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Abstract

This document presents details concerning analytical derivations and numerical experiments that
support the claims made in the main text ‘Message Passing Algorithms for Compressed Sensing’, sub-
mitted for publication in the Proceedings of the National Academy of Sciences, USA. Hereafter ’main
text’.

One can find here:

• Derivations of explicit Formulas for the MSE Map, and the optimal thresholds; see Section 3 below.
• Proof of Theorem 1; see Section 3 below.
• Proof of concavity of the MSE Map, see again Section 3 below.
• Explanation of the connection between Minimax Thresholding, Minimax Risk, and rigorous proof

of formula [19] in the main text; see Section 4 below, Theorem 4.2.
• Formulas for the rate exponent b of Theorem 2 in the main text, expressed in terms of the minimax

threshold risk; see Section 5 below.
• Proof of Finding 1 of the main text in the case χ = �, as referred to after Finding 1, Page 3 in the

main text. See Theorem 3.1 below.
• Proof of Finding 1 of the main text in the case χ = +,±, at least in the asymptotic sense δ → 0,

as referred to after Finding 1, Page 3, in the main text, and after equation 19 in the main text.
See Section 6 below.

• Proof that other nonlinearities do not improve the State Evolution phase transition, as claimed in
subsection ”Other Message Passing Algorithms” on Page 6 of the main text; see Section 7 below.

• The experimental protocol that we followed – Section 8 below.
• The technique we used for estimating phase transitions; Section 9 below.
• Our method for tuning of competing algorithms; Section 10 below.
• Presentation of Phase Transition Results – Section 11.
• Examples Documenting the Interference Heuristic discussed in section ”Heuristics for Iterative

Approaches” of the main text – Section 12.
• Examples Documenting Finding 2 of the Main text – Section 13.
• Results on Universality to Coefficient Ensembles – Section 14.
• Results on Universality across Matrix Ensembles – Section 15.
• Timing Comparisons – Section 16.
• Postscript: Relationship with Stojnic’s Bounds – Section 17.

∗Department of Statistics, Stanford University

†Department of Electrical Engineering, Stanford University
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1 Important Notice

Readers familiar with the literature of thresholding of sparse signals will want to know that an implicit
rescaling is needed to match equations from that literature with equations here. Specifically, in the tradi-
tional literature, one is used to seeing expressions η(x;λσ) in cases where σ is the standard deviation of an
underlying normal distribution. This means the threshold λ is specified in standard deviations, so many
people will immediately understand values like of λ = 2, 3 etc in terms of their false alarm rates. In the
main text, the expression η(x;λσ) appears numerous times, but note that σ is not the standard deviation
of the relevant normal distribution; instead, the standard deviation of that normal is τ = σ/

√
δ. It follows

that λ in the main text is calibrated differently from the way λ would be calibrated in other sources,
differing by a δ-dependent scale factor. If we let λsdSE denote the quantity λSE appropriately rescaled so
that it is in units of standard deviations of the underlying normal distribution, then the needed conversion
to sd units is

λsdSE = λSE ·
√
δ. (1)

2 A summary of notation

The main paper will be referred as DMM throughout this note. All the notations are consistent with the
notations used in DMM. We will use repeatedly the notation ε = δρ.

3 State Evolution Formulas

In the main text we mentioned ρSE(δ;χ, λ, FX) is independent of FX . We also mentioned a few formulas
for ρSE(δ;χ). The goal of this section is to explain the calculations involved in deriving these results. First,
recall the expression for the MSE map

Ψ(σ2) = E
{(
η(X +

σ√
δ
Z;λσ, χ)−X

)2}
. (2)

We denote by ∂1η and ∂2η the partial derivatives of η with respect to its first and second arguments. Using
Stein’s lemma, we get

dΨ
dσ2

=
1
δ

E
{
∂1η(X +

σ√
δ
Z;λσ)2

}
+

1
δ

E
{[
η(X +

σ√
δ
Z;λσ)−X

]
∂2

1η(X +
σ√
δ
Z;λσ)

}
(3)

+
λ

σ
E
{[
η(X +

σ√
δ
Z;λσ)−X

]
∂2η(X +

σ√
δ
Z;λσ)

}
,

where we dropped the dependence of η( · ) on the constraint χ to simplify the formula. Notice that, for
our choices of η, ∂1η( · ), ∂2η( · ) exist almost everywhere. Since Z has a density, this is sufficient to make
their expectations well defined. On the other hand ∂2

1η( · ) is interpreted in the sense of distributions.

3.1 Case χ = +

In this case we have X ≥ 0 almost surely and the threshold function is

η(x;λσ) =
{

(x− λσ) if x ≥ λσ,
0 otherwise.
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As a consequence ∂1η(x;λσ) = −∂2η(x;λσ) = I(x ≥ λσ) (almost everywhere). Further ∂2
1η( · ;λσ) = δλσ.

(Recall that this means
∫
∂2

1η(x;λσ) f(x) dx = f(λσ) for any smooth f .) This yields

dΨ
dσ2

=
(

1
δ

+ λ2

)
E Φ
(√δ
σ

(X − λσ)
)
− 1
σ
√
δ

E
{

(X + λσ)φ
(√δ
σ

(X − λσ)
)}

.

As σ ↓ 0, we have Φ
(√

δ
σ (X − λσ)

)
→ 1 and φ

(√
δ
σ (X − λσ)

)
→ 0 if X > 0. Therefore,

dΨ
dσ2

∣∣∣∣
0

=
(

1
δ

+ λ2

)
ρδ +

(
1
δ

+ λ2

)
(1− ρδ) Φ(−λ

√
δ)− λ√

δ
(1− ρδ)φ(−λ

√
δ) .

