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Abstract

We reconsider the one-step replica-symmetry-breaking (1RSB) solutions of two random combina-

torial problems: k-XORSAT and k-SAT. We present a general method for establishing the stability

of these solutions with respect to further steps of replica-symmetry breaking. Our approach extends

the ideas of Ref. [1] to more general combinatorial problems.

It turns out that 1RSB is always unstable at sufficiently small clauses density α or high energy.

In particular, the recent 1RSB solution to 3-SAT is unstable at zero energy for α < αm, with

αm ≈ 4.153. On the other hand, the SAT-UNSAT phase transition seems to be correctly described

within 1RSB.
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I. INTRODUCTION

It is well known that there are two possible structures for the low-temperature phase of

mean-field spin glasses [2]. The first scenario is described, within replica theory, by a 1RSB

ansatz. It corresponds to the existence of an exponential number of pure states which are,

roughly speaking, uncorrelated. In the second scenario, a large number [29] of pure states is

organized in an ultrametric tree. The tree describes the probabilistic dependencies among

the free energies and the distances of different pure states. This probabilistic structure

corresponds, in replica jargon, to a full replica symmetry breaking (FRSB) ansatz.

In the last 20 years many combinatorial problems have been successfully analyzed using

the well known mapping onto disordered statistical physics models [2, 3]. The same two

scenarios are expected to be present within this domain. However, because of the rich

structure of many combinatorial problems, their analysis has been so-far limited to 1RSB

calculations. It is therefore of the utmost importance to analyze the consistency of the 1RSB

solutions. An important check consists in looking at a neighborhood of the 1RSB subspace

(in the larger FRSB space) and verify the “local stability” of the 1RSB solution.

Such a computation has recently acquired a further reason of interest. As shown in

Ref. [1], even in situations in which the equilibrium behavior is correctly treated within a

1RSB ansatz, non-equilibrium properties generically require a FRSB description. In fact, it

turns out that high-lying metastable states are unstable towards FRSB. In a combinatorial

optimization context “equilibrium properties” are related to the cost of the optimal solution.

“Metastable states” are, possibly, related to the dynamics of local search algorithms [4].

There are two possible instabilities of the 1RSB calculation [1]. If we think of the 1RSB

solution as describing the decomposition of the Gibbs measure in many, well-separated pure

states, the following scenarios are possible: (I) The states organize themselves into clusters,

forming an ultrametric FRSB structure; (II) Each state splits into many sub-states forming

an FRSB structure. In Fig. 1 we present a pictorial interpretation of these two instabilities.

Type-I instability usually occurs at low energy, and often below the ground-state energy. In

this case it is irrelevant from a statistical physics point of view. The calculation of Ref. [5] for

3-SAT was related to type-I instability, and confirmed the irrelevance of this phenomenon.

Type-II instability affects always the high-lying metastable states and, in some regions of

the phase diagram, even the ground state. Here we shall compute the threshold for this type
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FIG. 1: A pictorial view of the two types of instabilities of the 1RSB solution. Blobs represent

pure states or clusters of states.

of instability.

In this paper, we shall focus on satisfiability problems, and in particular treat the special

cases of k-XORSAT and k-SAT. These are problems in which a large number of boolean

variables have to be fixed in such a way to satisfy a set of constraints (clauses). k-SAT lies at

the very heart of theoretical computer science. It is, in fact, one of the first problems which

have been proved to be NP-complete (the first being its irregular version: SAT) [6]. A large

effort has been devoted to the study of the SAT-UNSAT transition in random k-SAT [7, 8].

The 1RSB solution of this model has been a quite recent achievement [9, 10]. k-XORSAT

is somehow simpler than k-SAT (both from the analytic and the algorithmic point of view),

while sharing a similar phase diagram [11, 12]. Interestingly, its 1RSB solution has been

proved to be correct in the zero-energy limit [13, 14].

Since we are mainly interested in combinatorial problems, we shall focus on zero-

temperature statistical mechanics. In the main part of our paper we fix T = 0 since the

beginning of our calculations. It is however instructive to solve the problem (in 1RSB ap-

proximation) at finite temperature and let T → 0 afterwards. It turns out that the instability

of the T = 0 1RSB solution is reflected in an unphysical behavior of the finite temperature

solution in the T → 0 limit. This provides an useful check of our calculations.

The paper is organized as follows. In Sec. II we explain how the instability of the 1RSB
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phase can be derived from an analysis of the two-step replica symmetry breaking (2RSB)

saddle-point equations. We describe our method for a general satisfiability model. In Sec. III

we specialize to two prototypical cases: random k-XORSAT and random k-SAT, and show

the results of a numerical evaluation of the stability condition. We discuss the consequences

of our findings. In Sec. IV we consider the finite-temperature 1RSB solution. We compare

the behavior of this solution in the T → 0 limit and the stability thresholds computed in

the previous Section. In Appendix A we collect the explicit formulae for the stability of

k-XORSAT and k-SAT. Finally in App. B we expand around the dynamical transition of

k-XORSAT, in order to have an analytical characterization of this transition.

II. THE GENERAL APPROACH

In this Section we consider a general model over N Ising spins σi = ±1, i ∈ {1, . . . , N}.

The Hamiltonian is the sum of M = αN terms, each one being a k-spin interaction (we

shall be interested in the case k ≥ 3). We use the indices a, b, c · · · ∈ {1, . . .M} for the

interactions, and denote by ∂a = {ia1, . . . , i
a
k} the set of sites entering in the interaction a.

Conversely ∂i will be the set of interactions in which i participates. With these conventions

the Hamiltonian reads

H(σ) =
M∑

a=1

Ea(σ∂a) , (1)

where we used the vector notations σ = (σ1, . . . , σN) and σ∂a = (σia1
, . . . , σia

k
). The functions

Ea(·) may (eventually) depend upon some quenched random variables which we will not

note explicitly. Each interaction (clause) Ea(·) can take two values: either 0 (the clause is

satisfied) or 2 (unsatisfied).

A nice graphical representation of such a model is obtained by drawing a factor graph

[15], cf. Fig. 2. This is a bipartite graph with two type of nodes: variable nodes, and clause

nodes. An edge is drawn between the clause a and the variable i if i ∈ ∂a (or, equivalently,

a ∈ ∂i). A crucial property for mean field theory to be exact is that the factor graph must

not contain “short” loops.

