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Abstract—We consider the problem of reconstructing a low
rank matrix from noisy observations of a subset of its entries.
This task has applications in statistical learning, computer vision,
and signal processing. In these contexts, ‘noise’ generically refers
to any contribution to the data that is not captured by the
low-rank model. In most applications, the noise level is large
compared to the underlying signal and it is important to avoid
overfitting. In order to tackle this problem, we define aregularized
cost function well suited for spectral reconstruction methods.
Within a random noise model, and in the large system limit, we
prove that the resulting accuracy undergoes a phase transition
depending on the noise level and on the fraction of observed
entries. The cost function can be minimized usingOPTSPACE
(a manifold gradient descent algorithm). Numerical simulations
show that this approach is competitive with state-of-the-art
alternatives.

I. I NTRODUCTION

Let N be anm × n matrix which is ‘approximately’ low
rank, that is

N = M +W = UΣV T +W . (1)

whereU has dimensionsm× r, V has dimensionsn× r, and
Σ is a diagonalr× r matrix. ThusM has rankr andW can
be thought of as noise, or ‘unexplained contributions’ toN .
Throughout the paper we assume the normalizationUTU =
mIr×r andV TV = n Ir×r (Id×d being thed× d identity).

Out of them× n entries ofN , a subsetE ⊆ [m] × [n] is
observed. We letPE(N) be them × n matrix that contains
the observed entries ofN , and is filled with0’s in the other
positions

PE(N)ij =

{
Nij if (i, j) ∈ E ,

0 otherwise.
(2)

The noisy matrix completionproblem requires to reconstruct
the low rank matrixM from the observationsPE(N). In the
following we will also writeNE = PE(N) for the sparsified
matrix. Over the last year, matrix completion has attracted
significant attention because of its relevance –among other
applications– to colaborative filtering. In this case, the matrix
N contains evaluations of a group of customers on a group of
products, and one is interested in exploiting a sparsely filled
matrix to provide personalized recommendations [1].

In such applications, the noiseW is not a small perturbation
and it is crucial to avoid overfitting. For instance, in the limit
M → 0, the estimate of̂M risks to be a low-rank approxima-
tion of the noiseW , which would be grossly incorrect.

In order to overcome this problem, we propose in this paper
an algorithm based on minimizing the following cost function

FE(X,Y ;S) ≡ 1

2
||PE(N −XSY T )||2F +

1

2
λ ||S||2F . (3)

Here the minimization variables areS ∈ R
r×r, and X ∈

R
m×r, Y ∈ Rn×r with XTX = Y TY = Ir×r. Finally,λ > 0

is a regularization parameter.

A. Algorithm and main results

The algorithm is an adaptation of the OPTSPACE algorithm
developed in [2]. A key observation is that the following
modified cost function can be minimized by singular value
decomposition (see Section I.1):

F̂E(X,Y ;S) ≡ 1

2
||PE(N)−XSY T ||2F +

1

2
λ ||S||2F . (4)

As emphasized in [2], [3], which analyzed the caseλ = 0,
this minimization can yield poor results unless the set of
observationsE is ‘well balanced’. This problem can be
bypassed by ‘trimming’ the setE, and constructing a balanced
set Ẽ. The OPTSPACE algorithm is given as follows.

OPTSPACE ( setE, matrix NE )

1: Trim E, and letẼ be the output;
2: Minimize F̂Ẽ(X,Y ;S) via SVD,

let X0, Y0, S0 be the output;
3: Minimize FE(X,Y ;S) by gradient descent

usingX0, Y0, S0 as initial condition.

In this paper we will study this algorithm under a model
for which step 1 (trimming) is never called, i.e.̃E = E with
high probability. We will therefore not discuss it any further.
Section II compares the behavior of the present approach
with alternative schemes. Our main analytical result is a sharp
characterization of the mean square error after step 2. Here
and below the limitn → ∞ is understood to be taken with
m/n → α ∈ (0,∞).

