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Abstract

An elector sits on each vertex of an infinite tree of degree k, and has to decide between two alter-
natives. At each time step, each elector switches to the opinion of the majority of her neighbors. We
analyze this majority process when opinions are initialized to independent and identically distributed
random variables.

In particular, we bound the threshold value of the initial bias such that the process converges to
consensus. In order to prove an upper bound, we characterize the process of a single node in the large k-
limit. This approach is inspired by the theory of mean field spin-glass and can potentially be generalized
to a wider class of models. We also derive a lower bound that is non-trivial for small, odd values of k.

1 Definitions and main results

1.1 The majority process

Consider a graph G with vertex set V, and edge set E . In the following, we shall denote by ∂i the
set of neighbors of i ∈ V, and assume |∂i| < ∞ (i.e. G is locally finite). To each vertex i ∈ V we
assign an initial spin σi(0) ∈ {−1,+1}. The vector of all initial spins is denoted by σ(0). Configuration
σ(t) = {σi(t) : i ∈ V} at subsequent times t = 1, 2, . . . are determined according to the following majority
update rule. If ∂i is the set of neighbors of node i ∈ V, we let

σi(t + 1) = sign
(∑

j∈∂i

σj(t)
)

(1)

when
∑

j∈∂i σj(t) 6= 0. If
∑

j∈∂i σj(t) = 0, then we let

σi(t + 1) =

{
σi(t) with probability 1/2,
−σi(t) with probability 1/2.

(2)

In order to construct this process, we associate to each vertex i ∈ V, a sequence of i.i.d. Bernoulli(1/2)
random variables Ai = {Ai,0, Ai,1, Ai,2 . . . }, whereby Ai,t is used to break the (eventual) tie at time t. A
realization of the process is then determined by the triple (G,A, σ(0)), with A = {Ai}.

In this work we will study the asymptotic dynamic of this process when G is an infinite regular tree of
degree k ≥ 2. Let Pθ be the law of the majority process where, in the initial configuration, the spins σi(0)
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are i.i.d. with Pθ{σi(0) = +1} = (1 + θ)/2. We define the consensus threshold as the smallest bias in the
initial condition such that the dynamics converges to the all +1 configuration

θ∗(k) = inf
{

θ : Pθ

(
lim
t→∞

σ(t) = +1
)

= 1
}

. (3)

Here convergence to the all-(+1) configuration is understood to be pointwise. We shall call θ∗(k) the
consensus threshold of the k-regular tree.

Two simple observations will be useful in the following:

Monotonicity. Denote by � the natural partial ordering between configurations (i.e. σ � σ ′ if and
only if σi ≥ σ′i for all i ∈ V). Then the majority dynamics preserves this partial ordering. More precisely,
given two copies of the process with initial conditions σ(0) � σ ′(0), there exists a coupling between them
such that σ(t) � σ′(t) for all t ≥ 0.

Symmetry. Let −σ denote the configuration obtained by inverting all the spin values in σ. Then two
copies of the process with initial conditions σ ′(0) = −σ(0) can be coupled in such a way that σ ′(t) = −σ(t)
for all t ≥ 0.

It immediately follows from these properties that

0 ≤ θ∗(k) ≤ 1 .

It is not too difficult to show that θ∗(k) < 1 for all k. A simple quantitative estimate is provided by the
next result.

Lemma 1.1. For all k ≥ 3, denote by ρc(k) the threshold density for the appearance of an infinite cluster
of occupied vertices in bootstrap percolation with threshold b(k + 1)/2c. Then

θ∗(k) ≤ θu(k) ≡ 1− 2ρc(k) < 1 . (4)

A numerical evaluation of this upper bound [FS08] yields θu(5) ≈ 0.670, θu(6) ≈ 0.774, θu(7) ≈ 0.600.

It is possible to show that θu = O

(√
log k

k

)
. We will prove a much tighter bound in Theorem 1.4.

The next Lemma simplifies the task of proving upper bounds on θ∗(k) for large k.

Lemma 1.2. Assume G to be the regular tree of degree k. There exists k∗, δ∗ > 0 such that for k ≥ k∗, if
Eθ{σi(t)} > 1− (δ∗/k), then θ∗(k) ≤ θ.

The proofs of the Lemmas 1.1 and 1.2 can be found in Section 2.
Notice that the consensus threshold θ∗ is well defined for a general infinite graph G. If G is finite,

then trivially θ∗(G) = 1: indeed for any θ < 1 there is a positive probability that σ(0) is the all −1
configurations. However, given a sequence of graphs with increasing number of vertices n, one can define
a threshold function θ∗,n(γ) such that σ(t) → +1 with probability γ for θ = θ∗,n(γ). It is an open
question to determine which graph sequences exhibit a sharp threshold (in the sense that θ∗,n(γ) has a
limit independent of γ ∈ (0, 1) as n →∞).

We carried out numerical simulations with random regular graphs of degree k. In this case, there appears
to be a sharp threshold bias that converges, as n → ∞ to a limit θ∗,rgraph(k). Above this threshold, the
dynamics converges with high probability to all +1. Below this threshold, the dynamics converges instead
to either a stationary point or to a length-two cycle [GO80]. Threshold biases found for small values of k
were 1:

1We used graphs of size up to n = 5 · 104, generated according to a modified configuration model [Bol80] (with eventual
self-edges and double edges rewired randomly). The initial bias was implemented by drawing a uniformly random configuration
with n(1 + θ)/2 spins σi = +1.
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k θ∗,config(k)

3 0.58 ± 0.01
4 0.000 ± 0.001
5 0.054 ± 0.001
6 0.000 ± 0.001
7 0.010 ± 0.001

The empirical threshold approaches 0 rapidly with increasing k, for k odd, and appears to be identically
0 for all even k. It is natural to expect that the behavior of majority dynamics on infinite trees and on
random graphs should be intimately related.

1.2 Results

We can now state our main results. We first state a sequence of recursively computable lower bounds.
The formal definition of this recursion is deferred to Section 4, along with a discussion of its numerical
implementation.

Theorem 1.3. Let Ψodd,T (σT
0 ||uT

0 ) be defined recursively as in Lemma 4.7 below for all T ≥ 0 and σT
0 ,

uT
0 ∈ {−1,+1}T+1. Define θlb(k, T ) ≡ sup{θ ∈ [0, 1] : Ψ̄odd,T (σT

0 ||uT
0 ) > 0 for all σT

0 , uT
0 }. Then, for every

k, T

θ∗(k) ≥ θlb(k, T ) . (5)

The recursion in Lemma 4.7 allows us to determine θlb(k, T ) through a number of operations (sums
and multiplications) of order 2k(T+1)(T + k) for each iteration, with a naive implementation. As explained
in Section 4, the recursion can be considerably simplified exploiting the symmetries of the problem, while
remaining exponential in k and T . Evaluating the lower bound for k = 3, 5, 7 and T = 3 we get
θ∗(3) > 0.573, θ∗(5) > 0.052, and θ∗(7) > 0.0080. This shows convincingly that θ∗(k) > 0 for k ≤ 7, k
odd. A completely analytical study of the lower bound for T = 0 also confirms that indeed θ∗(3) > 0. For
k > 3 it is necessary to consider larger values of T .

While for small odd k the consensus threshold is strictly positive, our next result shows that it ap-
proaches 0 very rapidly as k →∞.

Theorem 1.4. The consensus threshold on k regular trees converges to 0 as k → ∞ faster than any
polynomial. In other words, for any M > 0, there exists C(M) > 0 such that

θ∗(k) ≤ C(M) k−M . (6)

1.3 The dynamic cavity method

Fix a vertex i ∈ V, and consider the process {σi(t)}t≥0. A key step in the proof of Theorem 1.4 is to
establish the convergence of this process to a limit as k →∞. We will call this limit the cavity process, for
the case of unbiased initialization (i.e. for θ = 0).

Definition 1.5. Let C = {C(t, s)}t,s∈Z+ be a positive definite symmetric matrix, and R = {R(t, s)}t>s∈Z+ ,
h = {h(t)}t∈Z+ two arbitrary set of real numbers.

A sample path of the effective process with parameters C,R, h is generated as follows: Let σ(0) be
a Bernoulli(1/2) random variable and {η(t)}t∈Z+ be jointly Gaussian zero mean random variables with
covariance C, independent from σ(0). For any t ≥ 0 we let

σ(t + 1) = sign

(
η(t) +

t−1∑

s=0

R(t, s)σ(s) + h(t)

)
. (7)
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Notice that the distribution of the effective process depends on the three parameters C,R, h. We will
denote expectation with respect to its distribution as EC,R,h. The functions C( · , · ) and R( · , · ) will be
referred to as correlation and response functions. By convention, we let R(t, s) = 0 if t ≤ s.

Definition 1.6. Let C,R be such that

C(t, s) = EC,R,0 [σ(t)σ(s)] ∀ t, s ≥ 0 , (8)

R(t, s) =
∂

∂h(s)
EC,R,h[σ(t)]

∣∣∣∣
h=0

∀ 0 ≤ s < t . (9)

The cavity process {σ(t)}t∈Z+ is then defined as the effective process with parameters C, R and with h = 0.

In the following we will denote by Pcav the law of the cavity process.

Theorem 1.7. Consider the majority process on a regular tree of degree k with uniform initialization
θ = 0. Then for any i ∈ V and T ≥ 0, we have

lim
k→∞

Pθ=0

{
(σi(0), . . . , σi(T )) = (σ(0), . . . , σ(T ))

}
= Pcav

{
σ(0), . . . , σ(T )

}
. (10)
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Figure 1: Change of bias Eσi(t) over time t, with with initial bias Eσi(0) ≡ θ = 0.5/k (i.e., in our notation
T∗ = 1, ω0 = 0.5). The ‘prediction’ is based on ω1, . . . , ωT∗ computed according to Eq. (51) and ωT∗+1

computed according to the modified cavity process (see Lemma 3.11 and Eq. (75)).

In Section 3 we state and prove a generalization of this theorem to the biased case θ > 0, cf. Theorem
3.1. This limit characterization will be used to prove Theorem 1.4, but also provides a fairly precise
description of the majority process for moderately large k. Informally, if θ ≈ ω0/k

(T∗+1)/2, then almost
complete consensus is reached sharply at iteration T∗+2. This phenomenon is illustrated through numerical
simulations in Figures 1 and 2. The prediction provided by our method is quite accurate already for k & 15.
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Figure 2: Change of bias Eσi(t) over time t, with initial bias θ = Eσi(0) = 2.5/k2 (i.e. T∗ = 3, ω0 = 2.5).

1.4 Motivation and related work

The majority process is a simple example of a stochastic dynamics evolving according to local rules on
a graph. In the last few years, considerable effort has been devoted to the study of high-dimensional
probability distributions with an underlying sparse graph structure [MM09]. Such distributions are referred
to as Markov random fields, graphical models, spin models or constraint satisfaction problems, depending
on the context. Common algorithmic and analytic tools were developed to address a number of questions
ranging from statistical physics to computer science. Among such tools, we recall local weak convergence
[AS03], correlation decay [We06], variational approximations, and the cavity method [MPZ03, KM+07].

The objective of the present paper is to initiate a similar development in the context of stochastic
dynamical processes that ‘factor’ according to a sparse graph structure. Rather than addressing a generic
setting, we focus instead on a challenging concrete question, and try to develop tools that are amenable to
generalization.

The majority process can be regarded as a example of interacting particle system [Lig85] or as a cellular
automaton, two topics with a long record of important results. In particular, it bears some resemblance
with the voter model. The latter is however considerably simpler because of the underlying martingale
structure. Further, the voter model does not exhibit any sharp threshold for θ∗(k) < 1.

More closely related to the model studied in this paper is zero-temperature Glauber dynamics for the
Ising model, which obeys the same update rule as in Eqs. (1), (2). Fontes, Schonmann, and Sidoravicius
[FSS02] studied this dynamics on d-dimensional grids, proving that the consensus threshold is θ∗ < 1
for all d ≥ 2. Positive-temperature Glauber dynamics on trees was the object of several recent papers
[BK+05, MSW03]. While no ‘complete consensus’ can take place for positive temperature, at small enough
temperature this model exhibits coarsening, namely the growth of a positively (or negatively) biased
domain. In particular, Caputo and Martinelli [CM05] proved that the corresponding threshold θ∗,coars(k) →
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0 as k →∞. Let us stress that Glauber dynamics is defined to be asynchronous: each spin is updated at
the arrival times of an independent Poisson clock of rate 1. While our methods are somewhat simpler to
apply to the synchronous case, we think that they can be generalized to the asynchronous setting as well.

The main technical ideas developed in this paper are quite far from the ones within interacting particle
systems. More precisely, we develop a dynamical analogue of the so-called ‘cavity method’ that has been
successful in the analysis of probabilistic models on sparse random graphs. The basic idea in that context
is to exploit the locally tree-like structure of such graphs to derive an approximate dynamic-programming
type recursion. This idea was further developed mathematically in the local weak convergence framework
of Aldous and Steele [AS03]. Adapting this framework to the study of a stochastic process is far from
straightforward. First of all, one has to determine what quantity to write the recursion for. It turns out
that an exact recursion can be proved for the probability distribution of the trajectory of the root spin
in a modified majority process (see Section 3.2 for a precise definition). The next difficulty consists in
extracting useful information from this recursion which is rather implicit and intricate. We demonstrate
that this can be done for large k using an appropriate local central limit theorem proved in Appendix A.
This allows to prove convergence to the cavity process, see Theorems 1.7 and 3.1.

