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Abstract—‘Approximate message passing’ algorithms proved
to be extremely effective in reconstructing sparse signalsfrom
a small number of incoherent linear measurements. Extensive
numerical experiments further showed that their dynamics is
accurately tracked by a simple one-dimensional iteration termed
state evolution. In this paper we provide the first rigorous
foundation to state evolution. We prove that indeed it holds
asymptotically in the large system limit for sensing matrices with
iid gaussian entries.

While our focus is on message passing algorithms for com-
pressed sensing, the analysis extends beyond this setting,to a
general class of algorithms on dense graphs. In this context,
state evolution plays the role that density evolution has for sparse
graphs.

I. I NTRODUCTION AND MAIN RESULTS

Given an n × N matrix A, the compressed sensing re-
construction problem requires to reconstruct a sparse vector
x0 ∈ R

N from a (small) vector of linear observations
y = Ax0 ∈ R

n. Recently [DMM09] suggested the following
first orderapproximate message-passing (AMP)algorithm for
reconstructingx0 givenA, y. Start with an initial guessx0 = 0
and proceed by

xt+1 = ηt(A
∗zt + xt), (I.1)

zt = y −Axt +
1

δ
zt−1〈η′t−1(A

∗zt−1 + xt−1)〉 ,

for an appropriate sequence of threshold functions{ηt}t≥0.
The goal is to show thatxt converges tox0 (cf. [DMM09]
for details). Here we assume that the columns ofA have
ℓ2 norm (approximately) equal to1, and, given a vector
v ∈ R

N we write f(x) for the vector obtained by applyingf
componentwise. Further,δ = n/N , 〈v〉 ≡ N−1

∑N
i=1 vi and

A∗ is the transpose of matrixA.
Two type of findings were presented in [DMM09]:(1)

For random or pseudo-random matricesA, the behavior of
AMP algorithms is accurately described by the so called ‘state
evolution’ (SE) formalism;(2) The sparsity-undersampling
tradeoff of AMP as derived from SE coincides, for an ap-
propriate choice of the functionsηt, with the one of (much
more complex) convex optimization approaches.

These findings were based on heuristic arguments and
extensive numerical simulations. In this paper we provide the
first rigorous support to finding (1), by proving that SE holdsin
the large system limit, for a special class of sensing matrices.

Note that AMP is an approximation to the following
message-passing algorithm. For alli, j ∈ [N ] and a, b ∈ [n]
(here and below[N ] ≡ {1, 2, . . . , N}) start with messages
x0j→a = 0 and proceed by

zta→i = ya −
∑

j∈[N ]\i

Aajx
t
j→a , (I.2)

xt+1
i→a = ηt(

∑

b∈[n]\a

Abiz
t
b→i).

As argued in [DMM10], AMP accurately approximates mes-
sage passing in the large system limit. An important tool for
the analysis of message passing algorithms is provided by
density evolution [RU08]. Density evolution is known to hold
asymptotically for sequences of sparse graphs that are locally
tree-like. The factor graph underlying the algorithm (I.2)is
dense: indeed it is the complete bipartite graph. State evolution
plays the role of density evolution for dense graphs, and can
be regarded (in a very precise sense) as the limit of density
evolution for dense graphs.

For the sake of concreteness, we will focus on the algorithm
(I.1). Nevertheless our analysis applies to a much larger family
of message passing algorithms on dense graphs, for instance
the multi-user detection algorithm studied in [Kab03], [NS05],
[MT06]. It is important to mention that the algorithms (I.1)and
(I.2) are completely different from gaussian belief propagation
(BP). More generally, none of the existing rigorous resultsfor
BP can be used here.

It is truly remarkable that density evolution (in its special
incarnation, SE) holds for dense graphs. This upsets a very
popular piece of wisdom: ‘density evolution (and message
passing) worksbecausethe graph is locally tree-like, and does
not work on graphs with many short loops.’

A. Main result

Given a probability distributionpX0
, let τ20 ≡ E{X2

0}/δ,
and define recursively fort ≥ 0,

τ2t+1 =
1

δ
E
{
[ηt(X0 + τtZ)−X0]

2
}
, (I.3)

with X0 ∼ pX0
andZ ∼ N(0, 1) independent. Also a function

φ : R
m → R is called pseudo-Lipschitzif there exist a

constantL such that for allx, y ∈ R, |φ(x) − φ(y)| ≤
max(‖x‖, ‖y‖, L)‖x− y‖.



