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Abstract

We consider the problem of learning a coefficient vector x0 ∈ R
N from noisy linear observation

y = Ax0 + w ∈ R
n. In many contexts (ranging from model selection to image processing) it is

desirable to construct a sparse estimator x̂. In this case, a popular approach consists in solving
an `1-penalized least squares problem known as the LASSO or Basis Pursuit DeNoising (BPDN).

For sequences of matrices A of increasing dimensions, with independent gaussian entries, we
prove that the normalized risk of the LASSO converges to a limit, and we obtain an explicit
expression for this limit. Our result is the first rigorous derivation of an explicit formula for the
asymptotic mean square error of the LASSO for random instances. The proof technique is based
on the analysis of AMP, a recently developed efficient algorithm, that is inspired from graphical
models ideas.

1 Introduction

Let x0 ∈ R
N be an unknown vector, and assume that a vector y ∈ R

n of noisy linear measurements
of x0 is available. The problem of reconstructing x0 from such measurements arises in a number of
disciplines, ranging from statistical learning to signal processing. In many contexts the measurements
are modeled by

y = Ax0 + w , (1.1)

where A ∈ R
n×N is a known measurement matrix, and w is a noise vector.

The LASSO or Basis Pursuit Denoising (BPDN) is a method for reconstructing the unknown
vector x0 given y, A, and is particularly useful when one seeks sparse solutions. For given A, y, one
considers the cost functions CA,y : R

N → R defined by

CA,y(x) =
1

2
‖y −Ax‖2 + λ‖x‖1 , (1.2)

with λ > 0. The original signal is estimated by

x̂(λ;A, y) = argminx CA,y(x) . (1.3)

In what follows we shall often omit the arguments A, y (and occasionally λ) from the above notations.
We will also use x̂(λ;N) to emphasize the N -dependence. Further ‖v‖p ≡ (

∑m
i=1 v

p
i )

1/p denotes the
`p-norm of a vector v ∈ R

p (the subscript p will often be omitted if p = 2).
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A large and rapidly growing literature is devoted to (i) Developing fast algorithms for solving the
optimization problem (1.3); (ii) Characterizing the performances and optimality of the estimator x̂.
We refer to Section 1.3 for an unavoidably incomplete overview.

Despite such substantial effort, and many remarkable achievements, our understanding of (1.3) is
not even comparable to the one we have of more classical topics in statistics and estimation theory.
For instance, the best bound on the mean square error (MSE) of the estimator (1.3), i.e. on the
quantity N−1‖x̂ − x0‖2, was proved by Candes, Romberg and Tao [CRT06] (who in fact did not
consider the LASSO but a related optimization problem). Their result estimates the mean square
error only up to an unknown numerical multiplicative factor. Work by Candes and Tao [CT07] on
the analogous Dantzig selector, upper bounds the mean square error up to a factor C logN , under
somewhat different assumptions.

The objective of this paper is to complement this type of ‘rough but robust’ bounds by proving
asymptotically exact expressions for the mean square error. Our asymptotic result holds almost surely
for sequences of random matrices A with fixed aspect ratio and independent gaussian entries. While
this setting is admittedly specific, the careful study of such matrix ensembles has a long tradition
both in statistics and communications theory and has spurred many insights [Joh06, Tel99].

Although our rigorous results are asymptotic in the problem dimensions, numerical simulations
have shown that they are accurate already on problems with a few hundreds of variables. Further,
they seem to enjoy a remarkable universality property and to hold for a fairly broad family of matrices
[DMM10]. Both these phenomena are analogous to ones in random matrix theory, where delicate
asymptotic properties of gaussian ensembles were subsequently proved to hold for much broader
classes of random matrices. Also, asymptotic statements in random matrix theory have been replaced
over time by concrete probability bounds in finite dimensions. Of course the optimization problem
(1.2) is not immediately related to spectral properties of the random matrix A. As a consequence,
universality and non-asymptotic results in random matrix theory cannot be directly exported to the
present problem. Nevertheless, we expect such developments to be foreseable.

Our proofs are based on the analysis of an efficient iterative algorithm first proposed by [DMM09],
and called AMP, for approximate message passing. The algorithm is inspired by belief-propagation
on graphical models, although the resulting iteration is significantly simpler (and scales linearly
in the number of nodes). Extensive simulations [DMM10] showed that, in a number of settings,
AMP performances are statistically indistinguishable to the ones of LASSO, while its complexity is
essentially as low as the one of the simplest greedy algorithms.

The proof technique just described is new. Earlier literature analyzes the convex optimization
problem (1.3) –or similar problems– by a clever construction of an approximate optimum, or of a
dual witness. Such constructions are largely explicit. Here instead we prove an asymptotically exact
characterization of a rather non-trivial iterative algorithm. The algorithm is then proved to converge
to the exact optimum.

1.1 Definitions

In order to define the AMP algorithm, we denote by η : R× R+ → R the soft thresholding function

η(x; θ) =





x− θ if x > θ,
0 if −θ ≤ x ≤ θ,
x+ θ otherwise.

(1.4)
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The algorithm constructs a sequence of estimates xt ∈ R
N , and residuals zt ∈ R

n, according to the
iteration

xt+1 = η(A∗zt + xt; θt), (1.5)

zt = y −Axt +
1

δ
zt−1

〈
η′(A∗zt−1 + xt−1; θt−1)

〉
,

initialized with x0 = 0. Here A∗ denotes the transpose of matrix A, and η ′( · ; · ) is the derivative
of the soft thresholding function with respect to its first argument. Given a scalar function f and
a vector u ∈ R

m, we let f(u) denote the vector (f(u1), . . . , f(um)) ∈ R
m obtained by applying f

componentwise. Finally 〈u〉 ≡ m−1
∑m

i=1 ui is the average of the vector u ∈ R
m.

As already mentioned, we will consider sequences of instances of increasing sizes, along which the
LASSO behavior has a non-trivial limit.

Definition 1. The sequence of instances {x0(N), w(N), A(N)}N∈N indexed by N is said to be a
converging sequence if x0(N) ∈ R

N , w(N) ∈ R
n, A(N) ∈ R

n×N with n = n(N) is such that
n/N → δ ∈ (0,∞), and in addition the following conditions hold:

(a) The empirical distribution of the entries of x0(N) converges weakly to a probability measure
pX0 on R with bounded second moment. Further N−1

∑N
i=1 x0,i(N)2 → EpX0

{X2
0}.

(b) The empirical distribution of the entries of w(N) converges weakly to a probability measure pW

on R with bounded second moment. Further n−1
∑n

i=1 wi(N)2 → EpW
{W 2}.

(c) If {ei}1≤i≤N , ei ∈ R
N denotes the standard basis, then maxi∈[N ] ‖A(N)ei‖2, mini∈[N ] ‖A(N)ei‖2 →

1, as N →∞ where [N ] ≡ {1, 2, . . . , N}.

Let us stress that our proof only applies to a subclass of converging sequences (namely for gaussian
measurement matrices A(N)). The notion of converging sequences is however important since it
defines a class of problem instances to which the ideas developed below might be generalizable.

For a converging sequence of instances, and an arbitrary sequence of thresholds {θt}t≥0 (inde-
pendent of N), the asymptotic behavior of the recursion (1.5) can be characterized as follows.

Define the sequence {τ 2
t }t≥0 by setting τ 2

0 = σ2 + E{X2
0}/δ (for X0 ∼ pX0 and σ2 ≡ E{W 2},

W ∼ pW ) and letting, for all t ≥ 0:

τ2
t+1 = F(τ2

t , θt) , (1.6)

F(τ2, θ) ≡ σ2 +
1

δ
E{ [η(X0 + τZ; θ)−X0]

2} , (1.7)

where Z ∼ N(0, 1) is independent of X0. Notice that the function F depends implicitly on the law
pX0 .

We say a function ψ : R
2 → R is pseudo-Lipschitz if there exist a constant L > 0 such that for

all x, y ∈ R
2: |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x − y‖2. (This is a special case of the definition

used in [BM10] where such a function is called pseudo-Lipschitz of order 2.)
Our next proposition that was conjectured in [DMM09] and proved in [BM10]. It shows that

the behavior of AMP can be tracked by the above one dimensional recursion. We often refer to this
prediction by state evolution.
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Theorem 1.1 ([BM10]). Let {x0(N), w(N), A(N)}N∈N be a converging sequence of instances with
the entries of A(N) iid normal with mean 0 and variance 1/n and let ψ : R× R → R be a pseudo-
Lipschitz function. Then, almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
xt+1

i , x0,i

)
= E

{
ψ
(
η(X0 + τtZ; θt), X0

)}
, (1.8)

where Z ∼ N(0, 1) is independent of X0 ∼ pX0.

In order to establish the connection with the LASSO, a specific policy has to be chosen for the
thresholds {θt}t≥0. Throughout this paper we will take θt = ατt with α is fixed. In other words, the
sequence {τt}t≥0 is given by the recursion

τ2
t+1 = F(τ2

t , ατt) . (1.9)

This choice enjoys several convenient properties [DMM09].

1.2 Main result

Before stating our results, we have to describe a calibration mapping between α and λ that was
introduced in [DMM10].

Let us start by stating some convenient properties of the state evolution recursion.

Proposition 1.2 ([DMM09]). Let αmin = αmin(δ) be the unique non-negative solution of the equation

(1 + α2)Φ(−α) − αφ(α) =
δ

2
, (1.10)

with φ(z) ≡ e−z2/2/
√

2π the standard gaussian density and Φ(z) ≡
∫ z
−∞ φ(x) dx.

For any σ2 > 0, α > αmin(δ), the fixed point equation τ 2 = F(τ2, ατ) admits a unique solution.
Denoting by τ∗ = τ∗(α) this solution, we have limt→∞ τt = τ∗(α). Further the convergence takes
place for any initial condition and is monotone. Finally

∣∣ dF

dτ2 (τ2, ατ)
∣∣ < 1 at τ = τ∗.

For greater convenience of the reader, a proof of this statement is provided in Appendix A.1.
We then define the function α 7→ λ(α) on (αmin(δ),∞), by

λ(α) ≡ ατ∗

[
1− 1

δ
E
{
η′(X0 + τ∗Z;ατ∗)

}]
. (1.11)

This function defines a correspondence (calibration) between the sequence of thresholds {θt}t≥0 and
the regularization parameter λ. It should be intuitively clear that larger λ corresponds to larger
thresholds and hence larger α since both cases yield smaller estimates of x0.

In the following we will need to invert this function. We thus define α : (0,∞) → (αmin,∞) in
such a way that

α(λ) ∈
{
a ∈ (αmin,∞) : λ(a) = λ

}
.

The next result implies that the set on the right-hand side is non-empty and therefore the function
λ 7→ α(λ) is well defined.
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Figure 1: Mapping τ 2 7→ F(τ2, ατ) for α = 2, δ = 0.64, σ2 = 0.2, pX0({+1}) = pX0({−1}) = 0.064
and pX0({0}) = 0.872.

Proposition 1.3 ([DMM10]). The function α 7→ λ(α) is continuous on the interval (αmin,∞) with
λ(αmin+) = −∞ and limα→∞ λ(α) = ∞.

Therefore the function λ 7→ α(λ) satisfying Eq. (1.12) exists.

A proof of this statement is provided in Section A.2. We will denote by A = α((0,∞)) the image
of the function α. Notice that the definition of α is a priori not unique. We will see that uniqueness
follows from our main theorem.

Examples of the mappings τ 2 7→ F(τ2, ατ), α 7→ τ∗(α) and α 7→ λ(α) are presented in Figures 1,
2, and 3 respectively.

We can now state our main result.

Theorem 1.4. Let {x0(N), w(N), A(N)}N∈N be a converging sequence of instances with the entries
of A(N) iid normal with mean 0 and variance 1/n. Denote by x̂(λ;N) the LASSO estimator for
instance (x0(N), w(N), A(N)), with σ2, λ > 0, P{X0 6= 0} and let ψ : R × R → R be a pseudo-
Lipschitz function. Then, almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
x̂i, x0,i

)
= E

{
ψ
(
η(X0 + τ∗Z; θ∗), X0

)}
, (1.12)

where Z ∼ N(0, 1) is independent of X0 ∼ pX0, τ∗ = τ∗(α(λ)) and θ∗ = α(λ)τ∗(α(λ)).
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Figure 2: Mapping α 7→ τ∗(α) for the same parameters δ, σ2 and distribution pX0 as in Figure 1.
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Figure 3: Mapping α 7→ λ(α) for the same parameters δ, σ2 and distribution pX0 as in Figure 1.
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As a corollary, the function λ 7→ α(λ) is indeed uniquely defined.

