏

(u→v)∈E(T )

A
t−|u|
`(u)`(v).

Using this representation of yt
i→j, yt

k→j it is easy to show that, for i 6= k, i, k ∈ CN
a

∣∣E
[(

yt
i→j

)m(
yt

k→j

)m]− E
[(

yt
i→j

)m]
E
[(

yt
k→j

)m]∣∣ ≤ ε(N) , (3.37)

for some function ε(N) → 0 as N → ∞ ar m, C, d, t fixed. Indeed, the above expectations can
be represented as sums over m = m(1) + m(2) + · · · + m(q) trees T1, . . . , Tm ∈ T t

i→j and m trees
T ′1, . . . , T

′
m ∈ T t

k→j. Let G be the simple graph obtained by identifying vertices of the same type in
T1, . . . , Tm, T

′
1, . . . , T

′
m.

By Lemma 2 and the argument in the proof of Proposition 6, all the terms in which G has
cycles, or an edge of G correspond to more than 2 edges in the union of T1, . . . , Tm, T ′1, . . . , T

′
m

add up to a vanishing contribution in the N → ∞ limit. Further, all the terms in which G is the
union of two disconnected components (one containing i, and the other containing k) are identical

in E

[(
yt

i→j

)m(
yt

k→j

)m]
and E

[(
yt

i→j

)m]
E

[(
yt

k→j

)m]
and hence cancel out. We are therefore left

with the sum over trees T1, . . . , Tm, T
′
1, . . . , T

′
m such that G is itself a connected tree, with edges

covered exactly twice. Assume, to be definite, that G has µ vertices and hence µ − 1 edges. The
weight of such a term is bounded by

KE

{
m∏

i=1

A(Ti, t)

m∏

i=1

A(T ′i , t)

}
≤ KN−µ+1

On the other hand, the number of such terms is bounded by KN µ−2 (because the type has to be
assigned to µ vertices, but 2 of these are fixed to i and k), and hence the overall contribution of these
terms vanishes as well.

From Eq. (3.37) and using the fact that E[(yt
i→j)

2m] ≤ K (because of Lemma 2 and Proposition
7), we have

lim
N→∞

Var
{ 1

|CN
a |

∑

i∈CN
a

(
yt

i→j

)m}

≤ lim
N→∞

1

|CN
a |2

∑

i,k∈CN
a

∣∣∣E
[(

yt
i→j

)m(
yt

k→j

)m]− E
[(

yt
i→j

)m]
E
[(

yt
k→j

)m] ∣∣∣ = 0 .

Equation (3.36) follows for iteration t+ 1 by applying Chebyshev inequality to the sequence




1

|CN
a |

∑

i∈CN
a

(yt
i→j)

m





N≥0

,

and using (3.35).
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We are now ready to prove Theorem 5 in the case in which ψ : R
q → R is a polynomial.

Proposition 11. Let (A(N),FN , x
0)N≥0 be a polynomial and converging sequence of AMP in-

stances, and denote by {xt}t≥0 the corresponding AMP orbit. Then we have for any t ≥ 1, m =
(m(1), . . . ,m(q)) ∈ N

q,

lim
N→∞

Var
{ 1

|CN
a |

∑

i∈CN
a

(
xt

i

)m}
= 0 . (3.38)

Proof. In order to prove (3.38), we fix t ≥ 1 and a ∈ [k], and construct a modified sequence of
AMP instances as follows. The new sequence has N ′ = 2N and k′ = k + 1. The new partition
of the variable indices {1, . . . , N} is the same as in the original instances, with the addition of
CN

k+1 = {N + 1, . . . , 2N = N ′}. Further we set, for ϕ : R
q → R a polynomial,

1. For i, j ≤ N : A′ij = Aij and when i > N or j > N define A′
ij ∼ N(0, 1/N) independently.

2. g′(x, b, t′) = g(x, b, t′) for b ∈ [k], t′ ≤ t − 1; g′(x, b, t) = 0 for b ∈ [k] \ a; g′1(x, a, t) = ϕ(x),
g′r(x, a, t) = 0, for r ≥ 2; g′(x, k + 1, t′) = 0 for all t′.

The definition of g′(x, a, t′) for t′ > t is irrelevant for our purposes.

Since g′(x, k + 1, t′) = 0 for all t′, the orbit (xt′
i : i ≤ N, t′ ≤ t) is not affected by the new variables.

Further, by the general AMP equation (1.6), we have, for i ∈ CN
k+1

xt+1
i (1) =

∑

j∈CN
a

Aijϕ(xt
j) . (3.39)

Notice that the {Aij}j∈CN
a

in this equation are independent of xt
j . Hence

E{xt+1
i (1)4} =

∑

j1,...,j4∈CN
a

E{Aij1Aij2Aij3Aij4}E{ϕ(xt
j1)ϕ(xt

j2)ϕ(xt
j3)ϕ(xt

j4)} (3.40)

=
3

N2

∑

j1,j2∈CN
a

E{ϕ(xt
j1)

2ϕ(xt
j2)

2} . (3.41)

On the other hand, using Proposition 10 (once for iteration t+1 and i ∈ CN
k+1, and another time for

iteration t and i ∈ CN
a ) we get

lim
N→∞

E{xt+1
i (1)4} = E{(Z t+1

k+1(1))
4} = 3(Σt+1

k+1(1, 1))
2 = 3c2aE{ϕ(Zt

a)
2}2 , i ∈ CN

k+1,(3.42)

lim
N→∞

E{ϕ(xt
i)

2} = E{ϕ(Z t
a)

2} , i ∈ CN
a , (3.43)

where Z t
a ∼ N(0,Σt

a). Comparing these equations with Eq.(3.41) we conclude that

lim
N→∞

1

N2

∑

j1,j2∈CN
a

E{ϕ(xt
j1)

2ϕ(xt
j2)

2} =



 lim

N→∞

1

N

∑

j∈CN
a

E[ϕ(xt
j)

2]





2

. (3.44)
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Equivalently

lim
N→∞

Var
{ 1

|CN
a |

∑

i∈CN
a

ϕ(xt
i)

2
}

= 0 . (3.45)

Taking ϕ(x) = xk, we obtain Eq.(3.38) for m even. In order to establish Eq.(3.38) for general m we
take, for instance, ϕ(x) = 1 + εxm and use the fact that the limit must vanish for all ε.

At this point we can prove Theorem 5.

Proof of Theorem 5. By Remark 1 and Remark 2, we reduced ourselves to the case t = s, and
Y (i) = 0 (equivalently, Y (i), is absent).

Consider the empirical measure on R
q given by

µN
a =

1

|CN
a |

∑

i∈CN
a

δxt
i
.

Proposition 10 shows the convergence of expected the moments of µN
a to moments that determine

the Gaussian distribution. Proposition 11 combined with Chebyshev inequality implies

lim
N→∞

µN
a

((
xt

i

)m
) = E

[(
Zt

a

)m]
,

in probability. The proof follows using the relation between convergence in probability and conver-
gence almost sure along subsequences, together with the moment method.

4 Non-symmetric matrices

In this section we consider a slightly different setting that turns out to be a special case of the one
introduced in Section 1.3.

Definition 12. A converging sequence of (polynomial) bipartite AMP instances {(A(n), f, h, x0,n)}n≥1

is defined by giving for each n:

1. A matrix A(n) ∈ R
m×n with m = m(n) such that limn→∞m(n)/n = δ > 0. Further, A(n) =

(Aij)i≤m,j≤n is a matrix with the entries Aij independent subgaussian random variables with
common scale factor C/n and first two moments E{Aij} = 0, E{A2

ij} = 1/m.

2. Two functions f : R
q × R

q̃ × N → R
q, and h : R

q × R
q̃ × N → R

q such that, for each t ≥ 0,
f( · , · , t) and h( · , · , t) are polynomials.

3. An initial condition x0,n = (x0
1, . . . ,x

0
n) ∈ Vq,n ' (Rq)n, with x0

i ∈ R
q, such that, in probability,

n∑

i=1

exp{‖x0,n
i ‖2

2/C} ≤ nC , (4.1)

lim
n→∞

1

m(n)

n∑

i=1

f(x0
i , Y (i), 0)f(x0

i , Y (i), 0)T = Ξ0 . (4.2)
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4. Two collections of i.i.d. random variables (Y (i), i ∈ [n]) and (W (j), j ∈ [m]) with Y (i) ∼i.i.d. Q
and W (j) ∼i.i.d. P . Here Q and P are finite mixture of Gaussians on R

q̃.

Throughout this section, we will refer to non-bipartite AMP instances as per Definition 5, as to
symmetric instances. With these ingredients, we define the AMP orbit as follows.

Definition 13. The approximate message passing orbit corresponding to the bipartite instance
(A, f, h, x0) is the sequence of vectors {xt, zt}t≥0, x

t ∈ Vq,n z
t ∈ Vq,m defined as follows, for t ≥ 0,

zt = Af(xt, Y ; t)− Bt h(z
t−1,W ; t− 1) , (4.3)

xt+1 = AT h(zt,W ; t)− Dt f(xt, Y ; t) , (4.4)

where f( · · · ), h( · · · ) are applied componentwise (see below for an explicit formulation). Here Bt :
Vq,m → Vq,m is the linear operator defined by letting, for v ′ = Btv, and any j ∈ [m],

v′j =


∑

k∈[n]

A2
jk

∂f

∂x
(xt

k, Y (k); t)


vj . (4.5)

Analogously Dt : Vq,n → Vq,n is the linear operator defined by letting, for v ′ = Dtv, and any j ∈ [n],

v′i =


∑

l∈[m]

A2
li

∂h

∂z
(zt

l ,W (l); t)


vi . (4.6)

For the sake of clarity, it is useful to rewrite the iteration (4.3), (4.4) explicitly, by components:

zt
i =

∑

j∈[n]

Aijf(xt
j, Y (j); t) −

∑

k∈[n]

A2
jk

∂f

∂x
(xt

k, Y (k); t)h(zt−1
i ,W (i); t − 1) for all i ∈ [m],

xt+1
j =

∑

i∈[m]

Aijh(y
t
i ,W (i); t) −

∑

l∈[m]

A2
lj

∂h

∂z
(zt

l ,W (l); t) f(xt
j , Y (j); t) for all j ∈ [n].

We will state and prove a state evolution result that is analogous to Theorem 5 for the present case.
Since the proof is by reduction to the symmetric case, the same argument also implies a universality
statement of the type of Theorem 3. However, we will not state explicitly any universality statement
in this case. We begin by introducing the appropriate state evolution recursion. In analogy with
Eq. (1.10), we introduce two sequences of positive semidefinite matrices {Σt}t≥0, {Ξt}t≥0 by letting
Ξ0 be given as per Eq. (4.2) and defining, for all t ≥ 1,

Σt = E

{
h(Zt−1,W, t− 1)h(Z t−1,W, t− 1)T

}
, Zt−1 ∼ N(0,Ξt−1) , W ∼ P , (4.7)

Ξt =
1

δ
E

{
f(Xt, Y, t)f(X t, Y, t)T

}
, Xt ∼ N(0,Σt) , Y ∼ Q . (4.8)

We also define a two-times recursion analogous to Eqs. (3.2), (3.3). Namely, we introduce the
boundary condition

Ξ0,0 =

(
Ξ0 Ξ0

Ξ0 Ξ0

)
, Ξt,0 =

(
Ξt 0
0 Ξ0

)
, Ξ0,t =

(
Ξ0 0
0 Ξt

)
, (4.9)
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with Ξt defined per Eq. (4.7), (4.8). For any s, t ≥ 1, we set recursively

Σt,s = E

{
Zt−1,s−1ZT

t−1,s−1

}
, (4.10)

Zt−1,s−1 ≡ [h(Zt−1,W, t− 1), h(Zs−1,W, s− 1)] , (4.11)

Ξt,s = E

{
Xt,sXT

t,s

}
, (4.12)

Xt,s ≡ [f(Xt, Y, t), f(Xs, Y, s)] . (4.13)

(Recall that [u, v] denotes the column vector obtained by concatenating u and v.)

Theorem 6. Let {(A(n), f, h, x0,n)}n≥1 be a polynomial and converging sequence of bipartite AMP
instances, and denote by {xt, zt}t≥0 the corresponding AMP orbit.

Fix s, t ≥ 1. If s 6= t, further assume that the initial condition x0,n is obtained by letting x
0,n
i ∼ R

independent and identically distributed, with R a finite mixture of Gaussians. Then, for each locally
Lipschitz function ψ : R

q × R
q × R

q̃ → R such that |ψ(x,x′, y)| ≤ K(1 + ‖y‖2
2 + ‖x‖2

2 + ‖x′‖2
2)

K , we
have, in probability,

lim
n→∞

1

n

∑

j∈[n]

ψ(xt
j ,x

s
j , Y (j)) = E

[
ψ(Xt, Xs, Y )

]
, (4.14)

lim
N→∞

1

m(n)

∑

j∈[m]

ψ(zt
j , z

s
j ,W (j)) = E

[
ψ(Zt, Zs,W )

]
, (4.15)

where (X t, Xs) ∼ N(0,Σt,s) is independent of Y ∼ Q, and (Z t, Zs) ∼ N(0,Ξt,s) is independent of
W ∼ P .

