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Abstract—We consider the problem of reconstructing a low
rank matrix from noisy observations of a subset of its entries.
This task has applications in statistical learning, computer vision,
and signal processing. In these contexts, ‘noise’ generically s
to any contribution to the data that is not captured by the
low-rank model. In most applications, the noise level is large
compared to the underlying signal and it is important to avoid
overfitting. In order to tackle this problem, we define aregularized
cost function well suited for spectral reconstruction methods.
Within a random noise model, and in the large system limit, we
prove that the resulting accuracy undergoes a phase transition

depending on the noise level and on the fraction of observed

entries. The cost function can be minimized usingOPTSPACE
(a manifold gradient descent algorithm). Numerical simulations
show that this approach is competitive with state-of-the-art
alternatives.

I. INTRODUCTION

Let N be anm x n matrix which is ‘approximately’ low
rank, that is

N=M+wW=UsvT+w. (1)

whereU has dimensions: x r, V' has dimensions x r, and
3 is a diagonal x r matrix. ThusM has rankr and W can
be thought of as noise, or ‘unexplained contributions’No
Throughout the paper we assume the normalizatigiy =
m L and VTV = n 1., (Igxq being thed x d identity).

Out of them x n entries of N, a subsett' C [m] x [n] is
observed. We lePr(N) be them x n matrix that contains
the observed entries ad¥, and is filled with(’s in the other
positions

N;; if (i,5) € E,
0 otherwise.

Pr(N)ij = { (2

Here the minimization variables a8 € R™*", and X €
R™*" Y € R™*" with XX = YTY = I,,,. Finally, A > 0
is a regularization parameter.

A. Algorithm and main results

The algorithm is an adaptation of thee@SPACE algorithm
developed in[[2]. A key observation is that the following
modified cost function can be minimized by singular value
decomposition (see Sectifn]l.1):

~

1 1
Fe(X,Y;5) = S|[Pe(N) ~ XSYT|[E + SAMISIE. @)

As emphasized in_[2],.[3], which analyzed the case= 0,
this minimization can yield poor results unless the set of
observationsFE is ‘well balanced’. This problem can be
bypassed by ‘trimming’ the sef, and constructing a balanced
set . The OPTSPACE algorithm is given as follows.

OPTSPACE ( set E, matrix N¥ )

1:  Trim E, and letE be the output;

2:  Minimize ]?E(X, Y; S) via SVD,
let Xq, Yy, So be the output;

3:  Minimize Fg(X,Y;S) by gradient descent
using Xy, Yy, Sp as initial condition.

In this paper we will study this algorithm under a model
for which step 1 (trimming) is never called, i.€. = E with
high probability. We will therefore not discuss it any fugth
Section[1 compares the behavior of the present approach
with alternative schemes. Our main analytical result isash
characterization of the mean square error after step 2. Here
and below the limitn — oo is understood to be taken with

The noisy matrix completioproblem requires to reconstruct,, /, — « € (0, co).

the low rank matrix)/ from the observation®g(N). In the
following we will also write N¥ = P (N) for the sparsified

Theorem I.1. AssumeM;;| < Muyax, W;; to be i.i.d. random

matrix. Over the last year, matrix completion has attract&@'iables with mea variance/mno?® andE{W;;} < Cn?,

significant attention because of its relevance —among ot

applications— to colaborative filtering. In this case, thatnm

tkd that for each entryi, j), N;; is observed (i.e(i, j) € E)

independently with probability. Finally let M = X,S,Y"

N contains evaluations of a group of customers on a group®# the rankr matrix reconstructed by step of OPTSPACE,
products, and one is interested in exploiting a sparselgdfill for the optimal choice of. Then, almost surely for — oo

matrix to provide personalized recommendatians [1].

In such applications, the noi$& is not a small perturbation ||M][2 |

and it is crucial to avoid overfitting. For instance, in theil

M — 0, the estimate of\f risks to be a low-rank approxima-

tion of the noiselV’, which would be grossly incorrect.

1 —
(B M| =1~

(srm0 - 5),)

_ +o,(1).