Corollary 1.5. For any λ, σ2 > 0 there exists a unique α > αmin such that λ(α) = λ (with the
function α→ λ(α) defined as in Eq. (1.11).

Hence the function λ 7→ α(λ) is continuous non-decreasing with α((0,∞)) ≡ A = (α0,∞).

The proof of this corollary (which uses Theorem 1.4) is provided in Appendix A.3.
The assumption of a converging problem-sequence is important for the result to hold, while the

hypothesis of gaussian measurement matrices A(N) is necessary for the proof technique to be correct.
On the other hand, the restrictions λ, σ2 > 0, and P{X0 6= 0} > 0 (whence τ∗ 6= 0 using Eq. (1.11))
are made in order to avoid technical complications due to degenerate cases. Such cases can be
resolved by continuity arguments.

The proof of Theorem 1.4 is given in Section 3.

1.3 Related work

The LASSO was introduced in [Tib96, CD95]. Several papers provide performance guarantees for
the LASSO or similar convex optimization methods [CRT06, CT07], by proving upper bounds on
the resulting mean square error. These works assume an appropriate ‘isometry’ condition to hold for
A. While such condition hold with high probability for some random matrices, it is often difficult to
verify them explicitly. Further, it is only applicable to very sparse vectors x0. These restrictions are
intrinsic to the worst-case point of view developed in [CRT06, CT07].

Guarantees have been proved for correct support recovery in [ZY06], under an appropriate ‘in-
coherence’ assumption on A. While support recovery is an interesting conceptualization for some
applications (e.g. model selection), the metric considered in the present paper (mean square error)
provides complementary information and is quite standard in many different fields.

Closer to the spirit of this paper [RFG09] derived expressions for the mean square error under
the same model considered here. Similar results were presented recently in [KWT09, GBS09]. These
papers argue that a sharp asymptotic characterization of the LASSO risk can provide valuable
guidance in practical applications. For instance, it can be used to evaluate competing optimization
methods on large scale applications, or to tune the regularization parameter λ.

Unfortunately, these results were non-rigorous and were obtained through the famously powerful
‘replica method’ from statistical physics [MM09].

Let us emphasize that the present paper offers two advantages over these recent developments: (i)
It is completely rigorous, thus putting on a firmer basis this line of research; (ii) It is algorithmic in
that the LASSO mean square error is shown to be equivalent to the one achieved by a low-complexity
message passing algorithm.

2 Numerical illustrations

Theorem 1.4 assumes that the entries of matrix A are iid gaussians. We expect however the mean
square error prediction to be robust and hold for much larger family of matrices. Rigorous evidence
in this direction is presented in [KM10] where the normalized cost C(x̂)/N is shown to have a limit
as N →∞ which is universal with respect to random matrices A with iid entries. (More precisely, it
is universal provided E{Aij} = 0, E{A2

ij} = 1/n and E{A6
ij} ≤ C/n3 for some uniform constant C.)
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Further, our result is asymptotic, while and one might wonder how accurate it is for instances of
moderate dimensions.

Numerical simulations were carried out in [DMM10, BBM10] and suggest that the result is robust
and relevant already for N of the order of a few hundreds. As an illustration, we present in Figs. 4
and 5 the outcome of such simulations for two types of random matrices. Simulations with real data
can be found in [BBM10]. We generated the signal vector randomly with entries in {+1, 0,−1} and
P(x0,i = +1) = P(x0,i = −1) = 0.064. The noise vector w was generated by using i.i.d. N(0, 0.2)
entries.

We obtained the optimum estimator x̂ using CVX, a package for specifying and solving convex
programs [GB10] and OWLQN, a package for solving large-scale versions of LASSO [AJ07]. We used
several values of λ between 0 and 2 and N equal to 200, 500, 1000, and 2000. The aspect ratio
of matrices was fixed in all cases to δ = 0.64. For each case, the point (λ,MSE) was plotted and
the results are shown in the figures. Continuous lines corresponds to the asymptotic prediction by
Theorem 1.4 for ψ(a, b) = (a− b)2, namely

lim
N→∞

1

N
‖x̂− x0‖2 = E

{[
η(X0 + τ∗Z; θ∗)−X0

]2}
= δ(τ2

∗ − σ2) .

The agreement is remarkably good already for N,n of the order of a few hundreds, and deviations
are consistent with statistical fluctuations.

The two figures correspond to different entries distributions: (i) Random gaussian matrices with
aspect ratio δ and iid N(0, 1/n) entries (as in Theorem 1.4); (ii) Random ±1 matrices with aspect
ratio δ. Each entry is independently equal to +1/

√
n or −1/

√
n with equal probability.

Notice that the asymptotic prediction has a minimum as a function of λ. The location of this
minimum can be used to select the regularization parameter.

3 A structural property and proof of the main theorem

We will prove the following theorem which implies our main result, Theorem 1.4.

Theorem 3.1. Assume the hypotheses of Theorem 1.4. Let x̂(λ;N) the LASSO estimator for in-
stance (x0(N), w(N), A(N)), and denote by {xt(N)}t≥0 the sequence of estimates produced by AMP.
Then

lim
t→∞

lim
N→∞

1

N
‖xt(N)− x̂(λ;N)‖2

2 = 0 , (3.1)

almost surely.

The rest of the paper is devoted to the proof of this theorem. Section 3.2 proves a structural
property that is the key tool in this proof. Section 3.3 uses this property together with a few lemmas
to prove Theorem 3.1

The proof of Theorem 1.4 follows immediately.
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Figure 4: Mean square error (MSE) as a function of the regularization parameter λ compared to the
asymptotic prediction for δ = 0.64 and σ2 = 0.2. Here the measurement matrix A has iid N(0, 1/n)
entries. Each point in this plot is generated by finding the LASSO predictor x̂ using a measurement
vector y = Ax0 + w for an independent signal vector x0, an independent noise vector w, and an
independent matrix A.
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Figure 5: As in Fig. 4, but the measurement matrix A has iid entries that are equal to ±1/
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equal probabilities.
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Proof of Theorem 1.4. For any t ≥ 0, we have, by the pseudo-Lipschitz property of ψ,
∣∣∣∣∣
1

N

N∑

i=1

ψ
(
xt+1

i , x0,i

)
− 1

N

N∑

i=1

ψ
(
x̂i, x0,i

)
∣∣∣∣∣ ≤

L

N

N∑

i=1

|xt+1
i − x̂i|

(
1 + 2|x0,i|+ |xt+1

i |+ |x̂i|
)

≤ L

N
‖xt+1 − x̂‖2

√√√√
N∑

i=1

(
1 + 2|x0,i|+ |xt+1

i |+ |x̂i|
)2

≤ L
‖xt+1 − x̂‖2√

N

√
4 +

8‖x0‖2
2

N
+

4‖xt+1‖2
2

N
+

4‖x̂‖2
2

N
,

where the second inequality follows by Cauchy-Schwarz. Next we take the limit N → ∞ followed
by t → ∞. The first term vanishes by Theorem 3.1. For the second term, note that ‖x0‖2

2/N
remains bounded since (x0, w,A) is a converging sequence. The two terms ‖xt+1‖2

2/N and ‖x̂‖2
2/N

also remain bounded in this limit because of state evolution (as proved in Lemma 3.3 below).
We then obtain

lim
N→∞

1

N

N∑

i=1

ψ
(
x̂i, x0,i

)
= lim

t→∞
lim

N→∞

1

N

N∑

i=1

ψ
(
xt+1

i , x0,i

)
= E

{
ψ
(
η(X0 + τ∗Z; θ∗), X0

)}
,

where we used Theorem 1.1 and Proposition 1.2.

3.1 Some notations

Before continuing, we introduce some useful notations. For any non-empty subset S of [m] and any
k×m matrix M we refer by MS to the k by |S| sub-matrix of M that contains only the columns of
M corresponding to S. The same notation is used for vectors v ∈ R

m: vS is the vector (vi : i ∈ S).
The transpose of matrix M is denoted by M ∗.
We will often use the following scalar prduct for u, v ∈ R

m:

〈u, v〉 ≡ 1

m

m∑

i=1

ui vi . (3.2)

Finally, the subgradient of a convex function f : R
m → R at point x ∈ R

m is denoted by ∂f(x).
In particular, remember that the subgradient of the `1 norm, x 7→ ‖x‖1 is given by

∂‖x‖1 =
{
v ∈ R

m such that |vi| ≤ 1∀i and xi 6= 0 ⇒ vi = sign(xi)
}
. (3.3)

3.2 A structural property of the LASSO cost function

One main challenge in the proof of Theorem 1.4 lies in the fact that the function x 7→ CA,y(x) is
not –in general– strictly convex. Hence there can be, in principle, vectors x of cost very close to the
optimum and nevertheless far from the optimum.

The following Lemma provides conditions under which this does not happen.

Lemma 3.2. There exists a function ξ(ε, c1, . . . , c5) such that the following happens. If x, r ∈ R
N

satisfy the following conditions
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1. ‖r‖2 ≤ c1
√
N ;

2. C(x+ r) ≤ C(x);

3. There exists sg(C, x) ∈ ∂C(x) with ‖sg(C, x)‖2 ≤
√
N ε;

4. Let v ≡ (1/λ)[A∗(y−Ax) + sg(C, x)] ∈ ∂‖x‖1, and S(c2) ≡ {i ∈ [N ] : |vi| ≥ 1− c2}. Then, for
any S′ ⊆ [N ], |S′| ≤ c3N , we have σmin(AS(c2)∪S′) ≥ c4;

5. The maximum and minimum non-zero singular value of A satisfy c−1
5 ≤ σmin(A)2 ≤ σmax(A)2 ≤

c5.

Then ‖r‖2 ≤
√
N ξ(ε, c1, . . . , c5). Further for any c1, . . . , c5 > 0, ξ(ε, c1, . . . , c5) → 0 as ε→ 0.

Further, if ker(A) = {0}, the same conclusion holds under assumptions 1, 2, 3, 5.

Proof. Throughout the proof we denote ξ1, ξ2, . . . functions of the constants c1, . . . , c5 > 0 and of ε
such that ξi(ε) → 0 as ε→ 0 (we shall omit the dependence of ξi on ε).

Let S = supp(x) ⊆ [N ]. We have

0
(a)

≥
(C(x+ r)− C(x)

N

)

(b)
= λ

(‖xS + rS‖1 − ‖xS‖1

N

)
+
λ‖rS‖1 + 1

2‖y −Ax−Ar‖2
2 − 1

2‖y −Ax‖2
2

N
(c)
= λ

(‖xS + rS‖1 − ‖xS‖1

N
− 〈sign(xS), rS〉

)
+ λ

(‖rS‖1

N
− 〈vS , rS〉

)
+ λ〈v, r〉 − 〈y −Ax,Ar〉+

‖Ar‖2
2

2N
(d)
= λ

(‖xS + rS‖1 − ‖xS‖1

N
− 〈sign(xS), rS〉

)
+ λ

(‖rS‖1

N
− 〈vS , rS〉

)
+ 〈sg(C, x), r〉+

‖Ar‖2
2

2N
,

where (a) follows from hypothesis (2), (c) from the fact that vS = sign(xS) since v ∈ ∂‖x‖1, and (d)
from the definition of (v). Using hypothesis (1) and (3), we get by Cauchy-Schwarz

λ
(‖xS + rS‖1 − ‖xS‖1

N
− 〈sign(xS), rS〉

)
+ λ
(‖rS‖1

N
− 〈vS , rS〉

)
+
‖Ar‖2

2

2N
≤ c1ε .