Proof. The proof follows by constructing a suitable polynomial and converging sequence of symmetric
instances, recognizing that a suitable subset of the resulting orbit corresponds to the orbit {xt, zt}
of interest, and applying Theorem 5.

Specifically, given a converging sequence of bipartite instances (A(n), f, h, x0,n), we construct a
symmetric instance (As(N), g, x0,N

s ) with (below we use the subscript s to refer to the symmetric
instance):

1. The symmetric instance has dimensions N = n+m and qs = q, q̃s = q̃.

2. We partition the index set in k = 2 subsets: [N ] = CN
1 ∪ CN

2 , with CN
1 = {1, . . . ,m} and

CN
2 = {m+ 1, . . . ,m+ n}. In particular c1 = δ/(1 + δ) and c2 = 1/(1 + δ).

3. The symmetric random matrix A′ is given by

As =

(
0 A
AT 0

)
.

In particular W11 = W22 = 0 and W12 = W21 = (1 + δ)/δ.

4. The vertex labels are Ys(i) = W (i) for i ≤ m and Ys(i) = Y (i −m) for i > m. In particular,
these are independent random variables with distribution Ys(i) ∼ P1 = Q if i ∈ CN

1 and
Ys(i) ∼ P2 = P if i ∈ CN

2 .
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5. The initial condition is given by x
0,N
s,i = 0 for i ∈ CN

1 and x
0,N
s,i = x

0,n
i−m for i ∈ CN

2 .

6. Finally, for any x ∈ R
q, Y ∈ R

q̃, t ≥ 0, we let

g(x, Y, a = 1, 2t) = f(x, Y, t) , (4.16)

g(x, Y, a = 2, 2t+ 1) = h(x, Y, t), . (4.17)

The definition of g(x, Y, a = 1, 2t+ 1) and g(x, Y, a = 2, 2t) is irrelevant for our purposes.

The proof is concluded by recognizing that, for all t ≥ 0,

x2t+1
s,i = zt

i, for i ∈ CN
1 ,

x2t
s,i = xt

i−m, for i ∈ CN
2 ,

We finish this section with a lemma that establishes continuity of the AMP trajectories with
respect to Gaussian perturbations of the matrix A. This fact will be used in the next section. (Notice
that an analogous Lemma holds by the same argument for converging, non-bipartite, instances.)

Lemma 4. Let {(A(n), f, h, x0,n)}n≥1 be a polynomial converging sequence of bipartite AMP in-
stances and denote by {xt, zt}t≥0 the corresponding AMP orbit. For each n, let G(n) ∈ R

m(n)×n

be a random matrix with i.i.d. entries G(n)ij ∼ N(0, 1/m(n)), independent of A(n). Consider the
perturbed sequence {(Ã(n) = A(n) + ν G(n), f, h, x0,n)}n≥1, with ν ∈ R

+ and denote by {x̃t, z̃t}t≥0

the corresponding AMP orbit. Then for any t there exists a constant K independent of n such that

E{‖xt
i − x̃t

i‖2
2} ≤ K

(
ν2 + n−1/2

)
, E{‖zt

i − z̃t
i‖2

2} ≤ K
(
ν2 + n−1/2

)
.

Proof. Consider the difference [xt
i(r)− x̃t

i(r)]. By the tree representation in Section 3.2 and Lemma
3, this difference can be written as a polynomial in A and G whereby each monomial has the form

Γ(T, t)x(T )
{ ∏

(u→v)∈E(T )

Ã`(u)`(v) −
∏

(u→v)∈E(T )

A`(u)`(v)

}
. (4.18)

Enumerating the edges in T as (u1, v1),. . . , (uk, vk) the quantity in parenthesis reads

k∑

i=1

i−1∏

j=1

A`(uj),`(vj ) · ν G`(ui),`(vi) ·
k∏

j=i+1

Ã`(uj),`(vj ) . (4.19)

In other words, the sum over trees T is replaced by a sum over trees with one distinguished edge,
and the edge carries weight ν G`(ui),`(vi). The expectation E{‖xt

i − x̃t
i‖2

2} is given by a sum over

pairs of such marked trees. Using the fact that the entries of the matrix Ã(n) are still independent
subgaussian with scale factor C/(n+ν2Cm(n)) ≤ C ′/n, it is easy to see that the argument in Lemma
2 and (3.30) are still valid. Hence, up to errors bounded by K n−1/2 the only terms that contribute
to this sum are those over pair of trees such that the graph G obtained by identifying vertices of the
same type has only double edges. In particular for the distinguished edge, we can use the following
upper bound instead of (3.15): E

[
|νGij |2

]
= ν2

m(n) ≤ K ν2

n and this yields a factor ν2 (by the same

argument as in the proof of Lemma 2 to get (3.20)).
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5 Proof of universality of polytope neighborliness

In this section we prove Theorem 2, deferring several technical steps to the Appendix.

Hypothesis 1 Throughout this section {A(n)}n≥0 is a sequence of random matrices whereby A(n) ∈
R

m×n has independent entries that satisfy E{A(n)ij} = 0, E{A(n)2ij} = 1/m and are subgaus-
sian with scale factor s/m, with s independent of m, n.

Notice that these matrices differ by a factor 1/
√
m from the matrices in the statement of Theorem

2. Since neighborliness is invariant under scale transformations, this change is immaterial.
The approach we will follow is based on the equivalence between weak neighborliness and com-

pressed sensing reconstruction developed in [Don05b, Don05a, DT05b, DT05a]. Within compressed
sensing, one considers the problem of reconstructing a vector x0 ∈ R

n from a vector of linear ‘obser-
vations’ y = Ax0 with y ∈ R

m and m ≤ n. The measurement matrix A ∈ R
m×n is assumed to be

known. An interesting approach towards reconstructing x0 from the linear observations y consists
in solving a convex program:

x̂(y) = arg min
{
‖x‖1 such that x ∈ R

n , y = Ax ,
}
. (5.1)

Hence one says that `1 minimization succeeds if the above arg min is uniquely defined and x̂(y) = x0.
Remarkably, this event only depends on the support of x0, supp(x0) = {i ∈ [n] : x0,i 6= 0} [Don05b].
This motivates the following abuse of terminology. We say that, for a given matrix A, `1 minimization
succeeds for a fraction f of vectors x0 with3 ‖x0‖0 ≤ k if it does succeed for at least f

(n
k

)
choices

of supp(x0) out of the
(n
k

)
possible ones. Analogously, that `1 minimization fails for a fraction f of

vectors x0 if it does succeed at most for (1− f)
(n
k

)
choices of supp(x0).

Success of `1 minimization turns out to be intimately related to the neighborliness properties of
the polytope ACn.

Theorem 7 (Donoho, 2005). Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and A(n) ∈ R
m(n)×n

be a random matrix. Then the sequence {A(n)Cn}n≥0 has weak neighborliness ρ in probability if and
only if the following happens:

1. For any ρ− < ρ, there exists εn ↓ 0 such that, for a fraction larger than (1 − εn) of vectors x0

with ‖x0‖0 = m(n) ρ− the `1 minimization succeeds with high probability (with respect to the
choice of the random matrix A(n)).

2. Viceversa, for any ρ+ > ρ, there exists εn ↓ 0 such that, for a fraction larger than (1− εn) of
vectors x0 with ‖x0‖0 = m(n) ρ+ the `1 minimization fails with high probability (with respect
to the choice of the random matrix A(n)).

This is indeed a rephrasing of Theorem 2 in [Don05b].
In view of this result, Theorem 2 follows from the following result on compressed sensing with

random sensing matrices.

3As customary in this domain, we denote by ‖v‖0 the number of non-zero entries in v ∈ R
q (which of course is not

a norm).
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Theorem 8. Fix δ ∈ (0, 1). For each n ∈ N, let m(n) = bnδc and define A(n) ∈ R
m(n)×n to be

a random matrix with independent subgaussian entries, with mean 0, variance 1/m, and common
scale factor s/m. Further assume Aij(n) = Ãij(n) + ν0Gij(n) where ν0 > 0 is independent of n and
{Gij(n)}i∈[m],j∈[n] is a collection of i.i.d. N(0, 1/m) random variables independent of Ã(n).

Consider either of the following two cases:

1. The matrix A(n) has i.i.d. entries and {x0(n)}n≥1 is any fixed sequence of vectors with
limn→∞ ‖x0(n)‖0/m(n) = ρ.

2. The matrix A(n) has independent but not identically distributed entries. The vectors x0(n)
have i.i.d. entries independent of A(n), with P{x0,i(n) 6= 0} = ρδ.

Then the following holds. If ρ < ρ∗(δ) then `1 minimization succeeds with high probability. Viceversa,
if ρ > ρ∗(δ), then `1 minimization fails with high probability. (Here probability is with respect to the
realization of the random matrix A(n) and, eventually, x0(n).)

The rest of this section is devoted to the proof of Theorem 8. Indeed, as shown below, this
immediately implies Theorem 2.

Proof of Theorem 2. Take x0(n) to be a sequence of independent vectors with independent entries
such that Pρ{x0(n)i = 1} = ρδ and Pρ{x0(n)i = 0} = 1− ρδ. Then, by the law of large numbers we
have limn→∞ ‖x0(n)‖0/m(n) = ρ almost surely. Let A(n) ∈ R

m(n)×n be a matrix with i.i.d. entries
as per Hypothesis 1 above, with m(n) = bnδc and y(n) = A(n)x0(n). Applying Theorem 8, we have,
for any ρ− < ρ∗(δ) and ρ+ > ρ∗(δ)

lim
n→∞

Pρ−

{
x̂(y(n)) = x0(n)

}
= 1 , (5.2)

lim
n→∞

Pρ+

{
x̂(y(n)) = x0(n)

}
= 0 , (5.3)

where Pρ±

{
·
}

denotes probability with respect to the law just described when ρ = ρ±. Let
V (ρ;m,n) be the fraction of vectors x0 with ‖x0‖ = bmρc on which `1 reconstruction succeeds.
Since in Eqs. (5.2), (5.3), support of x0(n) is uniformly random given its size, and the probability of
success is monotone decreasing in the support size [Don05b], the above equations imply

lim
n→∞

E
{
V (ρ−;m,n)

}
= 1 , (5.4)

lim
n→∞

E
{
V (ρ+;m,n)

}
= 0 , (5.5)

Using Markov inequality, Eqs. (5.4), (5.5) coincide (respectively) with assumptions 1 and 2 in The-
orem 7. The claim follows by applying this theorem.

Let us now turn to the proof of Theorem 8. The following Lemma provides a useful sufficient
condition for successful reconstruction. Here and below, for a convex function F : R

q → R, ∂F (x)
denotes the subgradient of F at x ∈ R

q. In particular ∂‖x‖1 denotes the subgradient of the `1 norm
at x. Further, for R ⊆ [n], AR denotes the submatrix of A formed by columns with index in R.
The singular values of a matrix M ∈ R

d1×d2 are denoted by σmax(M) ≡ σ1(M) ≥ σ2(M) ≥ · · · ≥
σmin(d1,d2)(M) ≡ σmin(M).

Lemma 5. For any c1, c2, c3 > 0, there exists ε0(c1, c2, c3) > 0 such that the following happens. If
x0 ∈ R

n, A ∈ R
m×n, y = Ax0 ∈ R

m, are such that
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1. There exists v ∈ ∂‖x0‖1 and z ∈ R
m with v = ATz+w and ‖w‖2 ≤

√
n ε, with ε ≤ ε0(c1, c2, c3).

2. For c ∈ (0, 1), let S(c) ≡ {i ∈ [n] : |vi| ≥ 1 − c}. Then, for any S ′ ⊆ [n], |S′| ≤ c1n, the
minimum singular value of AS(c1)∪S′ satisfies σmin(AS(c1)∪S′) ≥ c2.

3. The maximum singular value of A satisfies c−1
3 ≤ σmax(A)2 ≤ c3.

Then x0 is the unique minimizer of ‖x‖1 over x ∈ R
n such that y = Ax.