: e 2 T 2 Vao? o2
In order to overcome this problem, we propose in this paper HZHF{ 2k=1 2% (1 T ) (1 + ng\/a>}
an algorithm based on minimizing the following cost funotio  This theorem focuses on a high-noise regime, and predicts

1 1
Fe(X,Y;5) = §|I7’E(N—X5YT)|I% +5AMISIE @)

a sharp phase transition: if? /p < ¥;, we can successfully
extract information on)M, from the observationv . If on
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the other hand?/p > ¥, the observations are essentialy 1
useless in reconstructinty. It is possible to prove [4] that the .
resulting tradeoff between noise and observed entrieglis: ti 0.9t
no algorithm can obtain relative mean square error smaller
than one fora?/p > ¥;, under a simple random model for
M. To the best of our knowledge, this is the first sharp phase
transition result for low rank matrix completion.

0.8

For the proof of Theorer 111, we refer to Sectiod Ill. An 077
important byproduct of the proof is that it provides a rule fo
choosing the regularization parameterin the large system 0.6t
limit.
0.5 : : : ‘ :
B. Related work 10 20 30 40 50 60
The importance of regularization in matrix completion is
well known to practitioners. For instance, one importarrheo ! ‘ OPTsFiAc§0) —a—
ponent of many algorithms competing for the Netflix chalkeng A OPTSPAC >|‘_1) _
[1], consisted in minimizing the cost functiddz (X, Y S) = 08\ ° L1-L0 —e— 1
HIPe(N = XYT)[[3 + $AIX|1% + A |[Y][3 (this is also He T
known asmaximum margin matrix factorizatids], [6]). Here 06 )
the minimization variables ar& ¢ R™*", Y ¢ R"*".
Unlike in OPTSPACE, these matrices are not constrained to 04l
be orthogonal, and as a consequence the problem becomes
significantly more degenerate. Notice that, in our apprpach
the orthogonality constraint fixes the noriX||r, ||Y||F. 0-2¢
This motivates the use dfS||% as a regularization term.

Convex relaxations of the matrix completion problem were 0
recently studied in[[7],[[8]. As emphasized by Mazumder,
Hastie ar_]d Tibshiranil [9], such m_Jde_ar norms relaxatlor?‘—'?g. 1. Test (top) and train (bottom) error vs. rank foPt3PACE, SOFT-
can be viewed as spectral regularizations of a least squaiBuTe, HaRD-IMPUTE and SVT. Herem = n = 100, = 10,p =
problem. Finally, the phase transition phenomenon in Téreor 0.5, SNR = 1.
[T, generalizes a result of Johnstone and Lu on principal
component analysis [10], and similar random matrix models
were studied in[[11]. also plot the corresponding curves fooS-IMPUTE,HARD-
IMPUTE and SVT taken from[[9]. In Figurels] 2 arid 3, we
plot the same curves for different valuesrot, SNR. In these

In this section, we present the results of numerical simplots, OPTSPACE(\) corresponds to the algorithm that min-
ulations on synthetically generated matrices. The data amtzes the cost[{3). In particular @SPACE(0) corresponds
generated following the recipe of[9]: samplé € R"*" to the algorithm described inl[2]. Furthex; = \*(p) is the
andV € R™*" by choosingU;; andV;; independently and value of the regularization parameter that minimizes tis¢ te
indentically asN(0,1). Sample independentli%’ € R™*™ error while using rank (this can be estimated on a subset of
by choosingW;; iid with distribution N (0,0%\/mn). Set the data, not used for training).
N = WT + W. We also use the parameters chosen In [9] It is clear that regularization greatly improves the perfor
and define mance of @TSPACE and makes it competitive with the best

alternative methods.

10 20 30 40 50 60

II. NUMERICAL SIMULATIONS

—=T
SNR w, [1l. PROOF OFTHEOREMILI]
. a_rT R , The proof of Theorem 1 is based on the following three
TestError = WPEWUV —N)|[F steps: (i) Obtain an explicit expression for the root mean
||P&(UVT% 7 square error in terms of right and left singular vectors\af
_ |Pe(N — ﬁ)”% (#3) Estimate the effect of the nois& on the right and left
TrainError = TPEE singular vectors{iii) Estimate the effect of missing entries.
" F Step(i¢) builds on recent estimates on the eigenvectors of large
wherePz (A) = A — Pr(A). covariance matrice5 [12]. In stépii) we use the results dfl[2].