Let S be the space of probability distribution ρ ≡ (ρ+, ρ0, ρ−) over the set {+, 0,−}. Ge-

ometrically S is the two-dimensional simplex. The zero-temperature 2RSB order parameter

for the model (1) is given by a distribution over S for each directed link of the factor graph.
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FIG. 2: A fragment of a factor graph. Squares represent clauses (interactions) and circles represents

variables (spins). Variable nodes are connected by a link to the clauses they belong to. Cavity

fields (and their distributions) are associated with directed edges.

We shall denote such distributions by Qi→a[ρ] (if the link is directed from a variable node

to a clause node) or by Q̂a→i[ρ̂] (in the opposite case). The 2RSB cavity equations for such

a model have the general form

Qi→a[ρ] =
1

Z

∫ ∏

b∈∂i\a

dQ̂b→i[ρ̂
(b)] z[{ρ̂(b)}; µ2]

µ1/µ2 δ[ρ− ρc[{ρ̂(b)}; µ2]] , (2)

Q̂a→i[ρ̂] =

∫ ∏

j∈∂a\i

dQj→α[ρ(j)] δ[ρ̂− ρ̂c[{ρ(j)}]] , (3)

where µ1 and µ2 are the zero-temperature Parisi parameters and satisfy the usual inequalities

0 ≤ µ1 ≤ µ2. They are related to their finite-temperature counterparts m1 and m2 as follows:

µi = limT→0 mi(T )/T . The integrals in Eqs. (2), (3) run over the simplex S. The delta-

functions are understood to operate on the same space.

The function ρ̂c[ρ(1) . . . ρ(k−1)] (here “c” stands for “cavity”) is model-dependent. We

will recall in App. A its precise form for the models treated in Sec. III. The functions

ρc[ρ̂(1) . . . ρ̂(l); µ2] and z[ρ̂(1) . . . ρ̂(l); µ2] are, on the other hand, universal. They are defined
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as follows

ρc
q =

1

z[{ρ̂(i)}; µ2]

∑

(q1...ql)∈Ωq

l∏

i=1

ρ̂(i)
qi

e−µ2(
∑

i |qi|−|
∑

i qi|) , q ∈ {+, 0,−} , (4)

where Ω+ = {(q1 . . . ql) :
∑

i qi > 0}, Ω0 = {(q1 . . . ql) :
∑

i qi = 0}, and Ω− = {(q1 . . . ql) :
∑

i qi < 0} (with qi ∈ {+, 0,−}). The normalization z[{ρ̂(i)}; µ2] is fixed by requiring

ρc
+ + ρc

0 + ρc
− = 1. Hereafter we will use the symbols q, qi, q

′ . . . for variables running over

the set {+, 0,−}.

In order to select a type-II instability [1], see Sec. I, we shall consider order parameters

which concentrate near the “corners” of the simplex S: δ(+), δ(0), δ(−). The corner distri-

butions are defined by: δ
(q)
q′ = 1 if q = q′ and 0 otherwise. We can decompose such order

parameters as follows:

Qi→a[ρ] = r
(+)
i→aQ

(+)
i→a[ρ] + r

(0)
i→aQ

(0)
i→a[ρ] + r

(−)
i→aQ

(−)
i→a[ρ] , (5)

Q̂a→i[ρ̂] = r̂
(+)
a→iQ̂

(+)
a→i[ρ̂] + r̂

(0)
i→aQ̂

(0)
a→i[ρ̂] + r̂

(−)
i→aQ̂

(−)
a→i[ρ̂] , (6)

where the distributions Q
(q)
i→a[ρ] and Q̂

(q)
a→i[ρ̂] are supposed to be normalized and concentrated

near δ(q). We parametrize the “width” of these distributions using the 6 parameters for each

directed link:

ǫ
(q)+
i→a ≡ (−1)δq,+

∫
dQ

(q)
i→a[ρ] (ρ+ − δ

(q)
+ ) , ǫ

(q)−
i→a ≡ (−1)δq,−

∫
dQ

(q)
i→a[ρ] (ρ− − δ

(q)
− ) , (7)

with analogous definitions for the parameters ǫ̂
(q)+
a→i and ǫ̂

(q)−
a→i . Notice that the the (−1)δq,·

prefactors have been properly chosen to make the ǫ
(q)σ
i→a, ǫ̂

(q)σ
a→i positive.

It is easy to see that the recursions (2), (3) preserve the subspace {Q, Q̂ : ǫ
(q)±
i→a = ǫ̂

(q)±
a→i = 0

for any i, a, q}. This is in fact a possible embedding of the 1RSB solution in the 2RSB space.

Of course the parameters r
(q)
i→a and r̂

(q)
a→i must satisfy, in this case, the 1RSB equations:

ri→a = ρc[{r̂b→i}b∈∂i\a; µ1] , r̂a→i = ρ̂c[{rj→a}j∈∂a\i] . (8)

In order to check the stability of the 1RSB subspace, we must linearize Eqs. (2) and (3)

for small ǫ
(q)±
i→a , ǫ̂

(q)±
a→i . This yields equations of the form

ǫ
(q)σ
i→a ≈

∑

b∈∂i\a

∑

q′,σ′

T
(a)
b→i(q, σ|q

′, σ′) ǫ̂
(q′)σ′

b→i , (9)

ǫ̂
(q)σ
a→i ≈

∑

j∈∂a\i

∑

q′,σ′

T̂
(i)
j→a(q, σ|q

′, σ′) ǫ
(q′)σ′

j→a , (10)

6



where σ, σ′ ∈ {+,−}. The 6 × 6 matrices T
(a)
b→i and T̂

(i)
j→a can be computed in terms of

the cavity functions ρc[. . . ], ρ̂c[. . . ] and of the 1RSB solution, cf. Eq. (8). For instance,

expanding Eq. (2) we get:

T
(a)
b→i(q, σ|q

′, σ′) =
1

zq[{r̂c→i}; µ1]

∑

{qc}∈Ωq

qb=q′

∏

c∈∂i\a

r̂
(qc)
c→i e

−µ1(
∑

c |qc|−|
∑

c qc|) M
(b)
σ,σ′({qc}; µ2) , (11)

where

zq[{r̂c→i}; µ1] ≡
∑

{qc}∈Ωq

∏

c∈∂i\a

r̂
(qc)
c→i e

−µ1(
∑

c |qc|−|
∑

c qc|) . (12)

The matrix M
(b)
σ,σ′({qc}; µ2) is obtained by linearizing the cavity function ρc[ρ̂(1) . . . ρ̂(l); µ2],

cf. Eq. (4), near the corners of the simplex:

M
(i)
σ,σ′(q1 . . . ql; µ2) ≡

∣∣∣∣∣
∂ρc

σ

∂ρ̂
(i)
σ′

−
∂ρc

σ

∂ρ̂
(i)
0

∣∣∣∣∣
ρ̂(i)=δ(qi)

. (13)

Notice that the expression (11) depends explicitly both on µ1 and µ2, and, through r̂
(q)
a→i, on

µ1. However, it can be shown that the dependence on µ2 cancels if the stability condition is

considered. We can therefore identify µ1 with the 1RSB parameter µ.