The proof of this lemma is deferred to Appendix B.
The proof of Theorem 8 consists in two parts. For ρ > ρ∗(δ), we shall exhibit a vector x with

‖x‖1 < ‖x0‖1 and y = Ax. For ρ < ρ∗(δ) we will show that assumptions of Lemma 5 hold. In
particular, we will construct a subgradient v as per assumption 1. In both tasks, we will use an
iterative message passing algorithm analogous to the one in Section 4. The algorithm is defined by
the following recursion initialized with x0 = 0:

xt+1 = η(xt +ATzt;ασt) , (5.6)

zt = y −Axt + bt z
t−1 , (5.7)

where η(u; θ) = sign(u) (u − θ)+, α is a non-negative constant, and bt is a diagonal matrix whose
precise definition is immaterial here and will be given in the proof of Proposition 14 below. Notice
two important differences with respect to the treatment in Section 4:

• The iteration in Eqs. (5.6), (5.7) does not take immediately the form in Eqs. (4.3), (4.4). For
instance the nonlinear mapping η( · ;ασt) is applied after multiplication by AT. This mismatch
can be resolved by a simple change of variables.

• The nonlinear mapping η( · ;ασt) is not a polynomial. This point will be addressed by con-
structing suitable polynomial approximations of η.

We refer to Appendix A for further details.
For t ≥ 0, σt is defined by the one-dimensional recursion

σ2
t+1 =

1

δ
E{[η(X + σt Z;ασt)−X]2} , (5.8)

where expectation is with respect to the independent random variables Z ∼ N(0, 1), X ∼ pX , and
σ2

0 = E{X2}/δ.
Proposition 14. Let {(x0(n), A(n), y(n))}n≥0 be a sequence of triples with A(n) random as per
Hypothesis 1, {x0,i(n) : i ∈ [n]} independent and identically distributed with x0,i(n) ∼ pX a finite
mixture of Gaussians on R, and y(n) = A(n)x0(n).

Then, for each n there exist a sequence of vectors {xt(n), zt(n)}t≥0, with xt(n) = xt ∈ R
n,

zt(n) = zt ∈ R
m, such that the following happens for every t.

1. There exists a diagonal matrix bt = bt(n) such that

zt = y −Axt + bt z
t−1 , (5.9)

lim
n→∞

max
i∈[m]

(bt)ii = lim
n→∞

min
i∈[m]

(bt)ii =
1

δ
P
{
|X + σt−1Z| ≥ ασt−1

}
. (5.10)

where the limit holds in probability.
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2. In probability

lim
n→∞

1

n
‖xt+1 − η(xt +ATzt;ασt)‖2

2 = 0 . (5.11)

3. For any locally Lipschitz function ψ : R× R → R, |ψ(x, y)| ≤ C(1 + x2 + y2), in probability

lim
n→∞

1

n

n∑

i=1

ψ(x0,i, x
t
i + (ATzt)i) = Eψ(X,X + σtZ) . (5.12)

4. There exist a two functions o(a; c) and o(a, b; c), with o(a; c) → 0, o(a, b; c) → 0 as c → 0 at
a, b fixed, such that the following holds. Assume Aij(n) = Ãij(n) + ν Gij(n) where ν > 0 is
independent of n and {Gij(n)}i∈[m],j∈[n] is a collection of i.i.d. N(0, 1/m) random variables

independent of Ã(n). Then there exists a sequence of vectors {x̃t, z̃t}t≥0 that is independent of
G such that, for any t ≥ 0,

1

n

n∑

i=1

E
{(

(xt +ATzt)i − (x̃t + ÃTz̃t)i
)2} ≤ o(t; ν) + o(t, ν;n−1) , (5.13)

1

m

m∑

i=1

E
{(
zt
i − z̃t

i

)2} ≤ o(t; ν) + o(t, ν;n−1) . (5.14)

The proof is deferred to Appendix A.
We also need a generalization of the last proposition for functions of the estimates xt, xs at two

distinct iteration numbers t 6= s. To this objective, we introduce the generalization of the state
evolution equation (5.8). Namely, we define {Rs,t}s,t≥0 recursively for all s, t ≥ 0 by letting

Rs+1,t+1 =
1

δ
E
{
[η(X + Zs;ασs)−X][η(X + Zt;ασt)−X]

}
. (5.15)

Here the expectation is with respect to X ∼ pX and the independent Gaussian vector [Zs, Zt] with
zero mean and covariance given by E{Z2

s} = Rs,s, E{Z2
t } = Rt,t and E{ZtZs} = Rt,s. The boundary

condition is fixed by letting R0,0 = E{X2}/δ and defining, for each t ≥ 0,

R0,t+1 =
1

δ
E
{
[η(X + Zt;ασt)−X][−X]

}
, (5.16)

with Zt ∼ N(0, Rt,t). This uniquely determine the doubly infinite array {Rt,s}t,s≥0. Notice in
particular that Rt,t = σ2

t for all t ≥ 0. (This is easily checked by induction over t).

Proposition 15. Under the assumptions of Proposition 14 the sequence {xt(n), zt(n)}t≥0 constructed
there further satisfies the following. For any fixed t, s ≥ 0, and any Lipschitz continuous functions
ψ : R× R× R → R, φ : R× R → R, in probability

lim
n→∞

1

n

n∑

i=1

ψ
(
x0,i, x

s
i + (ATzs)i, x

t
i + (ATzt)i

)
= Eψ(X,X + Zs, X + Zt) , (5.17)

lim
n→∞

1

m

n∑

i=1

φ(zs
i , z

t
i ) = Eφ(Zs, Zt) , (5.18)

where expectation is with respect to X ∼ pX and the independent Gaussian vector (Zs, Zt) with zero
mean and covariance given by E{Z2

s} = Rs,s, E{Z2
t } = Rt,t and E{ZtZs} = Rt,s.
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The proof of this proposition is in Appendix A.
Finally, we need some analytical estimates on the recursions (5.8) and (5.15). Part of these

estimates were already proved in [DMM09, DMM11, BM12], but we reproduce them here for the
reader’s convenience. Proofs of the others are provided in Appendix C.

Lemma 6. Let pX be a probability measure on the real line such that pX({0}) = 1−ε and EpX
{X2} <

∞, fix δ ∈ (0, 1) and set ρ = δε. For this choice of parameters, consider the sequences {σ2
t }t≥0,

{Rs,t}s,t≥0 defined as per Eqs. (5.8), (5.15).
If ρ < ρ∗(δ) then

(a1) There exists α1(ε, δ), α2(ε, δ), α∗(ε) with 0 < α1(ε, δ) < α∗(ε) < α2(ε, δ) < ∞, and ω∗(ε, δ) ∈
(0, 1) such that the following happens. For each α ∈ (α1, α2), σ

2
t = B ωt(1 + ot(1)) as t→∞,

with ω ∈ (0, 1).

Further, for each ω ∈ [ω∗(ε, δ), 1) there exists α− ∈ (α1, α∗] and α+ ∈ [α∗, α2) (distinct as long
as ω > ω∗) such that, letting α ∈ {α−, α+}, σ2

t = B ωt(1 + ot(1)).

Finally, for all α ∈ [α∗, α2), we have ε+ 2(1− ε)Φ(−α) < δ.

(a2) For any α ∈ [α∗(ε), α2(ε, δ)), we have limt→∞Rt,t−1/(σtσt−1) = 1.

(a3) Assume pX to be such that max(pX((0, a)), pX ((−a, 0))) ≤ Bab for some B, b > 0 (in particular
this is the case if pX has an atom at 0 and is absolutely continuous in a neighborhood of 0).
Fixing again α ∈ [α∗(ε), α2(ε, δ)), and c ∈ R+,

lim
t0→∞

sup
t,s≥t0

P
{
|X + Zs| ≥ c σs ; |X + Zt| < cσt

}
= 0 , (5.19)

where (Zs, Zt) is a gaussian vector with E{Z2
s} = σ2

s , E{Z2
s} = σ2

s , E{ZsZt} = Rs,t.

Viceversa, if ρ > ρ∗(δ) , then there exists α0(δ, pX ) > αmin(δ) > 0 such that

(b1) For any α > αmin(δ), we have limt→∞ σ2
t = σ2

∗ > 0 and, for α ≥ α0, limt→∞[Rt,t − 2Rt,t−1 +
Rt−1,t−1] = 0.

(b2) Letting α = α0(δ, pX ), we have P{|X + σ∗Z| ≥ ασ∗} = δ.

(b3) Consider the probability distribution pX = (1 − ε)δ0 + ε γ with γ(dx) = exp(−x2/2)/
√

2π dx
the standard Gaussian measure. Then, setting α = α0(δ, pX), we have limt→∞ E{|η(X +
σtZ;ασt)|} < E{|X|}, where Z ∼ N(0, 1) independent of X.

We are now in position to prove Theorem 8. For greater convenience of the reader, we distinguish
the cases ρ < ρ∗(δ) and ρ > ρ∗(δ). Before considering these cases, we will establish some common
simplifications.

5.1 Proof of Theorem 8, common simplifications

Consider first case 1. By exchangeability of the columns of A(n), it is sufficient to prove the claim
for the sequence of random vectors obtained by permuting the entries of x0(n) uniformly at random.
Hence x0(n) is a vector with a uniformly random support supp(x0(n)) = Sn, with deterministic size
|Sn| such that |Sn|/n → ε. Further, the success of `1 minimization is an event that is monotone
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decreasing in the support supp(x0(n)) [Don05b]. Therefore we can replace the deterministic support
size, with a random size |Sn| ∼ Binom(n, ε) (which concentrates tightly around nε).

Finally, since success of `1 minimization only depends on the support of x0(n) [Don05b], we can
replace the non-zero entries by arbitrary values. We will take advantage of this fact and assume
that all the non-zero entries of x0(n) are i.i.d. N(0, 1). We conclude that it is sufficient to prove
that `1 minimization succeeds/fails with high probability if the vectors x0(n) have i.i.d. entries with
distribution pX = (1− ε)δ0 + ε γ, where γ(dx) = exp(−x2/2)/

√
2π dx.

Consider next case 2, in which the entries of x0(n) are i.i.d. with P{x0,i(n) 6= 0} = ρδ = ε. Again,
exploiting the fact that the success of `1 minimization depends only on the support of x0(n), we can
assume that its entries have common distribution pX = (1− ε)δ0 + ε γ.

Summarizing this discussion, in order to prove the Theorem both in case 1 and case 2, it will be
sufficient to do so for the following setting

Remark 3. In the proof of Theorem 8, we can assume the vectors x0(n) to be random with i.i.d.
entries with common distribution pX = (1− ε)δ0 + ε γ, and the matrices A(n).

5.2 Proof of Theorem 8, ρ < ρ∗(δ)

Fix ρ < ρ∗(δ). We will prove that the hypotheses 1, 2, 3 of Lemma 5 hold with high probability for
fixed c1, c2, c3 > 0, and ε arbitrarily small. This implies the claim (i.e. that `1 minimization succeeds)
by applying the Lemma. Notice that hypothesis 3 holds with high probability for some c3 = c3(δ)
by classical estimates on the extreme eigenvalues of sample covariance matrices [BS98, BS05].

We next consider hypothesis 1 of Lemma 5. In order to construct the subgradient v used there, we
consider the sequence of vectors {xt, zt}t≥0 defined by as per Proposition 14. We fix α ∈ (α1(ε), α2(ε))
as per Lemma 6.(a) so that σ2

t = Aωt(1 + o(1)) with ω ∈ (0, 1) to be chosen close enough to 1. Also,
we introduce the notation θt ≡ ασt. We let vt ∈ R

n be defined by

vt
i =

{
sign(x0,i) if i ∈ S ,

1
θt−1

(
xt−1 +ATzt−1 − x̂t

)
i

otherwise,
(5.20)

x̂t ≡ η(xt−1 +ATzt−1; θt−1) . (5.21)

Notice that, by definition of the function η( · ; · ) we have |xt−1
i − (ATzt−1)i − x̂t

i| ≤ θt−1, and hence
vt ∈ ∂‖x0‖1. We can write

vt =
1

θt−1
ATzt + ξt + βt + ζt , (5.22)

ξt ≡ 1

θt−1

(
xt−1 +ATzt−1 − xt −ATzt

)
, (5.23)

βt ≡ 1

θt−1

(
xt − x̂t

)
, (5.24)

ζt ≡
{

sign(x0,i)− 1
θt−1

(
xt−1 +ATzt−1 − x̂t

)
i

if i ∈ S ,
0 otherwise.

(5.25)

This part of the proof is completed by showing that there exists h(t) with limt→∞ h(t) = 0 such
that, for each t, with high probability we have ‖ξ t‖2

2/n ≤ (1−√
ω)2/α2 + h(t), ‖βt‖2

2/n ≤ h(t), and
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‖ζt‖2
2/n ≤ h(t). Indeed, if this is true, we can then choose t sufficiently large and α ∈ (α∗(ε), α2(ε, δ))

so that ‖ξt + βt + ζt‖2
2 is small enough as to satisfy the condition 1 of Lemma 5.