Since each of the three terms on the left-hand side is non-negative it follows that

‖rS‖1

N
− 〈vS , rS〉 ≤ ξ1(ε) , (3.4)

‖Ar‖2
2 ≤ Nξ1(ε) . (3.5)

Write r = r⊥ + r‖, with r‖ ∈ ker(A) and r⊥ ⊥ ker(A). It follows from Eq. (3.5) and hypothesis (5)
that

‖r⊥‖2
2 ≤ Nc5ξ1(ε) . (3.6)

In the case ker(A) = {0}, the proof is concluded. In the case ker(A) 6= {0}, we need to prove an
analogous bound for r‖. From Eq. (3.4) together with ‖r⊥

S
‖1 ≤

√
N‖r⊥

S
‖2 ≤

√
N‖r⊥‖2 ≤ N

√
c5ξ1(ε),

we get

Ar‖ = 0 , (3.7)

‖r‖
S
‖1

N
− 〈vS , r

‖

S
〉 ≤ ξ2(ε) , (3.8)
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Notice that S(c2) ⊆ S. From Eq. (3.8) and definition of S(c2) it follows that

‖r‖
S(c2)

‖1 ≤
‖r‖

S(c2)
‖1 −N〈vS(c2), r

‖

S(c2)
〉

c2
(3.9)

≤ Nc−1
2 ξ2(ε) . (3.10)

Let us first consider the case |S(c2)| ≥ Nc3/2. Then partition S(c2) = ∪K
`=1S`, where (Nc3/2) ≤

|S`| ≤ Nc3, and for each i ∈ S`, j ∈ S`+1, |r‖i | ≥ |r‖j |. Also define S+ ≡ ∪K
`=2S` ⊆ S(c2). Since, for

any i ∈ S` |r‖i | ≤ ‖r‖S`−1
‖1/|S`−1|, we have

‖r‖
S+
‖2
2 =

K∑

`=2

‖r‖S`
‖2
2 ≤

K∑

`=2

|S`|
(‖r‖S`−1

‖1

|S`−1|
)2

≤ 4

Nc3

K∑

`=2

‖r‖S`−1
‖2
1 ≤

4

Nc3

( K∑

`=2

‖r‖S`−1
‖1

)2

≤ 4

Nc3
‖r‖

S(c2)
‖2
1 ≤

4ξ2(ε)
2

c22c3
N ≡ Nξ3(ε) .

To conclude the proof, it is sufficient to prove an analogous bound for ‖r‖S+
‖2
2 with S+ = [N ] \

S+ = S(c2) ∪ S1. Since |S1| ≤ Nc3, we have by hypothesis (4) that σmin(AS+) ≥ c4. Since

0 = Ar‖ = AS+r
‖
S+

+AS+
r
‖

S+
, we have

c24‖r‖S+
‖2
2 ≤ ‖AS+r

‖
S+
‖2
2 = ‖AS+

r
‖

S+
‖2
2 ≤ c5‖r‖S+

‖2
2 ≤ c5Nξ3(ε) .

This finishes the proof when |S(c2)| ≥ Nc3/2. Note that if this assumption does not hold then we
have S+ = ∅ and S+ = [N ]. Hence, the result follows as a special case of above.

3.3 Proof of Theorem 3.1

The proof is based on a series of Lemmas that are used to check the assumptions of Lemma 3.2
The first one is an upper bound on the `2–norm of AMP estimates, and of the LASSO estimate.

Its proof is deferred to Section 5.1.

Lemma 3.3. Under the conditions of Theorem 1.4, assume λ > 0 and α = α(λ). Denote by x̂(λ;N)
the LASSO estimator and by {xt(N)} the sequence of AMP estimates. Then there is a constant B

such that for all t ≥ 0, almost surely

lim
t→∞

lim
N→∞

〈xt(N), xt(N)〉 < B, (3.11)

lim
N→∞

〈x̂(λ;N), x̂(λ;N)〉 < B. (3.12)

The second Lemma implies that the estimates of AMP are approximate minima, in the sense
that the cost function C admits a small subgradient at xt, when t is large. The proof is deferred to
Section 5.2.
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Lemma 3.4. Under the conditions of Theorem 1.4, for all t there exists a subgradient sg(C, xt) of C
at point xt such that almost surely,

lim
t→∞

lim
N→∞

1

N
‖sg(C, xt)‖2 = 0. (3.13)

The next lemma implies that submatrices of A constructed using the first t iterations of the AMP
algorithm are non-singular (more precisely, have singular values bounded away from 0). The proof
can be found in Section 5.3.

Lemma 3.5. Let S ⊆ [N ] be measurable on the σ-algebra St generated by {z0, . . . , zt−1} and {x0 +
A∗z0, . . . , xt−1+A∗zt−1} and assume |S| ≤ N(δ−c) for some c > 0. Then there exists a1 = a1(c) > 0
(independent of t) and a2 = a2(c, t) > 0 (depending on t and c) such that

min
S′

{
σmin(AS∪S′) : S′ ⊆ [N ] , |S′| ≤ a1N

}
≥ a2 , (3.14)

with probability converging to 1 as N →∞.

We will apply this lemma to a specific choice of the set S. Namely, defining

vt ≡ 1

θt−1
(xt−1 +A∗zt−1 − xt) , (3.15)

we will then consider the set

St(γ) ≡
{
i ∈ [N ] : |vt

i | ≥ 1− γ
}
, (3.16)

for γ ∈ (0, 1). Our last lemma shows that this sequence of sets St(γ) ‘converges’ in the following
sense. The proof can be found in Section 5.4.

Lemma 3.6. Fix γ ∈ (0, 1) and let the sequence {St(γ)}t≥0 be defined as in Eq. (3.16) above. For
any ξ > 0 there exists t∗ = t∗(ξ, γ) <∞ such that, for all t2 ≥ t1 ≥ t∗

lim
N→∞

P
{
|St2(γ) \ St1(γ)| ≥ Nξ

}
= 0 . (3.17)

The last two lemmas imply the following.

Proposition 3.7. There exist constants γ1 ∈ (0, 1), γ2, γ3 > 0 and tmin < ∞ such that, for any
t ≥ tmin,

min
{
σmin(ASt(γ1)∪S′) : S′ ⊆ [N ] , |S′| ≤ γ2N

}
≥ γ3 (3.18)

with probability converging to 1 as N →∞.

Proof. First notice that, for any fixed γ, the set St(γ) is measurable on St. Indeed by Eq. (1.5) St

contains {x0, . . . , xt} as well, and hence it contains vt which is a linear combination of xt−1 +A∗zt−1,
xt. Finally St(γ) is obviously a measurable function of vt.
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Using Lemma F.3(b) the empirical distribution of (x0 − A∗zt−1 − xt−1, x0) converges weakly to
(τt−1Z,X0) for Z ∼ N(0, 1) independent of X0 ∼ pX0 . (Following the notation of [BM10], we let
ht = x0 −A∗zt−1 − xt−1.) Therefore, for any constant γ we have almost surely

lim
N→∞

|St(γ)|
N

= lim
N→∞

1

N

N∑

i=1

In

1
θt−1

∣∣xt−1
i +[A∗zt−1]i−xt

i

∣∣≥1−γ
o (3.19)

= lim
N→∞

1

N

N∑

i=1

In

1
θt−1

∣∣x0−ht−η(x0−ht,θt−1)
∣∣≥1−γ

o (3.20)

= P

{
1

θt−1
|X0 + τt−1Z − η(X0 + τt−1Z, θt−1)| ≥ 1− γ

}
. (3.21)

The last equality follows from the weak convergence of the empirical distribution of {(hi, x0,i)}i∈[N ]

(from Lemma F.3(b), which takes the same form as Theorem 3.1), together with the absolute conti-
nuity of the distribution of |X0 + τt−1Z − η(X0 + τt−1Z, θt−1)|.

Now, combining

∣∣∣X0 + τt−1Z − η(X0 + τt−1Z, θt−1)
∣∣∣ =

{
θt−1 When |X0 + τt−1Z| ≥ θt−1 ,
|X0 + τt−1Z| Otherwise ,

and Eq. (3.21) we obtain almost surely

lim
N→∞

|St(γ)|
N

= E
{
η′(X0 + τt−1Z, θt−1)

}
+ P

{
(1− γ) ≤ 1

θt−1
|X0 + τt−1Z| ≤ 1

}
. (3.22)

It is easy to see that the second term P {1− γ ≤ (1/θt−1)|X + τt−1Z| ≤ 1} converges to 0 as γ → 0.
On the other hand, using Eq. (1.11) and the fact that λ(α) > 0 the first term will be strictly smaller
than δ for large enough t. Hence, we can choose constants γ1 ∈ (0, 1) and c > 0 such that

lim
N→∞

P
{
|St(γ1)| < N(δ − c)

}
= 1 . (3.23)

for all t larger than some tmin,1(c).
For any t ≥ tmin,1(c) we can apply Lemma 3.5 for some a1(c), a2(c, t) > 0. Fix c > 0 and let

a1 = a1(c) be fixed as well. Let tmin = max(tmin,1, t∗(a1/2, γ1)) (with t∗( · ) defined as per Lemma
3.6). Take a2 = a2(c, tmin). Obviously t 7→ a2(c, t) is non-increasing. Then we have, by Lemma 3.5

min
{
σmin(AStmin

(γ1)∪S′) : S′ ⊆ [N ] , |S′| ≤ a1N
}
≥ a2 , (3.24)

and by Lemma 3.6

|St(γ1) \ Stmin
(γ1)| ≤ Na1/2, (3.25)

where both events hold with probability converging to 1 as N → ∞. The claim follows with γ2 =
a1(c)/2 and γ3 = a2(c, tmin).

We are now in position to prove Theorem 3.1.
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Proof of Theorem 3.1. We apply Lemma 3.2 to x = xt, the AMP estimate and r = x̂−xt the distance
from the LASSO optimum. The thesis follows by checking conditions 1–5. Namely we need to show
that there exists constants c1, . . . , c5 > 0 and, for each ε > 0 some t = t(ε) such that 1–5 hold with
probability going to 1 as N →∞.

Condition 1 holds by Lemma 3.3.

Condition 2 is immediate since x+ r = x̂ minimizes C( · ).
Condition 3 follows from Lemma 3.4 with ε arbitrarily small for t large enough.

Condition 4. Notice that this condition only needs to be verified for δ < 1.
Take v = vt as defined in Eq. (3.15). Using the definition (1.5), it is easy to check that |v t

i | ≤ 1
if xt

i = 0 and vt
i = sign(xt

i) otherwise. In other words vt ∈ ∂‖x‖1 as required. Further by inspection
of the proof of Lemma 3.4, it follows that vt = (1/λ)[A∗(y − Axt) + sg(C, xt)], with sg(C, xt) the
subgradient bounded in that lemma (cf. Eq. (5.3)). The condition then holds by Proposition 3.7.

Condition 5 follows from standard limit theorems on the singular values of Wishart matrices (cf.
Theorem F.2).

4 State evolution estimates

This section contains a reminder of the state-evolution method developed in [BM10]. We also state
some extensions of those results that will be proved in the appendices.

4.1 State evolution

AMP, cf. Eq. (1.5) is a special case of the general iterative procedure given by Eq. (3.1) of [BM10].
This takes the general form

ht+1 = A∗mt − ξt q
t , mt = gt(b

t, w) ,

bt = Aqt − λtm
t−1 , qt = ft(h

t, x0) , (4.1)

where ξt = 〈g′(bt, w)〉, λt = 1
δ 〈f ′t(ht, x0)〉 (both derivatives are with respect to the first argument).