Theorem I.1. Assume|Mij | ≤ Mmax, Wij to be i.i.d. random
variables with mean0 variance

√
mnσ2 andE{W 4

ij} ≤ Cn2,
and that for each entry(i, j), Nij is observed (i.e.(i, j) ∈ E)
independently with probabilityp. Finally let M̂ = X0S0Y

T
0

be the rankr matrix reconstructed by step2 of OPTSPACE,
for the optimal choice ofλ. Then, almost surely forn → ∞

1

||M ||2F
||M̂ −M ||2F = 1−

−

{∑r
k=1 Σ

2
k

(
1− σ4

p2Σ4

k

)
+

}2

||Σ||2F
{∑r

k=1 Σ
2
k

(
1 +

√
ασ2

pΣ2

k

)(
1 + σ2

pΣ2

k

√
α

)} + on(1) .

This theorem focuses on a high-noise regime, and predicts
a sharp phase transition: ifσ2/p < Σ1, we can successfully
extract information onM , from the observationsNE . If on
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the other handσ2/p ≥ Σ1, the observations are essentialy
useless in reconstructingM . It is possible to prove [4] that the
resulting tradeoff between noise and observed entries is tight:
no algorithm can obtain relative mean square error smaller
than one forσ2/p ≥ Σ1, under a simple random model for
M . To the best of our knowledge, this is the first sharp phase
transition result for low rank matrix completion.

For the proof of Theorem I.1, we refer to Section III. An
important byproduct of the proof is that it provides a rule for
choosing the regularization parameterλ, in the large system
limit.

B. Related work

The importance of regularization in matrix completion is
well known to practitioners. For instance, one important com-
ponent of many algorithms competing for the Netflix challenge
[1], consisted in minimizing the cost functionHE(X,Y ;S) ≡
1
2 ||PE(N − X̃Ỹ T )||2F + 1

2λ ||X̃||2F + 1
2λ ||Ỹ ||2F (this is also

known asmaximum margin matrix factorization[5], [6]). Here
the minimization variables arẽX ∈ R

m×r, Ỹ ∈ R
n×r.

Unlike in OPTSPACE, these matrices are not constrained to
be orthogonal, and as a consequence the problem becomes
significantly more degenerate. Notice that, in our approach,
the orthogonality constraint fixes the norms||X||F , ||Y ||F .
This motivates the use of||S||2F as a regularization term.

Convex relaxations of the matrix completion problem were
recently studied in [7], [8]. As emphasized by Mazumder,
Hastie and Tibshirani [9], such nuclear norms relaxations
can be viewed as spectral regularizations of a least square
problem. Finally, the phase transition phenomenon in Theorem
I.1, generalizes a result of Johnstone and Lu on principal
component analysis [10], and similar random matrix models
were studied in [11].

II. N UMERICAL SIMULATIONS

In this section, we present the results of numerical sim-
ulations on synthetically generated matrices. The data are
generated following the recipe of [9]: sampleU ∈ R

n×r

andV ∈ Rm×r by choosingU ij andV ij independently and
indentically asN (0, 1). Sample independentlyW ∈ R

m×n

by choosingWij iid with distribution N (0, σ2
√
mn). Set

N = UV
T
+ W . We also use the parameters chosen in [9]

and define

SNR =

√
Var((UV

T
)ij)

Var(Wij)
,

TestError =
||P⊥

E (UV
T − N̂)||2F

||P⊥
E (UV T )||2F

,

TrainError =
||PE(N − N̂)||2F

||PE(N)||2F
,

whereP⊥
E (A) ≡ A− PE(A).