First consider ξt. Applying Proposition 15 to ψ(x, y1, y2) = (y1 − y2)
2, we have, in probability

lim
n→∞

1

n
‖ξt‖2

2 = lim
n→∞

1

nα2σ2
t−1

‖xt +ATzt − xt−1 −ATzt−1‖2
2

=
1

α2σ2
t−1

[
Rt,t − 2Rt,t−1 +Rt−1,t−1]

=
1

α2σ2
t−1

[
σ2

t − 2σtσt−1 + σ2
t−1

]
+ 2

σt

σt−1

[
1− Rt,t−1

σtσt−1

]

=
1

α2
(1−√

ω)2 + h(t) .

Here the last equality follows from the fact that σ2
t /σ

2
t−1 → ω by Lemma 6.(a1) andRt,t−1/(σtσt−1) →

1 by Lemma 6.(a2). This implies the claim for ξt.
Next, consider βt. By Proposition 14.2

lim
n→∞

1

n
‖xt − x̂t‖2

2 = lim
n→∞

1

n
‖xt − η(xt−1 +ATzt−1;ασt−1)‖2

2 = 0 , (5.26)

and hence ‖βt‖2
2/n ≤ h(t) with high probability for any h(t) > 0

Finally consider ζ t, and define R(y; θ) = y − η(y; θ). We have

R(y; θ) =





+1 for y ≥ θ,

y/θ for − θ < y < θ,

−1 for y ≤ −θ.

Using Proposition 14.3, we can show that

lim
n→∞

1

n
‖ζt‖2

2 = E{[sign(X)−R(X + σt−1Z;ασt−1)]
21X 6=0} . (5.27)

Notice that this apparently requires applying Proposition 14 to the function ψ(x, y) = [sign(x) −
R(y; θ)]21x6=0 which is non-Lipschitz in x. However we can define a Lipschitz approximation, with
parameter r > 0:

ψr(x, y) =

{
[x/r −R(y; θ)]2 |x|/r for |x| ≤ r ,

[1−R(y; θ)] for |x| > r .
(5.28)

Notice that ψr is bounded and Lipschitz continuous. We further have |ψr(x, y)− ψ(x, y)| ≤ 41(x 6=
0; |x| ≤ r), whence

lim sup
n→∞

∣∣∣ 1
n
‖ζt‖2

2 −
1

n

n∑

i=1

ψr(x0,i, x
t−1
i +ATzt−1)

∣∣∣ ≤ lim sup
n→∞

4

n

n∑

i=1

1(x0,i 6= 0; |x0,i| ≤ r) ≤ 8 r .(5.29)

The last inequality holds almost surely by the law of large numbers using γ([−r, r]) < 2r. Analogously
∣∣∣Eψ(X,X + σt−1Z)− Eψr(X,X + σt−1Z)

∣∣∣ ≤ 4 P
(
X 6= 0; |X| ≤ r) ≤ 8r . (5.30)
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Hence the claim (5.27) follows by applying Proposition 14.3 to ψr(x, y), using Eqs. (5.29), (5.30),
and letting r→ 0.

We conclude by noting that the right-hand side of Eq. (5.27) converges to 0 as t → ∞ by
dominated convergence, since σt → 0. Therefore

lim
n→∞

1

n
‖ζt‖2

2 ≤
h(t)

2
.

this completes our proof of assumption 1 of Lemma 5.
We finally consider hypothesis 2. Let St(c) be defined as there, for the subgradient vt, namely

St(c) ≡
{
i ∈ [n] : |vt

i | ≥ 1− c
}

= S ∪
{
i ∈ [n] \ S : |xt−1 +ATzt−1| ≥ (1− c)θt−1

}
.

Recall that by assumption Aij = Ãij +ν Gij whereby Gij ∼ N(0, 1/m) and (eventually redefining Ãij)
we can freely choose ν ∈ [0, ν0]. Let {x̃t, z̃t}t≥0 be a sequence of vectors defined as per Proposition
14.4, and define ṽt as vt, but replacing xt, zt, A by x̃t, z̃t, Ã

ṽt
i =

{
sign(x0,i) if i ∈ S ,

1
θt−1

(
x̃t−1 + ÃTzt−1 − x̂t

)
i

otherwise,
(5.31)

x̂t ≡ η(x̃t−1 + ÃTz̃t−1; θt−1) . (5.32)

We further define

S̃t(c) ≡
{
i ∈ [n] : |ṽt

i | ≥ 1− c
}

= S ∪
{
i ∈ [n] \ S : |x̃t−1 + ÃTz̃t−1| ≥ (1− c)θt−1

}
.

We claim that the following two claims hold for some t∗ ≥ 0 independent of n:

Claim 1. There exists c1, ĉ2 > 0 (independent of ν) such that for all S ′ ⊆ [n], |S′| ≤ 2c1n, the minimum
singular value of AeSt∗(2c1)∪S′ , satisfies σmin(AeSt∗ (2c1)∪S′) ≥ ĉ2ν with probability converging to
1 as n→∞.

Claim 2. For all t ≥ t∗,

P
{
|St(c1) \ S̃t∗(2c1)| ≥ n c1

}
= o1(t∗; ν) + o2(t∗, ν;n

−1) ,

where o1(t∗, ν) vanishes as ν → 0 at t∗, c1, c2 fixed, and o2(t∗, ν;n
−1) vanishes as n−1 → 0 at

t∗, ν, c1, c2 fixed.

These claims immediately imply that hypothesis 2 of Lemma 5 holds with probability converging
to one as n → ∞. Indeed, if |S ′| ≤ nc1, then (by Claim 2) St(c1) ∪ S′ ⊆ S̃t∗(2c1) ∪ S′′ where
|S′′| ≤ 2nc1 with probability larger than 1 − o1(t∗; ν) − o2(t∗, ν;n

−1). By Claim 1, we hence have
σmin(ASt(c1)∪S′) ≥ c2 ≡ ĉ2ν. The thesis follows since ν can be chosen as small as we want. (Notice
that once t∗ is fixed to satisfy these claims, we can still choose t ≥ t∗ arbitrarily to satisfy hypothesis
1 of Lemma 5, as per the argument above.)
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In order to prove Claim 1, above first notice that, for any b ≥ 0

P

{
min
S′⊆[n]

|S′|≤2c1n

σmin(AeSt∗(2c1)∪S′
) < ĉ2ν

}

≤ P

{
min
S′⊆[n]

|S′|≤2c1n

σmin(AeSt∗(2c1)∪S′) < ĉ2ν; |S̃t∗(2c1)| ≤ bn
}

+ P
{
|S̃t∗(2c1)| > bn

}

≤ enH(2c1) max
S′⊆[n]

|S′|≤2c1n

P

{
σmin(AeSt∗(2c1)∪S′

) < ĉ2ν; |S̃t∗(2c1)| ≤ bn
}

+ P
{
|S̃t∗(2c1)| > bn

}
,

(5.33)

where in the last line H(c) denotes the binary entropy of b and we used
( n
nc

)
≤ exp{nH(c)}. We

want to show that t∗, b, c1, c2, ν can be chosen so that both contributions vanish as n→∞.
Consider any b ∈ (0, δ) and restrict c1 ∈ (0, (δ − b)/2). Then the matrix A eSt∗(2c1)∪S′

has nδ rows

and nδ−Θ(n) columns. Further A = Ã+νG with S̃t∗(2c1) (and hence S̃t∗(2c1)∪S′) independent of G.
We can therefore use an upper bound on the condition number of randomly perturbed deterministic
matrices proved by Buergisser and Cucker [BC10] (see also Appendix D) to show that

P

{
σmin(AeSt∗(2c1)∪S′) < ĉ2ν; |S̃t∗(2c1)| ≤ bn

}
≤ (a1ĉ2)

n(δ−b−2c1)+1 (5.34)

with a1 = a1((b + 2c1)/δ) bounded as long as (b + 2c1)/δ < 1 We can therefore select ĉ2 = 1/(2a1)
and select c1 small enough so that H(2c1) ≤ (1/2)(δ− b− 2c1) log 2. This ensures that the first term
in Eq. (5.33) vanishes as n→∞.

We are left with the task of selecting b ∈ (0, δ), t∗ ≥ 0, so that the second term vanishes as well,
since then we can take c1 ∈ (0, (δ− b)/2). To this hand notice that by Proposition 14 (and using the
fact that X + σt−1Z has a density) we have, in probability,

lim
n→∞

1

n
|St∗(c)| = P

{
|X + σt∗−1Z| ≥ (1− c)θt∗−1} ,

and further, since σt → 0 as t→∞ (cf. Lemma 6.(a1)) and θt = ασt, we have

lim
t∗→∞

P
{
|X + σt∗−1Z| ≥ (1− c)θt∗−1} = ε+ 2(1− ε)Φ(−(1 − c)α) .

On the other hand, by Lemma 6.(a1), and since α ∈ [α∗, α2), we have ε+2(1− ε)Φ(−α) < δ. Hence
there exist b0 ∈ (0, δ) and c1 > 0 so that for all t∗ large enough |St∗(3c1)| ≤ nb0 with high probability.
Taking b ∈ (b0, δ) and using Markov inequality (with t′∗ = t∗ − 1)

P
{
|S̃t∗(2c1)| > bn

}
≤ 1

(b− b0)n
E{|S̃t∗(2c1) \ St∗(3c1)|}+ P

{
|St∗(3c1)| > b0n

}

≤ 1

(b− b0)c21θ
2
t∗−1n

n∑

i=1

E
{(

(xt′∗ +ATzt′∗)i − (x̃t′∗ + ÃTz̃t′∗)i
)2 ≥ c21θ

2
t′∗

}
+ P

{
|St∗(3c1)| > b0n

}

≤ o1(t∗; ν) + o2(t∗, ν;n
−1) + P

{
|St∗(3c1)| > b0n

}
,

where the last inequality follows from Proposition 14.4. LL terms can be made arbitrarily small by
choosing ν small and n large enough.
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In order to conclude the proof, we need to show that Claim 2 holds for eventually larger t∗. First
notice that, applying again Proposition 14.4, we get

P
{∣∣St∗(c1) \ S̃t∗(2c1)

∣∣ ≥ nc1/2
}
≤ 2

nc1
E
{∣∣St∗(c1) \ S̃t∗(2c1)

∣∣}

≤ 2

nc1

n∑

i=1

E
{(

(xt′∗ +ATzt′∗)i − (x̃t′∗ + ÃTz̃t′∗)i
)2 ≥ c21θ

2
t′∗

}
≤ o1(t∗; ν) + o2(t∗, ν;n

−1) . (5.35)

By Proposition 15, and using the fact that the vector (X + Zt∗ , X + Zt) has a density, we have, in
probability,

lim
n→∞

1

n
|St(c1) \ St∗(c1)| = P

{
|X + Zt∗−1| ≥ (1− c1)σt∗−1; |X + Zt−1| < (1− c1)σt−1

}
≤ h(t∗) ,

where, by Lemma 6.(a3), h(t∗) vanishes as t∗ → ∞. Given any c1 > 0, we can therefore choose t∗
so that, with high probability |St(c1) \ St∗(c1)| ≤ nc1/2. Combining with Eq. (5.35), we obtain the
desired Claim.

5.3 Proof of Theorem 8, ρ > ρ∗(δ)

Fix a small number h > 0. By Lemma 6.(b), there exists ∆ = ∆(δ, ε) > 0 independent of h, such
that, for α = α0(δ, pX) and t large enough

∣∣∣1
δ

P
{
|X + σtZ| > ασt

}
− 1
∣∣∣ ≤ h , (5.36)

∣∣Rt,t − 2Rt,t−1 +Rt−1,t−2

∣∣ ≤ h2 , (5.37)

E{|η(X + σtZ;ασt)|} < E{|X|} − 2∆ , (5.38)

as well as σ2
t−1 ≤ 2σ2

∗ . By Propositions 14, 15 (and noting that X + σtZ has a distribution that is
absolutely continuous with respect to Lebesgue measure), we have, with high probability,

max
i∈[m]

∣∣(bt − 1)ii
∣∣ ≤ 2h , (5.39)

‖zt − zt−1‖2 ≤ 2h
√
n , (5.40)

‖xt‖1 ≤ ‖x0‖1 − n∆ , (5.41)

‖zt‖2 ≤ 2σ∗
√
n . (5.42)

Namely Eq. (5.36) implies (5.39), Eq. (5.37) implies (5.40), Eq. (5.38) implies (5.41), and the as-
sumption σ2

t−1 ≤ 2σ2
∗ implies (5.42).