The local stability threshold ρLS(δ; +, λ) is obtained by setting dΨ
dσ2

∣∣
0

= 1.
In order to prove the concavity of σ2 7→ Ψ(σ2) first notice that a convex combination of concave

functions is concave and so it is sufficient to show the concavity in the case X = x ≥ 0 deterministically.
Next notice that, in the case x = 0, dΨ

dσ2 is independent of σ2. A a consequence, it is sufficient to prove
d2Ψx
d(σ2)2

≤ 0 where

δ
dΨx

dσ2
=
(
1 + λ2δ

)
Φ
(√δ
σ

(x− λσ)
)
−
√
δ

σ
(x+ λσ) φ

(√δ
σ

(x− λσ)
)
.

Using Φ′(u) = φ(u) and φ′(u) = −uφ(u), we get

δ
d2Ψx

d(σ2)2
= −x

√
δ

2σ3

{
(1 + λ2δ)φ

(√δ
σ

(x− λσ)
)

+
δ

σ2
(x2 − λ2σ2)φ

(√δ
σ

(x− λσ)
)
− φ

(√δ
σ

(x− λσ)
)}

= −x
√
δ

2σ3

{
δ

σ2
x2

}
φ
(√δ
σ

(x− λσ)
)
< 0 (4)

for x > 0.

3.2 Case χ = ±

Here X is supported on (−∞,∞) with P{X 6= 0} ≤ ε = ρδ. Recall the definition of soft threshold

η(x;λσ) =


(x− λσ) if x ≥ λσ,
(x+ λσ) if x ≤ −λσ,
0 otherwise.

As a consequence ∂1η(x;λσ) = I(|x| ≥ λσ) and ∂2η(x;λσ) = −sign(x)I(|x| ≥ λσ). Further ∂2
1η( · ;λσ) =

δλσ − δ−λσ. This yields

dΨ
dσ2

=
(

1
δ

+ λ2

)
E
{

Φ
(√δ
σ

(X − λσ)
)

+ Φ
(
−
√
δ

σ
(X + λσ)

)}
− λ√

δ
E
{
φ
(√δ
σ

(X − λσ)
)

+ φ
(√δ
σ

(X + λσ)
)}

− 1
σ
√
δ

E
{
X
[
φ
(√δ
σ

(X − λσ)
)
− φ

(√δ
σ

(X + λσ)
)]}

.

By letting σ ↓ 0 we get

dΨ
dσ2

∣∣∣∣
0

=
(

1
δ

+ λ2

)
ρδ +

(
1
δ

+ λ2

)
(1− ρδ) 2 Φ(−λ

√
δ)− λ√

δ
(1− ρδ) 2φ(−λ

√
δ) ,

which yields the local stability threshold ρLS(δ;±, λ) by dΨ
dσ2

∣∣
0

= 1.
Finally the proof of the concavity of σ2 7→ Ψ(σ2) is completely analogous to the case χ = +.
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3.3 Case χ = �

Finally consider the case of X supported on [−1,+1] with P{X 6∈ {+1,−1}} ≤ ε. In this case we proposed
the following nonlinearity,

η(x) =


+1 if x > +1,
x if −1 ≤ x ≤ +1,
−1 if x ≤ −1.

Notice that the nonlinearity does not depend on any threshold parameter. We have ∂1η(x) = I(x ∈
[−1,+1]) and ∂2

1η(x) = −δ1 + δ−1. A simple calculation yields

dΨ
dσ2

=
1
δ

P
{
X +

σ√
δ
Z ∈ [−1,+1]

}
=

1
δ

E
{

Φ
(√δ
σ

(1−X)
)
− Φ

(
−
√
δ

σ
(1 +X)

)}
.

As σ ↓ 0 we get

dΨ
dσ2

∣∣∣∣
0

=
1
2δ

(1 + ρδ) ,

whence the local stability condition dΨ
dσ2

∣∣
0
< 1 yields ρLS(δ; �) = (2− δ−1)+.

Concavity of σ2 7→ Ψ(σ2) immediately follows from the fact that Φ(
√
δ
σ (1 − x)) is non-increasing in σ

for x ≤ 1 and Φ(−
√
δ
σ (1 + x)) is non-decreasing for x ≥ −1. Using the combinatorial geometry result of [1]

we get

Theorem 3.1. For any δ ∈ [0, 1],

ρCG(δ; �) = ρSE(δ; �) = ρLS(δ; �) = max
{

0, 2− δ−1
}
. (5)

4 Relation to Minimax Thresholding

4.1 Minimax Thresholding Policy

We denote by F+
ε the collection of all CDF’s supported in [0,∞) and with F (0) ≥ 1 − ε, and by F±ε the

collection of all CDF’s supported in (−∞,∞) and with F (0+) − F (0−) ≥ 1 − ε. For χ ∈ {+,±}, define
the minimax threshold MSE

M∗(ε;χ) = inf
λ

sup
F∈Fχε

EF
{
η(X + Z;λ, χ)−X)2

}
, (6)

where EF denote expectation with respect to the random variable X with distribution F , and η(x;λ) =
sign(x)(|x| − λ)+ for χ = ± and η(x;λ) = (x − λ)+ for χ = +. Minimax Thresholding was discussed for
the case χ = + in [2] and for χ = ± in [3, 4].

This machinery gives us a way to look at the results derived above in very commonsense terms. Suppose
we know δ and ρ but not the distribution F of X. Let’s consider what threshold one might use, and ask
at each given iteration of SE, the threshold which gives us the best possible control of the resulting formal
MSE. That best possible threshold λt is by definition the minimax threshold at nonzero fraction ε = ρδ,
appropriately scaled by the effective noise level τ = σ/

√
δ,

λt = λ∗(ρ · δ;χ) · σ/
√
δ,
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where χ ∈ {+,±} depending on the case at hand. Note that this threshold does not depend on F . It
depends on iteration only through the effective noise level at that iteration. The guarantee we then get
for the formal MSE is the minimax threshold risk, appropriately scaled by the square of the effective noise
level:

MSE ≤M∗(ρδ;χ) · τ2 = M∗(ρδ;χ)
σ2

δ
, . (7)

for χ ∈ {+,±}. This guarantee gives us a reduction in MSE over the previous iteration if and only if the
right-hand side in Eq. (7) is smaller than σ2, i.e. if and only if

M∗(ρδ;χ) < δ , χ ∈ {+,±}.