The use of a dynamic cavity method for analyzing stochastic dynamics was pioneered in the statistical
physics literature on mean field spin glasses, see [MPV87] for a lucid discussion. This approach allows
to derive limit deterministic equations for the covariance and the ‘response function’ of the process under
study. The study of such equations lead to a deeper understanding of fascinating phenomena such as
‘aging’ in spin glasses [BC+97]. For some models, the limit equations were proved rigorously after a tour
de force in stochastic processes theory [BDG06]. Theorem 1.7 presents remarkable structural similarities
with these results. It suggests that this type of approach might be useful in analyzing a large array of
stochastic dynamics on graphs.

Let us also mention that there are strong mathematical similarities between the dynamic cavity method
adopted here, and the cavity analysis of quantum spin models on trees, see for instance [KR+08, LSS08].

Beyond its mathematical interest, the majority process and similar models have been studied in the
economic theory literature [Mor00, Kle07], within the general theme of ‘learning in games’. In this context,
each node corresponds to a strategic agent and each of the two states to a different strategy. The dynamics
studied in this paper is just a best-response dynamics, whereby each agent plays a symmetric coordination
game with each of its neighbors. It would be interesting to apply the present methodology to more general
game-theoretic models.

2 Proof of Lemmas 1.1 and 1.2

This Section presents the proofs of Lemmas 1.1 and 1.2, with some auxiliary results proved in the second
subsection.

2.1 Proofs

Proof. (Lemma 1.1) Consider the subgraph G+ of G induced by vertices i ∈ V, such that σi(0) = +1:
each vertex belongs to this subgraph independently with probability (1 + θ)/2. Let G+,q be the maximal
subgraph of G+ with minimum degree q = k − b(k + 1)/2c + 1. It is clear that no vertex in G+,q ever flips
to −1 under the majority process. Consider a modified initial condition such that σi(0) = +1 for i ∈ G+,q,
and σi(0) = −1 otherwise. By monotonicity of the dynamics, it is sufficient to show that such a modified
initial condition converges to +1 under the majority process.

Notice that H = G\G+,q is the final configuration of a bootstrap percolation process with initial density
ρ = (1− θ)/2 and threshold b(k +1)/2c (a vertex joins if at least b(k + 1)/2c of its neighbors have joined).
It is proven in [FS08, Theorem 1.1] that there exists ρc(k) > 0 such that, for ρ < ρc(k), H is almost surely
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the disjoint union of a of countable number of finite trees. This implies the thesis. Indeed we can restrict
our attention to any such finite tree occupied by −1, and surrounded by +1 elsewhere. On such a tree,
the set of vertices such that of σi(t) = −1 never increases, and at least one vertex quits the set at each
iteration. Therefore, any such tree turns to +1 in finitely many iterations.

Proof. (Lemma 1.2) Let Gn = ([n], En) be a random graph of degree k over n vertices distributed according
to the configuration model. We recall that a graph is generated with this distribution by attaching k
labeled half-edges to each vertex i ∈ [n] and pairing them according to a uniformly random matching
among nk objects.

The proof of Lemma 1.2 is based on the analysis of the majority process on the graph Gn. We will
denote by Pθ,n the law of this process when the spins {σi(0)}i∈[n] are initialized to i.i.d. random variables
with Eθ,n{σi(0)} = θ. We use the following auxiliary results.

Lemma 2.1. For any fixed i ∈ N, j ∈ V and t ≥ 0 we have

lim
n→∞

Eθ,n{σi(t)} = Eθ{σj(t)} . (11)

Lemma 2.2. Let {σi(t)}i∈[n],t∈Z+
be distributed according to the majority process on Gn, and define

B(k, t) ≡ 4(t + 1)(kt+1 − 1)2/(k − 1)2. Then

Pθ,n

{∣∣∣∣∣

n∑

i=1

σi(t)− nEθ,nσ1(t)

∣∣∣∣∣ ≥ nε

∣∣∣∣∣Gn

}
≤ 2 exp

{
− nε2

2B(k, t)

}
. (12)

Lemma 2.3. There exists δ∗, k∗ > 0 such that for any k ≥ k∗ there is a set Sk,n of ‘good graphs’ such that
P{Gn ∈ Sk,n} → 1, and the following happens. For any Gn ∈ Sk,n and any initial condition {σi(0)}i∈[n] on
the vertices of Gn with

∑n
i=1 σi(0) ≥ n(1− 2δ∗/k), we have

n∑

i=1

(1− σi(1)) ≤
3

4

n∑

i=1

(1− σi(0)) . (13)

Let us now turn to the actual proof. Choose δ∗ and k∗ as per Lemma 2.3 and assume k ≥ k∗. By
assumption there exists a time t∗ such that Eθ{σi(t∗)} ≥ 1− δ∗/k. By Lemmas 2.1 and 2.2, for all n large
enough we have

Pθ,n

{
n∑

i=1

σi(t∗) ≥ n

(
1− 2

δ

k

)}
≥ 1− e−Cn . (14)

Assume
∑n

i=1 σi(t∗) ≥ n
(
1− 2 δ∗

k

)
and Gn ∈ Sk,n. Then, by Lemma 2.3, and any t ≥ t∗ we have

n∑

i=1

(1− σi(t)) ≤ n (3/4)t−t∗ . (15)

Combining this with the above remarks, and using the symmetry of the graph distribution with respect to
permutation of the vertices, we get

Pθ,n{σ1(t) 6= +1} ≤ 2(3/4)t−t∗ + P{Gn 6∈ Sk,n}+ e−Cn . (16)

By Lemma 2.1, this implies Pθ{σi(t) 6= +1} ≤ 5(3/4)t−t∗ which, by Borel-Cantelli implies σi(t) → +1
almost surely, whence the thesis follows.
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2.2 Auxiliary lemmas

Proof. (Lemma 2.1) Fix a vertex i in Gn, and denote by Bi(t) the subgraph induced by vertices whose
distance from i is at most t. The value of σi(t) only depends on Gn through the Bi(t). If Bi(t) is a k-regular
tree of depth t (to be denoted by T(t)) then the distribution of σj(t) is the same that would be obtained
on G, whence

|Eθ,n{σi(t)} − Eθ{σj(t)}| ≤ 2 Pθ,n{Bi(t) 6' T(t)} .

The thesis follows since Pθ,n{Bi(t) 6' T(t)} ≤ At/n for some constant A (dependent only on k.

Proof. (Lemma 2.2). Let Xn(t) ≡ ∑n
i=1 σi(t). This is a deterministic function of the n(t + 1) bounded

random variables {σi(0)}i∈[n] and of {Ai,s}i∈[n],s≤t. Further, it is a Lipschitz function with constant
L(k, t) ≤ 2(kt+1 − 1)/(k − 1), because any change in σi(0), or Ai,s only influences the values σj(t) within
a ball of radius t around i. By Azuma-Hoeffding inequality

Pθ,n {|Xn(t)− Eθ,nXn(t)| ≥ ∆} ≤ 2 exp

{
− ∆2

2n(t + 1)L(k, t)2

}
(17)

which implies the thesis.

Proof. (Lemma 2.3) Although the proof follows from a standard expansion argument, we reproduce it here
for the convenience of the reader.

Recall that a graph Gn over n vertices is a (k(1 − ε), δ/k) (vertex) expander if each subset W of at
most nδ/k vertices is connected to at least k(1− ε)|W| vertices in the rest of the graph. It is known that
there exists δ∗ > 0 such that, for all k large enough, a random k regular graph is, with high probability,
a (3k/4, δ∗/k) expander [HLW06]. We let Sk,n be the set of k-regular graphs Gn that are (3k/4, δ∗/k)
expanders.

Let W be the set of vertices i ∈ [n] such that σi(0) = −1. By hypothesis |W| ≤ nδ/k. Denote by n−
the number of vertices in [n] \W that have at least dk/2e neighbors in W (and hence such that potentially
σi(1) = −1), and by n+ the set of vertices that have between 1 and dk/2e − 1 neighbors in W. Further,
let l be the number of edges between vertices in W. Then

⌈
k

2

⌉
n− + n+ + 2l ≤ k |W| , n− + n+ ≥ 3

4
k |W| ,

where the first inequality follows by edge-counting and the second by the expansion property. By taking
the difference of these inequalities, we get

(⌈
k

2

⌉
− 1

)
n− + 2l ≤ k

4
|W| .

Let W ′ be the set of vertices such that σi(1) = −1. It is easy to see that |W ′| ≤ n− + (2l)/dk/2e, and
therefore

|W ′| ≤ k

4(dk/2e − 1)
|W| .

which yields the thesis.
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3 The dynamic cavity method and proof of Theorem 1.4

In this Section we prove the upper bound in Theorem 1.4, as well as the convergence to the cavity process
in Theorem 1.7. Indeed, we will prove the following stronger result that implies both these theorems.

Theorem 3.1. For T∗ a non-negative integer and ω0 ≥ 0, consider the majority process on a regular tree
of degree k with i.i.d. initialization with bias θ = ω0/k

(T∗+1)/2. Then for any i ∈ V and T ≤ T∗, we have

(σi(0), σi(1), . . . , σi(T ))
d→ (σcav(0), σcav(1), . . . , σcav(T ))

where {σcav(0)}t≥0 is distributed according to the cavity process and convergence is understood to be in
distribution as k →∞.

Further, if ω0 > 0, then for any i ∈ V and T ≥ T∗ + 2, we have

(σi(0), σi(1), . . . , σi(T ))
d→ (σcav(0), σcav(1), . . . , σcav(T∗), σ(T∗ + 1),+1,+1, . . . ,+1) (18)

where the random variable σ(T∗ +1) dominates stochastically σcav(T∗+1), and P{σ(T∗+1) > σcav(T∗+1)}
is strictly positive.

Finally, there exist A = A(ω0), with A(ω0) > 0 for ω0 > 0 such that, for any T ≥ T∗ + 2,

Eθ{σi(T )} ≥ 1− e−A(ω0)k . (19)

Clearly, Theorem 1.7 is a special case of the last statement (just take T∗ large enough and ω0 = 0). As
for Theorem 1.4, it is sufficient to choose T∗ = 2M and use Eq. (19) to check the assumptions of Lemma
1.2.

The proof of Theorem 3.1 is organized as follows. We start by proving some basic properties of the
cavity process in Section 3.1. We then prove an exact (albeit quite complicated) recursive characterization
of the process {σi(t)}t≥0 for i ∈ V in Section 3.2. We state a version of the central limit theorem in Section
3.3. A proof of Theorem 1.7 follows in Section 3.4. It is convenient to prove the unbiased case separately,
since it is technically simpler. Finally, in Section 3.5 we derive a delicate relationship between the biased
and unbiased processes and prove Theorem 3.1.

Throughout this section we use the following notations. For a sequence a(0), a(1), a(2), . . . , and given
t ≥ s, we let at

s ≡ (a(s), a(s+1), . . . , a(t)). Further, given the correlation and response functions C and R,
and an integer T ≥ 0, we define the (T +1)×(T +1) matrices CT = {C(t, s)}t,s≤T and RT = {R(t, s)}s<t≤T .

Given m ∈ Rd and Σ ∈ Rd×d, we let φm,Σ(x) be the density at x of a Gaussian random variable with
mean µ and covariance Σ. Finally, if A ∈ Rd is a rectangle, A = [a1, b1] × [a2, b2] × · · · × [ad, bd] (with
ai ≤ bi), we let

Φm,Σ(A) ≡
∫

A
φm,Σ(x)

∏

i∈[d]: bi>ai

dxi . (20)

Notice that those coordinates such that ai = bi are not integrated over. For a partition {1, . . . , d} =
I0 ∪ I+ ∪ I−, and a vector a ∈ Zd, with ||a||∞ ≤ B log N , define

A(a, I) ≡ {z ∈ Zd : zi = ai ∀ i ∈ I0, zi ≥ ai ∀ i ∈ I+, zi ≤ ai ∀ i ∈ I−} , (21)

A∞(I) ≡ {z ∈ Rd : zi = 0 ∀ i ∈ I0, zi ≥ 0 ∀ i ∈ I+, zi ≤ 0 ∀ i ∈ I−} . (22)
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3.1 The cavity process

We start by checking that the cavity process is indeed well defined.

Lemma 3.2. The cavity process exists and is unique.

Proof. By the definition of cavity process, the statement is equivalent to the following: For every T ≥ 0,
there exists unique CT , RT , such that Eq. (8) is satisfied for all s, t ≤ T and Eq. (9) is satisfied for all
s < t ≤ T . We will abbreviate this by saying simply that Eqs. (8) and (9) are satisfied up to T . We will
prove this statement by induction over T . More precisely, we consider the following statements

SE(T ) ≡ ‘A pair (CT , RT ) satisfying Eqs. (8), (9) up to T exists, with CT positive semidefinite’,

SU (T ) ≡ ‘There is a unique pair (CT , RT ) satisfying Eqs. (8), (9) up to T .’