Theorem 1. Let {A(N)}N be a sequence of sensing matrices
A ∈ R

n×N indexed byN , with iid entriesAij ∼ N(0, 1/n),
and assumen/N → δ ∈ (0,∞). Consider further a sequence
of signals{x0(N)}N , whose empirical distributions converges
weakly to a probability measurepX0

onR, and have uniformly
bounded fourth moment. Then, for any pseudo-Lipschitz func-
tion ψ : R2 → R and all t, almost surely

lim
N→∞

1

N

N∑

i=1

ψ(xti, x0,i) = E[ψ(ηt−1(X0 + τt−1Z), X0)] . (I.4)

Up to a trivial change of variables, this is a formalization
of the findings of [DMM09] (cf. in particular Eqs. [7], [8] and
Finding 2 in that paper).

Note 1. The empirical distribution of the vectorx0 ∈ R
N is

the probability distribution that puts a point mass1/N at each
of theN entries of the vector.

B. Alternative representation of AMP

Let ht = x0 − (A∗zt−1 + xt−1), f(x) = f(x, x0) = x0 −
η(x0 − x), and g(x) = −x. Also definemt = g(zt), qt =
f(ht), and λt = 1

δ
〈f ′(ht)〉. Therefore, we will obtain the

following equivalent version of AMP. Start withz0 = Ax0
(or λ0 = 0, q0 = x0) and proceed by

ht+1 = A∗mt + qt

zt = Aqt − λtm
t−1 (I.5)

Note 2. (a) It is simple to see that algorithms(I.5) and (I.1)
are equivalent with a simple change of variable. We only use
(I.5) to simplify the analysis of(I.1). However, sinceq0 = x0
is unknown in practice, one should use(I.1) to recoverx0.

(b) Due to symmetry, for eacht, all coordinates of the vector
ht have the same distribution (zt, qt andmt are similar).

(c) Our proof holds for all systems of algorithms of the
type(I.5) and all functionsf, g that have bounded derivative.
For this general case the coefficient ofqt in the first equation
should be changed from1 to −〈g′(zt)〉.

(d) Also, the proof applies to any sequence of scalar
functions{ft, gt}t≥0 with ht = ft(q

t) andmt = gt(z
t). For

simplicity, we shall drop the time dependence off, g.

II. A NALYSIS

The proof is based on a conditioning technique developed
by Erwin Bolthausen for the analysis of the so-called TAP
equations in spin glass theory [Bol09]. Related ideas can also
be found in [Don06].

First we introduce some new notations and then state and
prove a more general result than Theorem 1.

A. Definitions

When the update equation forht+1 in (I.5) is used, all
values ofz0, . . . , zt and alsoh1, . . . , ht have been previously
calculated. Additionally any deterministic function of them
(m0, . . . ,mt and q1, . . . , qt) is known as well. Hence, we
can consider the distribution ofht+1 when it is conditioned
on all these known variables andx0. In particular, define

St1,t2 to be theσ-algebra generated byz0, . . . , zt1−1 (thus
includingm0, . . . ,mt1−1) andx0, h1, . . . , ht2 (thus including
q0, . . . , qt2). We are interested in finding the distributions of
random variableszt|St,t

and , ht+1|St+1,t
.

Since ht, zt are column vectors, the equations for
z0, . . . , zt−1 andh1, . . . , ht can be written in matrix form as:

[
h1 − q0|h2 − q1| · · · |ht − qt−1

]
︸ ︷︷ ︸

Xt

= A∗ [m0| . . . |mt−1]︸ ︷︷ ︸
Mt

,

[
z0|z1 + λ1m

0| · · · |zt−1 + λt−1m
t−2

]
︸ ︷︷ ︸

Yt

= A [q0| . . . |qt−1]︸ ︷︷ ︸
Qt

.

or in shortYt = AQt andXt = A∗Mt. For each matrixM
we defineM̂ ≡M∗M .