In short, we can use state evolution with the minimax threshold, appropriately scaled by effective noise
level, and we get a guaranteed fractional reduction in MSE at each iteration, with fractional improvement

ωMM(δ, ρ;χ) = (1−M∗(ρδ;χ)/δ); (8)

hence the formal SE evolution is bounded by:

σ2
t ≤ ωMM(δ, ρ;χ)t · EX2, t = 1, 2, . . . . (9)

Results analogous to those of the main text hold for this minimax thresholding policy. That is, we can define
a minimax thresholding phase transition such that below that transition, state evolution with minimax
thresholding converges:

ρMM(δ;χ) = sup{ρ : M∗(ρδ;χ) < δ}; χ ∈ {+,±}.

Theorem 4.1. Under SE with the minimax thresholding policy described above, for each (δ, ρ) in (0, 1)2

obeying ρ < ρMM(δ;χ), and for every marginal distribution F ∈ Fχε , the formal MSE evolves to zero, with
dynamics bounded by (8)- (9).

4.2 Relating Optimal Thresholding to Minimax Thresholding

An important difference between the optimal threshold defined in the main text and the minimax threshold
is that λχ = λχ(δ) depends only on the assumed δ – no specific ρ need be chosen while minimax thresholding
as defined above requires that one specify both δ and ρ. However, since the methodology is seemingly
pointless above the minimax phase transition, one might think to specify ρ = ρMM(δ;χ). This new threshold
λMM(δ;χ) = λ∗(δρMM(δ);χ) then requires no specification of ρ. As it turns out, the SE threshold coincides
with this new threshold.

Theorem 4.2. For χ ∈ {+,±} and δ ∈ [0, 1]

M∗(ρδ;χ) = δ if and only if ρ = ρSE(δ;χ) . (10)

Let λχ(δ) denote the minimax threshold defined in the main text, and let λsdχ (δ) denote the same quantity
expressed in sd units (1). Then

λsdχ (δ) = λχ(ρδ), ρ = ρSE(δ;χ), χ ∈ {+,±}
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Proof. It is convenient to introduce the following explicit notation for the MSE map:

Ψ(σ2; δ, λ, F ) = EF
{(
η(X +

σ√
δ
Z;λσ)−X

)2}
, (11)

where Z ∼ N(0, 1) is independent of X, and X ∼ F . As above, we drop the dependency of the threshold
function on χ ∈ {+,±} Since η(ax; aλ) = a η(x;λ) for any positive a, we have the scale invariance

Ψ(σ2; δ, λ, F, χ) =
σ2

δ
Ψ(1; 1, λ

√
δ, Sδ1/2/σF ), (12)

where (SaF )(x) = F (x/a) is the operator that takes the CDF of a random variable X and returns the
CDF of the random variable aX.

Define

J(δ, ρ;χ) = inf
λ≥0

sup
F∈Fχε

sup
σ2∈(0,EF {X2}]

1
σ2

Ψ(σ2; δ, λ, F, χ) , (13)

where ε ≡ ρδ. It follows from the definition of SE threshold that ρ < ρSE(δ;χ) if and only if J(δ, ρ;χ) < 1.
We first notice that by concavity of σ2 7→ Ψ(σ2; δ, λ, F, χ), we have

J(δ, ρ;χ) = inf
λ

sup
F∈Fχε

sup
σ2>0

1
σ2

Ψ(σ2; δ, λ, F, χ) (14)

=
1
δ

inf
λ

sup
F∈Fχε

sup
σ2>0

Ψ(1; 1, λ
√
δ, Sδ1/2/σF ) (15)

=
1
δ

inf
λ

sup
F∈FPε

Ψ(1; 1, λ, F ) (16)

where the second identity follows from the invariance property and the third from the observation that
SaFχε = Fχε for any a > 0. Comparing with the definition (6), we finally obtain

J(δ, ρ;χ) =
1
δ
M∗(δρ;χ) . (17)

Therefore ρ < ρSE(δ;χ) if and only δ > M∗(δρ;χ), which implies the thesis.

5 Convergence Rate of State Evolution

The optimal thresholding policy described in the main text is the same as using the minimax thresholding
policy but instead assuming the most pessimistic possible choice of ρ – the largest ρ that can possibly make
sense. In contrast minimax thresholding is ρ-adaptive, and can use a smaller threshold where it would be
valuable. Below the SE phase transition, both methods will converge, so what’s different?

Note that λSE(δ;χ) and λMM (δ, ρ;χ) are dimensionally different; λMM is in standard deviation units.
Converting λSE into sd units by (1), we have λsdSE = λSE · δ1/2. Even after this calibration, we find that
methods will generally use different thresholds, i.e. if ρ < ρSE,

λMM(δ, ρ;χ) 6= λsdSE(δ;χ), χ ∈ {+,±}.

In consequence, the methods may have different rates of convergence. Define the worst-case threshold MSE

MSE(ε, λ;χ) = sup
F∈Fχε

EF
{
η(X + Z;λ)−X)2

}
6



and set
MSE(δ, ρ;χ) = MSE(δρ, λsdSE(δ, χ);χ).

This is the MSE guarantee achieved by using λsdSE(δ) when in fact (δ, ρ) is the case. Now by definition of
minimax threshold MSE,

MSE(δ, ρ;χ) ≥M∗(δρ;χ); (18)

the inequality is generally strict. The convergence rate of optimal AMP under SE was described implicitly
in the main text. We can give more precise information using this notation. Define

ωSE(δ, ρ;χ) = (1−MSE(δ, ρ;χ)/δ);

Then we have for the formal MSE of AMP

σ2
t ≤ ωSE(δ, ρ;χ)t · EX2, t = 1, 2, 3, . . .