We further let S(T ) ≡ SE(T ) ∧ SU (T ). We will prove by induction that S(T ) holds for every T . Clearly,
S(0) holds with C(0, 0) = 1.

Suppose S(T ) holds. Denote by CT and RT the corresponding covariance and response function, that
exist and are unique by hypothesis. Let (σ(0), σ(1), . . . , σ(T + 1)) be a sample path of the uniquely defined
effective process with parameters CT , RT and h as per Eq.(7). Define C(s, T +1) = C(T +1, s), R(T +1, s)
for all s ≤ T by Eqs. (8), (9) with t = T + 1. Set C(T + 1, T + 1) = 1. Let the corresponding matrices
be denoted by CT+1, RT+1. Notice that CT+1 is positive semidefinite by construction. By the induction
hypothesis Eqs. (8) and (9) are satisfied up to T . By construction they are also satisfied up to T + 1.
and thus SE(T + 1) holds. Also, this procedure uniquely determines CT+1 and RT+1, whence SU (T + 1)
follows.

Lemma 3.3. Let {C(t, s)}t,s≥0 be the correlation function of the cavity process. For any T ≥ 0 the matrix
CT is strictly positive definite, and P(σT

0 = ωT
0 ) > 0 for each ωT

0 ∈ {±1}T+1.

Proof. As a preliminary remark notice that, by Lemma 3.2, R(t, s) is well defined for all s < t. Moreover,
it is easy to see that it is always finite.

We prove the lemma by induction. Clearly, C0 is positive definite and P(σ(0) = ±1) = 1
2 > 0. Suppose,

CT is positive definite. Now, from the definition of the cavity process, we have

P(σT+1
0 = ωT+1

0 ) =
1

2
Φµ(ωT

0 ),CT
(A∞(IC(ω))), (23)

where IC(ωT
0 ) is the partition of {1, 2, . . . , T} defined as follows

IC(ω) ≡ (∅, IC,+, IC,−) , IC,+ = {i : ω(i + 1) = +1}, IC,− = {i : ω(i + 1) = −1}, (24)

µ(ωT
0 ) ≡ (µ0(ω

T
0 ), . . . , µt(ω

T
0 )) with µr(ω

T
0 ) ≡

r−1∑

s=0

R(r, s)ω(s) . (25)

Since CT is positive definite, we have Φµ(ωT
0 ),CT

(x) > 0 ∀x ∈ RT+1, whence P(σT+1
0 = ωT+1

0 ) > 0 for all

ωT+1
0 ∈ {−1,+1}T+2. Notice that CT+1 is positive semidefinite by the definition of cavity process. If CT+1

is not strictly positive definite, there must be a linear combination of (σ(0), . . . , σ(T + 1)) that is equal to
0 with probability 1. Since the distribution of σT+1

0 gives positive weight to each possible configuration,
there must exist a non-trivial linear function in RT+2 that vanishes on very point of {±1}T+2, which is
impossible. This proves that CT+1 is strictly positive definite.

The above proof provides, in fact, a procedure to determine C(t, s) and R(t, s) by recursion over
t. However, while the recursion for C consists just of a multi-dimensional integration over the Gaussian
variables {η(t)}, the recursion for R, cf. Eq. (9) is a priori more complicated since it involves differentiation
with respect to h. The next lemma provides more explicit expressions.
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Lemma 3.4. The correlation and response functions C and R of the cavity process are determined by the
following recursion

C(t + 1, s) =
1

2

∑

ωt+1
0 ∈{±1}(t+2)

ω(t + 1)ω(s) Φµ(ωt
0),Ct

(A∞(IC(ω))), ∀ 0 ≤ s ≤ t, (26)

R(t + 1, s) =
1

2

∑

ωt+1
0 ∈{±1}(t+2)

ω(t + 1)ω(s + 1) Φµ(ωt
0),Ct

(A∞(IR(ω, s))), ∀ 0 ≤ s ≤ t, (27)

with boundary condition R(t, s) = 0 for t ≤ s, C(t, t) = 1 and C(s, t) = C(t, s). Here, IC and IR are
partitions of T = {0, 1, . . . , t} of the form I ≡ (I0, I+, I−), with IC and µ defined as per Eq. (25) with
T = t and IR is defined by

IR(ω, s) ≡ ({s}, IR,+, IR,−), IR,+ = {i : ω(i + 1) = +1}\{s}, IR,− = {i : ω(i + 1) = −1}\{s} . (28)

Proof. Equation (26) follows directly from Eq. (8) and Eq. (23). We only need to prove Eq. (27).
Let I = {0, . . . , t} and, for S ⊂ I, define the rectangle R(ω, S,R, h) ⊆ Rt+1 as the set of vectors

ηt
0 = (η(0), . . . , η(t)) such that

η(r) +

r−1∑

s=0

R(r, s)ω(s) + h(r) = 0 for all r ∈ S , (29)

sign
(
η(r) +

r−1∑

s=0

R(r, s)ω(s) + h(r)
)

= ω(r + 1) for all r ∈ I\S . (30)

Equation (7) defines σ(t + 1) as a function of σ(0), ηt
0 and h. Let us denote this function by writing

σ(t + 1) = Fσ(t+1)(σ(0), ηt
0;h).

EC,R,h[σ(t + 1)] =
1

2

∑

ω(0)∈{±1}

∫

Rt+1

Fσ(t+1)(ω(0), ηt
0;h)φ0,Ct(η

t
0)

t∏

i=0

dη(i)

=
1

2

∑

ωt
0∈{±1}t+1

∫

Rt+1

ω(t + 1)φ0,Ct(η
t
0)

t∏

i=0

I

{
sign

(
η(i) +

i−1∑

s=0

R(i, s)ω(s) + h(i)
)

= ω(i + 1)
}

dη(i)

=
1

2

∑

ωt
0∈{±1}t+1

ω(t + 1)

∫

R(ω,∅,R,h)
φ0,Ct(η

t
0)

t∏

i=0

dη(i)

=
1

2

∑

ωt
0∈{±1}t+1

ω(t + 1)Φ0,Ct(R(ω, ∅, R, h)) .

Since Ct is strictly positive definite by Lemma 3.3, x 7→ φ0,Ct(x) is a continuous function. By the funda-
mental theorem of calculus, we have

∂Φ0,Ct

∂h(s)
(R(ω, ∅, R, h))

∣∣∣∣
h=0

=

{
Φ0,Ct(R(ω, {s}, R, 0)) if ω(s + 1) = +1,
−Φ0,Ct(R(ω, {s}, R, 0)) if ω(s + 1) = −1.

The definition of R(t, s) for a cavity process in Eq.(9) now leads to

R(t + 1, s) =
1

2

∑

ωt+1
0 ∈{±1}t+2

ω(t + 1)ω(s + 1)Φ0,Ct(R(ω, {s}, R, 0))

for all t ≥ s ≥ 0. The result follows by the change z ′(i) = z(i) + µi(ω
t
0) in the Gaussian integral defining

Φ.

11



Equation (27) yields in particular

R(t + 1, t) =
∑

ωt
0∈{±1}t+1

Φµ(ωt
0),Ct

(A∞(IR(ω, t))) . (31)

Note that R(t + 1, t) > 0 ∀ t ≥ 0, since it is a sum of positive terms. These facts will be used later in
Section 3.5.

The values of R and C evaluated for small values of s, t are as follows.
C(t, s) (Row for each t, column for each s.)

0 1 2 3

0 1
1 0 1
2 0.5751 0 1
3 0 0.7600 0 1

R(t, s) (Row for each t, column for each s.)

0 1 2 3

1 0.7979
2 0 0.5804
3 0.4164 0 0.4607
4 0 0.2920 0 0.3950

Note how C(t, s) = 0 when t and s have different parity, and R(t, s) = 0 when t and s have the same
parity. This is a simple consequence of the fact that the dynamics is ‘bipartite’. This also allows us to
reduce the the dimensionality of integrals in Eqs. (26) and (27), making numerical computations easier.

3.2 The exact cavity recursion

Let Gø = (Vø, Eø) be the tree rooted at vertex ø with degree k−1 at the root and k at all the other vertices,
and let u = {u(0), u(1), u(2), . . . } be an arbitrary sequence of real numbers. We define a modified Markov
chain over spins {σi}i∈Vø as follows. For i 6= ø, σi(t) is updated according to the rules (1) and (2). For the
root spin we have instead

σø(t + 1) = sign
( k−1∑

i=1

σi(t) + u(t)
)

, (32)

where 1, . . . , k − 1 denote the neighbors of the root. In the case
∑k−1

i=1 σi(t) + u(t) = 0, σø(t + 1) is drawn
as in Eq. (2). We will call this the ‘dynamics under external field’.

We will call the sequence u = {u(0), u(1), u(2), . . . } ‘external field applied at the root.’ We denote by
P((σø)

T
0 ||uT

0 ) the probability of observing a trajectory (σø)
T
0 = (σø(0), σø(1), . . . , σø(T )) for root spin under

the above dynamics. Let us stress two elementary facts: (i) P((σø)
T
0 ||uT

0 ) is not a conditional probability;
(ii) As implied by the notation, the distribution of (σø)

T
0 does not depend on u(t), t > T (and indeed does

not depend on u(T ) either, but we include it for notational convenience).
As before, we assume that in the initial configuration, the spins are i.i.d. Bernoulli random variables,

and denote by P0(σi(0)) their common distribution.
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Lemma 3.5. The following recursion holds

P((σø)
T+1
0 ||uT+1

0 ) = P0(σø(0))
∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))

k−1∏

i=1

P((σi)
T
0 ||(σø)

T
0 ) , (33)

Ku(t)(· · · ) ≡
{

I

{
σø(t + 1) = sign

(∑k−1
i=1 σi(t) + u(t)

)}
if
∑k−1

i=1 σi(t) + u(t) 6= 0 ,
1
2 otherwise.

(34)

Proof. Throughout the proof we denote the neighbors of the root as {1, . . . , k− 1}. Let σ(0) be the vector
of initial spins of the root and all the vertices up to a distance T from the root. For each i ∈ {1, . . . , k−1},
let σi(0) be the vector of initial spins of the sub-tree rooted at i, and not including the root, and up
to the same distance T from the root. Clearly, if we choose an appropriate ordering, we have σ(0) =
(σø(0), σ1(0), σ2(0), . . . , σk−1(0)). Finally, we denote by AT the set of coin flips {Ai,t} with t ≤ T , and
i at distance at most T from the root. As above, we have AT = ((Aø)

T
0 ,A1,T , . . . ,Ak−1,T ), where Ai,T

is the subset of coin flips in the subtree rooted at i ∈ {1, . . . , k − 1}. g By definition, the trajectory
(σø)

T+1
0 is a deterministic function of σ(0), uT+1

0 and AT . We shall denote this function by F and write
(σø)

t
s = F t

s(σ(0), uT+1
0 ,AT ). This function is uniquely determined by the update rules. We shall write the

latter as

σø(t + 1) = f(σø(t), σ∂ø(t), u(t), Aø,t) . (35)

We have therefore

P((σ0)
T+1
0 = ωT+1

0 ||uT+1
0 ) = EAT

∑
σ(0) P(σ(0))I

(
ωT+1

0 = FT+1
0 (σ(0), uT+1

0 ,AT )
)

. (36)

Now we analyze each of the terms appearing in this sum. Since the initialization is i.i.d., we have

P(σ(0)) = P0(σø(0))P(σ1(0))P(σ2(0)) . . . P(σk−1(0)) . (37)

Further since the coin flips Ai,t and Aj,t′ are independent for i 6= j, we have

EAT
{· · · } = E(Aø)T

0
EA1,T

. . . EAk−1,T
{· · · } . (38)

Finally, the function FT+1
0 (· · · ) can be decomposed as follows

I
(
ωT+1

0 = FT+1
0 (σ(0), uT+1

0 ,AT )
)

= I
(
σ0(0) = ω(0)

)
I
(
ωT+1

1 = FT+1
1 (σ(0), uT+1

0 ,AT )
)

= I

(
σ0(0) = ω(0)

) ∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

I
(
ω(t + 1) = f(σø(t), σ∂ø(t), u(t), Aø,t)

)

·
k−1∏

i=1

I
(
(σi)

T
0 = FT

0 (σi(0), ω
T
0 ,Ai,T−1)

)
. (39)

Using Eqs. (37), (38) and (39) in Eq. (36) and separating terms that depend only on σ i(0), we get

P((σø)
T+1
0 = ωT+1

0 ||uT+1
0 ) = P(ω(0))

∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

I
{
ω(t + 1) = f(σø(t), σ∂ø(t), u(t), Aø,t)

}

k−1∏

i=1

∑

σ̄i(0)

P(σi(0)) I
(
(σi)

T
0 = FT

0 (σi(0), ω
T
0 ,Ai,T−1)

)
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Notice that the same proof applies to a quite general class of processes on the regular rooted tree Gø.
More precisely, we consider a model with spins taking value in a finite domain σi(t) ∈ X , and are updated
in parallel according to the rule (for i 6= ø):

σi(t + 1) = f(σi(t), σ∂i\π(i)(t), σπ(i)(t), Ai,t) (40)

where π(i) is the parent of node i (i.e. the only neighbor of i that is closer to the root), and {Ai,t} are a
collection of i.i.d. random variables. For the root ø the above rule is modified by replacing σπ(i)(t) by the
arbitrary quantity u(t).