We also introduce the notationmt
q

for the projection ofmt

onto column space ofMt and definemt
⊥ = mt−mt

q. Similarly,
defineqtq, q

t
⊥ to be the parallel and orthogonal projections of

qt onto column space ofQt.
For vectorsu, v ∈ R

m define 〈u〉 =
∑m

i=1 ui/m and
〈u, v〉 = ∑m

i=1 uivi/m. For random variablesX,Y the notion

X
a.s.
= Y means thatX andY are equal almost surely,X

d
= Y

that they are equal in distribution.

B. Main technical Lemma

We prove the following more general result.

Lemma 1. Let {A(N)} be a sequence of sensing matrices as
in Theorem 1, withn/N = δ. Assumex0 to have i.i.d. entries
with distribution pX0

, having finite fourth moment. Then the
following hold for all t ∈ N ∪ {0}

(a)

ht+1|St+1,t

d
=

t−1∑

i=0

αih
i+1 + Ã∗mt

⊥ +Qt~ot(1) (II.1)

zt|St,t

d
=

t−1∑

i=0

βiz
i + Ãqt⊥ +Mt~ot(1) (II.2)

whereÃ is an independent copy ofA and coefficientsαi, βj
satisfymt

q =
∑t−1

i=0 αim
i and qtq =

∑t−1
i=0 βiq

i. Here ~ot(1) ∈
R

t is a finite dimensional random vector that converges to 0
almost surely asN → ∞.

(b) For any pseudo-Lipschitz functionφ : Rt+1 → R

lim
N→∞

1

N

N∑

i=1

φ(h1i , . . . , h
t+1
i , x0,i)

a.s.
= E

[
φ(τ0Z0, . . . , τtZt, X0)

]

(II.3)

lim
n→∞

1

n

n∑

i=1

φ(z0i , . . . , z
t
i)

a.s.
= E

[
φ(τ0Ẑ0, . . . , τtẐt)

]
,

(II.4)

whereZ0, . . . , Zt (Ẑ0, . . . , Ẑt) haveN(0, 1) distribution and
are independent ofX0.



(c) For all 0 ≤ r, s ≤ t the following equations hold and
all limits exist, are bounded and non-random.

lim
N→∞

〈hr+1, hs+1〉 a.s.
= lim

N→∞
〈mr,ms〉 , (II.5)

lim
n→∞

〈zr, zs〉 a.s.
=

1

δ
lim
n→∞

〈qr, qs〉 . (II.6)

(d) For all 0 ≤ r, s ≤ t, and for any differentiable function
ϕ with bounded first derivative, the following equations hold
and all limits exist, are bounded and non-random.

lim
N→∞

〈hr+1, ϕ(hs+1)〉 a.s.
= lim

N→∞
〈hr+1, hs+1〉〈ϕ′(hs+1)〉,

(II.7)

lim
N→∞

〈zr, ϕ(zs)〉 a.s.
= lim

N→∞
〈zr, zs〉〈ϕ′(zs)〉 . (II.8)

Note 3. (a) Above and in the followingX |S d
= Y means that

for any integrable functionφ and for any random variableZ
measurable onS, E{φ(X)Z} = E{φ(Y )Z}.
(b) Eqs. (II.7) and (II.8) have the form of Stein’s lemma
[Ste72] (Lemma 6 in our Section II-D).

C. Proof of Theorem 1

Consider first the case in whichn/N = δ andx0 has iid
entries with distributionpX0

. By definitionxt+1 = η(A∗zt +
xt) = η(x0 − ht+1). Therefore, applying Lemma 1(b) to the
functionφ(y0, . . . , yt, x0,i) = ψ(η(x0,i − yt), x0,i) we obtain

lim
N→∞

1

N

N∑

i=1

ψ(xti, x0,i)
a.s.
= E

{
ψ
[
η(X0 − τt−1Z), X0

]}

with Z ∼ N(0, 1) independent ofX0, which yields the claim

asZ
d
= −Z.

Let us sketch the generalization to a deterministic se-
quence of vectors{x0(N)}N≥1 with converging empirical
distribution. Notice that, by symmetry, we can replacex0(N)
by the random vector obtained by uniformly permuting its
coordinates. Let us keep the notationx0(N) for this vector.
Let x′0(N) be the random vector whose entries are iid with
distributionpX0

. It is possible to construct a coupling such that
E{||x0 − x′0||2} = o(N). The proof is completed by showing
that this impliesE{||xt − (xt)′||2} = o(N) for all t. The
generalization ton/N → δ is proved analogously.