In the main text, the same relation was written in terms of exp(−bt), with b > 0; here we see that we
may take b(δ, ρ) = − log(ωSE(δ, ρ)). Explicit evaluation of this b requires evaluation of the worst-case
thersholding risk MSE(ε, λ). Now by (18) we have

ωSE(δ, ρ;χ) ≥ ωMM(δ, ρ;χ),

generally with strict inequality; so by using the ρ-adaptive threshold one gets better convergence rates.

6 Rigorous Asymptotic Agreement of SE and CG

In this section we prove

Theorem 6.1. For χ ∈ {+,±}

lim
δ→0

ρCG(δ;χ)
ρSE(δ;χ)

= 1. (19)

In words, ρCG(δ;χ) is the phase transition computed by combinatorial geometry (polytope theory) and
ρSE(δ, χ) obtained by state evolution: they are rigorously equivalent in the highly undersampled limit (i.e.
δ → 0 limit). In the main text, we only can make the observation that they agree numerically.

6.1 Properties of the minimax threshold

We summarize here several known properties of the minimax threshold (6), which provide useful information
about the behavior of SE.

The extremal F achieving the supremum in Eq. (6) is known. In the case χ = +, it is a two-point
mixture

F+
ε = (1− ε) δ0 + ε δµ+(ε) . (20)

In the signed case χ = ±, it is a three-point symmetric mixture

F±ε = (1− ε) δ0 +
ε

2
(δµ±(ε) + δ−µ±(ε)) . (21)

Precise asymptotic expressions for µχ(ε) are available. In particular, for χ ∈ {+,±},

µχ(ε) =
√

2 log(1/ε)(1 + o(1)) as ε→ 0 . (22)

We also know that
M∗(ε;χ) = 2 log(ε−1)(1 + o(1)) as ε→ 0 . (23)

7



6.2 Proof of Theorem 6.1

Combining Theorem 4.2 and Eq. (23), we get

ρSE(δ; ρ) ∼ 1
2 log(δ−1)

, δ → 0 . (24)

(correction terms that can be explicitly given). Now we know rigorously from [5] that the LP-based phase
transitions satisfy a similar relationship:

Theorem 6.2 (Donoho and Tanner [5]). For χ ∈ {+,±}

ρCG(δ, χ) ∼ 1
2 log(δ−1)

, δ → 0. (25)

Combining now with eqn. 24 we get Theorem 6.1.

7 Rigorous Asymptotic Optimality of Soft Thresholding

The discussion in the main text alluded to the possibility of improving on soft thresholding. Here we give
a more formal discussion. We work in the situations χ ∈ {+,±}. Let η̃ denote some arbitrary nonlinearity
with tuning parameter λ. (For a concrete example, think of hard thresholding). We can define the minimax
MSE for this nonlinearity in the natural way

M̃(ε;χ) = inf
λ

sup
F∈Fχε

EF
{
η̃(X + Z;λ)−X)2

}
, . (26)

there is a corresponding minimax threshold λ̃(ε;χ). We can deploy the minimax threshold in AMP by
setting ε = ρδ and rescaling the threshold by the effective noise level τ = σ/

√
δ:

actual threshold at iteration t = λ̃(ε;χ) · τ
= λ̃(ρδ;χ) · σt/

√
δ.

Under state evolution, this is guaranteed to reduce the MSE provided

M̃(ρδ;χ) < δ.

In that case we get full evolution to zero. It makes sense to define the minimax phase transition:

ρ̃SE(δ;χ) = sup{ρ : M̃(ρδ;χ) < δ}; χ ∈ {+,±}.

Whatever be F , for (δ, ρ) with ρ < ρ̃SE(δ), SE evolves the formal MSE of η̃ to zero.
It is tempting to hope that some very special nonlinearity can do substantially better than soft thresh-

olding. At least for the minimax phase transition, this is not so:

Theorem 7.1. Let ρ̃MM(δ;χ) be a minimax phase transition computed under the State Evolution formalism
for the cases χ ∈ {+,±) with some scalar nonlinearity η̃. Let ρSE(δ;χ) be the phase transition calculated
in the main text for soft thresholding with corresponding optimal λ. Then for χ ∈ {+,±}

lim
δ→0

ρ̃SE(δ;χ)
ρSE(δ;χ)

≤ 1.

In words, no other nonlinearity can outperform soft thresholding in the limit of extreme undersampling
– in the sense of minimax phase transitions. This is best understood using a notion from the main text.
We there said that the parameter space (δ, ρ, λ, F ) can be partitioned into two regions. Region (I), where
zero is the unique fixed point of the MSE map, and is a stable fixed point; and its complement, Region
(II). Theorem 7.1 says that the range of ρ guaranteeing membership in Region (I) cannot be dramatically
expanded by using a different nonlinearity.
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7.1 Some results on Minimax Risk

The proof depends on some known results about minimax MSE, where we are allowed to choose not just
the threshold, but also the nonlinearity. For χ ∈ {+,±}, define the minimax MSE

M??(ε;χ) = infeη sup
F∈Fχε

EF
{
η̃(X + Z)−X)2

}
, (27)

Here the minimization is over all measurable functions η̃ : R 7→ R. Minimax MSE was discussed for the
case χ = + in [2] and for χ = ± in [6, 3, 4]. It is known that

M??(ε;χ) ∼ 2 log(ε−1). ε→ 0. (28)

7.2 Proof of Theorem 7.1

Evidently, any specific nonlinearity cannot do better than the minimax risk:

M̃∗(ε) ≥M∗∗(ε;χ).

Consequently, if we put
ρ∗∗(δ;χ) = sup{ρ : M∗∗(δρ;χ) < δ}

then
ρ̃∗(δ, χ) ≤ ρ??(δ, χ).

From (28) and the last two displays we conclude

ρ̃∗(δ;χ) ≤ 1
2 log(1/δ)

∼ ρSE(δ, χ), δ → 0.