The next remark follows from a verbatim repetition of our proof.

Remark 3.6. For a model with general update rule (40), the distribution of the root trajectory satisfies
Eq. (33) with the kernel

Kt(σø(t + 1)|σø(t), σ∂ø(t)) ≡ EAø,t

{
I(σø(t + 1) = f

(
σø(t), σ∂ø(t), u(t), Aø,t

)}
. (41)

3.3 A central limit theorem

In the following we will use repeatedly the following local central limit theorem for lattice random variables.

Theorem 3.7. For any B, d > 0, there exist a finite constant L = L(B, d) such that the following is true.
Let X1, X2, . . . , XN , be i.i.d. random vectors with X1 ∈ {+1,−1}d and

||EX1|| ≤ B√
N

, min
s∈{+1,−1}d

P(X1 = s) ≥ 1

B
.

Let pN be the distribution of SN =
∑N

i=1 Xi. For a partition {1, . . . , d} = I0 ∪ I+ ∪ I−, and a vector
a ∈ Zd, with ||a||∞ ≤ B log N , define A(a, I), A∞(I) as in Eqs. (22), (21).

Assume the coordinates ai to have the same parity as N . We then have

∑

y∈A(a,I)

pN (y) =
2|I0|

N |I0|/2
Φ√

NEX1,Cov(X1)(A∞(I))
(
1 + Err(a, I, N)

)
, (42)

|Err(a, I, N)| ≤ L(B, d)N−1/(2|I0 |+2).

A simple proof of this result can be obtained using the Bernoulli decomposition method of [MD79,
DMD94] and is reported in Appendix A. Indeed Appendix A proves a slightly stronger result.

3.4 Unbiased initialization: Proof of Theorem 1.7

The first crucial step consists in studying the dynamics at the root of the rooted tree Gø = (Vø, Eø)
introduced at the beginning of Section 3.2, with modified updates as in Eq. (32).

Lemma 3.8. Let T ≥ 0, and uT
0 with u(t) ∈ {+1,−1} be given. Assume (σø)

T
0 to be distributed according

to P( · ||uT
0 ). Then, as k →∞, we have

|E{σø(t)σø(s)} − C(t, s)| = o(1) ,

∣∣∣∣∣Eσø(t)−
1√
k

t−1∑

s=0

R(t, s)u(s)

∣∣∣∣∣ = o(k−1/2) . (43)

Further, for any uT
0 , (σø)

T
0

d→ (σca)
T
0 , with (σca)

T
0 distributed according to the cavity process.
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Proof. The proof is by induction on the number of steps T . Obviously the thesis holds for T = 0.
Assume that it holds up to time T . Consider the exact recursion Eq. (33) and fix a sequence σø(0), · · · , σø(T+

1). Under the measure
∏k−1

i=1 P((σi)
T
0 ||(σø)

T
0 ), the vectors (σ1)

T
0 , . . . (σk−1)

T
0 are independent and identically

distributed. Further, by the induction hypothesis

Eσ1(t) =
1√
k

t−1∑

s=0

R(t, s)σø(s) + o(k−1/2) , E{σ1(t)σ1(s)} = C(t, s) + o(1) .

By central limit theorem { 1√
k

∑k
i=1 σi(t)}0≤t≤T converge in distribution to

{
η(t) +

t−1∑

s=0

R(t, s)σ0(s)

}

0≤t≤T

, (44)

where {η(t)}0≤t≤T is a centered Gaussian vector with covariance E{η(t)η(s)} = C(t, s). Since the product

of indicator functions in Eq. (33) is a bounded function of the vector { 1√
k

∑k
i=1 σi(t)}0≤t≤T , and the normal

distribution is everywhere continuous, we have

lim
k→∞

P((σø)
T+1
0 ||uT+1

0 ) = P0(σø(0))Eη

{
T∏

t=0

I

(
σø(t + 1) = sign

(
η(t) +

t−1∑

s=0

R(t, s)σø(s)
))}

(45)

i.e. (σø)
T+1
0 converges in distribution to the first T + 1 steps of the cavity process. This implies the first

equation in (43). It is therefore sufficient to prove the second equation in (43), for t = T + 1.
To get the estimate of the mean, we use again Eq. (33), and consider the distribution P((σ0)

T+1
0 ||0T+1

0 )
whereby the root perturbation is set to 0. This satisfies the recursion Eq. (33), with u(t) = 0:

P((σ0)
T+1
0 ||0T+1

0 ) = P0(σø(0))
∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

K0(σø(t + 1)|σ∂ø(t))

k−1∏

i=1

P((σi)
T
0 ||(σø)

T
0 ) . (46)

Since |u(t)| ≤ 1, Ku(t)(· · · ) = K0(· · · ) for all values of t, except those in which
∑k−1

i=1 σi(t) ∈ {+1, 0,−1}.
Let I0 = {t : |∑k−1

i=1 σi(t)| ≤ 1}. Further, irrespective of u(t), Ku(t)(σø(t + 1)|σ∂ø(t)) is non vanishing

only if σ0(t + 1)
∑k−1

i=1 σi(t) ≥ −1. By taking the difference of Eq. (33) and (46), we get

P((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||0T+1

0 )

= P0(σø(0))
∑

(σ1)T
0 ...(σk−1)T

0

k−1∏

i=1

P((σi)
T
0 ||(σø)

T
0 )

T∏

t=0

I

{
σø(t + 1)

k−1∑

i=1

σi(t) ≥ −1

}
·

·


∏

t∈I0

Ku(t)(σø(t + 1)|σ∂ø(t))−
∏

t∈I0

K0(σø(t + 1)|σ∂ø(t))


 . (47)

Let yT
0 =

∑k−1
i=1 (σi)

T
0 , and write P(yT

0 ||(σø)
T
0 ) for its distribution under the product measure∏k−1

i=1 P((σi)
T
0 ||(σø)

T
0 ). Further, let

I+ ≡ {t : t < T, t /∈ I0, σø(t + 1) = +1} , I− = {t : t < T, t /∈ I0, σ0(t + 1) = −1} .

Then the above expression takes the form

P((σø)
T+1
0 ||uT+1

0 )−P((σø)
T+1
0 ||0T+1

0 ) =

= P0(σø(0))
∑

yT
0

P(yT
0 ||(σ0)

T
0 )
∏

t∈I+

I {y(t) ≥ −1}
∏

t∈I−
I {y(t) ≥ +1} fI0({y(t)}t∈I0 ) .
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where we defined f({y(t)}t∈I0) to be the term in parentheses in Eq. (47). Notice that fI0({y(t)}t∈I0 )
vanishes unless y(t) ∈ {+1, 0,−1} for all t ∈ I0.

Now, we can apply Theorem 3.7 for every possible I0, by letting Xi = (σi)
T
0 , so that d = T + 1, and

N = k − 1. Note that our induction hypothesis Eq. (43) on the mean implies that
∣∣∣∣∣Eσi(t)−

1√
k

t−1∑

s=0

R(t, s)σø(s)

∣∣∣∣∣ = o(k−1/2) (48)

for all t ≤ T . In particular ||EX1|| ≤ B/
√

k as needed. Further, by Lemma 3.3, our induction hypothesis
Eq. (43), and the convergence result (45), we have mins P{X1 = s} ≥ 1/B for all k large enough.

Since fI0({y(t)}t∈I0) = 0 for I0 = ∅, it follows from Theorem 3.7 that the dominating terms correspond
to I0 = {t0}. If we let µ′(σø) =

√
k − 1E[(σ1)

T
0 ], V (σø) = Cov((σ1)

T
0 ), then

P((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||0T+1

0 ) =

=
2P0(σø(0))√

k − 1

T∑

t0=0

Φµ′(σø),V (σø)(A∞(I))
∑

|y(t0)|≤1

{
Ku(t0)(σø(t0 + 1)|y(t0))− K0(σø(t0 + 1)|y(t0))

} (
1 + o(1)

)
,

where, with an abuse of notation, we wrote K·(σø(t0+1)|y(t0)) for K·(σø(t0+1)|σ∂ø(t0)) when
∑k−1

i=1 σi(t0) =
y(t0). Further, the rectangle A∞(I) is defined as in Theorem 3.7.

If k is odd, then the only term in the above sum is y(t0) = 0. An simple explicit calculation shows that

Ku(t0)(σø(t0 + 1)|y(t0) = 0)− K0(σø(t0 + 1)|y(t0) = 0) = u(t0)σø(t0 + 1) .

If k is even, two terms contribute to the sum: y(t0) = +1 and y(t0) = −1, with

Ku(t0)(σø(t0 + 1)|y(t0) = +1)− K0(σø(t0 + 1)|y(t0) = +1) = −σø(t0 + 1) I(u(t0) = −1) ,

Ku(t0)(σø(t0 + 1)|y(t0) = −1)− K0(σø(t0 + 1)|y(t0) = −1) = −σø(t0 + 1) I(u(t0) = +1) .

Also, by Eq. (48) we have limk→∞ µ′(σø) = µ(σø) with µ( · ) defined as in Lemma 3.4. The induction
hypothesis Eq. (43) on the covariance of σø further implies limk→∞ V (σø) = CT . By the continuity of
Gaussian distribution we get

lim
k→∞

Φµ′(σø),V (σø)(A∞(I)) = Φµ(σø),CT
(A∞(I)) .

Applying these remarks to Eq. (54), and using the fact that P0(σø(0)) = 1/2, we finally get

P((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||0T+1

0 ) =
1

2
√

k

T∑

t0=0

Φµ(σø),CT
(A∞(I))u(t0)σø(t0 + 1)

(
1 + o(1)

)
. (49)

By symmetry, we have E
P(·||0T+1

0 )[σø(T + 1)] = 0. By summing over (σø)
T
0 Eq. (49), we get

E
P(·||uT+1

0 )[σø(T + 1)] =
1√
k

T∑

t0=0

u(t0)




1

2

∑

(σø)T+1
0

σø(T + 1)σø(t0 + 1)Φµ(σø),CT
(A∞(I))



(
1 + o(1)

)
.

It is easy to verify that the expression in parentheses matches the one for R(T + 1, t0) from Lemma 3.4.
Therefore we proved

E
P(·||uT+1

0 )[σø(T + 1)] =
1√
k

∑

s∈I
u(s)R(T + 1, s) + o(1/

√
k) ,

which finishes the proof of the induction step.
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In the next section we will use this estimate to prove Theorem 3.1, which in particular implies Theorem
1.7. Let us notice however that Theorem 1.7 admits a direct proof as a consequence of the last lemma.

Proof. (Theorem 1.7) As part of Lemma 3.8, we have proved that (σø)
T
0

d→ (σcav)
T
0 for each ‘fixed’ trajectory

uT
0 , see Eq. (45). In particular, this holds for the extreme trajectories (u−)T0 = (−1)T

0 and for (u+)T0 =
(+1)T

0 . By monotonicity, the true trajectory of a spin σi in the regular tree G lies between the trajectories
(σø,−)T0 and (σø,+)T0 distributed according to P( · ||(u+)T0 ) and P( · ||(u−)T0 ). Since both (σø,−)T0 and (σø,+)T0
converge in distribution to the cavity process (σcav)

T
0 , the original trajectory (σi)

T
0 converges to the cavity

process as well.

3.5 Biased initialization: Proof of Theorem 3.1

In this subsection we prove Theorem 3.1. The proof is based on Lemmas 3.9, 3.10 that capture the
asymptotic behavior of the recursion (33) as k →∞ in two different regimes.

Throughout this subsection, we adopt a special notation to simplify calculations. We reserve P((σø)
T
0 ||uT

0 )
for the family of measures indexed by uT

0 and introduced in Section 3.2, in the case P0(σø(0) = ±1) = 1/2.
We use instead Q((σø)

T
0 ||uT

0 ) when the initialization is

Q0(σø(0) = ±1) =
1

2
± ω0

k(T∗+1)/2
,

i.e. when in the initial configuration, the spins of Gø are i.i.d. Bernoulli with expectation Eσi(0) =
2ω0k

−(T∗+1)/2.

Lemma 3.9. For σT
0 ∈ {±1}T+1, let I+ = {t : σ(t + 1) = +1}, I− = {t : σ(t + 1) = −1}, and I0 = {T}.