This reduction can be seen by defining

ht+1 = x0 − (A∗zt + xt) , (4.2)

qt = xt − x0 , (4.3)

bt = w − zt , (4.4)

mt = −zt , (4.5)

where

ft(s, x0) = ηt−1(x0 − s)− x0 , gt(s, w) = s− w , (4.6)

and the initial condition is q0 = −x0.
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Regarding ht, bt as column vectors, the equations for b0, . . . , bt−1 and h1, . . . , ht can be written in
matrix form as:

[
h1 + ξ0q

0|h2 + ξ1q
1| · · · |ht + ξt−1q

t−1
]

︸ ︷︷ ︸
Xt

= A∗ [m0| . . . |mt−1]︸ ︷︷ ︸
Mt

, (4.7)

[
b0|b1 + λ1m

0| · · · |bt−1 + λt−1m
t−2
]

︸ ︷︷ ︸
Yt

= A [q0| . . . |qt−1]︸ ︷︷ ︸
Qt

. (4.8)

or in short Yt = AQt and Xt = A∗Mt.
Following [BM10], we define St as the σ-algebra generated by b0, . . . , bt−1, m0, . . . ,mt−1, h1, . . . , ht,

and q0, . . . , qt. The conditional distribution of the random matrix A given the σ-algebra St, is given
by

A|St

d
= Et + Pt(Ã). (4.9)

Here Ã
d
= A is a random matrix independent of St, and Et = E(A|St) is given by

Et = Yt(Q
∗
tQt)

−1Q∗t +Mt(M
∗
t Mt)

−1X∗
t −Mt(M

∗
t Mt)

−1M∗
t Yt(Q

∗
tQt)

−1Q∗t . (4.10)

Further, Pt is the orthogonal projector onto subspace Vt = {A|AQt = 0, A∗Mt = 0}, defined by

Pt(Ã) = P⊥Mt
ÃP⊥Qt

.

Here P⊥Mt
= I − PMt , P

⊥
Qt

= I − PQt , and PQt , PMt are orthogonal projector onto column spaces of
Qt and Mt respectively.

Before proceeding, it is convenient to introduce the notation

ωt ≡
1

δ
〈η′(A∗zt−1 + xt−1; θt−1)〉

to denote the coefficient of zt−1 in Eq. (1.5). Using ht = x0 − A∗zt−1 − xt−1 and Lemma F.3(b)
(proved in [BM10]) we get, almost surely,

lim
N→∞

ωt = ω∞t ≡ 1

δ
E
[
η′(X0 + τt−1Z; θt−1)

]
. (4.11)

Notice that the function η′( · ; θt−1) is discontinuous and therefore Lemma F.3(b) does not ap-
ply immediately. On the other hand, this implies that the empirical distribution of {(A∗zt−1

i +
xt−1

i , x0,i)}1≤i≤N converges weakly to the distribution of (X0 + τt−1Z,X0). The claim follows from
the fact that X0 + τt−1Z has a density, together with the standard properties of weak convergence.

4.2 Some consequences and generalizations

We begin with a simple calculation, that will be useful.

Lemma 4.1. If {zt}t≥0 are the AMP residuals, then

lim
n→∞

1

n
‖zt‖2 = τ2

t . (4.12)
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Proof. Using representation (4.5) and Lemma F.3(b)(c), we get

lim
n→∞

1

n
‖zt‖2 a.s.

= lim
n→∞

1

n
‖mt‖2 a.s.

= lim
N→∞

1

N
‖ht+1‖2 = τ2

t .

Next, we need to generalize state evolution to compute large system limits for functions of xt,
xs, with t 6= s. To this purpose, we define the covariances {Rs,t}s,t≥0 recursively by

Rs+1,t+1 = σ2 +
1

δ
E

{
[η(X0 + Zs; θs)−X0] [η(X0 + Zt; θt)−X0]

}
, (4.13)

with (Zs, Zt) jointly gaussian, independent from X0 ∼ pX0 with zero mean and covariance given
by E{Z2

s } = Rs,s, E{Z2
t } = Rt,t, E{ZsZt} = Rs,t. The boundary condition is fixed by letting

R0,0 = σ2 + E{X2
0}/δ and

R0,t+1 = σ2 +
1

δ
E

{
[η(X0 + Zt; θt)−X0] (−X0)

}
, (4.14)

with Zt ∼ N(0,Rt,t) independent of X0. This determines by the above recursion Rt,s for all t ≥ 0
and for all s ≥ 0.

With these definition, we have the following generalization of Theorem 1.1.

Theorem 4.2. Let {x0(N), w(N), A(N)}N∈N be a converging sequence of instances with the entries
of A(N) iid normal with mean 0 and variance 1/n and let ψ : R

3 → R be a pseudo-Lipschitz function.
Then, for all s ≥ 0 and t ≥ 0 almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
xs

i + (A∗zs)i, x
t
i + (A∗zt)i, x0,i

)
= E

{
ψ
(
X0 + Zs, X0 + Zt, X0

)}
, (4.15)

where (Zs, Zt) jointly gaussian, independent from X0 ∼ pX0 with zero mean and covariance given by
E{Z2

s} = Rs,s, E{Z2
t } = Rt,t, E{ZsZt} = Rs,t.

Notice that the above implies in particular, for any pseudo-Lipschitz function ψ : R
3 → R,

lim
N→∞

1

N

N∑

i=1

ψ
(
xs+1

i , xt+1
i , x0,i

)
= E

{
ψ
(
η(X0 + Zs; θs), η(X0 + Zt; θt), X0

)}
. (4.16)

Clearly this result reduces to Theorem 1.1 in the case s = t by noting that Rt,t = τ2
t . The general

proof can be found in Appendix B.
The following lemma implies that, asymptotically for large N , the AMP estimates converge.

Lemma 4.3. Under the condition of Theorem 1.4, the estimates {xt}t≥0 and residuals {zt}t≥0 of
AMP almost surely satisfy

lim
t→∞

lim
N→∞

1

N
‖xt − xt−1‖2 = 0 , lim

t→∞
lim

N→∞

1

N
‖zt − zt−1‖2 = 0 . (4.17)

The proof is deferred to Appendix C.
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5 Proofs of auxiliary lemmas

5.1 Proof of Lemma 3.3

In order to bound the norm of xt, we use state evolution, Theorem 1.1, for the function ψ(a, b) = a2,

lim
t→∞

lim
N→∞

〈xt, xt〉 a.s.
= E

{
η(X0 + τ∗Z; θ∗)

2
}

for Z ∼ N(0, 1) and independent of X0 ∼ pX0 . The expectation on the right hand side is bounded
and hence limt→∞ limN→∞〈xt, xt〉 is bounded.

For x̂, first note that

1

N
C(x̂) ≤ 1

N
C(0) =

1

2N
‖y‖2

=
1

2N
‖Ax0 + w‖2

≤ ‖w‖2 + σmax(A)2‖x0‖2

2N
≤ B1. (5.1)

The last bound holds almost surely as N →∞, using standard asymptotic estimate on the singular
values of random matrices (cf. Theorem F.2) implying that σmax(A) has a bounded limit almost
surely, together with the fact that (x0, w,A) is a converging sequence.

Now, decompose x̂ as x̂ = x̂‖ + x̂⊥ where x̂‖ ∈ ker(A) and x̂⊥ ∈ ker(A)⊥ (the orthogonal
complement of ker(A)). Since, x̂‖ belongs to the random subspace ker(A) with dimension N − n =
N(1− δ), Kashin theorem (cf. Theorem F.1) implies that there exists a positive constant c1 = c1(δ)
such that

1

N
‖x̂‖2 =

1

N
‖x̂‖‖2 +

1

N
‖x̂⊥‖2

≤ c1

(‖x̂‖‖1

N

)2

+
1

N
‖x̂⊥‖2 .

Hence, by using triangle inequality and Cauchy-Schwarz, we get

1

N
‖x̂‖2 ≤ 2c1

(‖x̂‖1

N

)2

+ 2c1

(‖x̂⊥‖1

N

)2

+
1

N
‖x̂⊥‖2

≤ 2c1

(‖x̂‖1

N

)2

+
2c1 + 1

N
‖x̂⊥‖2 .

By definition of cost function we have ‖x̂‖1 ≤ λ−1C(x̂). Further, limit theorems for the eigenvalues of
Wishart matrices (cf. Theorem F.2) imply that there exists a constant c = c(δ) such that asymptot-
ically almost surely ‖x̂⊥‖2 ≤ c ‖Ax̂⊥‖2. Therefore (denoting by ci : i = 2, 3, 4 bounded constants),
we have

1

N
‖x̂‖2 ≤ 2c1

(‖x̂‖1

N

)2

+
c2
N
‖Ax̂⊥‖2

≤ 2c1

(‖x̂‖1

N

)2

+
2c2
N
‖y −Ax̂⊥‖2 +

2c2
N
‖y‖2

≤ c3

(C(x̂)

N

)2

+ 2c2
C(x̂)

N
+

2c2
N
‖Ax0 + w‖2 .
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The claim follows by using the Eq. (5.1) to bound C(x̂)/N and using ‖Ax0 +w‖2 ≤ σmax(A)2‖x0‖2 +
‖w‖2 ≤ 2NB1 to bound the last term. �

5.2 Proof of Lemma 3.4

First note that equation xt = η(A∗zt−1 + xt−1; θt−1) of AMP implies

xt
i + θt−1 sign(xt

i) = [A∗zt−1]i + xt−1
i , if xt

i 6= 0 ,

(5.2)∣∣∣[A∗zt−1]i + xt−1
i

∣∣∣ ≤ θt−1, if xt
i = 0 .

Therefore, the vector sg(C, xt) ≡ λ st −A∗(y −Axt) where

st
i =





sign(xt
i) if xt

i 6= 0 ,

1
θt−1

{
[A∗zt−1]i + xt−1

i

}
otherwise,

(5.3)

is a valid subgradient of C at xt. On the other hand, y −Axt = zt − ωtz
t−1. We finally get

sg(C, xt) =
1

θt−1

[
λθt−1s

t − θt−1A
∗(zt − ωtz

t−1)
]

=
1

θt−1

[
λθt−1s

t − θt−1(1− ωt)A
∗zt−1

]
−A∗(zt − zt−1)

=
1

θt−1

[
λθt−1s

t − λA∗zt−1
]

︸ ︷︷ ︸
(I)

−A∗(zt − zt−1) +
[λ− θt−1(1− ωt)]

θt−1
A∗zt−1 .

It is straightforward to see from Eqs. (5.2) and (5.3) that (I) = λ(xt−1 − xt). Hence,

1√
N
‖sg(C, xt)‖ ≤ λ

θt−1

√
N
‖xt − xt−1‖+

σmax(A)√
N

‖zt − zt−1‖+
|λ− θt−1(1− ωt)|

θt−1

1√
N
‖zt−1‖ .

By Lemma 4.3, and the fact that σmax(A) is almost surely bounded as N →∞ (cf. Theorem F.2),
we deduce that the two terms λ‖xt − xt−1‖/(θt−1

√
N) and σmax(A)‖zt − zt−1‖2/

√
N converge to

0 when N → ∞ and then t → ∞. For the third term, using state evolution (see Lemma 4.1), we
obtain limN→∞ ‖zt−1‖2/N <∞. Finally, using the calibration relation Eq. (1.11), we get

lim
t→∞

lim
N→∞

∣∣∣∣
λ− θt−1(1− ωt)

θt−1

∣∣∣∣
a.s.
=

1

θ∗

∣∣∣∣λ− θ∗(1−
1

δ
E
{
η′(X0 + τ∗Z; θ∗)

}
)

∣∣∣∣ = 0 ,

which finishes the proof. �

5.3 Proof of Lemma 3.5

The proof uses the representation (4.9), together with the expression (4.10) for the conditional
expectation. Apart from the matrices Yt, Qt, Xt, Mt introduced there, we will also use

Bt ≡
[
b0
∣∣∣b1
∣∣∣ · · ·

∣∣∣bt−1
]
, Ht ≡

[
h1
∣∣∣h2
∣∣∣ · · ·

∣∣∣ht
]
.

In this section, since t is fixed, we will drop everywhere the subscript t from such matrices.
We state below a somewhat more convenient description.
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Lemma 5.1. For any v ∈ R
N , we have

Av|S = Y (Q∗Q)−1Q∗PQv +M(M∗M)−1X∗P⊥Q v + P⊥M ÃP
⊥
Q v . (5.4)

Proof. It is clearly sufficient to prove that, for v = v‖ + v⊥, PQv‖ = v‖, P
⊥
Q v⊥ = v⊥, we have

Ev‖ = Y (Q∗Q)−1Q∗v‖ , Ev⊥ = M(M∗M)−1X∗v⊥ . (5.5)

The first identity is an easy consequence of the fact that X ∗Q = M∗AQ = M∗Y , while the second
one follows immediately from Q∗v⊥ = 0,.