Theorem 7.1 is proven.

8 Data Generation

For a given algorithm with a fully specified parameter vector, we conduct one phase transition measurement
experiment as follows. We fix a problem suite, i.e. a matrix ensemble and a coefficient distribution for
generating problem instances (A, x0). We also fix a grid of δ values in [0, 1], typically 30 values equispaced
between 0.02 and 0.99. Subordinate to this grid, we consider a series of ρ values. Two cases arise frequently:

• Focused Search design. 20 values between ρCG(δ;χ) − 1/10 and ρCG(δ;χ) + 1/10, where ρCG is the
theoretically expected phase transition deriving from combinatorial geometry (according to case
χ ∈ {+,±,�}).

• General Search design. 30 values equispaced between 0 and 1.

We then have a (possibly non-cartesian) grid of δ, ρ values in parameter space [0, 1]2. At each (δ, ρ)
combination, we will take M problem instances; in our case M = 20. We also fix a measure of success; see
below.

Once we specify the problem size N , the experiment is now fully specified; we set n = dδNe and
k = dρne, and generate M problem instances, and obtain M algorithm outputs x̂i, and M success indicators
Si, i = 1, . . .M .
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A problem instance (y,A, x0) consists of n × N matrix A from the given matrix ensemble and a k-
sparse vector x0 from the given coefficient ensemble. Then y = Ax0. The algorithm is called with problem
instance (y,A) and it produces a result x̂. We declare success if

‖x0 − x̂‖2
‖x0‖2

≤ tol,

where tol is a given parameter; in our case 10−4; the variable Si indicates success on the i-th Monte Carlo
realization. To summarize all M Monte Carlo repetitions, we set S =

∑
i Si.

The result of such an experiment is a dataset with tuples (N,n, k,M, S); each tuple giving the results
at one combination (ρ, δ). The meta-information describing the experiment is the specification of the
algorithm with all its parameters, the problem suite, and the success measure with its tolerance.

9 Estimating Phase Transitions

From such a dataset we find the location of the phase transition as follows. Corresponding to each fixed
value of δ in our grid, we have a collection of tuples (N,n, k,M, S) with n/N = δ and varying k. Pre-
tending that our random number generator makes truly independent random numbers, the result S at one
experiment is binomial Bin(π,M), where the success probability π ∈ [0, 1]. Extensive prior experiments
show that this probability varies from 1 when ρ is well below ρCG to 0 when ρ is well above ρCG. In short,
the success probability

π = π(ρ|δ;N).

We define the finite-N phase transition as the value of ρ at which success probability is 50%:

π(ρ|δ;N) =
1
2

at ρ = ρ(δ).

This notion is well-known in biometrics where the 50% point of the dose-response is called the LD50.
(Actually we have the implicit dependence ρ(δ) ≡ ρ(δ|N, tol); the tolerance in the success definition has
a (usually slight) effect, as well as the problem size N)

To estimate the phase transition from data, we model dependence of success probability on ρ using gen-
eralized linear models (GLMs). We take a δ-constant slice of the dataset obtaining triples (k,M, S(k, n,N)),
and model S(k, n,N) ∼ Bin(πk;M) where the success probabilities obeys a generalized linear model with
logistic link

logit(π) = a+ bρ

where ρ = k/n; in biometric language, we are modeling that the dose-response probability, where ρ is the
‘complexity-dose’, follows a logistic curve.

In terms of the fitted parameters â,b̂, we have the estimated phase transition

ρ̂(δ) = −â/b̂,

and the estimated transition width is
ŵ(δ) = 1/b̂.

Note that, actually,
ρ̂(δ) = ρ̂(δ|N, tol), ŵ(δ) = ŵ(δ|N, tol) .

We may be able to see the phase transition and its width varying with N and with the success tolerance.
Because we make only M measurements in our Monte Carlo experiments, these results are subject to

sampling fluctuations. Confidence statements can be made for ρ̂ using standard statistical software.
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10 Tuning of Algorithms

The procedure so far gives us, for each fully-specified combination of algorithm parameters Λ and each
problem suite S, a dataset (Λ,S, δ, ρ̂(δ; Λ, S)). When an algorithm has such parameters, we can define, for
each fixed δ, the value of the parameters which gives the highest transition:

ρ̂opt(δ;S) = max
Λ

ρ̂(δ; Λ,S);

with associated optimal parameters Λopt(δ;S). When the results of the algorithm depend strongly on
problem suite as well, we can also tune to optimize worst-case performance across suites, getting the
minimax transition

ρ̂MM(δ) = max
Λ

min
S
ρ̂(δ; Λ,S).

and corresponding minimax parameters ΛMM(δ). This procedure was followed in [7] for a wide range of
popular algorithms. Figure 3 of the main text presents the observed minimax transitions.

11 Results: Empirical Phase Transition

Figure S1 (which is a complete version of Figure 3 in the main text) compares observed phase transitions
of several algorithms including AMP. We considered what was called in [7] the standard suite, with these
choices

• Matrix ensemble: Uniform spherical ensemble(USE); each column of A is drawn uniformly at random
from the unit sphere in Rn.

• Coefficient ensemble: The vector x0 has k nonzeros in random locations, with constant amplitude of
nonzeros. If χ = +, x0(i) ∈ {0,+1}; if χ ∈ {±,�}, x0(i) ∈ {+1, 0,−1} (with equiprobable positive
and negative entries).

For each algorithm we generated an appropriate grid of (δ, ρ) and created M = 20 independent problem
instances at each gridpoint, i.e. independent realizations of vector x and measurement matrix A.