D. Useful properties

In order to calculate zt|St,t
, ht+1|St+1,t

we find
A|St,t

, A|St+1,t
.

Lemma 2. Let (t1, t2) = (t, t) or (t1, t2) = (t + 1, t). Then
the distribution of the conditional random variableA|St1 ,t2

satisfies

A|St1 ,t2

d
= Et1,t2 + PVt1,t2

(Ã). (II.9)

Here Ã
d
= A is a random matrix independent ofSt1,t2 . Also,

Et1,t2 = E(A|St1,t2) is equal to

Et1,t2 = Yt1(Q̂t1)
−1Q∗

t1
+Mt2(M̂t2)

−1X∗
t2

−Mt2(M̂t2)
−1M∗

t2
Yt1(Q̂t1)

−1Q∗
t1
. (II.10)

Further, PVt1,t2
is the orthogonal projector onto subspace

Vt1,t2 = {A|AQt1 = 0, A∗Mt2 = 0}, defined by
PVt1,t2

(Ã) = P⊥
Mt2

ÃP⊥
Qt1

. Here P⊥
Mt2

= I − PMt2
, P⊥

Qt1
=

I − PQt1
, and PQt1

, PMt2
are orthogonal projector onto

column spaces ofQt1 andMt2 respectively.

Recall the following well-known formula.

Lemma 3. Let z ∈ R
n be a random vector of iidN(0, α)

variables and letD ∈ R
m×n be a linear operator. Then for

any constant vectorb ∈ R
m the distribution ofz conditioned

on Dz = b satisfies:

z|Dz=b
d
= D∗(DD∗)−1b+ PDz=0(z̃)

whereP{Dz=0} is the orthogonal projection onto the subspace
{Dz = 0} and z̃ is a random vector of iidN(0, α). Moreover,
D∗(DD∗)−1b = argminz

{
‖z‖2|Dz = b

}
.

Lemma 2 follows from applying Lemma 3 to the operator
D that mapsA to (AQ,M∗A). Note that for finite values of
t asN → ∞ the matriceŝMt andQ̂t are non-singular almost
surely. To the interest of space we leave a detailed proof of
Lemma 2 to a longer version of this paper.

Lemma 4. The following holds

E∗
t+1,tm

t a.s.
= Xt(M̂t)

−1M∗
t m

t
q +Qt+1(Q̂t+1)

−1Y ∗
t+1m

t
⊥,

(II.11)

Et,tq
t a.s.
= Yt(Q̂t)

−1Q∗
t q

t
q
+Mt(M̂t)

−1X∗
t q

t
⊥. (II.12)

Proof: Writing mt = mt
q + mt

⊥ and using
(II.10) and the fact thatM∗

t m
t
⊥ = 0, we obtain

E∗
t+1,tm

t
⊥=Qt+1(Q̂t+1)

−1Y ∗
t+1m

t
⊥. On the other hand

let mt
q=
∑t−1

i=0 αim
i = Mt~α. Then usingA∗Mt = Xt,

(II.9), and [PVt1,t2
(Ã)]∗mt

q = 0 we have, conditionally

on St+1,t, E∗
t+1,tm

t
q

d
= A∗mt

q

d
= A∗Mt~α

d
= Xt~α

d
=

Xt(M
∗
t Mt)

−1M∗
t Mt~α

d
= Xt(M

∗
t Mt)

−1M∗
t m

t
q. Since all

sides are measurable onSt+1,t, Eq. (II.11) follows.
Similarly, useqt = qtq + qt⊥, qtq = Qt

~β andQ∗
t q

t
⊥ = 0 to

obtain (II.12).
We will also use the following strong law of large numbers

(SLLN) which follows from [HT97][Theorem 2.1].

Theorem 2 (SLLN, [HT97]). Let {Xn,i : 1 ≤ i ≤ n, n ≥
1} be an array of random variables with(Xn,1, . . . , Xn,n)
mutually independent with mean equal zero for eachn
and E|Xn,i|2+κ ≤ C for someκ > 0, C < ∞. Then
1
n

∑n

i=1Xi,n → 0 a.s. forn→ ∞.