In Figure[1, we plot the train error and test error for th&tep (i) is based on the following linear algebra calculation,
OPTSPACE algorithm on matrices generated as above witlvhose proof we omit due to space constraints (here and below
n = 100, = 10, SNR=l andp = 0.5. For comparison, we (4, B) = Tr(ABT)).
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Fig. 2. Test (top) and train (bottom) error vs. rank foPX3PACE, SOFT-  Fig. 3. Test (top) and train (bottom) error vs. rank foPT3PACE, SOFT-
IMPUTE, HARD-IMPUTE and SVT. Herem = n = 100, = 6,p = IMPUTE, HARD-IMPUTE and SVT. Herem = n = 100, = 5,p =
0.5,SNR = 1. 0.2,SNR = 10.

Proposition 11l.1. Let X, € R™*" and Y, € R™*" be the of N. Then there exists a sequence gfr orthogonal matrices
matrices whose columns are the firstright and left, singular @,, such that, almost surelj/| L —UTX — AQu|lr — 0,

vectors of N¥. Then the rank- matrix reconstructed by step|| LyTy — BQnHF = 0 W.m A = diag(as,...,a.),
2 of of OPTSPACE, with regularization parameten, has the B dlag(bl, ,b,) and
form M(A) X0So(N) Y Further, there exists\, > 0 such A )
that @2 = (1_U—>(1+\/aa )—1
T T ArE 2 ¢ p2yd py? ’
1 T2 o ((Xg MYy, X5 N™Yo) 4 5
M = MOWE = 1B1E =\ o N ey o= (- ) (14 =) )
' % pVaxi/
In order to isolate the effect of noise, we consider the matri ~ Proof: Due to space limitations, we will focus here on the
N = pUXVT +W¥E. Throughout this section we assume thataseX, ..., ¥, > o2/p. The general proof proceeds along
the hypotheses of Theordml]l.1 hold. the same lines, and we defer it id [4].

Notice thatW ¥ is anm x n matrix with i.i.d. entries with

telmma If%zll_hl‘er: (ml*”""’n.z“”) b? tr:s: Ia}[rgerstlsuzlsﬁle:r variance /mno?p and fourth moment bounded byn?2. It
f(;’:\ruZer>0 i) €N, 831 = 00, Zin = 2 AIMOSLSUIELY, WNETE, i3 therefore sufficient to prove our claim fpr= 1 and then
i~ 0°/D

rescaleX by p ando by ,/p. We will also assume that, without

o2 1 o2 1/2 loss of generalityn > n.
zi = P {a <ﬁ + ﬁ) (ﬁ + \/E> } ) (6) Let Z be anr x r diagonal matrix containing the eigenvalues
! ! (nzn1,...,nz,). The eigenvalue equations read

and z; = o/pal/2(1 + /a) for £2 < o?/p. . .
Further, let X € R™*" and Y € R™*" be the matrices Uby+WY -XZ = 0, (8)
whose columns are the firgf right and left, singular vectors Ve +WIX -YZ = 0. 9)



where we definede = YUTX, ﬂy = 2Vly ¢ Solving for 3,, we get an equation of the form

R™*". By singular value decomposition we can writé = 9

Ldiag(wy,wy, ... w,)RT, with LTL = I,m, R'R = 76y =8y 1(2)

Inxn. where f(-) is a function that can be given explicitely using
Letul, =], v}, y! € R" be thei-th row of -respectively- the Stieltjis transform of the measupg\)d\. Equation [I5)

LTU, L"X, RV, RTY. In this basis equation§](8) arld (9)mplies thats, is block diagonal according to the degeneracy

(15)

read pattern ofX. Considering each block, eithgt, vanishes in
U;Tﬂy +wyT — IZ“Z\ —- 0, i€, the l:llgck (a case that can be exc!uded uskig > o2/p)
T A 5 . or ¥7° = f(Z;) in the block. Solving forZ,; shows that
W By — ; % = 0, i € [m]\[n], the eigenvalues are uniquely determined (independenteof th
vl By +wizl —yI'Z = 0, i€n]. subsequence) and given by E. (6).