Define

IT (σT
0 ) = Φµ(σ),CT

(A∞(I)) , (50)

where µ(σ) = (µ0(σ), . . . , µT (σ)) with µr(σ) =
∑r−1

s=0 R(r, s)σ(s). Set by definition I−1 = 1. Finally, for
0 ≤ T < T∗ − 1, define ωT+1 recursively by

ωT+1 = R(T + 1, T )ωT . (51)

Then, for 0 ≤ T < T∗ − 1, and for all (σø)
T+1
0 , uT+1

0 ∈ {±1}T+2, we have

Q((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||uT+1

0 ) =
ωT

k(T∗−T )/2
σø(T + 1) IT

(
(σø)

T
0

) (
1 + o(1)

)
. (52)

Further, for all uT+1
0 ∈ {±1}T+2, we have

∑

(σø)T+1
0

σø(T + 1)
{

Q((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||uT+1

0 )
}

=
2ωT+1

k(T∗−T )/2
(1 + o(1)) . (53)

Proof. The proof is by induction over T , for 0 ≤ T < T∗−1, whereby in the base case (T +1 = 0), Eq. (52)
corresponds to

Q0(σø(0))− P0(σø(0)) =
ω0

k(T∗+1)/2
σø(0)

(
1 + o(1)

)
, (54)
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and holds by definition. Making use of Eq. (33) for both P and Q, we get

Q((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||uT+1

0 ) =

= Q0(σø(0))
∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))

k−1∏

i=1

Q((σi)
T
0 ||(σø)

T
0 )

− P0(σø(0))
∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))
k−1∏

i=1

P((σi)
T
0 ||(σø)

T
0 )

=
1

2

∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))· (55)

·
{

k−1∏

i=1

Q((σi)
T
0 ||(σø)

T
0 )−

k−1∏

i=1

P((σi)
T
0 ||(σø)

T
0 )

}
+ O(k−(T∗+1)/2)

=
1

2

∑

(σ1)T
0 ...(σk−1)T

0

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))· (56)

·
{

k−1∑

r=1

(
k − 1

r

) r∏

i=1

(
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
) k−1∏

i=r+1

P((σi)
T
0 ||(σø)

T
0 )

}
+ O(k−(T∗+1)/2)

=
1

2

k−1∑

r=1

D(r, k) + O(k−(T∗+1)/2) ,

where we grouped terms according to their power in Q− P.
We claim that only the term r = 1 is relevant for large k:

k−1∑

r=2

|D(r, k)| = o(k−(T∗−T )/2)) . (57)

Before proving this claim, let us show that it implies the thesis. Set r0 = 1 (we introduce this notation
because the calculation below holds for larger values of r0 and this fact will be exploited in the next lemma).

The r = 1 term can be rewritten as

D(1, k) = (k − 1)
∑

{(σi)T
0 }

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t + 1))
{
Q((σ1)

T
0 ||(σø)

T
0 )− P((σ1)

T
0 ||(σø)

T
0 )
} k−1∏

i=2

P((σi)
T
0 ||(σø)

T
0 ) .

For t ∈ {0, 1, . . . , T}, let

St ≡
{

(σ2)
T
0 . . . (σk−1)

T
0 : |σ2(t) + . . . + σk−1(t) + u(t)| ≤ r0

}
. (58)

If (σ2)
T
0 . . . (σk−1)

T
0 is not in ∪T

t=0 St, then the sum over (σ1)
T
0 can be evaluated immediately (as Ku(t)(· · · )

is independent of (σ1)
T
0 ) and is equal to 0 due to the normalization of Q( · ||(σø)

T
0 ) and P( · ||(σø)

T
0 ). We

can restrict the innermost sum to (σ2)
T
0 . . . (σk−1)

T
0 in ∪T

t=0 St, i.e. |∑k−1
i=2 σi(t) + u(t)| ≤ r0 for some

t ∈ {0, . . . , T}. Let I0 ⊆ {0, . . . , T} be the set of times such that this happens.
The expectation over (σ2)

T
0 , . . . , (σk−1)

T
0 can be estimated applying Theorem 3.7, with N = k− 2, and

using Lemmas 3.3 and 3.8 to check that the hypotheses 3.7 hold for all k large enough. Using the induction
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hypothesis |Q((σ1)
T
0 ||(σø)

T
0 ) − P((σ1)

T
0 ||(σø)

T
0 )| = O(k−(T∗−T+1)/2), this implies that the contribution of

terms with |I0| ≥ 2 is upper bounded as kO(k−(T∗−T+1)/2)2 = o(k−(T∗−T )/2) (for T ≤ T∗ − 1). Therefore
we make a negligible error if we restrict ourselves to the case |I0| = 1.

If we let Ŝt0 ≡ Sto ∩ {∩t6=t0St}, we then have

D(1, k) ≡ (k − 1)

T∑

t0=0

∑

(σ1)T
0

(
Q((σ1)

T
0 ||(σø)

T
0 )− P((σ1)

T
0 ||(σø)

T
0 )
)
· (59)

·
∑

((σ2)T
0 ...(σk−1)T

0 )∈ bSt0

k−1∏

i=2

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t)) + o(k−(T∗−T )/2) .

Consider the main term

J ′t0((σø)
T
0 , (σ1)

T
0 ) ≡

∑

((σ2)T
0 ...(σk−1)T

0 )∈ bSt0

k−1∏

i=2

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t)) . (60)

The arguments of this function will often be dropped in what follows, and we will simply write J ′
t0 . For

t 6= t0, the kernel Ku(t)(σø(t + 1)|σ∂ø(t)) can be replaced by an indicator function, and the constraint

((σ2)
T
0 . . . (σk−1)

T
0 ) ∈ Ŝt0 can be removed. For t = t0 we write

Ku(t0)(σø(t0 + 1)|σ∂ø(t0)) = K̂
′
Ω(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑

i=2

σi(t0)
)}

where

K̂
′
a(x) =





1 if −a < x ≤ r0,
1/2 if x = −a,
0 otherwise,

and Ω(t) = σø(t + 1)σ1(t), |Ω(t)| ≤ r0. We thus have

J ′t0 =
∑

(σ2)T
0 ...(σk−1)T

0

k−1∏

i=2

P((σi)
T
0 ||(σø)

T
0 )) K̂

′
Ω(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑

i=2

σi(t0)
)}

·

·
T∏

t=0

I

{
σø(t0 + 1)

(
u(t) +

k−1∑

i=2

σi(t0)
)

> r0

}
.

Notice that the only dependence on (σ1)
T
0 is through Ω(t0). Therefore, we can replace K̂

′
Ω(t0){ · } by

K̂Ω(t0){ · } = K̂
′
Ω(t0){ · } − K̂

′
0{ · } because the difference, once integrated over (σ1)

T
0 as in Eq. (59), vanishes

by the normalization of Q( · ||(σø)
T
0 ) and P( · ||(σø)

T
0 ). We thus need to evaluate

Jt0 =
∑

(σ2)T
0 ...(σk−1)T

0

k−1∏

i=2

P((σi)
T
0 ||(σø)

T
0 )) K̂Ω(t0)

{
σø(t0 + 1)

(
u(t0) +

k−1∑

i=2

σi(t0)
)}

·

·
T∏

t=0

I

{
σø(t + 1)

(
u(t) +

k−1∑

i=2

σi(t)
)

> r0

}
.
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where, for a > 0, a ∈ Z

K̂a(x) =





1 if −a < x < 0,
1/2 if x = −a or x = 0,
0 otherwise,

K̂−a(x) =





−1 if 0 < x < −a,
−1/2 if x = 0 or x = −a,
0 otherwise.

Notice that
∑

x∈Z K̂a(x) = a ∀a ≥ −r0.

We apply Theorem 3.7 for any value of s(t0) ≡
∑k−1

i=2 σi(t0) such that K̂Ω(t0){ · } is non-vanishing, and

then sum over these values. Notice that |∑k−1
i=2 σi(t0)| ≤ r0 + 1 and therefore the central limit theorem

3.7 applies. The leading order terms are all independent of s(t0). The O(1/k1/4) error term in Eq. (42) is
multiplied by a factor r0 and remains therefore negligible. We get

Jt0 =
1√
k

σø(t0 + 1)σ1(t0)Φµ(σø),CT
(A∞(I))(1 + o(1)) (61)

≡ 1√
k

σø(t0 + 1)σ1(t0)J
∗
t0 (1 + o(1)) , (62)

where µ(σ) = (µ0(σ), . . . , µT (σ)) with µr(σ) =
∑r−1

s=0 R(r, s)σ(s), and I+ = {t : σø(t) = +1} \ {t0},
I− = {t : σø(t) = −1} \ {t0}, and I0 = {t0}. Notice that, in particular J ∗t0=T = IT ((σø)

T
0 ).

If we use this estimate in Eq. (59), we get

D(1, k) = (k − 1)

T∑

t0=0

σ1(t0)
(
Q((σi)

T
0 ||(σø)

T
ø )− P((σi)

T
0 ||(σø)

T
0 )
) J∗t0√

k
σø(t0 + 1)(1 + o(1)) + o(k−(T∗−T )/2)

= k
T∑

t0=0

2ωt0

k(T∗−t0+1)/2

J∗t0√
k
σø(t0 + 1)(1 + o(1)) + o(k−(T∗−T )/2)

= I((σø)
T
0 )

2ωT

kT∗−T
σø(t0 + 1)(1 + o(1))

which, along with Eq. (31) implies the thesis Eq. (52).
Let us now prove the claim (57). Recall that induction hypothesis we have Q((σi)

T
0 ||(σø)

T
0 )−P((σi)

T
0 ||(σø)

T
0 ) =

O(k−(T∗−T+1)/2). Since |Ku(t)(σø(t + 1)|σ∂ø(t))| ≤ 1, this implies

|D(r, k)| ≤ kr
∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

∣∣∣Q((σi)
T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
∣∣∣ = O(k−r(T∗−T−1)/2) .

Since T∗ − T − 1 ≥ 1, we have

k−1∑

r=3

|D(r, k)| = O(k−3(T∗−T−1)/2) = o(k−(T∗−T )/2) .

Further, |D(2, k)| = O(k−(T∗−T−1)) = o(k−(T∗−T )/2) unless T = T∗ − 2.
In order to argue in the r = 2, T = T∗ − 2 case, we will proceed analogously to r = 1. Consider

the definition of D(2, k) in Eq. (56). If (σ3)
T
0 ,. . . , (σk−1)

T
0 are such that |∑k−1

i=3 σi(t) + u(t)| > 2 for all
t ∈ {0, . . . , T} then the factors Ku(t)(σø(t+1)|σ∂ø(t)) become independent of (σ1)

T
0 , (σ2)

T
0 . We can therefore

carry out the sum over these variables obtaining:

∑

(σ1)T
0 ,(σ2)T

0

2∏

i=1

{
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
}

=
r∏

i=1

∑

(σi)T
0

{
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
}

= 0
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because both Q( · ||(σø)
T
0 ) and Q( · ||(σø)

T
0 ) are normalized. Therefore, we can restrict the sum to those

(σ3)
T
0 ,. . . , (σk−1)

T
0 such that |∑k−1

i=3 σi(t0) + u(t0)| ≤ 2 for at least one t0 ∈ {0, . . . , T}. However, analo-
gously to the case r = 1, the probability that this happens for the i.i.d. non-degenerate random vectors
(σ3)

T
0 . . . (σk−1)

T
0 is at most O(k−1/2), using Theorem 3.7. Together with the induction hypothesis, this

yields |D(2, k)| = O(k−1/2 · k−(T∗−T−1)) = o(k−(T∗−T )/2), which proves the claim.
Finally, Eq. (53) follows from (52) using the definitions (50), (51) and the identity (27).

We next show that Lemma 3.9 extends to T = T∗−1. Since this case requires a different (more careful)
calculation, we state it separately, although the conclusion is the same as for T < T∗ − 1.

Lemma 3.10. Let IT (σT
0 ) be defined as in Lemma 3.9, and define ωT∗ by

ωT∗ = R(T∗, T∗ − 1)ωT∗−1 . (63)

Then, for all (σø)
T∗
0 , uT∗

0 ∈ {±1}T∗+1, we have

Q((σø)
T∗
0 ||uT∗

0 )− P((σø)
T∗
0 ||uT∗

0 ) =
ωT∗−1

k1/2
σø(T∗) I

(
(σø)

T∗−1
0

) (
1 + o(1)

)
(64)

Further, for all uT∗
0 ∈ {±1}T∗+1, we have

∑

(σø)T∗
0

σø(T∗)
{

Q((σø)
T∗
0 ||uT∗

0 )− P((σø)
T∗
0 ||uT∗

0 )
}

=
2ωT∗

k1/2
(1 + o(1)) . (65)

Proof. Throughout the proof we let T = T∗ − 1. Equation (55) continues to hold. We rewrite it as

Q((σø)
T+1
0 ||uT+1

0 )− P((σø)
T+1
0 ||uT+1

0 ) =
1

2

k−1∑

r=1

D(r, k) + O(k−(T∗+1)/2) , (66)

D(r, k) ≡
(

k − 1

r

) ∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

(
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
)
· (67)

·
∑

(σr+1)T
0 ...(σk−1)T

0

k−1∏

i=r+1

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t)) .

Let r0 = blog kc. Split the summation over r in Eq. (66) into two parts: the first for 1 ≤ r ≤ r0, the
second for r0 < r ≤ k− 1. We will first show that the second part is of order o(k−1/2). Indeed, by Lemma
3.9, we know that Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 ) ≤ B/k for some constant B and all (σi)

T
0 ∈ {±1}T+1.