Using Eq. (5.9) together with the above, we get

‖y −Axt‖2 ≤ ‖zt − zt−1‖2 + max
i∈[m]

|(bt)ii − 1| ‖zt−1‖2 ≤ 2h
√
n (1 + 2σ∗) . (5.43)

Define x̃ = xt + AT(AAT)−1(y − Axt) (notice that the sample covariance matrix AAT has full
rank with high probability [BS98, BS05]). Notice that, by construction Ax̃ = y. Then, with high
probability

‖x̃− xt‖2 ≤ σmax(A)σmin(A)−2‖y −Axt‖2 ≤ C(δ)(1 + 2σ∗)h
√
n , (5.44)
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where σmax(A), σmin(A) are the maximum and minimum non-zero singular values of A. The second
inequality holds with high probability for δ ∈ (0, 1) by standard estimates on the singular values of
random matrices [BS98, BS05]. Using Eq. (5.41) together with triangular inequality and ‖x̃−xt‖1 ≤√
n ‖x̃− xt‖2 we finally get

‖x̃‖1 ≤ ‖x0‖1 − n∆ + C(δ)(1 + 2σ∗)hn < ‖x0‖1 (5.45)

where the second inequality follows from the fact that h > 0 can be taken arbitrarily small (by
letting t large) while ∆, C and σ∗ are fixed. We conclude that x0 cannot be the solution of the `1
minimization problem (5.1).
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A Proof of Proposition 14 and 15

In this appendix we prove Proposition 14 and 15 by a suitable application of Theorem 6. Before
passing to these proofs, we establish a corollary of Theorem 6 that allows to control iterations of the
form (5.6), (5.7), with η( · ; · ) replaced by a general polynomial.

A.1 A general corollary

For x0 = x0(n) ∈ R
n and A = A(n) ∈ R

m×n as per Hypothesis 1 in Section 5, we define y = y(n) ∈
R

m by

y = Ax0 . (A.1)

Let D ∈ R
n×n be the diagonal matrix with diagonal entries equal to the square column norms of A,

that is Dii =
∑

j∈[m]A
2
ji, and Dij = 0 for i 6= j. Further define u0 = u0(n) ∈ R

n as follows

u0,i = (Dii − 1)x0,i =
( ∑

j∈[m]

A2
ji − 1

)
x0,i . (A.2)

Let x0 = (I −D−1)x0 (notice that D is invertible with high probability) and define iteratively

zt = y −Axt + bt z
t−1 , (bt)ii =

∑

j∈[n]

A2
ijη

′
t−1

(
Djjx

t−1
j + (ATzt−1)j − u0,j

)
, (A.3)

xt+1 = ηt(Dx
t +ATzt − u0), (A.4)

where, for each t, ηt : R → R is a polynomial and, for v ∈ R
n, ηt(v) = (ηt(v1), . . . , ηt(vn)). Further

bt ∈ R
m×m is a diagonal matrix with entries given as in Eq. (A.3).

39



We next introduce the corresponding state evolution recursion. Namely, we define {R̃s,t}s,t≥0

recursively for all s, t ≥ 0 by letting

R̃s+1,t+1 =
1

δ
E
{
[ηs(X + Zs)−X][ηt(X + Zt)−X]

}
. (A.5)

Here expectation is with respect to X ∼ pX and the independent Gaussian vector [Zs, Zt] with zero
mean and covariance given by E{Z2

s} = R̃s,s, E{Z2
t } = R̃t,t and E{ZtZs} = R̃t,s. The boundary

condition is fixed by letting R̃0,0 = E{X2}/δ and defining, for each t ≥ 0,

R̃0,t+1 =
1

δ
E
{
[ηt(X + Zt)−X][−X]

}
, (A.6)

with Zt ∼ N(0, R̃t,t). This uniquely determines the doubly infinite array {R̃t,s}t,s≥0.

Corollary 16. Let {(x0(n), A(n), y(n))}n≥0 be a sequence of triples with A(n) having independent
subgaussian entries with E{Aij} = 0, E{A2

ij} = 1/m, {x0,i(n) : i ∈ [n]} independent and identically
distributed with x0,i(n) ∼ pX , and pX a finite mixture of Gaussians. Define {xt, zt}t≥0 as per
Eqs. (A.3), (A.4).

Then, for any fixed t, s ≥ 0, and any Lipschitz continuous functions ψ : R × R × R → R,
φ : R× R → R, in probability

lim
n→∞

1

n

n∑

i=1

ψ
(
x0,i, x

s
i + (ATzs)i, x

t
i + (ATzt)i

)
= Eψ(X,X + Zs, X + Zt) , (A.7)

lim
n→∞

1

m

n∑

i=1

φ(zs
i , z

t
i ) = Eφ(Zs, Zt) , (A.8)

where expectation is with respect to X ∼ pX and the independent Gaussian vector [Zs, Zt] with zero
mean and covariance given by E{Z2

s} = R̃s,s, E{Z2
t } = R̃t,t and E{ZtZs} = R̃t,s.

Proof. Define x̃t+1 = ATzt +Dxt −Dx0. Then Eqs. (A.3), (A.4) read

zt = Af(x̃t, x0; t) + bth(z
t−1; t− 1) , (A.9)

x̃t+1 = AT h(xt; t) + dtf(x̃t, x0; t) , (A.10)

where, for i ∈ [m], j ∈ [n],

f(x, y; t) = y − ηt−1(y + x) , h(z; t) = z , (A.11)

(bt)ii = −
∑

j∈[n]

A2
ijf

′(x̃t
j , x0,i; t) , (A.12)

(dt)jj = −
∑

j∈[n]

A2
ijh

′(z; t) . (A.13)

(Here f ′(x, y; t), h′(x; t) denote derivatives with respect to the first argument.) The iteration takes
the same form as in Eqs. (4.3), (4.4) with Y (i) = x0,i, and W (i) = 0, Bt = −bt and Dt = −dt.
Further, the initial condition x0 implies x̃0 = −x0. Notice that this is dependent on Y = x0, but we
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can easily set the initial condition at x̃−1 = 0 and define f(x, y; t = 0) = −y. We can therefore apply
Theorem 6 and conclude that, in probability

lim
n→∞

1

n

n∑

i=1

ψ
(
x0,i, Dii(x

s
i − x0,i) + (ATzs)i, Dii(x

t
i − x0,i) + (ATzt)i

)
= Eψ(X,Zs, Zt) , (A.14)

lim
n→∞

1

m

n∑

i=1

φ(zs
i , z

t
i) = Eφ(Zs, Zt) , (A.15)

where expectations are defined as in the statement of the Corollary. The second of these equations
coincides with Eq. (A.8). For the first one, note that E{Dii} = 1 and, by a standard Chernoff bound

lim
n→∞

max
{
Dii : i ∈ [n]

}
= 1 , (A.16)

lim
n→∞

min
{
Dii : i ∈ [n]

}
= 1 . (A.17)

We therefore get

lim
n→∞

1

n

n∑

i=1

ψ
(
x0,i, (x

s +ATzs)i − x0,i, (x
t
i +ATzt)i − x0,i

)
= Eψ(X,Zs, Zt) , (A.18)

which coincides with Eq. (A.7) after a redefinition of the function ψ.

A.2 Proofs of Propositions 14 and 15

We will start by proving Proposition 14. Since Proposition 15 follows from the same construction, we
will only point to the necessary modifications. Before presenting the proof, we recall a basic result
in weighted polynomial approximation (here stated for a specific case), see e.g. [Lub07].

Theorem 9. Let f : R → R be a continuous function. Then for any κ, ξ > 0 there exists a polynomial
p : R → R such that, for all x ∈ R,

∣∣f(x)− p(x)
∣∣ ≤ ξ eκx2/2 . (A.19)

Proof of Propositions 14. Since the proposition holds as n→∞ at t fixed, we shall assume through-
out that t ∈ {0, 1, . . . , tmax} for some fixed arbitrarily large tmax.

We claim that, for each β, tmax > 0, we can construct an orbit {xβ,t, zβ,t}t≥0 obeying Eqs. (A.3),

(A.4) for suitable functions ηt = η
(β)
t such that the following holds (with a slight abuse of notation

we will drop the parameter β from xβ,t, zβ,t). For all 0 ≤ t ≤ tmax, and all functions ψ as in the
statement, we have zt = y −Axt + bt z

t−1 by construction. Further, in probability,

lim
n→∞

max
i∈[m]

∣∣∣∣ (bt)ii −
1

δ
P
{
|X + σt−1Z| ≥ ασt−1

}∣∣∣∣ ≤ β , (A.20)

lim
n→∞

1

n
‖xt+1 − η(xt +ATzt;ασt)‖2

2 ≤ β , (A.21)

lim
n→∞

∣∣∣∣∣
1

n

n∑

i=1

ψ(x0,i, x
t
i + (ATzt)i)− Eψ(X,X + σtZ)

∣∣∣∣∣ ≤ β . (A.22)
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Assuming this claim holds, let {β`}`≥0 be a sequence such that lim`→∞ β` = 0. Denote by {x`,t, z`,t}t≥0

the orbit satisfying Eqs. (A.20), (A.21), (A.22) with β = β`. Let η`
t = η

(β`)
t be the correspond-

ing polynomial, and b
`
t be given per Eq. (A.3). Fix an increasing sequence of instance sizes

n1 < n2 < n3 < . . . , and let xt(n) = x`,t(n), zt(n) = z`,t(n) for all n` ≤ n < n`+1. Choosing {n`}`≥0

that increases rapidly enough we can ensure that, for all n ≥ n`,

max
i∈[m]

∣∣∣∣ (b
`
t)ii −

1

δ
P
{
|X + σt−1Z| ≥ ασt−1

}∣∣∣∣ ≤ 2β` , (A.23)

1

n
‖x`,t+1 − η(x`,t +ATz`,t;ασt)‖2

2 ≤ 2β` , (A.24)
∣∣∣∣∣
1

n

n∑

i=1

ψ(x0,i, x
`,t
i + (ATz`,t)i)− Eψ(X,X + σtZ)

∣∣∣∣∣ ≤ 2β` . (A.25)

with probability larger than 1− β`. Points 1, 2, 3 in the proposition then follow since β` → 0.
In order to prove Eqs. (A.20) to (A.22) we proceed as follows. It is easy to check that σt > 0 for

all t, cf. Eq. (5.8). We use Theorem 9 to construct polynomials ηt such that

∣∣η(x;ασt)− ηt(x)
∣∣ ≤ ξ exp

{
x2

16max(σ2
t , s

2)

}
, (A.26)

for all x ∈ R. Here ξ > 0 is a small parameter to be chosen below, and s2 is the smallest variance of
the Gaussians that are combined in pX . Let σ̃t be defined by

σ̃2
t+1 =

1

δ
E{[ηt(X + σ̃t Z)−X]2} , (A.27)

with Z ∼ N(0, 1) independent from X ∼ pX , and σ̃2
0 = E{X2}/δ. Notice that σ̃2

t = R̃tt. From
Eqs. (5.8), (A.26), and (A.27), it is then straightforward to show that |σ2

t − σ̃2
t | ≤ C ξ for some

C = C(t).
Given polynomials as defined by (A.26), we define {xt, zt}t≥0 as per Eqs. (A.3), (A.4), with the

initial condition given there. Equation (A.22) follows immediately from Corollary 16 for ξ sufficiently
small. Equation (A.21) also follows from the same Corollary, by taking

ψ(x1, x2, x3) =
{
ηt(x3)− η(x3;ασt)

}2
, (A.28)

and then using once again Eq. (A.26) on the resulting expression.
Finally, consider Eq. (A.20). For economy of notation, we write

(bt)ii =
∑

j∈[n]

A2
ijϕj , ϕi = η′t−1(Djjx

t−1
j + (ATzt−1)j − u0,j) , (A.29)

and further define

b
av
t =

1

m

∑

j∈[n]

ϕj . (A.30)
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Then we have

E
{(

(bt)ii − b
av
t

)4}
=

∑

j1,j2,j3,j4∈[n]

E

{(
A2

ij1 −
1

m

)(
A2

ij2 −
1

m

)(
A2

ij3 −
1

m

)(
A2

ij4 −
1

m

)
ϕj1ϕj2ϕj3ϕj3

}

=
∑

j1,j2,j3,j4∈[n]

E(j1, j2, j3, j4)

Using the tree representation in Section 3.2, it is not hard to prove that the expectation on the
right-hand side is bounded as follows

E(p, q, r, s) ≤ K

n6
, p, q, r, s distinct,

E(q, q, r, s) ≤ K

n5
, q, r, s distinct,

E(r, r, s, s) ≤ K

n4
, r, s distinct,

E(r, r, r, s) ≤ K

n4
, r, s distinct,

E(r, r, r, r) ≤ K

n3
.

Consider for instance the first case, p, q, r, s distinct. Using Lemma 3, each of ϕp, ϕq, ϕr ϕs can be
represented as a sum over trees with root type respectively at p, q, r, s. The weight of these trees is
as in Lemma 3, times the prefactor (A2

ip−m−1) · · · (A2
is−m−1). Let µ be the total number of edges in

these trees, plus 8 (two for each of the additional factors). Then any non-vanishing contribution is of
order n−µ/2. Let G be the graph obtained by identifying the vertices of the same type in these trees,
and e(G) the number of its edges. Since each edge in G must be covered at least twice by the trees
to get a non-zero expectation, and the edges in (i, p),. . . ,(i, s) at least once, we have 2e(G) + 4 ≤ µ.
The number of vertices in G is at most e(G) + 1 (note that G is connected because it includes type
i connected to p, q, r, s). Of these vertices all but 5 (whose type is i, p, q, r, s) can take an arbitrary
type, yielding a combinatorial factor of order ne(G)+1−5 ≤ nµ/2−6. Hence the sum over trees is of
order n−µ/2nµ/2−6 = n−6 as claimed.