For AMP we used a focused search design, focused around ρCG(δ). We used N = 1000. To reconstruct
x, we run T = 1000 AMP iterations and report the mean square error at the final iteration. This choice
of T is surely more than one would use in practice, however, we find (just as Theorem 2 of the Main
Text would predict) that, for a given tolerance in defining ’Success’, the measured phase transition we
obtain with larger T is closer to the State Evolution transition. Later sections show that choosing T much
smaller, eg 50 or less, is quite reasonable and practical. The only exception is the obvious one, predicted by
State Evolution, namely that since the rate exponent b(δ, ρ) approaches 0 as we approach phase transition,
the number of iterations should be larger very close to phase transition. For other algorithms, we used
the general search design as described above. The computations for the other algorithms were actually
performed for another project that has been carefully documented in [7]. We did not do fresh computations
on those algorithms for this paper. For more details about those observed phase transitions we refer the
reader to [7]. Admittedly, it would have been a more direct comparison to match AMP not at N = 1000
but instead at N = 800 in comparing with the other algorithms. However, the State Evolution Formalism
predicts that results stabilize for all large N , so there is not much difference between the AMP at N=800
and N=1000; and extensive empirical work confirms this prediction - see Section 13 below. Consequently,
it does make sense to plot these on the same scale and make such direct comparisons.

The calculation of the phase transition curve of AMP takes around 36 hours on a single Pentium 4
processor.

Observed Phase transitions for other coefficient ensembles and matrix ensembles are discussed below
in sections 14 and 15.
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Figure S 1: Observed Phase Transitions for 6 Algorithms, and ρSE. AMP: method introduced in main text.
IST: Iterative Soft Thresholding. IHT: Iterative Hard Thresholding. TST: a class of two-stage thresholding
algorithms including subspace pursuit and CoSamp. OMP: Orthogonal Matching Pursuit. Note that the
`1 curve coincides with the state evolution transition ρSE, a theoretical calculation. The other curves show
empirical results. Note that IST, IHT, and TST were optimally tuned according to the method in [7]. In
this set of experiments, N = 800 for all algorithms except AMP; results were obtained by an earlier project
[7] and no new experiments were done here. N = 1000 for AMP; these computations were done explicitly
for this project.

12 Example of the Interference Heuristic

In the main text, our motivation of the SE formalism used the assumption that the mutual access inter-
ference term MAIt = (A∗A− I)(xt − x0) is marginally nearly Gaussian – i.e. the distribution function of
the entries in the MAI vector is approximately Gaussian.

As we mentioned, this heuristic motivates the definition of the MSE map. It is easy to prove that the
heuristic is valid at the first iteration; but for the validity of SE, it must continue to be true at every iteration
until the algorithm stops. Figure S2 presents a typical example. In this example we have considered USE
matrix ensemble and Rademacher coefficient ensemble. Also N is set to a small size problem 2000 and
(δ, ρ) = (0.9, 0.52). The algorithm is tracked across 90 iterations. Each panel exhibits a linear trend,
indicating approximate Gaussianity. The slope is decreasing with iteration count. The slope is the square
root of the MSE, and its decrease indicates that the MSE is evolving towards zero. More interestingly,
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Figure S 2: QQ Plots tracking marginal distribution of mutual access interference (MAI): (A∗A−I)(xt−x0).
Panels (a)-(i): iterations 10, 20, . . . , 90. Each panel shows a standard quantile-quantile plot of MAI values
versus normal distribution in blue. The sorted MAI values are plotted against the expected order statistics
at the standard normal distribution. If the MAI values were normally distributed with mean µ and standard
deviation τ the points would lie along a straight line with intercept µ and slope τ . Also shown: points in
red (mostly obscured) along a straight line with intercept AveMAI and slope SD[MAI]. Approximate
linearity indicates approximate normality. Decreasing slope with increasing iteration number indicates
decreasing standard deviation as iterations progress. For this experiment N = 2000, δ = .9 and ρ = 0.52.

figure S3 shows the QQplot of the MAI for the partial Fourier matrix ensemble. Nonzero Coefficients here
are again from the Rademacher ensemble and (N, δ, ρ) = (16384, 0.5, 0.35).

We have made many similar plots in the research for this paper and observed time and again the same
patterns. Weak exceptions have been noticeable when N has been very small, particularly in a few cases
where k has been very small.

13 Testing Predictions of State Evolution

The last section gave an illustration tracking the actual evolution of the AMP algorithm, it showed that
the State Evolution heuristic is qualitatively correct.

We now consider predictions made by SE and their quantitative match with empirical observations.
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Figure S 3: QQ Plots tracking marginal distribution of mutual access interference (MAI). Matrix Ensemble:
partial Fourier. Panels (a)-(i): iterations 30,60,. . . , 270. For this experiment, N = 16384, δ = 1/2 and
ρ = 0.35. For other details, see Fig. 2.

We consider predictions of four observables:

• MSE on zeros and MSE on non-zeros:

MSEZ = E[x̂(i)2|x0(i) = 0], MSENZ = E[(x̂(i)− x0(i))2|x0(i) 6= 0]

• Missed detection rate and False alarm rate:

MDR = P[x̂(i) = 0|x0(i) 6= 0], FAR = P[x̂(i) 6= 0|x0(i) = 0]

We illustrate the calculation of MDR. Other quantities are computed similarly. Let ε = δρ, and suppose
that entries in x0(i) are either 0, 1, or −1, with P{x0(i) = ±1} = ε/2. Then, with Z ∼ N(0, 1),

P[x̂(i) = 0|x0(i) 6= 0] = P[η(1 +
σ√
δ
Z) 6= 0]

= P[1 +
σ√
δ
Z 6∈ (−λσ, λσ)]

= P[Z 6∈ (a, b)] (29)

14



0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MSE on the non−zero elements

iteration

 

 

empirical
theoretical

0 10 20 30 40
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
MSE on zero elements

iteration

 

 

empirical
theoretical

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Missed Detection Rate

iteration

 

 

empirical
theoretical

0 10 20 30 40
0.6985

0.699

0.6995

0.7

0.7005

0.701

0.7015

0.702
False Alarm Rate

iteration

 

 

empirical
theoretical

Figure S 4: Comparison of State Evolution predictions against observations. Panels (a)-(d): MSENZ,
MSE, MDR, FAR. Curve in red: theoretical prediction. Curve in blue: mean observable. Each panel
shows the evolution of a specific observable as iterations progress. Two curves are present in each panel,
however, except for the lower left panel, the blue curve (empirical data) is obscured by the presence of the
red curve. The two curves are in close agreement in all panels. For this experiment N = 5000, δ = .3 and
ρ = 0.15.

with a = ((−λ− 1/σ) ·
√
δ, b = (λ− 1/σ) ·

√
δ.