Using the fact that the innermost sum in Eq. (67) is bounded by 1, we get

∣∣∣∣∣

k−1∑

r=r0+1

D(r, k)

∣∣∣∣∣ ≤
k−1∑

r=r0+1

(
k − 1

r

) ∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

∣∣Q((σi)
T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
∣∣ (68)

≤
k−1∑

r=r0+1

(
k − 1

r

)(
2T+1B

k

)r

≤
∑

r≥log(k)

1

r!
(2T+1B)r = o(k−1/2) , (69)

where the last estimate follows from standard tail bounds on Poisson random variables.
We are left with the sum of D(r, k) over r ∈ {0, . . . , r0}. As in Lemma 3.9, let

St ≡
{

(σr+1)
T
0 . . . (σk−1)

T
0 : |σr+1(t) + . . . + σk−1(t) + u(t)| ≤ r0

}
.
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If (σr+1)
T
0 . . . (σk−1)

T
0 is not in ∪T

t=0 St, then the sum over (σ1)
T
0 . . . (σr)

T
0 is 0 due to the normalization of

Q( · ||(σø)
T
0 ) and P( · ||(σø)

T
0 ) (the same argument was already used in the proof of Lemma 3.9). Restricting

the innermost sum and letting as before Ŝt0 ≡ Sto ∩{∩t6=t0St} with St defined as in Eq. (58), we then have

D(r, k) =

(
k − 1

r

) T∑

t0=0

∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

(
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
)
· (70)

·
∑

((σr+1)T
0 ...(σk−1)T

0 )∈ bSt0

k−1∏

i=r+1

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t)) + R(r, k) .

By inclusion-exclusion, the error term is bounded as

|R(r, k)| ≤
(

k − 1

r

) ∑

t1 6=t2

∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

∣∣Q((σi)
T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
∣∣·

·
∑

((σr+1)T
0 ...(σk−1)T

0 )∈St1∩St2

k−1∏

i=r+1

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))

≤
(

k − 1

r

) ∑

t1 6=t2

∑

(σ1)T
0 ...(σr)T

0

r∏

i=1

∣∣Q((σi)
T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
∣∣ Br2

0

k

≤
(

k − 1

r

)
T 22Tr

(
B

k

)r Br2
0

k
.

The first inequality follows by applying Lemma 3.7 to the N = k − r − 1 ≥ k − log(k) − 1 i.i.d. random
vectors (σr+1)

T
0 , . . . , (σk−1)

T
0 , which are non-degenerate for all k large enough by Lemma 3.8, and summing

over the values of at1 =
∑k−1

i=r+1 σi(t1) + u(t1) and at2 =
∑k−1

i=r+1 σi(t2) + u(t2), with |at1 |, |at2 | ≤ r0. The
second inequality is instead implied by Lemma 3.9. It is now easy to sum over r to get

∣∣∣∣∣

r0∑

r=1

R(r, k)

∣∣∣∣∣ ≤
∞∑

r=0

1

r!
T 2(2T B)rB

(log k)2

k
= o(k−1/2) .

Therefore the error terms R(r, k) can be neglected.
Let us now consider the main term in Eq. (70), and define

J ′t0((σø)
T
0 , (σ1)

T
0 , . . . , (σr)

T
0 ) ≡

∑

((σr+1)T
0 ...(σk−1)T

0 )∈ bSt0

k−1∏

i=r+1

P((σi)
T
0 ||(σø)

T
0 ))

T∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t)) .

We now proceed exactly as in the proof of Lemma 3.9, cf. Eq. (60) to (62) with Ω(t) = σø(t+1)(
∑r

i=1 σi(t))
and r0 = log(k). Notice Theorem 3.7 continues to hold and r0 times the O(k−1/4) error is still o(1). We
arrive at

Jt0 =
1√
k

σø(t0 + 1)
( r∑

i=1

σi(t0)
)

J∗t0 (1 + R̃t0(k)) ,

where R̃t0(k) → 0 as k →∞ for any fixed t0.
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If we use this estimate in Eq. (70), we get

D(r, k) =

=

(
k′

r

) T∑

t0=0

∑

{(σi)T
0 }

r∏

i=1

(
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
) J∗t0√

k
σø(t0 + 1)

r∑

i=1

σi(t0)(1 + R̃t0(k)) + o(k−1/2)

= r

(
k′

r

) T∑

t0=0

∑

{(σi)T
0 }

r∏

i=1

(
Q((σi)

T
0 ||(σø)

T
0 )− P((σi)

T
0 ||(σø)

T
0 )
) J∗t0√

k
σø(t0 + 1)σ1(t0)(1 + R̃t0(k)) + o(k−1/2) ,

where k′ ≡ k − 1 and we used the symmetry among the vertices {1, . . . , r} to replace (
∑r

i=1 σi(t)) by
rσ1(t). If r ≥ 2, the sums over (σ2)

T
0 ,. . . , (σr)

T
0 vanish except for the error terms R̃t0(k) (once more by the

normalization of P( · ||(σø)
T
0 ) and Q( · ||(σø)

T
0 )). We need to bound contribution of such error terms. Find

M such that
∣∣Q((σi)

T
0 ||(σø)

T
ø )− P((σi)

T
0 ||(σø)

T
0 )
∣∣ ≤ M/k. We have

∣∣∣∣∣∣
r

(
k − 1

r

) ∑

(σ1)T
0 ...(σr)T

0

(
Q((σi)

T
0 ||(σø)

T
ø )− P((σi)

T
0 ||(σø)

T
0 )
)
R̃t0(k)

∣∣∣∣∣∣

≤ r

(
(k − 1)e

r

)r

2T

(
M

k

)r

|R̃t0(k)|

≤ r

(
2T eM

r

)r

|R̃t0(k)|

≤
(

M ′

2r

)
|R̃t0(k)| (71)

for suitable M ′. Here we have used the standard bound
(n
m

)
≤
(

ne
m

)m
. Summing (71) over t0 and r, we see

that
∑r0

r=2 |D(k, r)| ≤ C|J∗t0R̃t0(k)|/sqrtk = o(k−1/2).
Further,

∑

(σ1)T
0

σ1(t)
{
Q((σ1)

T
0 ||(σø)

T
0 )− P((σ1)

T
0 ||(σø)

T
0 )
}

=
∑

(σ1)t
0

σ1(t)
{
Q((σ1)

t
0||(σø)

t
0)− P((σ1)

t
0||(σø)

t
0)
}

=2
ωt

k(T∗−t+1)/2
(1 + o(1)) .

where the second equality follows by Lemma 3.9. Note that for t < T∗ − 1, this sum is o(k−1). As a
consequence, only the t0 = T term is relevant in the sum over t0.

Using these two remarks we finally obtain

r0∑

r=1

D(k, r) =D(k, 1) + o(k−1/2)

=k

T∑

t0=0

J∗t0√
k

2
ωt0

k(T∗−t0+1)/2
σø(t0 + 1)(1 + o(1)) + o(k−1/2)

=2
ωT∗−1

k1/2
σø(T∗) I

(
(σø)

T∗−1
0

) (
1 + o(1)

)
,

which, together with Eq. (69) and Eq. (66), proves our thesis. Equation (65) follows as in the previous
lemma.
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We now show that, for the dynamics under external field, the process of the root spin {σø(t)}t≥0

converges as in Theorem 3.1.

Lemma 3.11. For T∗ a non-negative integer, ω0 > 0, and {u(t)}t≥0 ∈ {±1}N, consider the majority process
under external field u, on the rooted tree Gø = (Vø, Eø), with i.i.d. initialization with bias θ = ω0/k

(T∗+1)/2.
Then for any T ≥ T∗ + 2, we have

(σø(0), σø(1), . . . , σø(T ))
d→ (σcav(0), σcav(1), . . . , σcav(T∗), σ(T∗ + 1),+1,+1, . . . ,+1) ,

where the random variable σ(T∗ +1) dominates stochastically σcav(T∗+1), and P{σ(T∗+1) > σcav(T∗+1)}
is strictly positive. Finally, there exist A(ω0) > 0 such that, for any T ≥ T∗ + 2,

Eθ{σø(T )} ≥ 1− e−A(ω0)k .

Proof. An immediate consequence of Eqs. (65) and (53) is that, for all T , 0 ≤ T ≤ T∗

EQ(·||uT
0 )[σø(T )]− EP(·||uT

0 )[σø(T )] =
2ωT

k(T∗−T+1)/2
(1 + o(1)) . (72)

Further Lemmas 3.8 and 3.9 imply that

|EQ{σø(t)σø(s)} − C(t, s)| = o(1) ,

∣∣∣∣∣EQσø(t)−
1√
k

t−1∑

s=0

R(t, s)u(s)

∣∣∣∣∣ = o(k−1/2) , (73)

for t, s ≤ T∗ − 1. At T∗, using Lemma 3.10 and Eq. (72) with T = T∗ we obtain

|EQ{σø(T∗)σø(s)} − C(t, s)| = o(1) ,

∣∣∣∣∣EQ

[
σø(T∗ + 1)− 1√

k

(
T∗−1∑

s=0

R(t, s)u(s) + 2ωT∗

)]∣∣∣∣∣ = o(k−1/2) ,

(74)

which holds for all s ≤ T∗.
Now, repeating the CLT-based argument as in the proof of lemma 3.8, we can show that with a biased

initialization, (σø(0), σø(1), . . . , σø(T∗ + 1)) converges to a modified cavity process, where the governing
equation at T∗ is

σ(T∗ + 1) = sign

(
η(T∗) +

T∗−1∑

s=0

R(t, s)σcav(s) + 2ωT∗

)
. (75)

Convergence to this process occurs for all uT∗+1
0 . Clearly, since ωT∗ > 0, this process dominates the

unmodified cavity process. Further, we have B(ω0) = E[σ′(T∗ + 1)] > 0. We know limk→∞ E[σø(T∗ + 1)] =
E[σ(T∗+1)], and therefore there exists k0, such that for all k > k0, E[σø(T∗+1)] > B(ω0)/2. Plugging this
back into the recursion Eq. (33) applied to Q, and using Azuma’s inequality, we see that at T = T∗ + 2.

Eθ{σø(T )} ≥ 1− e−(B(ω0))2k/8, ∀ k > k0

Clearly, the same continues to hold for for T > T∗ + 2, for sufficiently large k.

Finally, we can prove Theorem 3.1.

Proof. (Theorem 3.1) As in the proof of Theorem 1.7, we consider the dynamics on the rooted tree Gø

under external fields u− = (−1,−1, . . .) and u+ = (+1,+1, . . .), and we denote by (σø,−)T0 , (σø,+)T0 be
the corresponding trajectories. By monotonicity of the dynamics, the process (σi)

T
0 at any vertex of the

regular tree G is dominated by (σø,+)T0 and dominates (σø,−)T0 . Since by Lemma 3.11 both (σø,+)T0 and
(σø,−)T0 converge to the same limit, the same holds for (σi)

T
0 as well.
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4 Lower bound: Proof of Theorem 1.3

In this section we prove Theorem 1.3, that provides a sequence of lower bounds on the consensus threshold
θ∗(k).

Let H = (VH, EH) be an induced subgraph of G with vertex set VH and edge set EH. We denote by ∂Hi
the set of neighbors in H of a node i ∈ H. Since H is an induced subgraph of G, we have VH ⊆ V and, for
all i ∈ VH, ∂Hi = {j : j ∈ ∂i, j ∈ VH}. Given the graph G, VH uniquely determines the induced subgraph
H.

Definition 4.1. The subgraph H is an r-core of G with respect to spins σ : V → {−1,+1} if H is an
induced subgraph of G such that |∂Hi| ≥ r and σi = −1 for all i ∈ VH.

Clearly, this definition is useful only for r ≤ k. Now, it is easy to see that if H is an
⌈

k+1
2

⌉
-core with

respect to σ(T ), then it is also an
⌈

k+1
2

⌉
-core with respect to σ(T ′) for all T ′ > T , by definition of majority

dynamics. In fact, a less stringent requirement suffices for persistence of negative spins.

Definition 4.2. H is an alternating r-core of a graph G with respect to spins σ : V → {−1,+1}, if H is
an induced subgraph of G such that:

1. |∂Hi| ≥ r ∀ i ∈ VH

2. There is a partition (V−,H,V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H

(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H i.e. H is bipartite with respect to
the vertex partition (V−,H,V∗,H). We call V−,H the even vertices and V∗,H the odd vertices.

Lemma 4.3. If H is an alternating
⌈

k+1
2

⌉
-core with respect to σ(T ), then it is also an alternating

⌈
k+1
2

⌉
-

core with respect to σ(T ′) for all T ′ > T .

Proof. We prove the lemma by induction over T ′. Let

ST ′ ≡ ‘H is an alternating

⌈
k + 1

2

⌉
-core with respect to σ(T ′).’

Clearly, ST holds. Suppose ST ′ holds. Let (V−,H,V∗,H) = (V1,V2) be a partition of H as in the definition
4.2. In particular σi(T

′) = −1 for all i ∈ V1. By the definition of majority dynamics we know that
σi(T

′ + 1) = −1 for all i ∈ V2. As a consequence H is an alternating b(k + 1)/2c-core with respect to
σ(T ′ + 1) with partition (V−,H,V∗,H) = (V2,V1), and therefore ST ′+1 holds.

We now proceed in a manner similar to Section 3.2. We consider the rooted tree Gø = (Vø, Eø), with
a root vertex ø having k − 1 ‘children’. The root spin σø evolves under as external field {u(t)}t≥0 as in
Eq. (32) and we denote by P((σø)

T
0 ||uT

0 ) its distribution. We use ∂̃i to denote the ‘children’ of node i ∈ Gø.
In this section we will assume uT

0 ∈ {−1,+1}T+1.