In Figure 1, we plot the train error and test error for the
OPTSPACE algorithm on matrices generated as above with
n = 100, r = 10, SNR=1 and p = 0.5. For comparison, we
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Fig. 1. Test (top) and train (bottom) error vs. rank for OPTSPACE, SOFT-
IMPUTE, HARD-IMPUTE and SVT. Herem = n = 100, r = 10, p =

0.5, SNR = 1.

also plot the corresponding curves for SOFT-IMPUTE,HARD-
IMPUTE and SVT taken from [9]. In Figures 2 and 3, we
plot the same curves for different values ofr, ǫ, SNR. In these
plots, OPTSPACE(λ) corresponds to the algorithm that min-
imizes the cost (3). In particular OPTSPACE(0) corresponds
to the algorithm described in [2]. Further,λ∗ = λ∗(ρ) is the
value of the regularization parameter that minimizes the test
error while using rankρ (this can be estimated on a subset of
the data, not used for training).

It is clear that regularization greatly improves the perfor-
mance of OPTSPACE and makes it competitive with the best
alternative methods.

III. PROOF OFTHEOREM I.1

The proof of Theorem 1 is based on the following three
steps: (i) Obtain an explicit expression for the root mean
square error in terms of right and left singular vectors ofN ;
(ii) Estimate the effect of the noiseW on the right and left
singular vectors;(iii) Estimate the effect of missing entries.
Step(ii) builds on recent estimates on the eigenvectors of large
covariance matrices [12]. In step(iii) we use the results of [2].
Step(i) is based on the following linear algebra calculation,
whose proof we omit due to space constraints (here and below
〈A,B〉 ≡ Tr(ABT )).
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Fig. 2. Test (top) and train (bottom) error vs. rank for OPTSPACE, SOFT-
IMPUTE, HARD-IMPUTE and SVT. Herem = n = 100, r = 6, p =

0.5, SNR = 1.

Proposition III.1. Let X0 ∈ Rm×r and Y0 ∈ Rm×r be the
matrices whose columns are the firstr, right and left, singular
vectors ofNE . Then the rank-r matrix reconstructed by step
2 of of OPTSPACE, with regularization parameterλ, has the
form M̂(λ) = X0S0(λ)Y

T
0 Further, there existsλ∗ > 0 such

that

1

mn
||M − M̂(λ∗)||2F = ||Σ||2F −

( 〈XT
0 MY0 , X

T
0 N

EY0〉√
mn||X0NEY0||F

)2

.

(5)

A. The effect of noise

In order to isolate the effect of noise, we consider the matrix
N̂ = pUΣV T +WE . Throughout this section we assume that
the hypotheses of Theorem I.1 hold.

Lemma III.2. Let (nz1,n, . . . , nzr,n) be ther largest singular
values ofN̂ . Then, asn → ∞, zi,n → zi almost surely, where,
for Σ2

i > σ2/p,

zi = pΣi

{
α

(
σ2

pΣ2
i

+
1√
α

)(
σ2

pΣ2
i

+
√
α

)}1/2

, (6)

and zi = σ
√
pα1/2(1 +

√
α) for Σ2

i ≤ σ2/p.
Further, let X ∈ Rm×r and Y ∈ Rn×r be the matrices

whose columns are the firstr, right and left, singular vectors
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Fig. 3. Test (top) and train (bottom) error vs. rank for OPTSPACE, SOFT-
IMPUTE, HARD-IMPUTE and SVT. Herem = n = 100, r = 5, p =

0.2, SNR = 10.

of N̂ . Then there exists a sequence ofr×r orthogonal matrices
Qn such that, almost surely|| 1√

m
UTX − AQn||F → 0,

|| 1√
n
V TY − BQn||F → 0 with A = diag(a1, . . . , ar),

B = diag(b1, . . . , br) and

a2i =
(
1− σ4

p2Σ4
i

)(
1 +

√
ασ2

pΣ2
i

)−1

,

b2i =
(
1− σ4

p2Σ4
i

)(
1 +

σ2

p
√
αΣ2

i

)−1

, (7)

for Σ2
i > σ2/p, while ai = bi = 0 otherwise.

Proof: Due to space limitations, we will focus here on the
caseΣ1, . . . ,Σr > σ2/p. The general proof proceeds along
the same lines, and we defer it to [4].