In order to determine3, and 3, first observe that, since

These can be solved to get .
v 9 Ly, =YTY =30 yiyl', we have, using Eq[{10)

= (ulTﬂAyf + wivfﬁx)(Zz —w?)h, 1€ [n], "
= W7 i € [m\[n], Ipxr = D (2% = w]) (2B vi+ wiBfus)
T Taha 7 T A 72 2\—1 . =1
Yi = (vi 512 + Wi, ﬁ )(Z - wi) ’ (S [TL] (10) P ~ ~
- T : (W] B.Z +wiul B,)(Z2 = wd) 7.
By definiton 713, = Y wal, and £715, =
S vyl whence In the limit n — oo, and assuming a convergent subsequence
B n for (Z, Bz, By), this sum can be computed as above. After
Y13, = Z:u,-(uiTﬂAyE4—11)1-1)?335)(22—wf)f1 B zZ? d
=1 . ITXT‘ { (Z2 — 063/20'2A)2 p()\) A}Oa:
~ 3/2452)
+ 3wl 8,270 (12) ___aiA
gﬂ;l +{ 7oy ey,

. n JSN PN T T i
13 — 0T 3,7 + wiul 72 _ w2l (12 where C, = 3; 8., Cy = B, B, and the functions oz on
Py ; v ) - 12) the rhs are defined as standard analyic functions of matrices

o Using Eqgs. ,L(d14) and solving the above, we @get=
Let A = w?al/?/(m?c?). Then, it is a well known fact diag(Z%gaf,q..%i)f)u,]agd B, - digg(E%b%,...Z%b%)g We

[Ld] that asn — oo the empirical law of the\;’s CONVErges .already concluded that, and 3, are block diagonals with

weakly almost surely to the Marcenko-Pastur law, with dgnsip i <" i correspondence with the degeneracy patterk.of

p(A) = a\/(/\ —c2)(cA = N)/@2rA), with e =1+ a™ % Sincep? B, = C, andg! 8, = C, are diagonal, with the same
Let 8, = B.//m, By = Ba/n, Z = Z/n, A priori, it degeneracy pattern, it follows that, inside each block o &j

is not clear that the sequen¢g,, 8,, Z) —dependent om— €ach of3, andj, is proportional to al x d orthogonal matrix.

converges. However, it is immediate to show that the sequeridierefore 3, = X AQ,, 3, = YBQ, for some othogonal

is tight, and hence we can restrict ourselves to a subsequefi@triced Q,, Q.. Also, using equation[(13) one can prove

= = {n;}ien along which a limit exists. Eventually we will that Qs = Q.

show that the limit does not depend on the subsequence, aparotice, by the above argumert, B are uniquely fixed by

possibly, from the rotatior),,. Hence we shall denote theour construction. On the other hadgl might depend on the

subsequential limit, by an abuse of notation,(8s, 3,, 7). ~ subsequenc&. Since our statmement allows for a segence
Consider now a such a convergent subsequence. It is pog$irotations@,,, that depend om, the eventual subsequence

ble to show that=? > o2 /p implies Z2 > a*/20%c, (a)? + 6 dependence of); can be factored out. u

for some positives. Since almost surely as — oo, w? < It is useful to point out a straightforward consequence of

o?/?20%c, (a)? + 6/2 for all i, for all purposes the summandshe above.

on the rhs of Eqs.[{11)[{12) can be replaced by uniformiy, gy 1113, There exists a sequence of orthogonal ma-

continuous, bounded functions of the I|m|t|ng elgenval_ue.s trices Q,, € R™*" such that, almost surely,

Further, each entry of; (resp.v;) is just a single coordinate

of the left (right) singular vectors of the random mat#ix. lim HLXTUEVTY - Q.DQT = 0, (16)
Using Theoreml in [12], it follows that any subsequential neetlymn B
limit satisfies the equations with D = diag(Xia1by, ..., Xra.b;).