Let us now discuss how Eqs. (9), (10) can be used to determine whether the 1RSB solution

is stable. The idea is to implement these recursions, together with Eq. (8), as a message-

passing algorithm [16]. One keeps in memory the value of the 1RSB order parameter ri→a

(or r̂a→i) and of the 6 fluctuation parameters ǫ
(q)σ
i→a (or ǫ̂

(q)σ
a→i) for each directed link. At each

iteration these values are updated using Eqs. (8)-(10) for all the links of the graph (one

should imagine the old values to be used on the right hand side and the new ones coming out

on the left hand side). The matrices T
(a)
b→i and T̂

(i)
j→a must be recomputed after each sweep

in terms of the most recent values of ri→a and r̂a→i. After a fast transient the numbers ri→a

and r̂a→i converge to the 1RSB solution. As for the ǫ
(q)σ
i→a and ǫ̂

(q)σ
a→i, either they converge to

0 or they stay different from 0 (and, in fact, diverge). In the first case the 1RSB solution is

stable, in the second one it is unstable.

The above procedure can be improved in several aspects. First of all one can define (and

monitor) an appropriate norm of the ǫ’s, e.g.

‖ǫ‖ =
1

N

N∑

i=1

∑

a∈∂i

∑

q,σ

|ǫ
(q)σ
i→a| . (14)

7



After each updating sweep one can renormalize the ǫ’s by setting λ = ‖ǫ‖ and ǫ
(q)σ
i→a ←

ǫ
(q)σ
i→a/λ. The 1RSB solution is stable if λ < 1, and unstable otherwise. It is evident that λ

converges to the largest eigenvalue of the linear transformation (9), (10). The determination

of the “stability parameter” λ can be improved by averaging it over many iterations of the

algorithm.

In the next Sections we will be interested in evaluating the stability threshold for en-

sembles of models. In this case one can implement the same algorithm as before drawing

the local structure of the graph randomly at each iteration [17]. Moreover, by cleverly ex-

ploiting the structure of the model to be studied, one can reduce the number of fluctuation

parameters ǫ, ǫ̂ per link. In both the examples to be studied below, it is possible to use just

one parameter ǫ and one ǫ̂ per link.

As a final remark, let us notice that the method outlined in this Section for T = 0, can

be generalized to finite-temperature calculations [18].

III. NUMERICAL EVALUATION OF THE STABILITY CONDITION

In this Section we treat two ensembles of satisfiability models having Hamiltonians of

the form (1): random k-XORSAT and random k-SAT. In both cases the k-uple of sites

(ia1 . . . iak) involved in a given clause a is chosen with flat probability distribution among the
(

N
k

)
possible k-uples.

The zero-temperature phase diagram of these models (for k ≥ 3) is known [7–10, 12–14]

to be composed by 3 different phases as a function of α, cf. Figs. 3 and 4. For α < αd the

system is paramagnetic with no diverging energy barriers in the configurational space. For

αd ≤ α ≤ αc the model is still unfrustrated: the ground state energy is zero. Nevertheless

the Gibbs measure decomposes in an exponentially large number of pure states separated

by large energy barriers. For α > αc frustration percolates and the ground state energy

becomes positive. The ground state is still hidden within a large number of metastable

states.

Within the 1RSB approximation, the system is completely described by the complexity

Σ(e), i.e. the normalized logarithm of the number of metastable states with energy density

e. For α > αd, the complexity becomes strictly positive in the interval e ∈ [es(α), ed(α)].

The static energy es(α) vanishes for α ≤ αc and becomes positive above the static transition

8
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FIG. 3: The stability region in the energy-clause density plane for 3-XORSAT. We used population

dynamics algorithms with O(105) elements and O(102) iterations. The marginal stability line eG(α)

crosses the one-step ground state energy es(α) at αG = 3.072(2) (outside the range shown here).

point αc. The 1RSB dynamical energy ed, becomes positive at the dynamical critical point

αd.

The 1RSB calculation of Σ(e) becomes quite generally [1] unstable with respect to further

replica-symmetry breakings above the Gardner energy eG, with eG < ed. We expect the

1RSB result to be correct only for e ≤ eG. In the following we shall present our results for

eG(α) obtained with the method outlined in the previous Section.

A. k-XORSAT

The definitions given so far are completed by taking

Ea(σ∂a) = 1− Ja σia1
· · ·σia

k
, (15)

where the Ja’s are i.i.d. (quenched) random variables taking the values ±1 with equal proba-

bilities. We recall [11, 12] that the existence of an unfrustrated ground state can be mapped

onto the existence of a solution for a certain random linear system over GF[2].

In Fig. 3 we present our results for the zero temperature phase diagram for k = 3 (but

the picture remains qualitatively similar for any k). For k = 3 we have αd ≈ 0.81846916

and αc ≈ 0.91793528. It is evident from the data of Fig. 3 that 0 < eG(α) < ed(α) for

9



α > αd, and that eG(α), ed(α) ↓ 0 as α ↓ αd. This is confirmed by a perturbative expansion

for α→ αd, cf. App. B. In particular we get

ed(α) = e
(0)
d (α− αd)

1/2 + O(α− αd) , eG(α) = e
(0)
G (α− αd) + O((α− αd)

3/2) , (16)

with e
(0)
d ≈ 0.0107506548 and e

(0)
G ≈ 0.0753987711 for k = 3. Let us stress that our result

eG(α) > 0 for α > αd is consistent with the rigorous solution of the model at e = 0 [13, 14].

In the limit α →∞ we expect to recover the fully connected k-spin Ising spin glass. At

zero temperature this model is characterized by FRSB even for what concerns the ground

state concerns [19]. This implies that the line eG(α) must cross es(α) at some finite αG. This

expectation is in fact fulfilled by our data: we get αG = 3.072(2) for k = 3. For α > αG the

1RSB result for the ground state energy is just a lower bound [20].