Summing over j1, . . . , j4 de above bounds we obtain E
{(

(bt)ii − b
av
t

)4} ≤ K/n2 and therefore,
by Markov inequality

lim
n→∞

P

{
max
i∈[m]

|(bt)ii − b
av
t | ≥ n−1/5

}
= 0 . (A.31)

Since by standard concentration bounds maxi∈[n]Dii, mini∈[n]Dii → 1, we obtain, in probability,

lim
n→∞

max
i∈[m]

(bt)ii = lim
n→∞

min
i∈[m]

(bt)ii = lim
n→∞

b
av
t

= lim
n→∞

1

m

∑

j∈[n]

η′t−1(x
t−1
j + (ATzt−1)j)

=
1

δ
E
{
η′t−1(X + σ̃t−1 Z)

}
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where, in the last step, we applied Corollary 16 to the polynomials η′t−1, and X ∼ pX , Z ∼ N(0, 1)
are independent. We are left with the task of showing that, by taking ξ small enough in Eq. (A.26),
we can ensure that

∣∣E
{
η′t−1(X + σ̃t−1 Z)

}
− P{|X + σt−1 Z| ≥ ασt−1}

∣∣ ≤ β δ . (A.32)

Indeed integrating by parts with respect to Z the above difference can be written as (for K a finite
constant that can depend on t and change from line to line)

∣∣∣∣
1

σ̃t−1
E
{
Zηt−1(X + σ̃t−1 Z)

}
− 1

σt−1
E
{
Zη(X + σ̃t−1 Z;ασt−1)

}∣∣∣∣

≤ K E

∣∣∣Zηt−1(X + σt−1 Z)− Zη(X + σt−1 Z;ασt−1)
∣∣∣+K|σt−1 − σ̃t−1|

≤ K ξE

{
exp

{X2 + σ2
t−1X

2

4max(σ2
t , s

2)

}}
+K|σt−1 − σ̃t−1|

≤ Kξ +K|σt−1 − σ̃t−1| .
The claim follows by noting that, as argued above |σt−1 − σ̃t−1| ≤ K ′ξ.

Consider finally point 4. First recall that we constructed the vectors {xt, zt}t≥0, using a sequence
of orbits {x`,t, z`,t}t≥0, indexed by ` ∈ N, that obey Eqs. (A.3), (A.4), and letting

xt(n) = x`,t(n) , zt(n) = z`,t(n) , for all n, with n` ≤ n < n`+1. (A.33)

Claim 17. There exists a sequence {β̃`}`∈N with lim`→∞ β̃` = 0 such that, for all `′ ≥ `,

lim
n→∞

1

n

∑

i∈[n]

E
{(

(x`′,t +ATz`′,t)i − (x`,t +ATz`,t)i
)2} ≤ β̃` , (A.34)

lim
n→∞

1

m

∑

i∈[m]

E
{(
z`′,t
i − z`,t

i

)2} ≤ β̃` . (A.35)

The proof of this claim is presented below. It follows from this claim that, by eventually redefining
n`′ to be larger we can ensure

E
{(

(x`′,t +ATz`′,t)I − (x`,t +ATz`,t)I
)2} ≤ 2β̃` ,

E
{(
z`′,t
J − z`,t

J

)2} ≤ 2β̃` .

for all n ≥ n`′ . Here and below expectation is taken also with respect to I uniformly random in [n]
and J uniformly random in [m]. By Eq. (A.33), for all n ≥ n`, we also have

E
{(

(xt +ATzt)I − (x`,t +ATz`,t)I
)2} ≤ 2β̃` ,

E
{(
zt
J − z`,t

J

)2} ≤ 2β̃` .

Applying Lemma 4, we can then construct {x̃t, z̃t}t≥0 as in the statement at point 4, such that

E
{(

(x̃t + ÃTz̃t)I − (x`,t +ATz`,t)I
)2} ≤ K (ν2 + n−1/2) ,

E
{(
z̃t
J − z`,t

J

)2} ≤ K (ν2 + n−1/2) ,

where K depends on ` but not on ν or n. Proof is finished by using triangular inequality and selecting
` = `(ν, t) diverging slowly enough as ν → 0.
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We now prove Claim 17.

Proof of Claim 17. To be definite we will focus on Eq. (A.34).
Fis `, `′ ∈ N (not necessarily distinct). By an immediate generalization of Corollary 16, we have,

in probability

lim
n→∞

1

n

∑

i∈[n]

E{(x`,t +ATz`,t − x0)i(x
`′,t +ATz`′,t − x0)i} = Qt

`,`′ . (A.36)

Further, the quantities Qt
`,`′ satisfy the state evolution recursion

Qt+1
`,`′ =

1

δ
E

{[
η`

t (X + Zt,`)−X
][
η`′

t (X + Zt,`′)−X
]}
, (A.37)

with initial condition Q0
`,`′ = (1/δ)E{X2}. Here expectation is taken with respect to X ∼ pX

and the independent centered Gaussian vector (Zt,`, Zt,`′) with covariance given by E{Z2
`,t} = Qt

`,`,

E{Z2
`′,t} = Qt

`′,`′ , E{Z`,tZ`′,t} = Qt
`,`′ . In order to prove the claim, it is therefore sufficient to show

that

lim
`→∞

sup
`′: `′≥`

∣∣Qt
`,`′ − σ2

t

∣∣ = 0 , (A.38)

since this implies lim`→∞ sup`′: `′≥`[Q
t
`,` − 2Qt

`,`′ + Qt
`′,`′ ] = 0, which in turn implies the Claim, via

Eq. (A.36).
Finally, recall that η`

t was constructed using Theorem 9, cf. Eq. (A.26), in such a way that, for
all x ∈ R,

∣∣η(x;ασt)− η`
t (x)

∣∣ ≤ ξ` exp

{
x2

16max(σ2
t , s

2)

}
, (A.39)

with ξ` → 0 as ` → ∞. The desired estimate (A.38) then follows by recalling that σ2
t+1 =

(1/δ)E
{
[η(X+σtZ)−X]2

}
and using Eq. (A.39) inductively to show that

∣∣Qt
`,`′−σ2

t

∣∣ ≤ K(t) ξ`.

We finally sketch the proof of Proposition 15.

Proof of Proposition 15. The sequence {xt, zt}t≥0 is constructed as in the previous statement. The
proof hence follow by using Corollary 16, and taking ξ small enough in Eq. (A.26), since we can
ensure that |R̃t,s − Rt,s| ≤ β′ for any β′ > 0 and any t, s ≤ tmax (as shown above for the case
t = s).

B Proof of Lemma 5

Throughout the proof we denote by C1, C2, C3 etc, positive constants that depend uniquely on
c1, . . . , c3.

Consider the `1 minimization problem

minimize ‖x‖1 ,

subject to y = Ax0 .
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and denote by x̂ any minimizer. Further, let v be a subgradient as in the statement, and define, for
some c ∈ (0, 1),

S(c) ≡
{
i ∈ [n] : |vi| ≥ 1− c

}
. (B.1)

Also, let S(c) = [n] \ S(c) be the complement of this set. Notice that, by definition of subgradient,
we have vi = sign(x0,i) for all i ∈ S and |v0,i| ≤ 1 for all in S ≡ [n] \ S. This implies that S ⊆ S(c).

We have

‖x̂‖1 = ‖x0‖1 + 〈v, (x̂− x0)〉+R1 +R2 , (B.2)

R1 = ‖x̂S(c)‖1 − ‖x0,S(c)‖1 − 〈vS(c), (x̂− x0)S(c)〉 , (B.3)

R2 = ‖x̂S(c)‖1 − ‖x0,S(c)‖1 − 〈vS(c), (x̂− x0)S(c)〉 . (B.4)

Since S(c) ⊆ S, we have x0,S(c) = 0 and hence

R2 = ‖x̂S(c)‖1 − 〈vS(c), x̂S(c)〉 =
∑

i∈S(c)

(
|x̂i| − vix̂i

)
≥
∑

i∈S(c)

(
|x̂i| − (1− c)|x̂i|

)
= c‖x̂S(c)‖1 . (B.5)

On the other hand, vS(c) is in the subgradient of ‖xS(c)‖1 at xS(c) = x0,S(c). Hence R1 ≥ 0. It follows
that Eq. (B.2) implies ‖x̂‖1 ≥ ‖x0‖1 + 〈v, (x̂ − x0)〉+ c‖x̂S(c)‖1. Since x̂ is a minimizer, we thus get

‖x̂S(c)‖1 ≤ −1

c
〈v, (x̂ − x0)〉 = −1

c
〈w, (x̂ − x0)〉 ≤

ε

c

√
n ‖x̂− x0‖2 , (B.6)

where in the last step we used Cauchy-Schwarz together with assumption 1. Hereafter we let r ≡
x̂− x0.

Let S(c) = ∪K
`=1S` be a partition such that nc/2 ≤ |S`| ≤ nc, and that |ri| ≤ |rj| for each i ∈ S`,

j ∈ S`−1. If |S(c)| < nc/2, such a partition does not exist, but the argument follows by an obvious
modification of the one below. Further define S+ = ∪K

`=2S` ⊆ S(c) and S+ = [n] \ S+. We have

‖rS+
‖2
2 =

K∑

`=2

‖rS`
‖2
2 ≤

K∑

`=2

|S`|
(‖rS`−1

‖1

|S`−1|

)2

≤ 4

nc

K−1∑

`=1

‖rS`
‖2
1 ≤

4

nc
‖rS(c)‖2

1 . (B.7)

Fix c = c1. Since S(c) ⊆ S, we have rS(c) = x̂S(c) and using Eq. (B.6) we conclude that there exists

C1 ≤ 4/c31 such that

‖rS+
‖2
2 ≤ C1 ε

2‖r‖2
2 . (B.8)

On the other hand, by definition Ar = 0, and hence AS+rS+ +AS+
rS+

= 0. Since S(c) ⊆ S, we have

S ⊆ S(c) ⊆ S+. Further S+ \ S(c) = S1, whence |S+ \ S(c)| ≤ nc = nc1. By assumption 2, we have
σmin(AS+) ≥ c2 and therefore

‖rS+‖2 ≤
1

c2
‖AS+rS+‖2 =

1

c2
‖AS+

rS+
‖2 ≤

c3
c2
‖rS+

‖2 .

Combining this with Eq. (B.8), we deduce that ‖r‖2 ≤ C2ε ‖r‖2 for some C2 = C2(c1, c2, c3), which
in turns implies r = 0 provided that C2ε < 1. The claim hence follows for ε0 = 1/[2C2(c1, c2, c3)].
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C Asymptotic analysis of state evolution: Proof of Lemma 6

Before proceeding, we introduce the following piece of notation (following [BM12]). Fix a probability
distribution pX on R, with pX({0}) = 1− ε, and δ > 0. For θ, σ2 > 0, we define

F(σ2, θ) ≡ 1

δ
E
{[
η(X + σZ; θ)−X

]2}
, (C.1)

where expectation is taken with respect to the independent random variables X ∼ pX and Z ∼
N(0, 1). When necessary, we will indicate the dependency on pX by F(σ2, θ; pX). With this notation
the state evolution recursion reads σ2

t+1 = F(σ2
t , ασt). The following properties of the function F

were proved in [DMM09] (but see also [BM12], Appendix A for a more explicit treatment).

Lemma 7 ([DMM09]). For any α > 0, the mapping σ2 7→ F(σ2, ασ) is monotone increasing and
concave with F(0, 0) = 0 and

d

d(σ2)
F(σ2, ασ)

∣∣∣∣
σ=0

=
1

δ

{
ε(1 + α2) + 2(1 − ε)E

[
(Z − α)2+

]}
. (C.2)

It is also convenient to define

Gε(α) ≡ ε(1 + α2) + 2(1 − ε)E
{
(Z − α)2+

}
(C.3)

= ε(1 + α2) + 2(1 − ε)
[
(1 + α2)Φ(−α)− αφ(α)

]
.

The first two derivatives of α 7→ Gε(α) will be used in the proof

G′
ε(α) =2αε + 4(1− ε)

[
− φ(α) + αΦ(−α)

]
, (C.4)

G′′
ε(α) =2ε+ 4(1 − ε)Φ(−α) . (C.5)

In particular, we have the following.