Notice thatWE is anm× n matrix with i.i.d. entries with
variance

√
mnσ2p and fourth moment bounded byCn2. It

is therefore sufficient to prove our claim forp = 1 and then
rescaleΣ by p andσ by

√
p. We will also assume that, without

loss of generality,m ≥ n.
Let Ẑ be anr×r diagonal matrix containing the eigenvalues

(nzn,1, . . . , nzn,r). The eigenvalue equations read

Uβ̂y +WY −XẐ = 0 , (8)

V β̂x +WTX − Y Ẑ = 0 . (9)



where we definedβ̂x ≡ ΣUTX, β̂y ≡ ΣV TY ∈
R

r×r. By singular value decomposition we can writeW =
Ldiag(w1, w2, . . . wn)R

T , with LTL = Im×m, RTR =
In×n.

Let uT
i , xT

i , vTi , yTi ∈ Rr be thei-th row of -respectively-
LTU , LTX, RTV , RTY . In this basis equations (8) and (9)
read

uT
i β̂y + wiy

T
i − xT

i Ẑ = 0 , i ∈ [n] ,

uT
i β̂y − xT

i Ẑ = 0 , i ∈ [m]\[n] ,
vTi β̂x + wix

T
i − yTi Ẑ = 0 , i ∈ [n] .

These can be solved to get

xT
i = (uT

i β̂yẐ + wiv
T
i β̂x)(Z

2 − w2
i )

−1 , i ∈ [n] ,

xT
i = uT

i β̂yẐ
−1 , i ∈ [m]\[n] ,

yTi = (vTi β̂xẐ + wiu
T
i β̂y)(Ẑ

2 − w2
i )

−1 , i ∈ [n]. (10)

By definition Σ−1β̂x =
∑m

i=1 uix
T
i , and Σ−1β̂y =∑n

i=1 viy
T
i , whence

Σ−1β̂x =

n∑

i=1

ui(u
T
i β̂yẐ + wiv

T
i β̂x)(Ẑ

2 − w2
i )

−1

+

m∑

i=n+1

uiu
T
i βyẐ

−1 , (11)

Σ−1β̂y =

n∑

i=1

vi(v
T
i β̂xẐ + wiu

T
i β̂y)(Ẑ

2 − w2
i )

−1. (12)

Let λ = w2
i α

1/2/(m2σ2). Then, it is a well known fact
[13] that asn → ∞ the empirical law of theλi’s converges
weakly almost surely to the Marcenko-Pastur law, with density

ρ(λ) = α
√
(λ− c2−)(c

2
+ − λ)/(2πλ), with c± = 1± α−1/2.

Let βx = β̂x/
√
m, βy = β̂x/

√
n, Z = Ẑ/n. A priori, it

is not clear that the sequence(βx, βy, Z) –dependent onn–
converges. However, it is immediate to show that the sequence
is tight, and hence we can restrict ourselves to a subsequence
Ξ ≡ {ni}i∈N along which a limit exists. Eventually we will
show that the limit does not depend on the subsequence, apart,
possibly, from the rotationQn. Hence we shall denote the
subsequential limit, by an abuse of notation, as(βx, βy, Z).

Consider now a such a convergent subsequence. It is possi-
ble to show thatΣ2

i > σ2/p impliesZ2
ii > α3/2σ2c+(α)

2 + δ
for some positiveδ. Since almost surely asn → ∞, w2

i <
α3/2σ2c+(α)

2 + δ/2 for all i, for all purposes the summands
on the rhs of Eqs. (11), (12) can be replaced by uniformly
continuous, bounded functions of the limiting eigenvaluesλi.
Further, each entry ofui (resp.vi) is just a single coordinate
of the left (right) singular vectors of the random matrixW .
Using Theorem1 in [12], it follows that any subsequential
limit satisfies the equations

βx = Σβy

{
Z

∫
(Z2 − α3/2σ2λ)−1ρ(λ)dλ+ (α− 1)Z−1

}
,

(13)

βy = Σβx

{
Z

∫
(Z2 − α3/2σ2λ)−1 ρ(λ) dλ

}
, . (14)

Solving for βy, we get an equation of the form

Σ−2βy = βy f(Z) (15)

wheref( · ) is a function that can be given explicitely using
the Stieltjis transform of the measureρ(λ)dλ. Equation (15)
implies thatβy is block diagonal according to the degeneracy
pattern ofΣ. Considering each block, eitherβy vanishes in
the block (a case that can be excluded usingΣ2

i > σ2/p)
or Σ−2

i = f(Zii) in the block. Solving forZii shows that
the eigenvalues are uniquely determined (independent of the
subsequence) and given by Eq. (6).