B. k-SAT

In this case the energy of a clause is

Ea(σ∂a) = 2
∏

i∈∂a

1− Ja→iσi

2
, (17)

where the Ja→i are i.i.d. (quenched) random variables taking the values ±1 with equal

probabilities. The clause has energy 2 (it is not satisfied) if all of participating spins σi have

opposite signs to the corresponding Ja→i. In all the other cases it has energy 0 (it is satisfied).

In Fig. 4 we show the results of our method for the stability threshold eG(α), together with

the curves for es(α) and ed(α) computed in Refs. [9, 10]. We considered the two prototypical

cases k = 3 and k = 4, but we expect the picture to remain qualitatively similar for any

k ≥ 3. There is an important qualitative difference with respect to k-XORSAT: for k-SAT

eG(α) ↓ 0 for α ↓ αm with αd < αm < αc. In other words even zero-energy states become

unstable towards FRSB at sufficiently low α. In the 1RSB picture, zero-energy states are

related to cluster of solutions of the corresponding satisfiability problem [8–10]. It would

be interesting to understand how this picture must be modified below αm. Generalizing the

ideas of [1], we expect, within a 2RSB description, such clusters to split continuously into

sub-clusters at αm.

Unlike k-XORSAT, the stability computation has a non-trivial result even at zero-energy.

It is therefore interesting to modify the approach of Sec. II in order to consider this limit

10
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FIG. 4: The stability region in the energy-clause density plane for 3-SAT (top) 4-SAT (bottom).

Here we used population dynamics algorithms with (typically) O(105) elements and O(102) itera-

tions.

case. The zero-energy limit of the 2RSB equations (2), (3) is obtained by taking µ1, µ2 →∞

with µ1/µ2 = x fixed. As already noticed in Sec. II, the stability parameter λ ends up not

depending upon µ2, and therefore x. We report our results for λ(α, e = 0) in Fig. 5.

This approach provide us good estimates of αm. We get αm = 4.153(1) for k = 3 and

αm = 9.086(2) for k = 4. This should be compared with the values αd = 3.925(3) and

αc = 4.266(1) for k = 3, and αd = 8.295(6) and αc = 9.931(2) for k = 4.

Finally, in the large connectivity limit, the 1RSB solution is unstable even for the ground

state. The curves eG(α) and es(α) cross at αG. We get αG = 4.390(5) for k = 3 and
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αG = 11.00(2) for k = 4.

IV. ON THE ZERO-TEMPERATURE LIMIT OF THE 1RSB SOLUTION

In this Section we consider the finite-temperature 1RSB solution and discuss its T → 0

limit. At finite temperature the 1RSB order parameter is given by a probability distribution

over the reals for each directed link. We shall call these distributions ρi→a(h) and ρ̂a→i(u).

The variables u and h are “cavity fields”. If the factor graph were a tree, we could define

the cavity fields as follows. Consider the branch a → i of the graph: this is the connected

sub-tree which has i as the root and contains only a among the neighbors of i. Let Za→i(σi)

be the partition function for this subsystem constrained to a given value of σi, at inverse

temperature β. This quantity can be parametrized in terms of a cavity field ua→i as follows

Za→i(σi) = Z
(0)
a→i e

βuα→iσi . (18)

It is now elementary to show that, if the Hamiltonian has the form (1), with Ea(σ∂a) taking

values in {0, 2}, the field uα→i must become an integer number when T → 0. The same

conclusion is easily reached for the fields hi→a.

The situation is less clear on locally tree-like graphs, such as the ones considered in Sec.

12



III. However, one can argue that the same property of the T → 0 limit must hold within each

pure state. Suppose now that the 1RSB cavity fields distributions ρi→a(h) or ρ̂a→i(u) have

a non-vanishing support over non-integer fields even in the T → 0 limit. It is reasonable

to take this as an evidence for the 1RSB ansatz being incorrect (this kind of argument

was pioneered in Ref. [21]). In fact we do not expect the properties of the system to be

discontinuous at T = 0.

Let us notice in passing that other interesting phenomena appear when T > 0. At

infinitesimal temperature the cavity fields acquire a small part proportional to the tempera-

ture. These evanescent contributions can in turn undergo one or several replica-symmetry-

breakings transitions [8]. This is what happens in 3-SAT above αb ≈ 3.87 < αd [22]. The

underlying physical phenomenon is the following. In the region αb < α < αd the space of

solutions decomposes into clusters. However these cluster do not have any backbone (i.e.

a subset of the variables which is fixed in all the solution of the cluster). The backbone

percolates at αd. In this Section we focus on “hard” cavity fields (i.e. non-vanishing in the

zero-temperature limit) and these effects do not concern us. Notice that “hard” fields are

the ones determining the energy in the T → 0 limit.

It is easy to understand why a cavity fields distribution not concentrated on the integers in

the T → 0 limit, should be related to the instability of the 1RSB solution. Indeed the effect

of the finite temperature is to provide fields that are not integers but differ from integers by a

term of order T . When we insert these slightly-non-integer fields in the cavity equations this

perturbation may be amplified, and after a finite number of steps the distribution may spread

over non-integer fields. This instability corresponds to the propagation of a perturbation at

any distance and it is a signal of instability of the 1RSB solution.

We investigated this phenomenon analytically for k-XORSAT and k-SAT. The idea is to

write the 1RSB order parameter as follows

ρ̂a→i(u) = r̂
(+)
a→iδ(u− 1) + r̂

(0)
a→iδ(u) + r̂

(−)
a→iδ(u + 1) + ǫ̂

(+)
a→i(u) + ǫ̂

(−)
a→i(u) , (19)

and analogously for ρi→a(h), with ǫ̂
(+)
a→i(u), ǫ̂

(−)
a→i(u) small perturbations supported, respec-

tively over (0, 1), and (−1, 0) (it turns out that |u| ≤ 1 always). We then considered the

T = 0 cavity equations with 1RSB parameter µ. It is easy to realize that the 1RSB equa-

tions leave the ǫ̂a→i, ǫi→a = 0 subspace invariant (we worked indeed within this subspace in

the rest of the paper). The next step is therefore to expand for small perturbations ǫ
(±)
i→a(h)

13
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FIG. 6: Cavity field distribution ρi→a(h) of 3-SAT, averaged over all the directed links of the factor

graph. Here we used µ = 1.75 (upper frame) and 2.25 (ower frame), and α = 4.51. The 1RSB

equations were solved by a population dynamics algorithm with 4000 populations of 256 fields each.

and ǫ̂
(±)
a→i(u). The resulting linear equations have a simple invariant subspace:

ǫ̂
(±)
a→i(u) = δ̂

(±)
a→i e

µ|u| , (20)

and analogously for ǫ
(±)
i→a(h) (with parameters δ

(±)
i→a). One can therefore deduce a set of

linear recursions for the parameters δ̂
(±)
a→i, δ

(±)
i→a. It turns out that, both for k-SAT and for

k-XORSAT, these recursions are equivalent to the ones obtained in the previous Sections

for the 2RSB perturbations. Under the assumption that Eq. (20) defines the most relevant

(unstable) subspace, this implies that stability with respect to non-integer fields is indeed

equivalent to stability with respect to 2RSB perturbations.