By = gﬁy{z/(ﬁ _ a3/202)\)_1p()\)d)\ + (a— 1)2—1} . B. The effect of missing entries
(13) The proof of Theoreni 1]1 is completed by estabilishing a
relation between the singular vectalkg, Y, of N¥ and the
B, = EBI{Z / (2% — a32520) "1 p()) d)\},. (14) singular vectorsY andY of N.



Lemma Ill.4. Let k < r be the largest integer such that(equivalently, neglect the error incurred by this appradim

) >0 > % > 02/p, and denote b, ¥, X, and
Y (%) the matrices containing the firgt columns ofX, Yo,
X, andY, respectively. Lef" = x5, + x" y*) —
Y®S, +Y* where (X)Tx® = o, (v")Ty® — g

and S;, S, € R"™". Then there exists a numerical constant

C = O(3%;, 02, a, Mpay), such that, with high probability,

1
k k
IXO2, P2 < cr\/;

with probability approachingl asn — oc.

7

Proof: We will prove our claim for the right singular

vectorY’, since the left case is completely analogous. Further

we will drop the superscript to lighten the notation.

We start by noticing thaf|NZYy||2 = S°F_ (nZ..)2,
where nz, ,, are the singular values aVZ. Using Lemma
3.2 in [2] which bounds|M~Z — pM||; = |[NE — N||2, we
get

k
INEY|13 > D (nZam — CMuaxy/pn)” . (18)
a=1

On the other hand|NZYy||r < |INYy|lr + |INF —
N||2||Yo|| . Further by lettings, = L,©,R], for L,, R,
orthogonal matrices, we getNYp|2 IINYL,0,|% +
||JVYL||%. Since Y'Yy = Ipxx, we have Iy, =
R,©70,RI + Y'Y, and therefore

INYo|[% INYLy||% — [INYL,RIYT |3 + |INYL|3

k
TL2 Z Zg,n - TLQZ]%,””YJ_H%

a=1

+n?poalcr(a) + 0)|[YLIE

k
TL2 Z Zz,n - n2€y”YJ-H% 3

a=1

IN

wheree, = 27, — po*a(cy(a) +6), and used the inequality
||J\7YL||§m < n?poia(cy(a) + 6)||YL||% which holds for all
0 > 0 asymptotically almost surely a8 — oo (by an

immediate generalization of Lemnia_1ll.2). It is simple to

check thats,, > o2 /p impliese, > 0.
Using triangular inequality, Lemma 3.2 inl[2], we get

INYollZ: < n?) 2k, —ney|lYLl[f + Cnpa® > ME o

max
a=1

+2Cn/npa®* Mo ax /|2

which, combined with equatiol_(1L8), implies the thesism
Proof of Theoreni T]1: We now turn to upper bounding
the right hand side of Eq[](5). Let be defined as in the
last lemma. Notice that by LemnfadD.2x"(UXVT)Y is
well approximated by X ®)T(ULVT)Y %), Analogously, it
can be proved thak I (UXVT)Y, is well approximated by
(XINTUsvT)Y ™. Due to space limitations, we will omit
this technical step and thus focus here on the dase r

tion).

Using LemmaIIL.# to bound the contribution &f ,,Y,
we have
(XFwsvhy,, XINEY)
= (SEXT(U=vhYS,, XINEY,)(1 + 0,(1))
= (XT(WUsVY, STX]NPYpS,)(1+0,(1)). (19)
Further XTNY, = XTI NY, + XT(NE — N)Y, and, using
once more the bound in Lemma 3.2 ofl [2], that implies
I X' (N® — N)Yy| < Cry/nrp, we get

STXINPY,S, L,02LTXT"NYR,02RT + B,
Z + Es,
where we recall thatZ is the diagonal matrix with entries
given by the singular values oV, and ||E1||%, ||Es|% <

C(p,r)+/n. Using this estimate in Eq_(19), together with the
result in Lemmd1Il.2, we finally get

<Xg(UZVT)Y0 5 XgNE%> Z;zl Ekakbkzk

vmn|| X§NEY| |3 vellz|
which implies the thesis after simple algebraic manipafati
]

—on(1),
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