The following fact (see Appendix D for a proof) will be used several times.

Lemma 5.2. For any t there exists c > 0 such that, for R ∈ {Q∗Q; M∗M ; X∗X; Y ∗Y }, as N →∞
almost surely,

c ≤ λmin(R/N) ≤ λmax(R/N) ≤ 1/c . (5.6)

Given the above remarks, we will immediately see that Lemma 3.5 is implied by the following
statement.

Lemma 5.3. Let S ⊆ [N ] be given such that |S| ≤ N(δ − γ), for some γ > 0. Then there exists
α1 = α1(γ) > 0 (independent of t) and α2 = α2(γ, t) > 0 (depending on t and γ) such that

P

{
min

‖v‖=1, supp(v)⊆S

∥∥Ev + P⊥M ÃP
⊥
Q v
∥∥ ≤ α2

∣∣∣St

}
≤ e−Nα1 ,

with probability (over St) converging to 1 as t→∞. (With Ev = Y (Q∗Q)−1Q∗PQv+M(M∗M)−1X∗P⊥Q v.)

In the next section we will show that this lemma implies Lemma 3.5. We will then prove the
lemma just stated.

5.3.1 Lemma 5.3 implies Lemma 3.5

We need to show that, for S measurable on St and |S| ≤ N(δ − c) there exist a1 = a1(c) > 0 and
a2 = a2(c, t) > 0 such that

lim
N→∞

P

{
min

|S′|≤a1N
min

‖v‖=1,supp(v)⊆S∪S′
‖Av‖ < a2

}
= 0 .

Conditioning on St and using the union bound, this probability can be estimated as

E

{
P

{
min

|S′|≤a1N
min

‖v‖=1,supp(v)⊆S∪S′
‖Av‖ < a2

∣∣∣St

}}
≤

≤ eNh(a1)
E

{
max

|S′|≤a1N
P

{
min

‖v‖=1,supp(v)⊆S∪S′
‖Av‖ < a2

∣∣∣St

}}
,
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where h(p) = −p log p−(1−p) log(1−p) is the binary entropy function. The union bound calculation
indeed proceeds as follows

P{ min
|S′|≤Na1

XS′ < a2

∣∣St} ≤
∑

|S′|≤Na1

P{XS′ < a2

∣∣St}

≤
[Na1∑

k=1

(
N

k

)]
max

|S′|≤Na1

P{XS′ < a2

∣∣St}

≤ eNh(a1) max
|S′|≤Na1

P{XS′ < a2

∣∣St} ,

where XS′ = min‖v‖=1,supp(v)⊆S∪S′ ‖Av‖. Now, fix a1 < c/2 in such a way that h(a1) ≤ α1(c/2)/2
(with α1 defined as per Lemma 5.3). Further choose a2 = α2(c/2, t)/2. The above probability is
then upper bounded by

eNα1(c/2)/2
E

{
max

|S′′|≤N(δ−c/2)
P

{
min

‖v‖=1,supp(v)⊆S′′
‖Av‖ < 1

2
α2(c/2, t)

∣∣∣St

}}
.

Finally, applying Lemma 5.3 and using Lemma 5.1 to estimate Av, we get

eNα1/2
E
{

max
|S′′|≤N(δ−c/2)

e−Nα1
}
→ 0 .

This finishes the proof. �

5.3.2 Proof of Lemma 5.3

We begin with the following Pythagorean inequality.

Lemma 5.4. Let S ⊆ [N ] be given such that |S| ≤ N(δ − γ), for some γ > 0. Recall that Ev =
Y (Q∗Q)−1Q∗PQv +M(M∗M)−1X∗P⊥Q v and consider the event

E1 ≡
{∥∥Ev + P⊥M ÃP

⊥
Q v
∥∥2 ≥ γ

4δ

∥∥Ev − PM ÃP
⊥
Q v
∥∥2

+
γ

4δ

∥∥ÃP⊥Q v
∥∥2 ∀v s.t. ‖v‖ = 1 and supp(v) ⊆ S

}
.

Then there exists a = a(γ) > 0 such that P{E1|St} ≥ 1− e−Na.

Proof. We claim that the following inequality holds for all v ∈ R
N , that satisfy ‖v‖ = 1 and supp(v) ⊆

S, with the probability claimed in the statement

|(Ev − PM ÃP⊥Q v , ÃP
⊥
Q v)| ≤

√
1− γ

2δ
‖Ev − PM ÃP

⊥
Q v‖ ‖ÃP⊥Q v‖ . (5.7)

Here the notation (u, v) refers to the usual scalar product u∗v of vectors u and v of the same
dimension. Assuming that the claim holds, we have indeed

∥∥Ev + P⊥M ÃP
⊥
Q v
∥∥2 ≥

∥∥Ev − PM ÃP⊥Q v
∥∥2

+
∥∥ÃP⊥Q v

∥∥2 − 2|(Ev − PM ÃP⊥Q v , ÃP
⊥
Q v)|

≥
∥∥Ev

∥∥2
+
∥∥P⊥M ÃP⊥Q v

∥∥2 − 2

√
1− γ

2δ
‖Ev − PM ÃP⊥Q v‖ ‖ÃP⊥Q v‖

≥
(
1−

√
1− γ

2δ

){∥∥Ev − PM ÃP
⊥
Q v
∥∥2

+
∥∥ÃP⊥Q v

∥∥2
}
,
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which implies the thesis.
In order to prove the claim (5.7), we notice that for any v, the unit vector ÃP⊥Q v/‖ÃP⊥Q v‖ belongs

to the random linear space im(ÃP⊥QPS). Here PS is the orthogonal projector onto the subspace of

vectors supported on S. Further im(ÃP⊥QPS) is a uniformly random subspace of dimension at most

N(δ − γ). Also, the normalized vector (Ev − PM ÃP⊥Q v)/‖Ev − PM ÃP⊥Q v‖ belongs to the linear
space of dimension at most 2t spanned the columns of M and of B. The claim follows then from a
standard concentration-of-measure argument. In particular applying Proposition E.1 for

m = n, mλ = N(δ − γ), d = 2t and ε =

√
1− γ

2δ
−
√

1− γ

δ

yields (
Ev − PM ÃP

⊥
Q v

‖Ev − PM ÃP
⊥
Q v‖

,
ÃP⊥Q v

‖ÃP⊥Q v‖

)
≤
√
λ+ ε =

√
1− γ

2δ
.

(Notice that in Proposition E.1 is stated for the equivalent case of a random sub-space of fixed
dimension d, and a subspace of dimension scaling linearly with the ambient one.)

Next we estimate the term ‖ÃP⊥Q v‖2 in the above lower bound.

Lemma 5.5. Let S ⊆ [N ] be given such that |S| ≤ N(δ − γ), for some γ > 0. Than there exists
constant c1 = c1(γ), c2 = c2(γ) such that the event

E2 ≡
{∥∥ÃP⊥Q v

∥∥ ≥ c1(γ)‖P⊥Q v
∥∥ ∀v such that supp(v) ⊆ S

}
,

holds with probability P{E2|St} ≥ 1− e−Nc2.

Proof. Let V be the linear space V = im(P⊥
QPS). Of course the dimension of V is at most N(δ− γ).

Then we have (for all vectors with supp(v) ⊆ S)
∥∥ÃP⊥Q v

∥∥ ≥ σmin(Ã|V ) ‖P⊥Q v
∥∥ , (5.8)

where Ã|V is the restriction of Ã to the subspace V . By invariance of the distribution of Ã under
rotation, σmin(Ã|V ) is distributed as the minimum singular value of a gaussian matrix of dimensions
Nδ×dim(V ). The latter is almost surely bounded away from 0 as N →∞, since dim(V ) ≤ N(δ−γ)
(see for instance Theorem F.2). Large deviation estimates [LPRTJ05] imply that the probability
that the minimum singular value is smaller than a constant c1(γ) is exponentially small.

Finally a simple bound to control the norm of Ev.

Lemma 5.6. There exists a constant c = c(t) > 0 such that, defining the event,

E3 ≡
{
‖EPQv‖ ≥ c(t)‖PQv‖ , ‖EP⊥Q v‖ ≤ c(t)−1‖P⊥Q v‖, for all v ∈ R

N
}
, (5.9)

we have P(E3) → 1 as N →∞.

Proof. Without loss of generality take v = Qa for a ∈ R
t. By Lemma 5.1 we have ‖EPQv‖2 =

‖Y a‖2 ≥ λmin(Y
∗Y )‖a‖2. Analogously ‖PQv‖2 = ‖Qa‖2 ≤ λmax(Q

∗Q)‖a‖2. The bound ‖EPQv‖ ≥
c(t)‖PQv‖ follows then from Lemma 5.2.

The bound ‖EP⊥Q v‖ ≤ c(t)−1‖P⊥Q v‖ is proved analogously.
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We can now prove Lemma 5.3 as promised.

Proof of Lemma 5.3. By Lemma 5.6 we can assume that event E3 holds, for some function c = c(t)
(without loss of generality c < 1/2). We will let E be the event

E ≡
{

min
‖v‖=1, supp(v)⊆S

∥∥Ev + P⊥M ÃP
⊥
Q v
∥∥ ≤ α2(t)

}
. (5.10)

for α2(t) > 0 small enough.
Let us assume first that ‖P⊥Q v‖ ≤ c2/10, whence

‖Ev − PM ÃP
⊥
Q ‖ ≥ ‖EPQv‖ − ‖EP⊥Q v‖ − ‖PM ÃP⊥Q v‖

≥ c‖PQv‖ − (c−1 + ‖Ã‖2)‖P⊥Q v‖

≥ c

2
− c

10
− ‖Ã‖2

c2

10
=

2c

5
− ‖Ã‖2

c2

10
,

where the last inequality uses ‖PQv‖ =
√

1− ‖P⊥Q v‖2 ≥ 1/2. Therefore, using Lemma 5.4, we get

P{E|St} ≤ P

{2c

5
− ‖Ã‖2

c2

10
≤
√

4δ

γ
α2(t)

∣∣∣St

}
+ e−Na ,

and the thesis follows from large deviation bounds on the norm ‖Ã‖2 [Led01] by first taking c small

enough, and then choosing α2(t) <
c
5

√
γ
4δ .

Next we assume ‖P⊥Q v‖ ≥ c2/10. Due to Lemma 5.4 and 5.5 we can assume that events E1 and
E2 hold. Therefore

∥∥Ev + P⊥M ÃP
⊥
Q v
∥∥ ≥

( γ
4δ

)1/2
‖ÃP⊥Q v

∥∥ ≥
( γ

4δ

)1/2
c1(γ)‖P⊥Q v‖ ,

which proves our thesis.

5.4 Proof of Lemma 3.6

The key step consists in establishing the following result, which will be instrumental in the proof of
Lemma 4.3 as well (and whose proof is deferred to Appendix C.1).

Lemma 5.7. Assume α > αmin(δ) and let {Rs,t} be defined by the recursion (4.13) with initial
condition (4.14). Then there exists constants B1, r1 > 0 such that for all t ≥ 0

∣∣Rt,t − τ2
∗

∣∣ ≤ B1 e
−r1 t , (5.11)∣∣Rt,t+1 − τ2

∗

∣∣ ≤ B1 e
−r1 t . (5.12)

It is also useful to prove the following fact.

Lemma 5.8. For any α > 0 and T ≥ 0, the T × T matrix RT+1 ≡ {Rs,t}0≤s,t<T is strictly positive
definite.
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Proof. In proof of Theorem 4.2 we show that

Rs,t = lim
N→∞

〈hs+1, ht+1〉 = lim
N→∞

〈ms,mt〉 ,

almost surely. Hence, RT+1
a.s.
= δ limN→∞(M∗

T+1MT+1/N). Thus the result follows from Lemma
5.2.

It is then relatively easy to deduce the following.