In short, the calculation merely requires classical properties of the normal distribution. The three
other quantities simply require other similar properties of the normal. As discussed in the main text, SE
evolution makes an iteration-by-iteration prediction of σt; in order to calculate predictions of MDR, FAR,
MSENZ and MSEZ, the parameters ε and λ are also needed.

We compared the state evolution predictions with the actual values by a Monte Carlo experiment. We
chose these triples (δ, ρ,N): (0.3, 0.15, 5000), (0.5, 0.2, 4000), (0.7, 0.36, 3000). We again used the standard
problem suite (USE matrix and unit amplitude nonzero). At each combination of (δ, ρ,N), we generated
M = 200 random problem instances from the standard problem suite, and ran the AMP algorithm for a
fixed number of iterations. We computed the observables at each iteration. For example, the empirical
missed detection rate is estimated by

eMDR(t) =
#{i : xt(i) = 0 and x0(i) 6= 0}

#{i : x0(i) 6= 0}
.
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Figure S 5: Comparison of State Evolution predictions against observations. Same underlying situation
and results as Figure S4. Plots in top row: Y axis is on a logarithmic plotting scale, i.e. we are view
log(MSE) versus iteration. Lower left panel: Y axis is now the difference between Missed Detection Rate
and SE prediction.

We averaged the observable trajectories across the M Monte Carlo realizations, producing empirical aver-
ages.

The results for the three cases are presented in Figures S4, S6, S7. Shown on the display are curves
indicating both the theoretical prediction and the empirical averages. In the case of the upper row and the
lower left panel, the two curves are so close that one cannot easily tell that two curves are, in fact, being
displayed.

We have made many similar plots in the research for this paper and observed time and again the same
level of agreement between SE predictions of observables and actual results.

14 Coefficient Universality

SE displays invariance of the evolution results with respect to the coefficient distribution of the nonzeros.
What happens in practice?

We studied invariance of AMP results as we varied the distributions of the nonzeros in x0. We consider
the problem χ = ± and used the following distributions for the non-zero entries of x0:
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Figure S 6: Comparison of State Evolution predictions against observations. For this experimentN = 4000,
δ = 0.5 and ρ = 0.20. For other details, see Figure S4.

• Uniform in [−1,+1];

• Rademacher (uniform in {+1,−1});

• Gaussian;

• Cauchy.

In this study, N = 2000, and we considered δ = 0.1, 0.3. For each value of δ we considered 20 equispaced
values of ρ in the interval [ρCG(δ;±)−1/10, ρCG(δ;±)+1/10], running each time T = 1000 AMP iterations.
Data are presented in the two panels of Figures S8.

Each plot displays the fraction of success (S/M) as a function of ρ and a fitted success probability i.e.
in terms of success probabilities, the curves display π(ρ). In each case 4 curves and 4 sets of data points
are displayed, corresponding to the 4 ensembles. The four datasets are visually quite similar, and it is
apparent that indeed a considerable degree of invariance is present.
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Figure S 7: Comparison of State Evolution predictions against observations for N = 4000, ρ = 0.36,
δ = 0.70. For other details, see Figure S4.

15 Matrix Universality

The Discussion section in the main text referred to evidence that our results are not limited to the Gaussian
distribution.

We conducted a study of AMP where everything was the same as in Figure S1 above, however, the ma-
trix ensemble could change. We considered three such ensembles: USE (columns iid uniformly distributed
on the unit sphere), Rademacher (random entries iid ±1 equiprobable), and Partial Fourier, (randomly
select n rows from N×N fourier matrix.) We only considered the case χ = ±. Results are shown in Fig. 9,
and compared to the theoretical phase transition for `1.

16 Timing Results

In actual applications, AMP runs rapidly.
We first describe a study comparing AMP to the LARS algorithm [8]. LARS is appropriate for com-

parison because, among the iterative algorithms previously proposed, its phase transition is closest to the
`1 transition. So it comes closest to duplicating the AMP sparsity-undersampling tradeoff.

Each algorithm proceeds iteratively and needs a stopping rule. In both cases, we stopped calculations
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Figure S 8: Comparison of Success probabilities for different coefficient ensembles. Left panel: δ = 0.10
; Right panel: δ = 0.3. Red: unit-amplitude coefficients. Blue: uniform [−1, 1]. Green: Gaussian. Black:
Cauchy. Points: observed success fractions. Curves: Logistic fit.

when the relative fidelity measure exceeded 0.999, ie when ‖y −Axt‖2/‖y‖2 < 0.001.
In our study, we used the partial Fourier matrix ensemble with unit amplitude for nonzero entries in

the signal x0. We considered a range of problem sizes (N,n, k) and in each case averaged timing results
over M = 20 problem instances. Table S 1 presents timing results.

In all situations studied, AMP is substantially faster than LARS. There are a few very sparse situations
– i.e. where k is in the tens or few hundreds – where LARS performs relatively well, losing the race by less
than a factor 3. However, as the complexity of the objects increases, so that k is several hundred or even
one thousand, LARS is beaten by factors of 10 or even more.

(For very large k, AMP has a decisive advantage. When the matrix A is dense, LARS requires at least
c1 · k · n ·N operations, while AMP requires at most c2 · n ·N operations. Here c2 = log((EX2)/σ2

T )/b is
a bound on the number of iterations, and (EX2)/σ2

T is the relative improvement in MSE in T iterations.
Hence in terms of flops we have

flops(LARS)
flops(AMP)

≥ kb(δ, ρ)
log((EX2)/σ2

T )
.