In order to determineβx and βy first observe that, since
Ir×r = Y TY =

∑n
i=1 yiy

T
i , we have, using Eq. (10)

Ir×r =
n∑

i=1

(Ẑ2 − w2
i )

−1(Ẑβ̂T
x vi + wiβ̂

T
y ui)

(vTi β̂xẐ + wiu
T
i β̂y)(Ẑ

2 − w2
i )

−1 .

In the limit n → ∞, and assuming a convergent subsequence
for (Z, βx, βy), this sum can be computed as above. After

Ir×r =
{∫

Z2

(Z2 − α3/2σ2λ)2
ρ(λ) dλ

}
Cx

+
{∫

α3/2σ2λ

(Z2 − α3/2σ2λ)2
ρ(λ) dλ

}
Cy ,

whereCx = βT
x βx, Cy = βT

y βy and the functions ofZ on
the rhs are defined as standard analyic functions of matrices.

Using Eqs. (13), (14) and solving the above, we getCx =
diag(Σ2

1a
2
1, . . .Σ

2
ra

2
r), and By = diag(Σ2

1b
2
1, . . .Σ

2
rb

2
r). We

already concluded thatβx and βy are block diagonals with
blocks in correspondence with the degeneracy pattern ofΣ.
SinceβT

x βx = Cx andβT
y βy = Cy are diagonal, with the same

degeneracy pattern, it follows that, inside each block of sized,
each ofβx andβy is proportional to ad×d orthogonal matrix.
Thereforeβx = ΣAQs, βy = ΣBQ′

s, for some othogonal
matricedQs, Q′

s. Also, using equation (13) one can prove
thatQs = Q′

s.
Notice, by the above argumentA, B are uniquely fixed by

our construction. On the other handQs might depend on the
subsequenceΞ. Since our statmement allows for a seqence
of rotationsQn, that depend onn, the eventual subsequence
dependence ofQs can be factored out.

It is useful to point out a straightforward consequence of
the above.

Corollary III.3. There exists a sequence of orthogonal ma-
tricesQn ∈ Rr×r such that, almost surely,

lim
n→∞

∣∣∣
∣∣∣ 1√

mn
XTUΣV TY −QnDQT

n

∣∣∣
∣∣∣
F

= 0 , (16)

with D = diag(Σ1a1b1, . . . ,Σrarbr).

B. The effect of missing entries

The proof of Theorem I.1 is completed by estabilishing a
relation between the singular vectorsX0, Y0 of NE and the
singular vectorsX andY of N̂ .



Lemma III.4. Let k ≤ r be the largest integer such that
Σ1 ≥ · · · ≥ Σk > σ2/p, and denote byX(k)

0 , Y (k)
0 , X(k), and

Y (k) the matrices containing the firstk columns ofX0, Y0,
X, andY , respectively. LetX(k)

0 = X(k)Sx +X
(k)
⊥ , Y (k)

0 =

Y (k)Sy + Y
(k)
⊥ where (X

(k)
⊥ )TX(k) = 0, (Y (k)

⊥ )TY (k) = 0
and Sx, Sy ∈ Rr×r. Then there exists a numerical constant
C = C(Σi, σ

2, α,Mmax), such that, with high probability,

||X(k)
⊥ ||2F , ||Y (k)

⊥ ||2F ≤ Cr

√
1

n
, (17)

with probability approaching1 as n → ∞.