Definition 4.4. H is a rooted alternating r-core of Gø with respect to spins σ : Vø → {−1,+1}, if H is a
connected induced subgraph of Gø such that:

1. ø ∈ VH.

2. |∂̃Hi| ≥ r − 1 for all i ∈ VH.

3. There is a partition (V−,H,V∗,H) of VH such that:
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(a) σi = −1 for all i ∈ V−,H.

(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H i.e. H is bipartite with respect to
the vertex partition (V−,H,V∗,H). We call V−,H the even vertices and V∗,H the odd vertices.

Let Gd
ø = (Vd

ø , Ed
ø ), be the induced subgraph of Gø containing all vertices that are at a depth less than

or equal to d from ø, the depth of ø itself being 0. For example, G0
ø contains ø alone. Denote by ∂̃Gd

ø , the

set of leaves of Gd
ø . For example, ∂̃G0

ø = {ø}.

Definition 4.5. H is a depth-d partial rooted alternating r-core of Gø with respect to spins σ : Vd
ø →

{−1,+1}, if H is an connected induced subgraph of Gd
ø such that:

1. ø ∈ VH.

2. |∂̃Hi| ≥ r − 1 for all i ∈ VH\ ∂̃Gd
ø .

3. There is a partition (V−,H,V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H.

(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H i.e. H is bipartite with respect to
the vertex partition (V−,H,V∗,H). We call V−,H the even vertices and V∗,H the odd vertices.

We define Hø,even(T ) to be the maximal rooted alternating
⌈

k+1
2

⌉
-core of Gø with respect to σ(T ), such

that ø is an even vertex. For all d ≥ 0, we define Hd
ø,even(T ) to be the maximal depth d partial rooted

alternating
⌈

k+1
2

⌉
-core of Gø with respect to σd(T ), such that ø is even. Here σd(T ) is the restriction of

σ(T ) to Vd
ø . We similarly define Hø,odd(T ) and Hd

ø,odd(T ).
We define Ceven(T ) = {ø ∈ VHø,even(T )}, i.e. Ceven(T ) is the event of Hø,even(T ) being non-empty.

Define Cd
even(T ) = {ø ∈ Vd

Hø,even(T )}. We similarly define Codd(T ) and Cd
odd(T ). It is easy to see that

Cd
even(T ) ⊆ Cd′

even(T ), ∀ d′ < d. Also, Ceven(T ) =
⋂

d≥0 Cd
even(T ). Similarly, Cd

odd(T ) ⊆ Cd′

odd(T ), ∀ d′ < d

and Codd(T ) =
⋂

d≥0 Cd
odd(T ). We thus have the following remark.

Lemma 4.6. Cd
even(T ), d ≥ 0 form a monotonic non-increasing sequence of events in d with limit

⋂
d≥0 Cd

even(T ) =
Ceven(T ), for all T ≥ 0. Similarly for the ‘odd’ quantities.

Let A(ωT
0 ) ≡ {σø(t) = ω(t), 0 ≤ t ≤ T} and define the events

Beven(T, ωT
0 ) = Ceven(T ) ∩A(ωT

0 ) ,

Bd
even(T, ωT

0 ) = Cd
even(T ) ∩A(ωT

0 ), d ≥ 0 .

We denote the corresponding probabilities as

Ψeven,T ((σø)
T
0 ||uT

0 ) ≡ P(Beven(T, (σø)
T
0 )||uT

0 ) ,

Ψd
even,T ((σø)

T
0 ||uT

0 ) ≡ P(Bd
even(T, (σø)

T
0 )||uT

0 ) , d ≥ 0 .

It follows from Lemma 4.6 that Beven(T ) =
⋂

d≥0 Bd
even(T ). Therefore Ψd

even,T ((σø)
T
0 ||uT

0 ) is non-increasing
in d and by the monotone convergence theorem

Ψeven,T ((σø)
T
0 ||uT

0 ) = lim
d→∞

Ψd
even,T ((σø)

T
0 ||uT

0 ) . (76)

We similarly define Bodd, B
d
odd,Ψodd,T ((σø)

T
0 ||uT

0 )),Ψd
odd,T ((σø)

T
0 ||uT

0 )) and have Ψd
odd,T ((σø)

T
0 ||uT

0 )) con-

verging to Ψodd,T ((σø)
T
0 ||uT

0 )) as d →∞.
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Note the values for d = 0 follow from these definitions,

Ψ0
odd,T ((σø)

T
0 ||uT

0 )) = P((σø)
T
0 ||uT

0 ) ,

Ψ0
even,T ((σø)

T
0 ||uT

0 )) = P((σø)
T
0 ||uT

0 ) I(σø(T ) = −1) . (77)

Lemma 4.7. The following iterative equations are satisfied for all d ≥ 0:

Ψd+1
odd,T ((σø)

T
0 ||uT

0 ) = P0(σø(0))

k−1∑

r=d k+1
2 e−1

(
k − 1

r

) ∑

(σ1)T
0 ...(σk−1)T

0

T−1∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))

r∏

i=1

Ψd
even,T ((σi)

T
0 ||(σø)

T
0 )

k−1∏

i=r+1

(
P((σi)

T
0 ||(σø)

T
0 )−Ψd

even,T ((σi)
T
0 ||(σø)

T
0 )
)

, (78)

Ψd+1
even,T ((σø)

T
0 ||uT

0 ) = I(σø(T ) = −1)P0(σø(0))

k−1∑

r=d k+1
2 e−1

(
k − 1

r

) ∑

(σ1)T
0 ...(σk−1)T

0

T−1∏

t=0

Ku(t)(σø(t + 1)|σ∂ø(t))

r∏

i=1

Ψd
odd,T ((σi)

T
0 ||(σø)

T
0 )

k−1∏

i=r+1

(
P((σi)

T
0 ||(σø)

T
0 )−Ψd

odd,T ((σi)
T
0 ||(σø)

T
0 )
)

, (79)

Ku(t)(· · · ) ≡
{

I

{
σø(t + 1) = sign

(∑k−1
i=1 σi(t) + u(t)

)}
if
∑k−1

i=1 σi(t) + u(t) 6= 0 ,
1
2 otherwise.

(80)

Proof. Consider any d ≥ 0. We denote the neighbors of the root as {1, . . . , k−1}. We reuse the definitions
of σ(0) and σi(0) 1 ≤ i ≤ (k − 1) from Lemma 3.5, with depth T replaced with depth (T + d + 1).
We denote by AT−1 the set of coin flips {Ai,t} with t ≤ T − 1, and i at distance at most T + d + 1
from the root. We have AT−1 = ((Aø)

T−1
0 ,A1,T−1, . . . ,Ak−1,T−1), where Ai,T−1 is the subset of coin

flips in the subtree rooted at i ∈ {1, . . . , k − 1}. Let Gi be the subtree rooted at i. Define Hd
i,even(T ),

as the maximal depth d partial rooted alternating
⌈

k+1
2

⌉
-core of Gi with respect to σd

i (T ), such that i
is even. Define Cd

i,even(T ) = {ø ∈ Vd
Hi,even(T )}. Let Ai(ω

T
0 ) ≡ {σi(t) = ω(t), 0 ≤ t ≤ T}. We define

Bd
i,even(T, (ω)T

0 ) = Cd
i,even(T ) ∩Ai(ω

T
0 ). Hence, we have mirrored the definitions for the root ø at the child

i.
Let C = {1, 2, . . . , k − 1}. By Definition 4.5, it follows that (here A{ denotes the complement of an

event A)

Cd+1
odd (T ) =

⋃

S⊆C
|S|≥d(k−1)/2e

⋂

i∈S
Cd

i,even(T )
⋂

j∈C−S

(
Cd

j,even(T )
){

Cd+1
even(T ) = I(σø(T ) = −1)

⋃

S⊆C
|S|≥d(k−1)/2e

⋂

i∈S
Cd

i,odd(T )
⋂

j∈C−S

(
Cd

j,odd(T )
){

(81)

Let J d
odd(σT+d, uT

0 ,AT ) ≡ I(Cd
odd(T )). Note that J d

odd is a deterministic function. Similarly define
J d

even. From Eq. (81), we have

J d+1
odd (σT+d+1, uT

0 ,AT ) =
∑

S⊆C
|S|≥d(k−1)/2e

∏

i∈S
J d

i,even(σT+d
i , (σø)

T
0 ,Ai,T )

∏

j∈C−S

(
1− J d

j,even(σ
T+d
j , (σø)

T
0 ,Aj,T )

)

(82)
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Define f(·, ·, ·, ·) and F(·, ·, ·) as in Lemma 3.5. We have I(Bd+1
odd (T, ωT

0 )) = I(A(ωT
0 ))I(Cd+1

odd (T )), leading
to

Ψd+1
odd (ωT

0 ||uT
0 ) = EAT−1

∑
σ(0) P(σ(0))I

(
ωT

0 = FT
0 (σ(0), uT

0 ,AT−1)
)
J d+1

odd (σ(0), uT
0 ,AT+d) . (83)

Subtracting Eq. (83) from Eq. (36) after replacing T + 1 by T , we get

P(ωT
0 ||uT

0 )−Ψd+1
odd (ωT

0 ||uT
0 ) = EAT−1

∑

σ(0)

P(σ(0))

· I
(
ωT

0 = FT
0 (σ(0), uT

0 ,AT−1)
)
(1− J d+1

odd (σ(0), uT
0 ,AT+d)) . (84)

Equations (37) and (38) (with T replaced by T −1) continue to hold. Using Eq. (82), we have the following
decomposition, similar to Eq. (39):

I
(
ωT

1 = FT
1 (σ(0), uT

0 ,AT−1)
)
J d+1

odd (σ(0), uT
0 ,AT+d)

=I

(
σø(0) = ω(0)

) ∑

(σ1)T
0 ...(σk−1)T

0

T−1∏

t=0

I
(
ω(t + 1) = f(σø(t), σ∂ø(t), u(t), Aø,t)

)

·
∑

S⊆C
|S|≥d(k−1)/2e

∏

i∈S
I
(
(σi)

T
0 = FT

0 (σi(0), ω
T
0 ,Ai,T−1)

)
J d

i,even(σ
T+d
i , (σø)

T
0 ,Ai,T )

·
∏

j∈C−S
I
(
(σj)

T
0 = FT

0 (σj(0), ω
T
0 ,Aj,T−1)

) (
1− J d

j,even(σ
T+d
j , (σø)

T
0 ,Aj,T )

)
.

(85)

Using Eqs. (37), (38) and (85) in Eq. (83) and separating terms that depend only on σ i(0), we get

Ψd+1
odd (ωT

0 ||uT
0 ) = P(ω(0))

∑

(σ1)T
0 ...(σk−1)T

0

T−1∏

t=0

I
{
ω(t + 1) = f(σø(t), σ∂ø(t), u(t), Aø,t)

}

·
∑

S⊆C
|S|≥d(k−1)/2e

∏

i∈S

∑

σi(0)

P(σi(0))I
(
(σi)

T
0 = FT

0 (σi(0), ω
T
0 ,Ai,T−1)

)
J d

i,even(σT+d
i , (σø)

T
0 ,Ai,T )

·
∏

j∈C−S

∑

σj(0)

P(σj(0))I
(
(σj)

T
0 = FT

0 (σj(0), ω
T
0 ,Aj,T−1)

) (
1− J d

j,even(σ
T+d
j , (σø)

T
0 ,Aj,T )

)
.

Using the ‘even’ versions of Eqs. (83) and (84), and noticing the symmetry in the expression between the
k − 1 children, we recover Eq. (78).

Equation (79) follows similarly, with the additional I(σø(T ) = −1) term appearing due to the modifi-
cation in Eq. (81).

Let the vector of values taken by Ψodd,T ( · || · ) be denoted by Ψ̄odd,T . Similarly define Ψ̄even,T . Define
Ψ̄T =

(
Ψ̄odd,T , Ψ̄even,T

)
.

As before, P0(−1) = 1−θ
2 and P0(+1) = 1+θ

2 . Define θlb(k, T ) = sup{θ : Ψ̄odd,T � 0}, where v̄ � 0,
denotes that every component of the vector v̄ is strictly positive.

Finally, we relate quantities on the process on the rooted graph Gø to the process on the infinite k-ary
tree G. Pick an arbitrary node v ∈ V. Let Gd = (Vd, Ed), be the induced subgraph of G containing all
vertices that are at a distance less than or equal to d from v. For example, G 0 contains v alone. Denote
by ∂̃Gd, the set of leaves of Gd. For example, ∂̃G0 = {v}.
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Definition 4.8. H is a depth-d partial alternating r-core of G with respect to spins σ : V d → {−1,+1},
if H is an connected induced subgraph of Gd such that:

1. v ∈ VH.

2. |∂̃Hi| ≥ r − 1 for all i ∈ VH\ ∂̃Gd.

3. There is a partition (V−,H,V∗,H) of VH such that:

(a) σi = −1 for all i ∈ V−,H.

(b) ∂Hi ⊆ V−,H for all i ∈ V∗,H and ∂Hi ⊆ V∗,H for all i ∈ V−,H i.e. H is bipartite with respect to
the vertex partition (V−,H,V∗,H). We call V−,H the even vertices and V∗,H the odd vertices.