Lemma 8. For any ε ∈ (0, 1), α 7→ Gε(α) is strictly convex in α ∈ R+, with a unique minimum on
α∗(ε) ∈ (0,∞). Further Gε(0) = 1 and limα→∞Gε(α) = ∞. Finally, the minimum value satisfies

Gε(α∗) = ε+ 2(1− ε)Φ(−α∗) =
1

2
G′′

ε(α∗) ∈ (0, 1) . (C.6)

Proof. By inspection of Eq. (C.5), G′′
ε(α) > 0 for all α > 0, hence Gε(α) is strictly convex. Further,

from Eq. (C.4), we have G′
ε(0) = −4(1− ε)φ(0) < 0 and G′

ε(α) = 2αε+Oα(1) > 0 as α→∞. Hence
α 7→ Gε(α) has a unique minimum α∗(ε) ∈ (0,∞).

Finally, Eq. (C.6) follows immediately by using the condition G′
ε(α∗) = 0 in the expression

(C.3).

In our proof it is more convenient to use the coordinates (δ, ε) instead of (ρ, δ). In terms of the
latter, the phase boundary (1.2), (1.3) reads

δ∗(ε) =
2φ(α∗(ε))

α∗(ε) + 2[φ(α∗(ε)) − α∗(ε)Φ(−α∗(ε))]
, (C.7)

α∗(ε) solves αε+ 2(1 − ε)
[
αΦ(−α)− φ(α)

]
= 0 . (C.8)

Notice that the use of the symbol α∗(ε) in the last equations is not an abuse of notation. Indeed
comparing Eq. (C.8) with (C.4) we conclude that α∗(ε) is indeed the unique solution of G′

ε(α) = 0.
Further, comparing Eq. (C.7) with Eq. (C.3) we obtain the following.
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Lemma 9. Let (δ, ρ∗(δ)) be the phase boundary defined by Eqs. (1.2), (1.3). Then, for ρ, δ ∈ [0, 1],
ρ > ρ∗(δ) if and only if, for ε ∈ (0, 1), δ ∈ (ε, 1)

δ < δ∗(ε) ≡ min
α>0

Gε(α) . (C.9)

Viceversa ρ < ρ∗(δ) if and only if δ > δ∗(ε).

C.1 Proof of Lemma 6.(a): ρ < ρ∗(δ)

Proof of Lemma 6.(a1). We set α = α∗(ε) ≡ arg minα≥0Gε(α). Hence we have, by Lemma 7, and
Lemma 9,

d

d(σ2)
F(σ2, α∗σ)

∣∣∣∣
σ2=0

=
1

δ
min
α>0

Gε(α) =
δ∗(ε)

δ
. (C.10)

In particular, by Lemma 9, for ρ < ρ∗(δ), we have d
d(σ2)

F(σ2, α∗σ) ≡ ω∗(ε, δ) ∈ (0, 1). Since, by

Lemma 7, σ2 7→ F(σ2, α∗σ) is concave, it follows that σ2
t = B ωt

∗[1 + ot(1)].
Let S ≡ {α ∈ R+ : Gε(α)/δ < 1}. Since α 7→ Gε(α) is strictly convex by Lemma 8, with

Gε(0), Gε(∞) > δ, we have S = (α1, α2) with 0 < α1 < α∗ < α2 <∞. Let ω(α) = Gε(α)/δ. Fixing
α ∈ (α1, α2), by concavity of σ2 7→ F(σ2, ασ), we have σ2

t = B ω(α)t[1+ot(1)]. Finally, by continuity
of α 7→ Gε(α), we have {ω(α) : α ∈ (α1, α2)} = [ω∗, 1) and hence any rate ω ∈ [ω∗, 1) can be
realized.

Finally by Lemma 8 Gε(α∗) ≡ ε+2(1−ε)Φ(−α∗) < δ. Since α 7→ ε+2(1−ε)Φ(−α) is decreasing
in α, the last claim follows.

In the proof of part (a2) we will make use of the following analytical result.

Lemma 10. For ε ∈ (0, 1), α ≥ α∗(ε), consider the function Fα,ε : [0, 1] → R defined by

Fα,ε(Q) ≡ 1

Gε(α)
E

{
[η(X∞ + Z1;α) −X∞][η(X∞ + Z2;α) −X∞]

}
, (C.11)

where expectation is taken with respect to X∞, P{X∞ = 0} = 1 − ε, P{X∞ ∈ {+∞,−∞}} = ε,
and the independent Gaussian vector (Z1, Z2) with mean zero and covariance E{Z2

1} = E{Z2
2} = 1,

E{Z1Z2} = Q. (The mapping x 7→ [η(x + a; b) − x] is here extended to x = +∞,−∞ by continuity
for any a, b bounded.)

Then Fα,ε is increasing and convex on [0, 1] with Fα,ε(1) = 1 and F ′
α,ε(1) < 1. In particular

Fα,ε(Q) > Q for all ∈ [0, 1)

Proof. It is convenient to change variables and let Q = e−s. If we let {Us}s∈R denote the standard
Ornstein-Uhlenbeck process, dUs = −Usds+

√
2 dBs with {Bs}s∈R the standard Brownian motion.

Then Fα,ε(Q) = F̂α,ε(− log(Q)), with

F̂α,ε(s) ≡
1

Gε(α)
E
{
[η(X∞ + U0;α)−X∞][η(X∞ + Us;α) −X∞]

}
. (C.12)

A simple calculation yields

d

ds
F̂α,ε(s) = − 1

Gε(α)
E
{
η′(X∞ + U0;α)η′(X∞ + Us;α)

}
e−s , (C.13)
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where η′( · ;α) denotes the derivative of η with respect to its first argument. By the spectral decom-
position of the Ornstein-Uhlenbeck process, we have, for any function ψ ∈ L2(R)

E
{
ψ(U0)ψ(Us)

}
=

∞∑

k=1

e−λk s ck(ψ)2 , (C.14)

for some non-negative {λk}k≥1. In particular es d
ds F̂α,ε(s) is strictly negative and increasing in s.

We therefore obtain

d

dQ
Fα,ε(Q) =

1

Gε(α)
E
{
η′(X∞ + Z1;α)η′(X∞ + Z2;α)

}
, (C.15)

Which is strictly positive and increasing in Q. Hence Q 7→ Fα,ε(Q) is increasing and strictly convex.
Finally, since η′(y;α) = 1(|y| ≥ α), we have

d

dQ
Fα,ε(Q)

∣∣∣∣
Q=1

=
1

Gε(α)
P{|X∞ + Z| > α} =

1

Gε(α)

{
ε+ 2(1 − ε)Φ(−α)} =

G′′
ε(α)

2Gε(α)
. (C.16)

Since by Lemma 8 α 7→ Gε(α) is strictly increasing over (α∗(ε),∞) and by Eq. (C.5) α 7→ G′′
ε(α) is

strictly decreasing over R+, we have

d

dQ
Fα,ε(Q)

∣∣∣∣
Q=1

<
G′′

ε(α∗(ε))

2Gε(α∗(ε))
= 1 , (C.17)

where the last equality follows again by Lemma 8. This conclude the proof.

We are now in position to prove part (a2) of Lemma 6.

Proof of Lemma 6.(a2). Throughout the proof we fix α ∈ (α∗(ε, δ), α2(ε, δ)). Let the sequence
{σ2

t }t≥0 be given as per the state evolution equation (5.8). Define Qt ≡ Rt,t−1/(σtσt−1). By Propo-
sition 15, Qt is the covariance of two gaussian random variables of variance 1. Hence |Qt| ≤ 1. Using
Eq. (5.15) we further have

Qt+1 = Ft(Qt) , (C.18)

Ft(Q) =
σt−1

δσt+1
E

{[
η
(X
σt

+ Z1;α
)
− X

σt

][
η
( X

σt−1
+ Z2;α

)
− X

σt−1

]}
, (C.19)

were expectation is taken with respect to X ∼ pX and the independent Gaussian random vector
(Z1, Z2) with zero mean and covariance E{Z2

1} = 1, E{Z2
2} = 1, E{Z1Z2} = Qt. By induction it is

easy to check that Qt ≥ 0 for all t.
For α ∈ (α1, α2), by part (a1) we have σt → 0. Hence X/σt converges in distribution (over the

completed real line) to a random variable X∞ ∼ (1− ε)δ0 + ε+δ+∞ + ε−δ−∞ where ε+ ≡ P{X > 0},
ε− ≡ P{X < 0}, ε = ε+ + ε−. Hence the expectation in Eq. (C.19) converges pointwise to

E
{[
η
(
X∞ + Z1;α

)
−X∞

][
η
(
X∞ + Z2;α

)
−X∞

]}
. (C.20)

(Notice that this expectation depends on the distribution of X∞ only through ε, because of the
symmetry properties of the function η.)
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Further, by the proof of part (a1), as t→∞ we have σ2
t → 0 and

σ2
t+1 =

d

d(σ2)
F(σ2, α∗σ)

∣∣∣∣
σ=0

σ2
t + o(σ2

t ) =
1

δ
Gε(α∗)σ

2
t + o(σ2

t ) . (C.21)

Hence

lim
t→∞

σt−1

σt+1
=

δ

Gε(α)
. (C.22)

Comparing Eqs. (C.11) and (C.19) we conclude that, for any Q ∈ [0, 1]

lim
t→∞

Ft(Q) = Fα,ε(Q) . (C.23)

Further the convergence is uniform, since the functions Ft are uniformly Lipschitz (see proof of
Lemma 10 above).

Consider now the sequence {Qt}t≥0 and let Q∗ = lim inf t→∞Qt. Since Qt ∈ [0, 1] for all t, we
have Q∗ ∈ [0, 1] as well. We claim that in fact Q∗ = 1 and therefore limt→∞Qt = 1, which implies
the thesis.

In order to prove the claim, let {Qt(k)}k∈N be a subsequence that converges to Q∗. Then

Q∗ = lim
k→∞

Ft(k)−1(Qt(k)−1) = lim
k→∞

Fα,ε(Qt(k)−1) ≥ Fα,ε(lim inf
k→∞

Qt(k)−1) ≥ Fα,ε(Q∗) , (C.24)

where, in the last step, we used the fact that Fα,ε( · ) is monotone increasing. Since Fα,ε(q) > q for
all q ∈ [0, 1) by Lemma 10, we conclude that Q∗ = 1.

Before proving (a3) of Lemma 6, we establish one more technical result.

Lemma 11. Let pX be a probability measure on the real line such that pX({0}) = 1 − ε and
EpX

{X2} < ∞, Assume pX to be such that max(pX((0, a)), pX ((−a, 0))) ≤ Bab for some B, b > 0.
Then, letting X∞ ∼ (1 − ε)δ0 + ε+δ+∞ + ε−δ−∞ (with the notation introduced above, namely,
ε+ = pX(0,+∞) and ε− = pX(−∞, 0)):

∣∣∣E
{[
η
(X
σt

+ Z1;α
)
− X

σt

][
η
( X

σt−1
+ Z2;α

)
− X

σt−1

]}
(C.25)

− E
{[
η
(
X∞ + Z1;α

)
−X∞

][
η
(
X∞ + Z2;α

)
−X∞

]}∣∣∣ ≤ B′(σb
t + σb

t−1) ,

for an eventually different constant B ′. Here expectation is taken with respect to X ∼ pX and the
independent Gaussian random vector (Z1, Z2) with zero mean and covariance E{Z2

1} = 1, E{Z2
2} = 1,

E{Z1Z2} = Qt, and

F(σ2, θ) =
dF

d(σ2)
(σ2;ασ)

∣∣∣∣
σ=0

σ2 +O(σ2+b) . (C.26)

Proof. By triangular inequality, the left hand side of Eq. (C.25) can be upper bounded as D1 +D2

whereby

D1 ≡ E

{[
η
(X
σt

+ Z1;α
)
− X

σt
− η
(
X∞ + Z1;α

)
+X∞

][
η
( X

σt−1
+ Z2;α

)
− X

σt−1

]}
,

D2 ≡ E

{[
η
(
X∞ + Z1;α

)
−X∞

][
η
( X

σt−1
+ Z2;α

)
− X

σt−1
− η
(
X∞ + Z2;α

)
+X∞

]}
.
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Here X and X∞ are coupled in such a way that X = 0 if and only if X∞ = 0 and the two variables
have the same sign in the other case. We focus on bounding D1 since D2 can be treated along the
same lines. Letting R(x; θ) = η(x; θ)− x, we have

D1 = E

{[
R
(X
σt

+ Z1;α
)
−R

(
X∞ + Z1;α

)][
R
( X

σt−1
+ Z2;α

)
+ Z2

]}
= D1,a +D1,b ,

D1,a = E

{[
R
(X
σt

+ Z1;α
)
−R

(
X∞ + Z1;α

)]
R
( X

σt−1
+ Z2;α

)}
,

D1,b = Qt E

{[
R′
(X
σt

+ Z1;α
)
−R′

(
X∞ + Z1;α

)]}
,

where in the last line we used Stein’s lemma to integrate over Z2, and R′ denotes derivative with
respect to the first argument. Once again the two terms are treated along the same lines, and we
will only consider D1,a. We have

|D1,a| ≤ αE

{∣∣∣R
(X
σt

+ Z1;α
)
−R

(
X∞ + Z1;α

)∣∣∣
}

≤ αε+E

{∣∣∣R
(X+

σt
+ Z1;α

)
−R(+∞;α)

∣∣∣
}

+ αε−E

{∣∣∣R
(X−

σt
+ Z1;α

)
−R(−∞;α)

∣∣∣
}
, (C.27)

where X+ (resp. X−) is distributed as X conditioned on X > 0 (resp. X < 0). The function
x 7→ R(x;α) − R(∞;α) is monotone decreasing, equal to 2α for x ≤ −α and to 0 for x ≥ α. Hence
R̃(x) ≡ EZ1{|R(x + Z1;α) − R(+∞;α)|} is monotone decreasing, takes values in (0, 2α) and upper
bounded by Ce−x2/4 for x ≥ 0. Denoting by F+ the distribution of X+, we have

E

{∣∣∣R
(X+

σt
+ Z1;α

)
−R(+∞;α)

∣∣∣
}

= ER̃(X+/σt) =

∫ ∞

0
|R̃′(x)|F (xσt) dx ≤ B′σb

t .