For finite µ, we analyzed this instability numerically. As an example, in Fig. 6 we report

the results of a numerical solution of the 1RSB equations for 3-SAT at α = 4.51 > αG. Here

we used T = 10−5 and 1RSB parameter µ = 1.75 and 2.25, which should be confronted

with the ground-state value µs(α = 4.51) = 1.94(1). The first choice of µ corresponds to

metastable states, while the second to an energy below the ground state. It is clear form

the figure that µ = 1.75 is in the unstable region while µ = 2.25 is in the stable region.

In fact the distributions ρi→a(h) or ρ̂a→i(u) acquire a non-vanishing support on non-

integer fields as soon as µ < µint(α) (i.e. for energy e > eint(α)). A precise numerical

14
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FIG. 7: Distributions ǫ̂
(±)
a→i(u) of non-integer cavity fields for 3-SAT, averaged over all the directed

links of the factor graph. Here we used α = 4.51 and µ = 1.9 < µint and normalized the integral

of ǫ̂
(±)
a→i(u) to 1. The continuous line is a fit to the expectated form δ̂∗ exp(µ|u|), cf. 20. We found

the value δ̂∗ ≈ 0.351 for the best fitting coefficient.

determination of µint(α) is not simple because the solution of the cavity equations at finite

temperature is a rather slow process. Moreover many systematic effects must be taken into

account. As mentioned above consistency implies that µint(α) ≤ µG(α). Furthermore, we

argued µint(α) = µG(α)under the assumption that Eq. (20) defines indeed the most relevant

perturbation. Our numerical best estimates give µint(4.51) = 2.00(3). This is numerically

compatible with the result obtained with the methods of Secs. II and III: µG(4.51) =

2.045(5).

Finally in Fig. 7 we present our numerical data for the average of the distributions ρ̂a→i(u)

at α = 4.51 and µ = 1.9 < µint(α). If the analytical argument outlined above is correct and

in the approximation that |µint−µ| ≈ 0.10≪ 1, we should have ǫ̂
(±)
a→i(u) ≈ δ̂∗ exp(µ|u|). The

resonable agreement confirms that Eq. (20) corresponds to the most relevant subspace for

finite-T perturbations.
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V. CONCLUSION

Our main conclusion is that FRSB plays an important role in random combinatorial op-

timization problems such as k-XORSAT and k-SAT. We investigated this issue by analyzing

the stability of the cavity recursions, both within a 2RSB ansatz, cf. Secs. II and III, and at

finite temperature, cf. Sec. IV.

The 1RSB ground state becomes unstable in two different regimes. In the UNSAT region,

it becomes unstable in highly constrained problems: α > αG, i.e. when the corresponding

factor graph has large connectivity. This result was not unexpected. As shown in Refs. [19]

(for k-XORSAT) and [23, 24] (for 3-SAT), in the α → ∞ limit, these models have a low

temperature FRSB phase. In the SAT region there is an exponential number of unfrustrated

ground states (i.e. solutions of the satisfiability problem). The 1RSB solution indicates that

these solutions have a clustered structure in the region αd < α < αc. However, this solution

becomes unstable in the underconstrained region αd < α < αm. Providing a more refined

description of the space of solutions in this regime is an open problem (which will require

presumably FRSB).

Let us recall that high-lying metastable states are always unstable against FRSB. This

could have remarkable consequences on the performances of local search algorithms (such as

simulated annealing). Let us suppose, just to estimate how large this effect can be, that there

are no metastable states above the instability energy eG(α). This would imply that the total

number of metastable states at the SAT-UNSAT phase transition is Σ(eG(αc), αc) ≈ 0.0019

(for 3-SAT) and 0.0099 (for 4-SAT), instead of Σ(ed(αc), αc) ≈ 0.010 (for 3-SAT) and 0.029

(for 4-SAT). In other words metastability would start having some effect only at much larger

sizes.

In this work we studied the stability of the 1RSB phase, by analyzing the stability of

the cavity recursions with respect to two types of perturbations. In Secs. II and III we

considered a perturbation towards 2RSB, while in Sec. IV we used a perturbation towards

non-integer fields. We argued that the two approaches give indeed coincident answers, cf.

Sec. IV. This leaves open the questions whether there can be more dangerous instabilities.

In replica formalism, one should diagonalize the Hessian of the free energy in the full replica

space. We expect that our calculation corresponds to selecting one particular subspace. The

question is whether this is the most dangerous subspace. The fact [18] that in the α → ∞
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limit our calculation yields the replicon instability points towards a positive answer

Acknowledgments

FRT thanks ICTP for kind hospitality during the completion of this manuscript. Work

supported in part by the European Community’s Human Potential Programme under con-

tract HPRN-CT-2002-00307, Dyglagemem.

APPENDIX A: EXPLICIT FORMULAE

In this Appendix we give the explicit forms of the recursions (8), (9) and (10) for the

models treated in Sec. III. Moreover we show how to reduce the size of the 6× 6 matrices

T
(a)
b→i and T̂

(i)
j→a using the symmetries of the models. Finally, it will become evident that

the stability parameter λ depends uniquely upon the smallest replica-symmetry breaking

parameter µ1.

Before turning to the models of Sec. III, it is useful to compute the matrix

M
(i)
σ,σ′(q1 . . . ql; µ2), cf. Eq. (11), which is model-independent. We get the following result

M
(i)
σ,σ′(q1 . . . ql; µ2) =






0 if
∑

j 6=i qj > 1 or < 1,

e−2µ2δσ,+δσ′,− if
∑

j 6=i qj = 1 and qi = 0, +,

e2µ2δσ,+δσ′,− if
∑

j 6=i qj = 1 and qi = −,

e−2µ2δσ,−δσ′,+ if
∑

j 6=i qj = −1 and qi = 0,−,

e2µ2δσ,−δσ′,+ if
∑

j 6=i qj = −1 and qi = +,

δσ,σ′ if
∑

j 6=i qj = 0.