We define Ĥeven(T ), as the maximal alternating
⌈

k+1
2

⌉
-core of G with respect to σ(T ), such that v is

an even vertex. For all d ≥ 0, we define Ĥd
even(T ), as the maximal depth d partial alternating

⌈
k+1
2

⌉
-core

of G with respect to σd(T ), such that v is even. Here, σd(T ) is the restriction of σ(T ), to Vd. We similarly
define Ĥodd(T ) and Ĥd

odd(T ).

We now proceed to define Ĉeven(T ), Ĉd
even(T ), Ĉodd(T ), Ĉd

odd(T ), Â(ωT
0 ), and B̂even(T, ωT

0 ), B̂d
even(T, ωT

0 ),

B̂odd(T, ωT
0 ), B̂d

odd(T, ωT
0 ) for G, analogously to the definitions of Ceven(T ) etc. for Gø. An analog of Lemma

4.6 holds.
Define the probabilities

Ψ̂even,T (σT
0 ) = P(Beven(T, σT

0 )) ,

Ψ̂d
even,T (σT

0 ) = P(Bd
even(T, σT

0 )) , d ≥ 0 .

As before, we have Ψ̂d
even,T (σT

0 ) is non-increasing in d and

Ψ̂even,T (σT
0 ) = lim

d→∞
Ψ̂d

even,T (σT
0 ) . (86)

We similarly define Ψ̂odd,T (σT
0 ), Ψ̂d

odd,T (σT
0 ) and have Ψ̂d

odd,T (σT
0 ) converging to Ψ̂odd,T (σT

0 ) as d →∞.

Lemma 4.9. The following identities are satisfied for all d ≥ 0:

Ψ̂d+1
odd,T (σT

0 ) = P0(σ(0))

k∑

r=d k+1
2 e

(
k

r

) ∑

(σ1)T
0 ...(σk)T

0

T−1∏

t=0

K̂(σ(t + 1)|σ∂v(t))

r∏

i=1

Ψd
even,T ((σi)

T
0 ||σT

0 )
k∏

i=r+1

(
P((σi)

T
0 ||σT

0 )−Ψd
even,T ((σi)

T
0 ||σT

0 )
)

, (87)

Ψ̂d+1
even,T (σT

0 ) = I(σ(T ) = −1)P0(σ(0))
k∑

r=d k+1
2 e

(
k

r

) ∑

(σ1)T
0 ...(σk)T

0

T−1∏

t=0

K̂(σ(t + 1)|σ∂v(t))

r∏

i=1

Ψd
odd,T ((σi)

T
0 ||σT

0 )
k∏

i=r+1

(
P((σi)

T
0 ||σT

0 )−Ψd
odd,T ((σi)

T
0 ||σT

0 )
)

, (88)

K̂(· · · ) ≡
{

I

{
σ(t + 1) = sign

(∑k
i=1 σi(t)

)}
if
∑k

i=1 σi(t) 6= 0 ,
1
2 otherwise.

(89)

Proof. The proof is very similar to the one of Lemma 4.7, and we omit it for the sake of space.
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Lemma 4.10. Assume that Ψ̄odd,T � 0 for some T ≥ 0 and θ ∈ [0, 1]. Then for the same θ and T , there
exists an alternating d k+1

2 e-core of G with positive probability with respect to σ(T ).

Proof. Take the limit d →∞ in Eq. (88). We have,

Ψ̂even,T (σT
0 ) = I(σ(T ) = −1)P0(σ(0))

k∑

r=d k+1
2 e

(
k

r

) ∑

(σ1)T
0 ...(σk)T

0

T−1∏

t=0

K̂(σ(t + 1)|σ∂v(t))

r∏

i=1

Ψodd,T ((σi)
T
0 ||σT

0 )
k∏

i=r+1

(
P((σi)

T
0 ||σT

0 )−Ψodd,T ((σi)
T
0 ||σT

0 )
)

, (90)

Now, consider any θ such that Ψ̄odd,T � 0. Consider Ψ̂even,T (σT
0 ) for any σT

0 with σ(T ) = −1. Note that
every term in the summation over r in Eq. (90) is non-negative, and, in fact, positive when Ψ̄odd,T � 0 holds.

Hence, Ψ̂even,T (σT
0 ) > 0 ⇒ Pθ(∃ alternating

⌈
k+1
2

⌉
-core H of G with respect to σ(T ) s.t. v ∈ H) > 0.

The lower bond on θ∗(k) is an immediate consequence of the above lemmas.

Proof. (Theorem 1.3). The thesis follows Lemmas 4.3 and 4.10 and the definition of θ∗ in Eq. (3).

4.1 Evaluating the lower bound

Equations (78) and (79) can be iterated with initial values given by Eq. (77) to compute θ lb(k, T ). To
simplify the recursion, we notice that the dynamics is ‘bipartite’: each of A and σ(0) can be partitioned
A = (Â, Ã), σ(0) = (σ̂(0), σ̃(0)) such that (Â, σ̂(0) and (Ã, σ̃(0)) never ‘interact’ in the majority dynamics
on an infinite tree. This remark reduces the number of variables in the recursions Eqs. (78) and (79).
Further, for small values of T , instead of summing over all possible trajectories of children, it is faster to
sum over all possibilities for the histogram of the trajectories followed by children.

In the table below we present some of the lower bounds θlb(k, T ) computed through this approach, and
compare them with the empirical threshold θ∗(k) deduced from numerical simulations.

k T = 0 T = 1 T = 2 T = 3 Simulation

3 +0.508 +0.568 +0.572 +0.574 0.58
5 −0.084 +0.026 +0.048 +0.052 0.054
7 −0.14 −0.020 +0.002 +0.008 0.010
9 −0.14 −0.030 −0.006 −0.0008
11 −0.12 −0.028 −0.010 −0.0028
15 −0.12 −0.024 −0.008 −0.0028
21 −0.084 −0.018 −0.0054 −0.0018
31 −0.080 −0.014 −0.0032 −0.0010
51 −0.046 −0.0070 −0.0014 −0.00038
101 −0.026 −0.0032 −0.00048
201 −0.016 −0.0014 −0.00014
401 −0.0084 −0.00048 −0.000040
1001 −0.0035 −0.00012 −0.000008

Asymptotics −Θ
(
√

log k

k

)
−Θ

(
√

log k

k3/2

)
−Θ

(
√

log k

k2

)

As observed in the introduction θ∗(k) ≥ 0 by symmetry and monotonicity. Therefore the lower bounds
are non-trivial only if θlb(k, T ) > 0. It turns out that for any fixed T , θlb(k, T ) becomes negative at large k.
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We present in the same table the asymptotic behaviors. Nevertheless, for k ≤ 7, our lower bounds provide
good estimates of the actual threshold.

The values of θlb(k, T ) are much lower for even values of k. For example, for k = 4, 6, 8, θlb(k, 3) ≈
−0.22, −0.09, −0.05 respectively. This is as expected, since our requirement of an alternating

⌈
k+1
2

⌉
-core

is more stringent for even k. On the other hand, numerical simulations suggest that θ∗(k) = 0 for small
even values of k.
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A Proof of the local central limit theorem

The proof repeats the arguments of [DMD94], while keeping track explicitly of error terms. We will
therefore focus on the differences with respect to [DMD94]. We will indeed prove a result that is slightly
stronger than Theorem 3.7. Apart from a trivial rescaling, the statement below differs from Theorem 3.7
in that we allow for larger deviations from the mean.

Theorem A.1. Let X1, . . . , XN be i.i.d. vectors Xi = (Xi,1, Xi,2, . . . , Xi,d) ∈ {0, 1}d with

∣∣∣P{X1,` = 1} − 1

2

∣∣∣ ≤ B√
N

, (91)

for ` ∈ {1, . . . , d}. Further assume P{Xi = s} ≥ P{Xi = 0} ≥ 1/B for all s ∈ {0, 1}d.
Let a ∈ Zd be such that supi |ai −N/2| ≤ B

√
N , and define, for a partition {1, . . . , d} = I0 ∪ I+,

A(a, I) ≡ {z ∈ Zd : zi = ai ∀ i ∈ I0, zi ≥ ai ∀ i ∈ I+} ,

A∞(a, I) ≡ {z ∈ Rd : zi = ai/
√

N ∀ i ∈ I0, zi ≥ ai/
√

N ∀ i ∈ I+} .

Then, for K = |I0|,
∣∣∣F (a, I)− 1

NK/2
Φ√

NEX1,Cov(X1)(A∞(a, I))
∣∣∣ ≤ L(B, d)

N (K+(K+1)−1)/2
(92)

F (a, I) ≡
∑

y∈A(a,I)

pN (y) .

Since Φ√
NEX1,Cov(X1)(A∞(I)) is bounded away from 0 for B bounded, the error estimate in the last

statement is equivalent to the one in Theorem 3.7. For K = 0 our claim is implied by the multi-dimensional
Berry-Esseen theorem [BR76], and we will therefore focus on K ≥ 1.

Recall that the Bernoulli decomposition of [DMD94] allows to write, for SN = (SN,1, . . . , SN,d) and
r ∈ {1, . . . , d}

SN,r = ZN,r +

MN,r∑

i=1

Li,r (93)

where ZN is a lattice random variable, MN,r ∼Binom(N, qr) for r = 1, . . . , d, and {Li,r} is a collection
of i.i.d. Bernoulli(1/2) random variables independent from ZN and MN . Finally, it is easy to check that
qr ≥ 1/(Bd).

We have the following key estimate.
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Lemma A.2. There exists a numerical constant C such that, for any a, b ∈ Zd

∣∣F (a, I)− F (b, I)
∣∣ ≤ C

(
Bd

N

)(K+1)/2

||a− b|| . (94)

where || · || denotes the L1 norm.

Proof. As in [DMD94], we let, for x,m ∈ Zd,

rm(x) ≡
d∏

i=1

1

2mi

(
mi

xi

)
, (95)

be the probability mass function of the vector Λm ≡ (
∑m1

i=1 Li,1, . . . ,
∑md

i=1 Li,d). It then follows immediately
that

∣∣∣
∑

x∈A(a,I)

rm(x)−
∑

y∈A(b,I)

rm(y)
∣∣∣ ≤ C∗

mini(mi)(K+1)/2
||a− b|| , (96)

for some numerical constant C. This is is a slight generalization of Lemma 2.2 of [DMD94], and follows
again immediately from the same estimates on the combinatorial coefficients used in [DMD94].

We then proceed analogously to the proof of Theorem 2.1 of [DMD94], namely, for h ∈ Zd,

sup
a∈Zd

|F (a + h, I)− F (a, I)|

≤ sup
a∈Zd

∑

m∈Zd

P{MN = m}
∣∣P{SN ∈ A(a, I)|MN = m} − P{SN ∈ A(a + h, I)|MN = m}

∣∣

= sup
a∈Zd

∑

m∈Zd

P{MN = m}
∣∣∣P
{
ZN + Λm ∈ A(a, I)

∣∣MN = m
}
− P

{
ZN + Λm ∈ A(a + h, I)

∣∣MN = m
}∣∣∣

≤ sup
a∈Zd

∑

m∈Zd

P{MN = m}
∑

l∈Zd

P{ZN = l}
∣∣∣P
{
Λm ∈ A(a− l, I)

∣∣MN = m
}
− P

{
Λm ∈ A(a + h− l, I)

∣∣MN = m
}∣∣∣

≤
∑

m∈Zd

C∗
mini(mi)(K+1)/2

||h||

which is bounded as in the statement by the same argument used in [DMD94].

We are now in a position to prove Theorem A.1.

Proof. (Theorem A.1) For a as in the statement and ` > 0, let

R(a, `) =
{
z ∈ Zd : |zi − ai| ≤ ` ∀i ∈ I0, zi = ai ∀i ∈ I+

}
,

R∞(a, `) =
{
z ∈ Rd : |zi − ai/

√
N | ≤ `/

√
N ∀i ∈ I0, zi = ai/

√
N ∀i ∈ I+

}
.

Then, by Lemma A.2, there exists a constant C1(B, d) such that

∣∣∣∣∣∣
F (a, I)− 1

|R(a, `)|
∑

z∈R(a,`)

F (z, I)

∣∣∣∣∣∣
≤ C1(B, d)`

N (K+1)/2
. (97)
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On the other hand, by the Berry-Esseen theorem
∣∣∣∣∣∣

∑

z∈R(a,`)

F (x, I)−
∫

R∞(a,`)
Φ√

NEX1,Cov(X1)(A∞(z, I)) dz

∣∣∣∣∣∣
≤ C2(d)

N1/2
. (98)

Finally, it is easy to see that Φ√
NEX1,Cov(X1)(A∞(z, I)) is Lipschitz continuous in z with Lipschitz constant

bounded uniformly in N , whence
∣∣∣∣∣Φ

√
NEX1,Cov(X1)(A∞(a, I))− 1

|R∞(a, `)|

∫

R∞(a,`)
Φ√

NEX1,Cov(X1)(A∞(z, I))dz

∣∣∣∣∣ ≤
C3`√

N
. (99)

The proof is completed by putting together Eqs. (97), (98) and (99), using |R(a, `)| = Θ(`K), |R∞(a, `)| =
Θ(`KN−K/2), and setting ` = NK/(2K+2).
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