This logarithmic dependence of the denominator is very weak, and very roughly this ratio scales directly
with k.)

19



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

δ

ρ
Phase transition of FOAMP for different matrix ensembles

 

 

Theoretical L
1

AMP, USE
AMP, Fourier
AMP, Rademacher

Figure S 9: Observed Phase Transitions at different matrix ensembles. Case χ = ±. Red: Uniform
Spherical Ensemble (Gaussian with normalize column lengths). Magenta: Rademacher (±1 equiprobable).
Green: partial Fourier. Blue: ρ`1 .

We also studied AMP’s ability to solve very large problems.
We conducted a series of trials with increasing N in a case where A and A∗ can be applied rapidly,

without using ordinary matrix storage and matrix operations; specifically, the partial Fourier ensemble.
For nonzeros of the signal x0. we chose unit amplitude nonzeros.

We considered the fixed choice (δ, ρ) = (1/6, 1/8) and N ranging from 1K to (K = 1024) to 256K in
powers of 2. At each signal length N we generated M = 10 random problem instances and measured CPU
times (on a single Pentium 4 processor) and iteration counts for AMP in each instance. We considered
four stopping rules, based on MSE σ2, σ2/2, σ2/4, and σ2/8, where σ2 = 2−13. We then averaged timing
results over the M = 10 randomly generated problem instances

Figure S10 presents the number of iterations as a function of the problem size and accuracy level.
According to the SE formalism, this should be a constant independent of N at each fixed (δ, ρ) and we see
indeed that this is the case for AMP: the number of iterations is close to constant for all large N . Also
according to the SE formalism, each additional iteration produces a proportional reduction in formal MSE,
and indeed in practice each increment of 5 AMP iterations reduces the actual MSE by about half.

Figure S11 presents CPU time as a function of the problem size and accuracy level. Since we are using
the partial Fourier ensemble, the cost of applying A and A∗ is proportional to N log(N); this is much less
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Table S 1: Timing Comparison of AMP and LARS. Average Times in CPU seconds.

N n k AMP LARS
4096 820 120 0.19 0.7
8192 1640 240 0.34 3.45
16384 3280 480 0.72 19.45
32768 1640 160 2.41 7.28
16384 820 80 1.32 1.51
8192 820 110 0.61 1.91
16384 1640 220 1.1 5.5
32768 3280 440 2.31 23.5
4096 1640 270 0.12 1.22
8192 3280 540 0.22 5.45
16384 6560 1080 0.45 27.3
32768 1640 220 6.95 17.53

than what we would expect for the cost of applying a general dense matrix. We see that indeed AMP
execution time scales very favorably with N in this case – to the eye, the timing seems practically linear
with N . The timing results show that each doubling of N produces essentially a doubling of execution
time. iteration produces a proportional reduction in formal MSE, and indeed in practice each increment
of 5 AMP iterations reduces the MSE by about half.

17 Postscript: Relation with Stojnic’s bounds

In [9], Mihalo Stojnic proved bounds on the reconstrtion phase transition for both problems χ = ± and
χ = +, under LP reconstruction (respectively Theorem 4 and Theorem 7 in that paper). The bounds
appear to match the prediction of [10], although there is no proof of this fact.

The paper by Stojnic appeared as a preprint at ArXiV on the same day as the ArXiv version of this
paper [11]. The techniques are completely different (in particular, [9] does not provide a fast reconstruction
algorithm). It is nevertheless interesting to compare our results with the ones of [9].

It is a lengthy but straightforward exercise of calculus to check that the bounds of [9] coincide with
the SE prediction, cf. eqn [5] in the main manuscript. For the reader who is willing to repeat the same
exercise, we provide some hints.

First of all, it seems convenient to compare both results with the following parametric expressions for
the SE phase transitions.

For χ = +:

δ =
φ(z)

φ(z) + zΦ(z)
, (30)

ρ = 1− z(1− Φ(z))
φ(z)

, (31)

with z ∈ [0,∞).
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Figure S 10: Iteration Counts versus Signal Length N . Different curves show results for different stopping
rules. Horizontal axis: signal length N . Vertical axis: Number of iterations, T . Blue, Green, Red, Aqua
curves depict results when stopping thresholds are set at 2−13 · 24−`, with ` = 0, 1, 2, 3 Each doubling of
accuracy costs about 5 iterations. The number of iterations T needed to reach a specified MSE does not
increase with N ; this agrees with the SE formalism.

For χ = ±:

δ =
φ(z)

φ(z) + z (Φ(z)− 1/2)
, (32)

ρ = 1− z(1− Φ(z))
φ(z)

, (33)

with z ∈ [0,∞).
As z varies in its domain, (δ(z), ρ(z)) describe the (δ, ρSE(δ;χ)) curve
These expressions are obtained eqn [5] in our main text by simple calculus. In order to compare with

Stojnic’s variables α, βw (resp. β+
w for χ = +) and θw (resp. β±w for χ = ±), the following notations

dictionary should be used.
For χ = + (on the right are the notations in our work)

α = δ , (34)
β+
w = ρδ , (35)

erfinv
(

2
1− θ+

w

1− β+
w
− 1
)

=
z√
2
. (36)
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Figure S 11: CPU Time Scaling with N . Different curves show results for different stopping rules.
Horizontal axis: signal length N . Vertical axis: CPU time(seconds). Blue, Green, Red, Aqua curves depict
results when stopping thresholds are set at 2−13 · 24−`, with ` = 0, 1, 2, 3 CPU time grows linearly with
problem size, and scales logarithmically with final MSE. This agrees with the SE formalism.

For χ = ± (on the right are the notations in our work)

α = δ , (37)
βw = ρδ , (38)

erfinv
( 1− θ+

w

1− β+
w

)
=

z√
2
. (39)
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