Proof: We will prove our claim for the right singular
vectorY , since the left case is completely analogous. Further
we will drop the superscriptk to lighten the notation.

We start by noticing that||NEY0||2F =
∑k

a=1(nz̃a,n)
2,

where nz̃a,n are the singular values ofNE . Using Lemma
3.2 in [2] which bounds||ME − pM ||2 = ||NE − N̂ ||2, we
get

||NEY0||2F ≥
k∑

a=1

(nza,n − CMmax
√
pn)

2
. (18)

On the other hand||NEY0||F ≤ ||N̂Y0||F + ||NE −
N̂ ||2||Y0||F . Further by lettingSy = LyΘyR

T
y , for Ly, Ry

orthogonal matrices, we get||N̂Y0||2F = ||N̂Y LyΘy||2F +

||N̂Y⊥||2F . Since Y T
0 Y0 = Ik×k, we have Ik×k =

RyΘ
T
y ΘyR

T
y + Y T

⊥ Y⊥, and therefore

||N̂Y0||2F = ||N̂Y Ly||2F − ||N̂Y LyR
T
y Y

T
⊥ ||2F + ||N̂Y⊥||2F

≤ n2
k∑

a=1

z2a,n − n2z2k,n||Y⊥||2F

+n2pσ2α(c+(α) + δ)||Y⊥||2F

= n2
k∑

a=1

z2a,n − n2ey||Y⊥||2F ,

whereey ≡ z2k,n − pσ2α(c+(α) + δ), and used the inequality
||N̂Y⊥||2F ≤ n2pσ2α(c+(α) + δ)||Y⊥||2F which holds for all
δ > 0 asymptotically almost surely asn → ∞ (by an
immediate generalization of Lemma III.2). It is simple to
check thatΣk ≥ σ2/p implies ey > 0.

Using triangular inequality, Lemma 3.2 in [2], we get

||NY0||2F ≤ n2
r∑

a=1

z2a,n − n2ey||Y⊥||2F + Cnpα3/2M2
maxr

+2Cn
√
npα3/4Mmax

√
r||z|| ,

which, combined with equation (18), implies the thesis.
Proof of Theorem I.1: We now turn to upper bounding

the right hand side of Eq. (5). Letk be defined as in the
last lemma. Notice that by Lemma III.2,XT (UΣV T )Y is
well approximated by(X(k))T (UΣV T )Y (k). Analogously, it
can be proved thatXT

0 (UΣV T )Y0 is well approximated by
(X

(k)
0 )T (UΣV T )Y

(k)
0 . Due to space limitations, we will omit

this technical step and thus focus here on the casek = r

(equivalently, neglect the error incurred by this approxima-
tion).

Using Lemma III.4 to bound the contribution ofX⊥, Y⊥,
we have

〈XT
0 (UΣV T )Y0 , X

T
0 N

EY0〉
= 〈ST

x X
T (UΣV T )Y Sy , X

T
0 N

EY0〉(1 + on(1))

= 〈XT (UΣV T )Y , ST
x X

T
0 N

EY0Sy〉(1 + on(1)) . (19)

FurtherXT
0 N

EY0 = XT
0 N̂Y0 +XT

0 (N
E − N̂)Y0 and, using

once more the bound in Lemma 3.2 of [2], that implies
|XT

0 (N
E − N̂)Y0| ≤ Cr

√
nrp, we get

ST
x X

T
0 N

EY0Sy = LxΘ
2
xL

T
xX

T N̂Y RyΘ
2
yR

T
y + E1

= Z + E2 ,

where we recall thatZ is the diagonal matrix with entries
given by the singular values of̂N , and ||E1||2F , ||E2||2F ≤
C(p, r)

√
n. Using this estimate in Eq. (19), together with the

result in Lemma III.2, we finally get

〈XT
0 (UΣV T )Y0 , X

T
0 N

EY0〉√
mn||XT

0 N
EY0||2F

≥
∑r

k=1 Σkakbkzk√
α||z|| − on(1) ,

which implies the thesis after simple algebraic manipulations
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