(A1)

1. k-XORSAT

Let us start by recalling that the function ρ̂c[ρ(1) . . . ρ(k−1)] takes in this case the form:

ρ̂c
+ =

1

2

[
k−1∏

i=1

(ρ
(i)
+ + ρ

(i)
− ) +

k−1∏

i=1

(ρ
(i)
+ − ρ

(i)
− )

]

, (A2)

ρ̂c
0 = 1−

k−1∏

i=1

(ρ
(i)
+ + ρ

(i)
− ) (A3)

ρ̂c
− =

1

2

[
k−1∏

i=1

(ρ
(i)
+ + ρ

(i)
− )−

k−1∏

i=1

(ρ
(i)
+ − ρ

(i)
− )

]
. (A4)
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This completely specifies the 2RSB saddle point equations (2), (3). Moreover, it turns out

that the 1RSB solution is symmetric under spin inversion: r
(+)
i→a = r

(−)
i→a, and r̂

(+)
a→i = r̂

(−)
a→i

[14]. We can therefore parametrize it in terms of a single real number per directed link, e.g.

r
(0)
i→a, r̂

(0)
a→i. Using this simplifying features it is easy to show that the matrices T

(a)
b→i, T̂

(i)
j→a

have the following form:

T
(a)
b→i =





C1 C2 0 C3 0 0

0 C1 0 0 0 0

0 0 C4 0 0 C5

C5 0 0 C4 0 0

0 0 0 0 C1 0

0 0 C3 0 C2 C1





, T̂
(i)
j→a =





1/2 0 0 0 0 1/2

0 1/2 0 0 1/2 0

0 0 Ĉ Ĉ 0 0

0 0 Ĉ Ĉ 0 0

0 1/2 0 0 1/2 0

1/2 0 0 0 0 1/2





, (A5)

where we ordered the 6 components as follows (q, σ) = {(+, +), (+,−); (0, +), (0,−); (−, +),

(−,−)}. The constants C1, . . . , C5 are easily computed using Eqs. (11) and (A1), while

Ĉ = Ĉ
(i)
j→a is given by

Ĉ
(i)
j→a =

1

2

r
(0)
j→a

∏
l∈∂a\{i,j}(1− r

(0)
l→a)

1−
∏

l∈∂a(1− r
(0)
l→a)

. (A6)

As we already pointed out, the 6-dimensional transformation defined above can be re-

duced thanks to the symmetries of the system. Consider indeed the following parametriza-

tion of the fluctuation variables in terms of the numbers δi→a:

ǫ
(+)+
i→a = (eµ1−2µ2/r

(+)
i→a) δi→a , ǫ

(+)−
i→a = 0 , (A7)

ǫ
(0)+
i→a = (1/r

(0)
i→a) δi→a , ǫ

(0)−
i→a = (1/r

(0)
i→a) δi→a . (A8)

ǫ
(−)+
i→a = 0 , ǫ

(−)−
i→a = (eµ1−2µ2/r

(−)
i→a) δi→a , (A9)

and the analogous for ǫ̂
(q)σ
a→i (in terms of δ̂i→a). It is easy to show that the linear subspace

defined in this way is preserved by the transformations (9), (10). Moreover, a numerical

calculation confirms that the largest eigenvalue λ belongs to this subspace. Therefore,

instead of Eqs. (9), (10) we can iterate the simpler recursion:

δi→a =
∑

b∈∂i\a

t
(a)
b→iδ̂b→i , δ̂a→i =

∑

j∈∂a\i

t̂
(i)
j→aδj→a . (A10)
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The real numbers t
(a)
b→i and t̂

(i)
j→a can be derived from the matrices T

(a)
b→i and T̂

(i)
j→a. The result

is

t
(a)
b→i =

1

z[{r̂c→i; µ1]

∑

{qc}

′
∏

c∈∂i\{a,b}

(r̂
(qc)
c→ie

−µ1|qc|) (A11)

t̂
(i)
j→a =

∏

l∈∂a\{i,j}

(1− r
(0)
l→a) , (A12)

where the sum
∑′ is over the {qc} such that

∑
c∈∂i\{a,b} qc = 0 or 1, and z[{r̂c→i; µ1] is defined

as in Eq. (4) and discussion below. Notice that the above expression no longer depend upon

µ2.

2. k-SAT

Once again, the first step consists in assigning the (model-dependent) function

ρ̂c[ρ(1) . . . ρ(k−1)] entering in Eq. (3). Unlike for k-XORSAT, this function depends upon

the quenched variables Ja→i. We have

ρ̂c
a→i(Ja→i) =

∏

j∈∂a\i

ρj→a(−Ja→j) , (A13)

ρ̂c
a→i(0) = 1−

∏

j∈∂a\i

ρj→a(−Ja→j) , (A14)

ρ̂c
a→i(−Ja→i) = 0 , (A15)

where, for greater clarity, we used the notations ρ(q) and ρ̂(q), instead of ρq and ρ̂q for

indicating the arguments of the distributions ρ and ρ̂. Obviously, the 1RSB solution (8)

has the property that r̂
(q)
a→i = 0 for q = −Ja→i. The distributions r̂a→i can therefore be

parametrized by giving a single real number: for instance r̂
(0)
a→i.

Let us now consider the fluctuation parameters ǫ
(q)σ
i→a and ǫ̂

(q)σ
a→i. The fist important obser-

vation consists in noticing that, because of Eqs. (A13)–(A15), ǫ̂
(q)σ
a→i = 0 if σ = −Ja→i or

q = −Ja→i. Using the form of the transformation T
(a)
b→i, this implies ǫ

(+)−
i→a = ǫ

(−)+
i→a = 0. We

are therefore left with 4 parameters ǫi→a’s and 2 ǫ̂a→i’s different from zero.