Lemma 5.9. Assume α > αmin(δ) and let {Rs,t} be defined by the recursion (4.13) with initial
condition (4.14). Then there exists constants B2, r2 > 0 such that for all t1, t2 ≥ t ≥ 0

∣∣Rt1,t2 − τ2
∗

∣∣ ≤ B2 e
−r2 t . (5.13)

Proof. By triangular inequality and Eq. (5.11), we have

∣∣Rt1,t2 − τ2
∗

∣∣ ≤ 1

2

∣∣Rt1,t1 − 2Rt1,t2 + Rt2,t2

∣∣+ B1 e
−r1 t . (5.14)

By Lemma 5.8 there exist gaussian random variables Z0, Z1, Z2, . . . on the same probability space
with E{Zt} = 0 and E{ZtZs} = Rt,s (in fact in proof of Theorem 4.2 we show that {Zi}T≥i≥0 is the
weak limit of the empirical distribution of {hi+1}T≥i≥0). Then (assuming, without loss of generality,
t2 > t1) we have

∣∣Rt1,t1 − 2Rt1,t2 + Rt2,t2

∣∣ = E{(Zt1 − Zt2)
2}

=

t2−1∑

i,j=t1

E{(Zi+1 − Zi)(Zj+1 − Zj)}

≤
[ t2−1∑

i=t1

E{(Zi+1 − Zi)
2}1/2

]2

≤ 4B1

[ ∞∑

i=t1

e−r1i/2
]2

≤ 4B1

(1− e−r1/2)2
e−r1t1 ,

which, together with Eq. (5.14) proves our claim.

We are now in position to prove Lemma 3.6.

Proof of Lemma 3.6. We will show that, under the assumptions of the Lemma, limN→∞ |St2(γ) \
St1(γ)|/N ≤ ξ almost surely, which implies our claim. Indeed, by Theorem 4.2 we have

lim
N→∞

1

N
|St2(γ) \ St1(γ)| = lim

N→∞

1

N

N∑

i=1

I{
|v

t2
i |≥1−γ, |v

t1
i |<1−γ

}

= lim
N→∞

1

N

N∑

i=1

I{
|xt2−1+A∗zt2−1−xt2 |≥(1−γ)θt2−1, |xt1−1+A∗zt1−1−xt1 |<(1−γ)θt2−1

}

= P
{
|X0 + Zt2−1| ≥ (1− γ)θt2−1, |X0 + Zt1−1| < (1− γ)θt1−1

}
≡ Pt1,t2 ,
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where (Zt1 , Zt2) are jointly normal with E{Z2
t1} = Rt1,t1 , E{Zt1Zt2} = Rt1,t2 , E{Z2

t2} = Rt2,t2 . (Notice
that, although the function I{ · · · } is discontinuous, the random vector (X0 + Zt1−1, X0 + Zt2−1)
admits a density and hence Theorem 4.2 applies by weak convergence of the empirical distribution
of {(xt1−1

i + (A∗zt1−1)i , x
t2−1
i + (A∗zt2−1)i)}1≤i≤N .)

Let a ≡ (1 − γ)ατ∗. By Proposition 1.2, for any ε > 0 and all t∗ large enough we have |(1 −
γ)θti−1 − a| ≤ ε for i ∈ {1, 2}. Then

Pt1 ,t2 ≤ P
{
|X0 + Zt2−1| ≥ a− ε, |X0 + Zt1−1| < a+ ε

}

≤ P
{
|Zt1−1 − Zt2−1| ≥ 2ε

}
+ P{a− 3ε ≤ |X0 + Zt1−1| ≤ a+ ε

}

≤ 1

4ε2
[Rt1−1,t1−1 − 2Rt1−1,t2−1 + Rt2−1,t2−1] +

4ε√
2πRt1−1,t1−1

≤ 1

ε2
B2 e

−r2t∗ +
ε

τ∗
,

where the last inequality follows by Lemma 5.9. By taking ε = e−r2 t∗/3 we finally get (for some
constant C) Pt1,t2 ≤ C e−r2t∗ , which implies our claim.
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A Properties of the state evolution recursion

A.1 Proof of Proposition 1.2

It is a straightforward calculus exercise to compute the partial derivatives

∂F

∂τ2
(τ2, θ) =

1

δ
E

{
Φ
(X0 − θ

τ

)
+ Φ

(−X0 − θ

τ

)}
− 1

δ
E

{X0

τ
φ
(X0 − θ

τ

)
− X0

τ
φ
(−X0 − θ

τ

)}
,

(A.1)

∂F

∂θ
(τ2, θ) =

2θ

δ
E

{
Φ
(X0 − θ

τ

)
+ Φ

(−X0 − θ

τ

)}
− 2τ

δ
E

{
φ
(X0 − θ

τ

)
+ φ

(−X0 − θ

τ

)}
. (A.2)

From these formulae we obtain the total derivative

δ
dF

dτ2
(τ2, ατ) = (1 + α2) E

{
Φ
(X0 − ατ

τ

)
+ Φ

(−X0 − ατ

τ

)}
(A.3)

−E

{(X0 + ατ

τ

)
φ
(X0 − ατ

τ

)
−
(X0 − ατ

τ

)
φ
(−X0 − ατ

τ

)}
.

Differentiating once more

δ
d2F

d(τ2)2
(τ2, ατ) = − 1

2τ2
E

{(X0

τ

)3 [
φ
(X0 − ατ

τ

)
− φ

(−X0 − ατ

τ

)]}
.
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Now we have

u3[φ(u− α)− φ(−u− α)] ≥ 0 , (A.4)

with the inequality being strict whenever α > 0, u 6= 0. It follows that τ 2 7→ F(τ2, ατ) is concave,
and strictly concave provided α > 0 and X0 is not identically 0.

From Eq. (A.3) we obtain

lim
τ2→∞

dF

dτ2
(τ2, ατ) =

2

δ

{
(1 + α2)Φ(−α)− αφ(α)

}
, (A.5)

which is strictly positive for all α ≥ 0. To see this, let f(α) ≡ (1 + α2)Φ(−α) − αφ(α), and notice
that f ′(α) = 2αΦ(−α) − 2φ(α) < 0, and f(∞) = 0.

Since τ 2 7→ F(τ2, ατ) is concave, and strictly increasing for τ 2 large enough, it also follows that
it is increasing everywhere.

Notice that α 7→ f(α) is strictly decreasing with f(0) = 1/2. Hence, for α > αmin(δ), we have
F(τ2, ατ) > τ 2 for τ2 small enough and F(τ 2, ατ) < τ 2 for τ2 large enough. Therefore the fixed
point equation admits at least one solution. It follows from the concavity of τ 2 7→ F(τ2, ατ) that the
solution is unique and that the sequence of iterates τ 2

t converge to τ∗. �

A.2 Proof of Proposition 1.3

As a first step, we claim that α 7→ τ 2
∗ (α) is continuously differentiable on (0,∞). Indeed this is

defined as the unique solution of

τ2
∗ = F(τ2

∗ , ατ∗) . (A.6)

Since (τ 2, α) 7→ F(τ 2
∗ , ατ∗) is continuously differentiable and 0 ≤ dF

dτ2 (τ2
∗ , ατ∗) < 1 (the second

inequality being a consequence of concavity plus limτ2→∞
dF

dτ2 (τ2, ατ) < 1, both shown in the proof
of Proposition 1.2), the claim follows from the implicit function theorem applied to the mapping
(τ2, α) 7→ [τ 2 − F (τ2, α)].

Next notice that τ 2
∗ (α) → +∞ as α ↓ αmin(δ). Indeed, introducing the notation F′∞ ≡ limτ2→∞

dF

dτ2 (τ2, ατ),
we have, again by concavity,

τ2
∗ ≥ F(0, 0) + F

′
∞τ

2
∗ ,

i.e. τ2
∗ ≥ F(0, 0)/(1 − F′∞). Now F(0, 0) ≥ σ2, while F′∞ ↑ 1 as α ↓ αmin(δ) (shown in the proof of

Proposition 1.2), whence the claim follows.
Finally τ 2

∗ (α) → σ2 + E{X2
0}/δ as α → ∞. Indeed for any fixed τ 2 > 0 we have F(τ 2, ατ) →

σ2 + E{X2
0}/δ as α→∞ whence the claim follows by uniqueness of τ∗.

Next consider the function (α, τ 2) 7→ g(α, τ 2) defined by

g(α, τ2) ≡ ατ
{

1− 1

δ
P{|X0 + τ Z| ≥ ατ}

}
.

Notice that λ(α) = g(α, τ∗
2(α)). Since g is continuously differentiable, it follows that α 7→ λ(α) is

continuously differentiable as well.
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Next consider α ↓ αmin, and let l(α) ≡ 1− 1
δ P{|X0 + τ∗ Z| ≥ ατ∗}. Since τ∗ → +∞ in this limit,

we have

l∗ ≡ lim
α→αmin+

l(α) = 1− 1

δ
P{|Z| ≥ αmin} = 1− 2

δ
Φ(−αmin) .

Using the characterization of αmin in Eq. (1.10) (and the well known inequality αΦ(−α) ≤ φ(α) valid
for all α > 0), it is immediate to show that l∗ < 0. Therefore

lim
α→αmin+

λ(α) = l∗ lim
α→αmin+

ατ∗(α) = −∞ .

Finally let us consider the limit α→∞. Since τ∗(α) remains bounded, we have limα→∞ P{|X0 +
τ∗ Z| ≥ ατ∗} = 0 whence

lim
α→∞

λ(α) = lim
α→∞

ατ∗(α) = ∞ .

�

A.3 Proof of Corollary 1.5

By Proposition 1.3, it is sufficient to prove that, for any λ > 0 there exists a unique α > αmin such
that λ(α) = λ. Assume by contradiction that there are two distinct such values α1, α2.

Notice that in this case, the function α(λ) is not defined uniquely and we can apply Theorem 1.4
to both choices α(λ) = α1 and α(λ) = α2. Using the test function ψ(x, y) = (x− y)2 we deduce that

lim
N→∞

1

N
‖x̂− x0‖2 = E

{
[η(X0 + τ∗Z ; ατ∗)−X0]

2
}

= δ(τ2
∗ − σ2) .

Since the left hand side does not depend on the choice of α, it follows that τ∗(α1) = τ∗(α2).
Next apply Theorem 1.4 to the function ψ(x, y) = |x|. We get

lim
N→∞

1

N
‖x̂‖1 = E

{
|η(X0 + τ∗Z ; ατ∗)|

}
.

For fixed τ∗, θ 7→ E
{
|η(X0 +τ∗Z ; θ)|

}
is strictly decreasing in θ. It follows that α1τ∗(α1) = α2τ∗(α2).

Since we already proved that τ∗(α1) = τ∗(α2), we conclude α1 = α2. �

B Proof of Theorem 4.2

First note that using representation (4.2) we have xt +A∗zt = x0−ht+1. Furthermore, using Lemma
F.3(b) we have almost surely

lim
N→∞

1

N

N∑

i=1

ψ
(
x0,i − hs+1

i , x0,i − ht+1
i , x0,i

)
= E

{
ψ
(
X0 − Z̃s, X0 − Z̃t, X0

)}

= E

{
ψ
(
X0 + Z̃s, X0 + Z̃t, X0

)}
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for gaussian variables Z̃s, Z̃t that have zero mean and are independent of X0. Define for all s ≥ 0
and t ≥ 0,

R̃t,s ≡ lim
N→∞

〈ht+1, hs+1〉 = E{Z̃tZ̃s} . (B.1)

Therefore, all we need to show is that for all s, t ≥ 0: Rt,s and R̃t,s are equal. We prove this by
induction on max(s, t).

• For s = t = 0 we have using Lemma F.3(b) almost surely

R̃0,0 ≡ lim
N→∞

〈h1, h1〉 = τ2
0 = σ2 +

1

δ
E{X2

0} ,

that is equal to R0,0.