The other term in Eq. (C.27) is bounded by the same argument. This concludes the proof of
Eq. (C.25).

The proof of Eq. (C.26) follows from Eq. (C.25) if we notice that

F(σ2, ασ) =
σ2

δ
E

{[
η
(X
σ

+ Z;α
)
−X

]2}
,

dF

d(σ2)
(σ2;ασ)

∣∣∣∣
σ=0

= E
{[
η
(
X∞ + Z;α

)
−X∞

]2}
.

The last lemma has a useful consequence that we will exploit in the ensuing proof of Lemma
6.(a3).

Corollary 18. Let Fα,ε(Q) be defined as per Eq. (C.11) and Ft(Q) defined as per Eq. (C.19) with
pX , α, ε satisfying the conditions of Lemma 6.(a3). Then there exists a constants B,B ′, b > 0
depending on pX such that

sup
Q∈[0,1]

∣∣∣Ft(Q)−Fα,ε(Q)
∣∣∣ ≤ B σb

t ≤ B′ωbt/2 .
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Proof. The second inequality follows from the first one using Lemma 6.(a1). Using Eq. (C.26), we
have

σ2
t−1

σ2
t+1

=
σ2

t

F(σ2
t ;ασt)

· σ2
t−1

F(σ2
t−1;ασt−1)

=
δ2

Gε(α)2
{
1 +O(σb

t , σ
b
t−1

}
.

The proof of the corollary is obtained by noting that σt = Θ(σt−1) and applying Eq. (C.25) to the
expectation in Eq. (C.19).

Proof of Lemma 6.(a3). Define, as in the proof of part (a2), Qt ≡ Rt,t−1/(σtσt−1), and recall that

Qt+1 = Ft(Qt) .

By Corollary 18, and Lemma 10, it follows that Qt ≥ 1−Aω2t for some constants A > 0, ω ∈ (0, 1).
Indeed

Qt+1 ≥ Fα,ε(Qt)−B′ωbt/2 ≥ 1−B′ωbt/2 −F ′
α,ε(1)(1 −Qt) .

and the claim follows by noting that F ′
α,ε(1) ∈ (0, 1) by Lemma 10.

Next, consider a sequence of centered Gaussian random variables (Zt)t≥0 with covariance E{ZtZs} =
Rt,s. By triangular inequality, we have, for any t < s,

(
2− 2

Rt,s

σtσs

)1/2
= E

{(Zt

σt
− Zs

σs

)2}1/2
≤

s∑

k=t+1

E

{(Zk

σk
− Zk−1

σk−1

)2}1/2
=

s∑

k=t+1

(2− 2Qk)
1/2 ≤ A′ωt .

(C.28)

Next consider the quantity in Eq. (5.19). We have

sup
t,s≥t0

P
{
|X + Zs| ≥ c σs ; |X + Zt| < cσt

}

≤ sup
t≥t0

P
{
|X + Zt| < cσt; X 6= 0

}
+ sup

t,s≥t0

P
{∣∣Zs/σs

∣∣ ≥ c ;
∣∣Zt/σt

∣∣ < c ; X = 0
}

= sup
t≥t0

P
{
|X/σt + Z̃t| < c ; X 6= 0

}
+ sup

t,s≥t0

P
{∣∣Z̃s

∣∣ ≥ c ;
∣∣Z̃t

∣∣ < c
}
, (C.29)

where (Z̃s, Z̃t) are Gaussian with E{Z̃2
t } = E{Z̃2

s} = 1, and E{Z̃sZ̃t} = Rt,s/(σtσs). The first term
in Eq. (C.29) vanishes as t0 →∞ since σt → 0 as t→∞, and the second vanishes by Eq. (C.28).

C.2 Proof of Lemma 6.(b): ρ > ρ∗(δ)

Proof of Lemma 6.(b1), (b2). First notice that, with the definitions given in the previous section

lim
σ2→∞

d

d(σ2)
F(σ2, α∗σ) =

2

δ
E
{
(Z − α)2+

}

=
2

δ

{
(1 + α2)Φ(−α) − αφ(α)

}
.

Notice that the right hand side is equal to 2/δ for α = 0, monotonically decreasing in α, and vanishing
as α→∞. Hence there exists αmin(ε, δ) such that the right hand side is smaller than 1 if and only if
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α > αmin(ε, δ). Further, σ2 7→ F(σ2, ασ) is concave with F(0, 0) = 0 and first derivative larger than
1 at σ2 = 0 (cf. Lemma 7). It follows that for α > αmin(ε, δ) there exists a unique σ∗(δ, pX ) such
that F(σ2, ασ) > σ2 for all σ ∈ (0, σ∗) and F(σ2, ασ) < σ2 for σ ∈ (σ∗,∞). It follows that σ2

t → σ∗
for any σ2

0 6= 0. This proves the first part of claim (b1).
Letting σ2

∗ = σ2
∗(α), it is easy to check that α 7→ σ2

∗(α) is continuous for α ∈ (αmin,∞) with
limα→αmin

σ2
∗(α) = +∞ (the limit being taken from the left), and limα→∞ σ2

∗(α) = +E{X2}/δ > 0.
As a consequence

lim
α→αmin

P{|X + σ∗Z| ≥ ασ∗} = 2Φ(−αmin) , (C.30)

lim
α→∞

P{|X + σ∗Z| ≥ ασ∗} = 0 . (C.31)

Notice that by the definition of αmin given above, we have

2Φ(−αmin)− 2αmin

{
φ(αmin)− αminΦ(−αmin)

}
= δ .

Since φ(z) > zΦ(−z) for z > 0, it follows that limα→αmin
P{|X + σ∗Z| ≥ ασ∗} > δ. We define

α0(δ, pX ) ≡ sup
{
α > αmin(ε, δ) : P{|X + σ∗Z| ≥ ασ∗} ≥ δ

}
. (C.32)

By the above α0 ∈ (αmin,∞). Further, by continuity, for α = α0, P{|X +σ∗Z| ≥ ασ∗} = δ. We thus
proved claim (b2).

In order to prove the second statement in (b1), we proceed analogously to part (a2), and define
Qt ≡ Rt/(σtσt−1). This sequence satisfies the recursion (C.18) with Ft defined as per Eq. (C.19).
As t→∞ we have σt → σ∗ and hence Ft converges uniformly to a limit that we denote by an abuse
of notation Fα,δ,pX

, where

Fα,δ,pX
(Q) ≡ 1

δ
E

{[
η
(X
σ∗

+ Z1;α
)
− X

σ∗

][
η
(X
σ∗

+ Z2;α
)
− X

σ∗

]}
(C.33)

Proceeding as in the proof of Lemma 10, we conclude that Q 7→ Fα,δ,pX
(Q) is increasing and convex

on [0, 1]. Further (for Z ∼ N(0, 1))

Fα,δ,pX
(1) =

1

δ
E

{[
η
(X
σ∗

+ Z1;α
)
− X

σ∗

]2}
=

1

σ2
∗

F(σ2
∗ , ασ∗) = 1 . (C.34)

Finally, for α ≥ α0(δ, pX ),

d

dQ
Fα,δ,pX

(Q)

∣∣∣∣
Q=1

=
1

δ
P

{∣∣∣X
σ∗

+ Z1

∣∣∣ > α
}
≤ 1 , (C.35)

and therefore Fα,δ,pX
(Q) > Q for all Q ∈ [0, 1). Hence, proceeding again as in the proof of part (a2)

we conclude that limt→∞Qt = 1 and therefore limt→∞Rt,t−1 = σ2
∗ as claimed.

Proof of Lemma 6.(b3). Throughout this proof we fix pX = (1 − ε)δ0 + ε γ, δ ∈ (ε, δ∗(ε)). By part
(b1), we have limt→∞ E{|η(X+σtX;ασt)|} = E{|η(X+σ∗Z;ασ∗)|}. It is therefore sufficient to prove
that E{|η(X + σ∗Z;ασ∗)|} < E{|X|}.

Consider the function E : (σ2, θ) 7→ E(σ2, θ) defined on R+ × R+) by

E(σ2, θ) ≡ −1

2
(1− δ)

σ2

θ
+ E min

s∈R

{ 1

2θ
(s−X − σZ)2 + |s|

}
, (C.36)
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where expectation is taken with respect to X ∼ pX and Z ∼ N(0, 1). Notice that the minimum over
s ∈ R is uniquely achieved at s = η(X + σ Z; θ). It is not hard to compute the partial derivatives

∂E
∂θ

(σ2, θ) = − δ

2θ2

{(
1− 2

δ
P{|X + σZ| ≥ θ}

)
σ2 + F(σ2, θ)

}
, (C.37)

∂E
∂σ2

(σ2, θ) =
δ

2θ

{
1− 1

δ
P{|X + σZ| ≥ θ}

}
, (C.38)

where F(σ2, θ) is defined as per Eq. (C.1). Using these expressions in Eq. (C.36) we conclude that

∂E
∂θ

(σ2, θ) =
∂E
∂σ2

(σ2, θ) = 0 ⇒ E(σ2, θ) = E{|η(X + σZ; θ)|} (C.39)

In particular, one can check from Eqs. (C.37), (C.37) that a stationary point4 is given by setting
σ = σ∗(δ, pX) and θ = θ∗(δ, pX ) ≡ α0(δ, pX )σ∗(δ, pX).

Define E(σ2) = E(σ2, α0(δ, pX)σ). Using again Eqs. (C.37), (C.38) we get

dE

dσ2
(σ2) =

δ

4ασ3

{
σ2 − F(σ2, α0σ)

}
. (C.40)

In particular, as a consequence of Lemma 7, and of the analysis at point (b1), we have dE
dσ2 < 0 for

σ2 ∈ (0, σ2
∗) (C.37). Therefore, setting α = α0(δ, pX), we have

E{|η(X + σ∗Z;ασ∗)|} = E(σ2
∗) < lim

σ→0
E(σ2)

= − lim
σ→0

1

2α
σ(1− δ) + lim

σ→0

σ

2α
E

{[
η
(X
σ

+ Z;α
)
− X

σ
− Z

]2}
+ lim

σ→0
E{|η

(
X + σZ;ασ)|}

= lim
σ→0

σ

2α
α2 + E{|X|} = E{|X|} .

This concludes the proof.

D Reference results

The following calculus fact is used in the main text.

Lemma 12. For all s, x > 0 we have xs ≤
(

s
e

)s
ex.

Proof. Since f(x) = ln(x) for x > 0 is concave, when x ≥ s then

ln(x)− ln(s)

x− s
≤ f ′(s) =

1

s
(D.1)

This is equivalent to (x/s)s ≤ ex−s which proves the result. The case of x < s is proved similarly.

We also use an estimate on the minimum singular value of perturbed rectangular matrices, which
was proved in [BC10, Theorem 1.1].

Theorem 10. For M,N ∈ N, N ≤ (1 − a)M , let B ∈ R
M×N , ‖B‖2 ≤ 1/a be any deterministic

matrix and G ∈ R
M×N be a matrix with i.i.d. entries Gij ∼ N(0, 1/M). Then there exist constants

a1, a2 depending only on a and bounded for a > 0 such that, for all z < a2,

P

{
σN

(
A+ ν G

)
≤ ν z

}
≤ (a1 z)

M−N+1 . (D.2)

4Indeed this is the unique saddle point of the function (θ−1, σ2) 7→ E(θ, σ2) as it can be proved by the general
minimax theorem.
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