In order to write explicit forms for the transformations (9) and (10), it is convenient to

parametrize the remaining ǫi→a’s as follows:

ǫ
(+)+
i→a = (eµ1−2µ2/r

(+)
i→a) δ

(+)+
i→a , ǫ

(0)+
i→a = (1/r

(0)
i→a) δ

(0)+
i→a , (A16)

ǫ
(−)−
i→a = (eµ1−2µ2/r

(−)
i→a) δ

(−)−
i→a , ǫ

(0)−
i→a = (1/r

(0)
i→a) δ

(0)−
i→a . (A17)
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Analogously we parametrize the non-zero ǫ̂
(q)σ
a→i’s in terms of δ̂

(q)σ
a→i’s. We are now in position

to write the explicit form of the transformations (9), (10) in a compact form. In this case it

is more convenient not to use the matrix notation. We get:

δ
(+)+
i→a =

∑

b∈Γ+

t
(a)
b→i(0) δ̂

(+)+
b→i +

∑

b∈Γ−

t
(a)
b→i(+1) δ̂

(0)−
b→i , (A18)

δ
(0)+
i→a =

∑

b∈Γ+

t
(a)
b→i(0) δ̂

(0)+
b→i +

∑

b∈Γ−

t
(a)
b→i(+1) δ̂

(−)−
b→i , (A19)

δ
(0)−
i→a =

∑

b∈Γ+

t
(a)
b→i(−1) δ̂

(+)+
b→i +

∑

b∈Γ−

t
(a)
b→i(0) δ̂

(0)−
b→i , (A20)

δ
(−)−
i→a =

∑

b∈Γ+

t
(a)
b→i(−1) δ̂

(+)+
b→i +

∑

b∈Γ−

t
(a)
b→i(0) δ̂

(−)−
b→i , (A21)

where we used the shorthand Γσ = {b ∈ ∂i\a : Jb→i = σ}. As for Eq. (10), we get

δ̂
(Ji)Ji

a→i =
∑

j∈∂a\i

∏

l∈∂a\{i,j}

(1− r
(0)
l→a) δ

(−Jj)−Jj

j→a , (A22)

δ̂
(0)Ji

a→i =
∑

j∈∂a\i

∏

l∈∂a\{i,j}

(1− r
(0)
l→a) δ

(0)−Jj

j→a , (A23)

where we used the shorthands Ji, Jj for (respectively) Ja→i and Ja→j. The last thing which

remains to be specified are the coefficients t
(a)
b→i(q) entering in Eqs. (A18)–(A21):

t
(a)
b→i(q) =

1

z[{r̂c→i; µ1]

∑

{qc}∑
qc=q

∏

c∈∂i\{a,b}

(r̂
(qc)
c→ie

−µ1|qc|) . (A24)

As for k-XORSAT, the recursions (A18)–(A23) can be further simplified by restrict-

ing them to a particular linear subspace. Notice in fact that the subspace δ
(+)+
i→a = δ

(0)+
i→a ,

δ
(−)−
i→a = δ

(0)−
i→a , δ̂

(Ja→i)Ja→i

a→i = δ̂
(0)Ja→i

a→i , is preserved by the above transformation. A numerical

calculation confirms that it contains the largest eigenvalue. A further simplification occurs

as µ1 →∞, since in this limit t
(a)
b→i(±1)→ 0

APPENDIX B: k-XORSAT: EXPANSION NEAR THE DYNAMIC TRANSITION

In this Appendix we focus on XORSAT and expand both ed(α) and eG(α) for α → αd.

This provides us with an analytic characterization of the dynamic transition.

Throughout this Section, we shall work within the random k-XORSAT ensemble defined

in Sec. III.
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1. Dynamic energy: ed(α)

Before dwelling upon the calculation, let us recall some well known relations valid within

a 1RSB approximation. The complexity can be obtained as the Legendre transform of the

replicated free energy [25]:

Σ(e) = µe− µφ(µ) , e =
∂

∂µ
[µφ(µ)] . (B1)

Since ed(α) ↓ 0 as α ↓ αd, we are interested in the zero-energy (large µ) limit of the above

expressions. In this limit the free energy admits an expansion of the form:

µφ(µ) = φ0 + φ1 e−2µ + φ2 e−4µ + O(e−6µ) . (B2)

which implies

Σ(e) = −φ0 −
1

2
e log

(
e

−2φ1

)
+

1

2
e−

φ2

4φ2
1

e2 + O(e3) . (B3)

The dynamical energy (and the corresponding replica-symmetry breaking parameter) is

defined as the location of the maximum of the complexity. It is therefore easy to obtain

ed =
φ2

1

4φ2
+ O(φ4

1/φ
2
2) , µd = −

1

2
log

(
−φ1

8φ2

)
+ O(φ2

1/φ2) . (B4)

Let us now turn to the case of random k-XORSAT. The 1RSB variational free energy

reads

µφ(µ) = kα

∫
dP (r)

∫
dP̂ (r̂) log

[
1 +

1

2
(e−2µ − 1)(1− r0)(1− r̂0)

]
−

−α

∫ k∏

i=1

dP (r(i)) log

[
1 +

1

2
(e−2µ − 1)

k∏

i=1

(1− r
(i)
0 )

]
−

−

∞∑

l=0

pl

∫ l∏

i=1

dP̂ (r̂(i)) log

[
∑

q1...ql

l∏

i=1

r̂(i)
qi

e−µ
∑

i |qi|+µ|
∑

i qi|

]

, (B5)

where pl = e−kα(kα)l/l! is the connectivity distribution of the variable nodes in the factor

graph. The order parameters r and r̂ are symmetric distributions over {+, 0,−} (which

can therefore parametrized using a single real number) and represent the distribution of

the cavity fields. The functions P (r) and P̂ (r̂) are their distributions with respect to the

disorder.
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As shown in Refs. [13] and [14] it is important to distinguish the “core” of the factor

graph. Outside the core the cavity fields are trivial: rq = r̂q = δq,0. We rewrite [14]:

P [r] = u F [r] + (1− u) δ[r − δ(0)] , (B6)

P̂ [r̂] = û F̂ [r̂] + (1− û) δ[r̂ − δ(0)] , (B7)

where the parameters u and û satisfy the self-consistency equations

û = uk−1 , u = 1− e−kαû . (B8)

These equations have a non-trivial solution u, û > 0 for α ≥ αd.