• Induction hypothesis: Assume that for all s ≤ k and t ≤ k,

Rt,s = R̃t,s . (B.2)

• Then we prove Eq. (B.2) for t = k + 1 (case s = k + 1 is similar). First assume s = 0 and
t = k + 1 in which using Lemma F.3(c) we have almost surely

R̃k+1,0 = lim
N→∞

〈hk+2, h1〉 = lim
n→∞

〈mk+1,m0〉

= lim
n→∞

〈bk+1 − w, b0 − w〉 = σ2 +
1

δ
lim

N→∞
〈qk+1, q0〉

= σ2 +
1

δ
E

{
[η(X0 − Z̃k; θk)−X0][−X0]

}
,

= σ2 +
1

δ
E

{
[η(X0 + Z̃k; θk)−X0][−X0]

}
,

where the last equality uses q0 = −x0 and Lemma F.3(b) for the pseudo-Lipschitz function
(hk+1

i , x0,i) 7→ [η(x0,i − hk+1
i ; θk) − x0,i][−x0,i]. Here X0 ∼ pX0 and Z̃k are independent and

the latter is mean zero gaussian with E{Z̃2
k} = R̃k,k. But using the induction hypothesis,

R̃k,k = Rk,k holds. Hence, we can apply Eq. (4.14) to obtain R̃t,0 = Rt,0.

Similarly, for the case t = k + 1 and s > 0, using Lemma F.3(b)(c) we have almost surely

R̃k+1,s = lim
N→∞

〈hk+2, hs+1〉 = lim
n→∞

〈mk+1,ms〉

= lim
n→∞

〈bk+1 − w, bs − w〉 = σ2 +
1

δ
lim

N→∞
〈qk+1, qs〉

= σ2 +
1

δ
E{[η(X0 + Z̃k; θk)−X0][η(X0 + Z̃s−1; θs−1)−X0]} ,

for X0 ∼ pX0 independent of zero mean gaussian variables Z̃k and Z̃s−1 that satisfy

Rk,s−1 = E{Z̃kZ̃s−1} , Rk,k = E{Z̃2
k} , Rs−1,s−1 = E{Z̃2

s−1} ,

using the induction hypothesis. Hence the result follows.
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C Proof of Lemma 4.3

The proof of Lemma 4.3 relies on Lemma 5.7 which we will prove in the first subsection.

C.1 Proof of Lemma 5.7

Before proving Lemma 5.7, we state and prove the following property of gaussian random variables.

Lemma C.1. Let Z1 and Z2 be jointly gaussian random variables with E(Z 2
1 ) = E(Z2

2 ) = 1 and
E(Z1Z2) = c ≥ 0. Let I be a measurable subset of the real line. Then P(Z1 ∈ I, Z2 ∈ I) is an
increasing function of c ∈ [0, 1].

Proof. Let {Xs}s∈R be the standard Ornstein-Uhlenbeck process. Then (Z1, Z2) is distributed as
(X0, Xt) for t satisfying c = e−2t. Hence

P(Z1 ∈ I, Z2 ∈ I) = E[f(X0)f(Xt)] , (C.1)

for f the indicator function of I. Since the Ornstein-Uhlenbeck process is reversible with respect to
the standard gaussian measure µG, we have

E[f(X0)f(Xt)] =

∞∑

`=0

e−λ`t (ψ`, f)2µG
=

∞∑

`=0

c
λ`
2 (ψ`, f)2µG

(C.2)

with 0 ≤ λ0 ≤ λ1 ≤ . . . the eigenvalues of its generator, {ψ`}`≥0 the corresponding eigenvectors and
( · , · )µG

the scalar product in L2(µG). The thesis follows.

We now pass to the proof of Lemma 5.7.

Proof of Lemma 5.7. It is convenient to change coordinates and define

yt,1 ≡ Rt−1,t−1 = τ2
t−1 , yt,2 ≡ Rt,t = τ2

t , yt,3 ≡ Rt−1,t−1 − 2Rt,t−1 + Rt,t . (C.3)

The vector yt = (yt,1, yt,2, yt,3) belongs to R
3
+ by Lemma 5.8. Using Eq. (4.13), it is immediate to

see that this is updated according to the mapping

yt+1 = G(yt) ,

G1(yt) ≡ yt,2 , (C.4)

G2(yt) ≡ σ2 +
1

δ
E{[η(X0 + Zt;α

√
yt,2)−X0]

2} , (C.5)

G3(yt) ≡ 1

δ
E{[η(X0 + Zt;α

√
yt,2)− η(X0 + Zt−1;α

√
yt,1)]

2} . (C.6)

where (Zt, Zt−1) are jointly gaussian with zero mean and covariance determined by E{Z 2
t } = yt,2,

E{Z2
t−1} = yt,1, E{(Zt − Zt−1)

2} = yt,3. This mapping is defined for yt,3 ≤ 2(yt,1 + yt,2).
Next we will show that by induction on t that the stronger inequality yt,3 < (yt,1 + yt,2) holds for

all t. We have indeed

yt+1,1 + yt+1,2 − yt+1,3 = 2σ2 +
2

δ
E{η(X0 + Zt;α

√
yt,2) η(X0 + Zt−1;α

√
yt,1)} .
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Since E{ZtZt−1} = (yt,1 + yt,2 − yt,3)/2 and x 7→ η(x; θ) is monotone, we deduce that yt,3 <
(yt,1 + yt,2) implies that Zt, Zt−1 are positively correlated. Therefore E{η(X0 + Zt;α

√
yt,2) η(X0 +

Zt−1;α
√
yt,1)} ≥ 0, which in turn yields yt+1,3 < (yt+1,1 + yt+1,2).

The initial condition implied by Eq. (4.14) is

y1,1 = σ2 +
1

δ
E{X2

0} ,

y1,2 = σ2 +
1

δ
E{[η(X0 + Z0; θ0)−X0]

2} ,

y1,3 =
1

δ
E{η(X0 + Z0; θ0)

2} ,

It is easy to check that these satisfy y1,3 < y1,1+y1,2. (This follows from E{X0[X0−η(X0+Z0; θ0)]} >
0 because x0 7→ x0 − EZη(x0 + Z0; θ0) is monotone increasing.) We can hereafter therefore assume
yt,3 < yt,1 + yt,2 for all t.

We will consider the above iteration for arbitrary initialization y0 (satisfying y0,3 < y0,1 + y0,2)
and will show the following three facts:

Fact (i). As t→∞, yt,1, yt,2 → τ2
∗ . Further the convergence is monotone.

Fact (ii). If y0,1 = y0,2 = τ2
∗ and y0,3 ≤ 2τ2

∗ , then yt,1 = yt,2 = τ2
∗ for all t and yt,3 → 0.

Fact (iii). The jacobian J = JG(y∗) of G at y∗ = (τ2
∗ , τ

2
∗ , 0) has spectral radius σ(J) < 1.

By simple compactness arguments, Facts (i) and (ii) imply yt → y∗ as t → ∞. (Notice that yt,3

remains bounded since yt,3 ≤ (yt,1 + yt,2) and by the convergence of yt,1, yt,2.) Fact (iii) implies that
convergence is exponentially fast.

Proof of Fact (i). Notice that yt,2 evolves independently by yt+1,2 = G2(yt) = F(y2,t, α
√
y2,t),

with F( · , · ) the state evolution mapping introduced in Eq. (1.6). It follows from Proposition 1.2
that yt,2 → τ2

∗ monotonically for any initial condition. Since yt+1,1 = yt,2, the same happens for yt,1.

Proof of Fact (ii). Consider the function G∗(x) = G3(τ
2
∗ , τ

2
∗ , x). This is defined for x ∈ [0, 4τ 2

∗ ]
but since yt,3 < yt,1 + yt,2 we will only consider G∗ : [0, 2τ 2

∗ ] → R+. Obviously G∗(0) = 0. Further G∗

can be represented as follows in terms of the independent random variables Z, W ∼ N(0, 1):

G∗(x) =
1

δ
E{[η(X0 +

√
τ2
∗ − x/4Z + (

√
x/2)W ;ατ∗)− η(X0 +

√
τ2
∗ − x/4Z − (

√
x/2)W ;ατ∗)]

2} .(C.7)

A straightforward calculation yields

G
′
∗(x) =

1

δ
E{η′(X0 + Zt;ατ∗)η

′(X0 + Zt−1;ατ∗)} =
1

δ
P{|X0 + Zt| ≥ ατ∗, |X0 + Zt−1| ≥ ατ∗} ,

where Zt−1 =
√
τ2
∗ − x2/4Z+(x/2)W , Zt =

√
τ2
∗ − x2/4Z− (x/2)W . In particular, by Lemma C.1,

x 7→ G∗(x) is strictly increasing (notice that the covariance of Zt−1 and Zt is τ2
∗ − (x/2) which is

decreasing in x). Further

G
′
∗(0) =

1

δ
E{η′(X0 + τ∗ Z;ατ∗)} .
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Hence, since λ > 0 using Eq. (1.11) we have G′(0) < 1. Finally, by Lemma C.1, x 7→ G′(x) is
decreasing in [0, 2τ∗). It follows that yt,3 ≤ G′(0)ty0,3 → 0 as claimed.

Proof of Fact (iii). From the definition of G, we have the following expression for the Jacobian

JG(y∗) =




0 1 0
0 F′(τ2

∗ ) 0
a G′∗(0) b




where with an abuse of notation we let F′(τ2
∗ ) ≡ d

dτ2 F(τ2, ατ)
∣∣∣
τ2=τ2

∗

. Computing the eigenvalues of

the above matrix, we get

σ(J) = max
{

F
′(τ2

∗ ) , G
′
∗(0)

}
.

Since G′∗(0) < 1 as proved above, and F(τ 2
∗ ) < 1 as per Proposition 1.2, the claim follows.

C.2 Lemma 5.7 implies Lemma 4.3

Using representations (4.4) and (4.3) (i.e., bt = w − zt and qt = x0 − xt) and Lemma F.3(c) we
obtain,

lim
n→∞

1

n
‖zt+1 − zt‖2

2 = lim
n→∞

1

n
‖bt+1 − bt‖2

2

a.s.
=

1

δ
lim

N→∞

1

N
‖qt+1 − qt‖2

2

=
1

δ
lim

N→∞

1

N
‖xt+1 − xt‖2

2 ,

where the last equality uses qt = xt−x0. Therefore, it is sufficient to prove the thesis for ‖xt+1−xt‖2.
By state evolution, Theorem 4.2, we have

lim
N→∞

1

N
‖xt+1 − xt‖2

2 = E
{[
η(X0 + Zt; θt)− η(X0 + Zt−1; θt−1)

]2}

≤ 2(θt − θt−1)
2 + 2 E{(Zt − Zt−1)

2} = 2(θt − θt−1)
2 + 2(Rt,t − 2Rt,t−1 + Rt−1,t−1) .

The first term vanishes as t → ∞ because θt = ατt → ατ∗ by Proposition 1.2. The second term
instead vanishes since Rt,t → τ∗, Rt,t−1 → τ∗ by Lemma 5.7.

D Proof of Lemma 5.2

First note that the upper bound on λmax(R/N) is trivial since using representations (4.7), (4.8),
qt = ft(h

t, x0), m
t = gt(b

t, w) and Lemma F.3(c)(d) all entries of the matrix R/N are bounded
as N → ∞ and the matrix has fixed dimensions. Hence, we only focus on the lower-bound for
λmin(R/N).

The result for R = M ∗M and R = Q∗Q follows directly from Lemma F.3(g) and Lemma 8 of
[BM10].

For R = Y ∗Y and R = X∗X the proof is by induction on t.
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• For t = 1 we have Yt = b0 and Xt = h1 + ξ0q
0 = h1 − x0. Using Lemma F.3(b)(c) we obtain

almost surely

lim
N→∞

Y ∗t Yt

N
= δ lim

n→∞
〈b0, b0〉 = lim

N→∞
〈q0, q0〉 = E{X2

0} ,

lim
N→∞

X∗
t Xt

N
= lim

N→∞
〈h1 − x0, h1 − x0〉 = E{(τ0Z0 +X0)

2} = σ2 +
δ + 1

δ
E{X2

0} ,

where both are positive by the assumption P{X0 6= 0} > 0.

• Induction hypothesis: Assume that for all t ≤ k there exist positive constants cX(t) and cY (t)
such that as N →∞

cY (t) ≤ λmin(
Y ∗t Yt

N
) , (D.1)

cX(t) ≤ λmin(
X∗

t Xt

N
) . (D.2)

• Now we prove Eq. (D.1) for t = k+ 1 (proof of (D.2) is similar). We will prove that there is a
positive constant c such that as N →∞, for any vector ~at ∈ R

t:

〈Yt ~at, Yt ~at〉 ≥ c‖~at‖2
2 .

First write ~at = (a1, . . . , at) and denote its first t− 1 coordinates with ~at−1. Next, we consider
the conditional distribution A|St−1 . Using Eqs. (4.9) and (4.10) we obtain (since Yt = AQt)

Yt ~at|St−1

d
= A|St−1(Qt−1 ~at−1 + atq

t−1)

= Et−1(Qt−1 ~at−1 + atq
t−1) + atP

⊥
Mt−1

Ãqt−1
⊥ .

Hence, conditional on St−1 we have, almost surely

lim
N→∞

〈Yt ~at, Yt ~at〉 = lim
N→∞

1

N
‖Yt−1 ~at−1 + atEt−1q

t−1‖2 + a2
t lim

N→∞
〈qt−1
⊥ , qt−1

⊥ 〉 . (D.3)

Here we used the fact that Ã is a random matrix with i.i.d. N(0, 1/n) entries independent of
St−1 (cf. Lemma F.4) which implies that almost surely

- limN→∞〈P⊥Mt−1
Ãqt−1

⊥ , P⊥Mt−1
Ãqt−1

⊥ 〉 = limN→∞〈qt−1
⊥ , qt−1

⊥ 〉,
- limN→∞〈P⊥Mt−1

Ãqt−1
⊥ , Yt−1 ~at−1 + atb

t−1 + atλt−1m
t−2〉 = 0.

From Lemma F.3(g) we know that limN→∞〈qt−1
⊥ , qt−1

⊥ 〉 is larger than a positive constant ςt.
Hence, from representation (D.3) and induction hypothesis (D.1)

lim
N→∞

〈Yt ~at, Yt ~at〉 ≥ lim
N→∞

[√
cY (t− 1)‖~at−1‖ −

|at|√
N
‖bt−1 + λt−1m

t−2‖
]2

+ a2
t ςt .

To simplify the notation let c′t ≡ limN→∞N−1/2‖bt−1+λt−1m
t−2‖. Now if c′t|at| ≤

√
cY (t− 1)‖~at−1‖/2

then

lim
N→∞

〈Yt ~at, Yt ~at〉 ≥
cY (t− 1)

4
‖~at−1‖2 + a2

t ςt ≥ min

(
cY (t− 1)

4
, ςt

)
‖~at‖2

2 , (D.4)
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which proves the result. Otherwise, we obtain the inequality

lim
N→∞

〈Yt ~at, Yt ~at〉 ≥ a2
t ςt ≥

(
ςt cY (t− 1)

4(c′t)
2 + cY (t− 1)

)
‖~at‖2

2 ,

that completes the induction argument.

E A concentration estimate

The following proposition follows from standard concentration-of-measure arguments.

Proposition E.1. Let V ⊆ R
m a uniformly random linear space of dimension d. For λ ∈ (0, 1), let

Pλ denote the orthogonal projector on the first mλ coordinates of R
m. Define Z(λ) ≡ sup{‖Pλv‖ :

v ∈ V, ‖v‖ = 1}. Then, for any ε > 0 there exists c(ε) > 0 such that, for all m large enough (and d
fixed)

P{|Z(κ)−
√
λ| ≥ ε} ≤ e−m c(ε) . (E.1)

Proof. Let Q ∈ R
m×d be a uniformly random orthogonal matrix. Its image is a uniformly random

subspace of R
m whence the following equivalent characterization of Z(λ) is obtained

Z(λ)
d
= sup{‖PλQu‖ : u ∈ Sd}

where Sd ≡ {x ∈ R
d : ‖x‖ = 1} is the d-dimensional sphere, and

d
= denotes equality in distribution.

Let Nd(ε/2) be a (ε/2)-net in Sd, i.e. a subset of vectors {u1, . . . , uM} ∈ Sd such that, for any
u ∈ Sd, there exists i ∈ {1, . . . ,M} such that ‖u − ui‖ ≤ ε/2. It follows from a standard counting
argument [Led01] that there exists an (ε/2)-net of size |Nd(ε/2)| ≡M ≤ (100/ε)d . Define

Zε/2(λ) ≡ sup{‖PλQu‖ : u ∈ Nd(ε/2)} .

Since u 7→ PλQu is Lipschitz with modulus 1, we have

P{|Z(κ)−
√
λ| ≥ ε} ≤ P{|Zε/2(κ)−

√
λ| ≥ ε/2}

≤
M∑

i=1

P{|‖PλQu
i‖ −

√
λ| ≥ ε/2} .

But for each i, Qui is a uniformly random vector with norm 1 in R
m. By concentration of measure

in Sm [Led01], there exists a function c(ε) > 0 such that, for x ∈ Sm uniformly random

P
{∣∣‖Pλx‖ −

√
λ
∣∣ ≥ ε/2

}
≤ e−m c(ε) .

Therefore we get

P{|Z(κ)−
√
λ| ≥ ε} ≤ |Nd(ε/2)|e−m c(ε) ≤

(100

ε

)d
e−m c(ε)

which is smaller than e−mc(ε)/2 for all m large enough.
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F Useful reference material

In this appendix we collect a few known results that are used several times in our proof. We also
provide some pointers to the literature.

F.1 Equivalence of `
2 and `

1 norm on random vector spaces

In our proof we make use of the following well-known result of Kashin in the theory of diameters of
smooth functions [Kas77]. Let Ln,υ = {x ∈ R

n|xi = 0 , ∀ i ≥ n(1− υ) + 1}.

Theorem F.1 (Kashin 1977). For any positive number υ there exist a universal constant cυ such that
for any n ≥ 1, with probability at least 1− 2−n, for a uniformly random subspace Vn,υ of dimension
n(1− υ),

∀ x ∈ Vn,υ : cυ‖x‖2 ≤
1√
n
‖x‖1 .

F.2 Singular values of random matrices

We will repeatedly make use of limit behavior of extreme singular values of random matrices. A very
general result was proved in [BY93] (see also [BS09]).

Theorem F.2 ([BY93]). Let A ∈ R
n×N be a matrix with i.i.d. entries such that E{Aij} = 0,

E{A2
ij} = 1/n, and n = Mδ. Let σmax(A) be the largest singular value of A, and σmin(A) be its

smallest non-zero singular value. Then

lim
N→∞

σmax(A)
a.s.
=

1√
δ

+ 1 , (F.1)

lim
N→∞

σmin(A)
a.s.
=

1√
δ
− 1 . (F.2)

We will also use the following fact that follows from the standard singular value decomposition

min
{
‖Ax‖2 : x ∈ ker(A)⊥, ‖x‖ = 1

}
= σmin(A) . (F.3)

F.3 Two Lemmas from [BM10]

Our proof uses the results of [BM10]. We state copy here the crucial technical lemma in that paper.
Notations refer to the general algorithm in Eq. (4.1). General state evolution defines quantities
{τ2

t }t≥0 and {σ2
t }t≥0 via

τ2
t = E

{
gt(σtZ,W )2

}
, σ2

t =
1

δ
E
{
ft(τt−1Z,X0)

2
}
, (F.4)

where W ∼ pW and X0 ∼ pX0 are independent of Z ∼ N(0, 1)

Lemma F.3. Let {q0(N)}N≥0 and {A(N)}N≥0 be, respectively, a sequence of initial conditions
and a sequence of matrices A ∈ R

n×N indexed by N with i.i.d. entries Aij ∼ N(0, 1/n). Assume
n/N → δ ∈ (0,∞). Consider sequences of vectors {x0(N), w(N)}N≥0, whose empirical distributions
converge weakly to probability measures pX0 and pW on R with bounded (2k − 2)th moment, and
assume:
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(i) limN→∞Ep̂x0(N)
(X2k−2

0 ) = EpX0
(X2k−2

0 ) <∞.

(ii) limN→∞Ep̂w(N)
(W 2k−2) = EpW

(W 2k−2) <∞.

(iii) limN→∞Ep̂q0(N)
(X2k−2) <∞.

Let {σt, τt}t≥0 be defined uniquely by the recursion (F.4) with initialization σ2
0 = δ−1 limn→∞〈q0, q0〉.

Then the following hold for all t ∈ N ∪ {0}

(a)

ht+1|St+1,t

d
=

t−1∑

i=0

αih
i+1 + Ã∗mt

⊥ + Q̃t+1~ot+1(1) , (F.5)

bt|St,t

d
=

t−1∑

i=0

βib
i + Ãqt

⊥ + M̃t~ot(1) , (F.6)

where Ã is an independent copy of A and the matrix Q̃t (M̃t) is such that its columns form an
orthogonal basis for the column space of Qt (Mt) and Q̃∗t Q̃t = N It×t (M̃∗

t M̃t = n It×t).

(b) For all pseudo-Lipschitz functions φh, φb : R
t+2 → R of order k

lim
N→∞

1

N

N∑

i=1

φh(h1
i , . . . , h

t+1
i , x0,i)

a.s.
= E

{
φh(τ0Z0, . . . , τtZt, X0)

}
, (F.7)

lim
n→∞

1

n

n∑

i=1

φb(b
0
i , . . . , b

t
i, wi)

a.s.
= E

{
φb(σ0Ẑ0, . . . , σtẐt,W )

}
, (F.8)

where (Z0, . . . , Zt) and (Ẑ0, . . . , Ẑt) are two zero-mean gaussian vectors independent of X0, W ,
with Zi, Ẑi ∼ N(0, 1).

(c) For all 0 ≤ r, s ≤ t the following equations hold and all limits exist, are bounded and have
degenerate distribution (i.e. they are constant random variables):

lim
N→∞

〈hr+1, hs+1〉 a.s.
= lim

n→∞
〈mr,ms〉 , (F.9)

lim
n→∞

〈br, bs〉 a.s.
=

1

δ
lim

N→∞
〈qr, qs〉 . (F.10)

(d) For all 0 ≤ r, s ≤ t, and for any Lipschitz function ϕ : R
2 → R , the following equations

hold and all limits exist, are bounded and have degenerate distribution (i.e. they are constant
random variables):

lim
N→∞

〈hr+1, ϕ(hs+1, x0)〉 a.s.
= lim

N→∞
〈hr+1, hs+1〉〈ϕ′(hs+1, x0)〉, (F.11)

lim
n→∞

〈br, ϕ(bs, w)〉 a.s.
= lim

n→∞
〈br, bs〉〈ϕ′(bs, w)〉 . (F.12)

Here ϕ′ denotes derivative with respect to the first coordinate of ϕ.
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(e) For ` = k − 1, the following hold almost surely

lim sup
N→∞

1

N

N∑

i=1

(ht+1
i )2` <∞ , (F.13)

lim sup
n→∞

1

n

n∑

i=1

(bti)
2` <∞. (F.14)

(f) For all 0 ≤ r ≤ t:

lim
N→∞

1

N
〈hr+1, q0〉 a.s.

= 0 . (F.15)

(g) For all 0 ≤ r ≤ t and 0 ≤ s ≤ t − 1 the following limits exist, and there exist strictly positive
constants ρr and ςs (independent of N , n) such that almost surely

lim
N→∞

〈qr
⊥, q

r
⊥〉 > ρr , (F.16)

lim
n→∞

〈ms
⊥,m

s
⊥〉 > ςs . (F.17)

It is also useful to recall some simple properties of gaussian random matrices.

Lemma F.4. For any deterministic u ∈ R
N and v ∈ R

n with ‖u‖ = ‖v‖ = 1 and a gaussian matrix
Ã distributed as A we have

(a) v∗Ãu
d
= Z/

√
n where Z ∼ N(0, 1).

(b) limn→∞ ‖Ãu‖2 = 1 almost surely.

(c) Consider, for d ≤ n, a d-dimensional subspace W of R
n, an orthogonal basis w1, . . . , wd of

W with ‖wi‖2 = n for i = 1, . . . , d, and the orthogonal projection PW onto W . Then for

D = [w1| . . . |wd], we have PWAu
d
= Dx with x ∈ R

d that satisfies: limn→∞ ‖x‖ a.s.
= 0 (the limit

being taken with d fixed). Note that x is ~od(1) as well.
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