Plugging the decomposition (B6), (B7) into Eq. (B5) we get:

µφ(µ) = kαuû

∫
dF (r)

∫
dF̂ (r̂) log

[
1 +

1

2
(e−2µ − 1)(1− r0)(1− r̂0)

]
−

−αuk

∫ k∏

i=1

dF (r(i)) log

[
1 +

1

2
(e−2µ − 1)

k∏

i=1

(1− r
(i)
0 )

]
−

−(1− e−kαû)
∞∑

l=1

fl

∫ l∏

i=1

dF̂ (r̂(i)) log

[
∑

q1...ql

l∏

i=1

r̂(i)
qi

e−µ
∑

i |qi|+µ|
∑

i qi|

]
, (B9)

where fl = (ekαû − 1)−1(kαû)l/l! is the connectivity distribution inside the core. The 1RSB

saddle-point equations can be obtained by differentiating the above expression with respect

to the distributions F (r) and F̂ (r̂):

F (r) =
∞∑

l=1

fl

∫ l∏

i=1

dF̂ (r̂(i)) δ[r − ρc[r̂(1) . . . r̂(l)]] , (B10)

F̂ (r̂) =

∫ k−1∏

i=1

dF (r(i)) δ[r̂ − ρc[r(1) . . . r(k−1)]] . (B11)

The saddle point equations imply that, as µ → ∞, F (r) and F̂ (r̂) are supported over

r0, r̂0 = O(e−2µ). In particular we get

〈r0〉F =
f2

1− (k − 1)f1
e−2µ + O(e−4µ) , 〈r̂0〉F̂ =

(k − 1)f2

1− (k − 1)f1
e−2µ + O(e−4µ) . (B12)

Using these results, one can expand Eq. (B9) for µ → ∞. We get the form (B2) with
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(the first two coefficients were already derived in [14]):

φ0(α) = −[kαuû− αuk − kαû + (1− e−kαû)] log 2 , (B13)

φ1(α) = −αuk +
1

2
(kαû)2 e−kαû , (B14)

φ2(α) =
1

2
αuk −

1

4
(kαû)2 e−kαû

[
1− 2kαû +

1

2
(kαû)2

]
+

+
1

4
(kαû)5 (k − 1)(1− u)2

u[1− k(k − 1)α(1− u)uk−2]
. (B15)

It is easy to check that both φ0(α) and φ1(α) have finite limits φ0,d and φ1,d as α ↓ αd. On

the other hand, in the same limit, φ2(α) = φ2,d(α− αd)
−1/2 + O(1), with

φ2,d =
1

4
(kαdûd)

4 (k − 1)αd(1− ud)√
2(k − 1)αd[k(k − 1)αdûd − (k − 2)]

, (B16)

where we defined ud = limα→αd
u, ûd = limα→αd

û. Using these expressions in Eq. (B4), we

recover the first of the two results in (16) with e
(0)
d = φ2

1,d/(4φ2,d). Moreover

µd(α) = −
1

4
log(α− αd)−

1

2
log

(
−φ1,d

8φ2,d

)
+ O((α− αd)

1/2) . (B17)

One can define one more instability threshold µ1→1(α) such that the 1RSB solution

becomes unstable within the 1RSB space itself for µ < µ1→1(α). For µ < µ1→1(α), the 1RSB

saddle point equations cannot be any longer solved by a population dynamics algorithm.

One has, obviously, µ1→1(α) < µG(α). More surprisingly, for α & αd, µd(α) < µ1→1(α). This

implies that the first expression in Eq. (16) cannot be directly tested against the results of

a population dynamics calculation.

2. Stability threshold: eG(α)

In order to compute the stability threshold, it is helpful to restrict ourselves to the core as

in the previous Section: the fluctuation parameters ǫi→a and ǫ̂a→i vanish outside. Moreover,

we can work with the “reduced” recursion (A10). It is natural to consider the behavior of

the joint probability distributions F (r, δ), F̂ (r̂, δ̂) under the recursions (8) and (A10). In

analogy with Eqs. (B10), (B11), we obtain

F (r, δ) =

∞∑

l=1

fl

∫ l∏

i=1

dF̂ (r̂(i), δ̂(i)) δ[r − ρc[{r̂(j)}]] δ[δ −

l∑

i=1

t(i)[{r̂(j)}]δ̂(i)] , (B18)

F̂ (r̂, δ̂) =

∫ k−1∏

i=1

dF (r(i), δ(i)) δ[r̂ − ρc[{r(j)}]] δ[δ̂ −
k−1∑

i=1

t̂(i)[{r(j)}]δ(i)] , (B19)
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where the coefficients t(i)[. . . ] and t̂(i)[. . . ] are easily computed using Eqs. (A11) and (A12).

Alternatively these equations could have been derived by “projecting” Eqs. (2) and (3).

Notice that the marginal distributions F (r) and F̂ (r̂) satisfy the Eqs. (B10), (B11).

Therefore, if µ → ∞, F (r, δ), F̂ (r̂, δ̂) are supported on r0, r̂0 = O(e−2µ). As for δ, δ̂ two

cases are possible: either their support shrinks to 0 (and therefore the 1RSB solution is

stable) or it remains distinct from 0. This can be checked by looking at the average value

of δ, δ̂ with respect to the above distributions. Using Eqs. (B18), (B19), we get

〈δ〉F =
∞∑

l=1

l∑

i=1

fl 〈t
(i)[{r̂(j)}] · δ̂(i)〉F̂ , 〈δ̂〉F̂ =

k−1∑

i=1

〈t̂(i)[{r(j)}] · δ(i)〉F . (B20)

We are interested in the regime α ↓ αd, µ1 ↑ ∞, with e−µ1 ∼ (α − αd). This can be

checked to be the correct scaling at the end of the computation. If we expand the above

equations in this limit, we get

〈δ〉F = [f1 + 2f2(e
−µ1 + 2〈r̂0〉F̂ )] 〈δ̂〉F̂ + O(e−2µ1) , (B21)

〈δ̂〉F̂ = (k − 1)[1− (k − 2)〈r0〉F ] 〈δ(i)〉F + O(e−2µ1) . (B22)

which imply the marginality condition

(k − 1)[1− (k − 2)〈r0〉F ][f1 + 2f2(e
−µ1 + 2〈r̂0〉F̂ )] = 1 + O(e−2µ1) . (B23)

Notice that 〈r0〉F and 〈r̂0〉F̂ are formally of order e−2µ1 , cf. Eq. (B12) but since 1−(k−1)f1 =

O(α−αd), they must be in fact considered of order e−µ1 . The relation can be inverted yielding

µG(α) = −
1

2
log(α− αd)− log A + O((α− αd)

1/2) , (B24)

where

A =
2(1− ud)

ζαdud

√
2(k − 1)αd[k(k − 1)αdûd − (k − 2)] , ζ = 1 +

√

5−
2(k − 2)

k(k − 1)αdûd

.

(B25)

Plugging this result into the general relations (B1), (B2), we get the second result in Eq. (16),

with e
(0)
G = −2A2φ1,d.
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