Next, we present a standard property of Gaussian matrices
without proof.

Lemma 5. For any deterministicu ∈ R
N and ,v ∈ R

n

with ‖u‖ = ‖v‖ = 1 and a gaussian matrixÃ distributed

as A we havev∗Ãu
d
= Z/

√
n where Z ∼ N(0, 1) and

limn→∞ ‖Ãu‖2 = 1 almost surely.



Lemma 6 (Stein’s Lemma [Ste72]). For jointly gaussian
random variablesZ1, Z2 and anyC1 function ϕ : R → R

the following holdsE[Z1ϕ(Z2)] = Cov(Z1, Z2)E[ϕ
′(Z2)].

E. Proof of Lemma 1

The proof is by induction ont. Let Ht+1 be the property
that (II.1), (II.3), (II.5) and (II.7) are correct. Similarly, let Zt

be the property that (II.2), (II.4), (II.6) and (II.8) hold.The
inductive proof consists of the following three main steps.(1)
Z0 holds. (2) IfZr, Hs hold for all r < t ands ≤ t thenZt

holds. (3) IfZr, Hs hold for all r ≤ t and s ≤ t thenHt+1

holds.
Step 1:Z0. Note thatz0 = Ax0.
(a) S0,0 is generated byq0 = x0. Also q0 = q0⊥ sinceQ0

is an empty matrix. Hencez0|S0,0
= Ax0 = Aq0⊥.

(b) Letφ : R → R be a pseudo-Lipschitz function with con-
stantL, and assume w.l.o.g.φ(0) = 0. Conditioning onq0 =
x0, the random variablez0 =

∑n

i=1 φ((Ax0)i)/n is a sum of

iid random variables. By Lemma 5(Ax0)i
d
= Z||x0||/

√
n

for Z ∼ N(0, 1). By the SLLN: limn→∞ ||x0||2/n a.s.
=

E(X2
0 )/δ = τ20 < ∞. Hence, for all p ≥ 2, there

exist a constantCp such thatE|(Ax0)i|p < Cp. There-
fore E|φ([Ax0]i)|3 ≤ max(L3

E|(Ax0)i|3,E|(Ax0)i|6) ≤ C
for a constantC. Now, we can apply Theorem 2 to get
limn→∞

1
n

∑n
i=1[φ(z

0
i ) − EAφ(z

0
i )]

a.s.
= 0 whence, by the

above calculation

lim
n→∞

1

n

n∑

i=1

φ(z0i )
a.s.
= E

[
φ(τ0Z)

]
.

(c) Using Lemma 5,limn→∞〈z0, z0〉=limn→∞ ‖Ax0‖2/n
a.s.
= limN→∞〈q0, q0〉/δ a.s.

= E(X2
0 )/δ.

(d) Using part (a) fort = 0, and φ(x) = xg(x) we
obtain limn→∞〈z0, g(z0)〉 a.s.

= E(τ0Ẑg(τ0Ẑ)), which is equal
to τ20E[g

′(τ0Ẑ)] using Lemma 6. On the other hand, in proof
of (b) we showedlimn→∞〈z0, z0〉 a.s.

= τ20 . Now, applying part
(b) to φ(x) = g′(x) we get limn→∞〈g′(z0)〉 a.s.

= E[g′(τ0Ẑ)].

Step 2:Zt. This part is analogous to step 1 albeit more
complex.

(a) Note that

Yt = Zt + [0|Mt−1]Λt, Xt = Ht −Qt, (II.13)

where Zt = [z0| · · · |zt−1], Λt = diag(λ0, . . . , λt−1) and
Ht = [h1| · · · |ht].
Lemma 7. The following holds
(a) ht+1|St+1,t

d
= HtM̂

−1

t M∗

t m
t
q + P⊥

Qt+1
Ã∗P⊥

Mt
mt +Qt~ot(1).

(b) zt|St,t

d
= Zt(Q̂t)

−1Q∗

t q
t
q + P⊥

Mt
ÃP⊥

Qt
qt +Mt~ot(1).

Proof: In light of Lemmas 2 and 4 we
have ht+1|St+1,t

d
= Xt(M

∗
t Mt)

−1M∗
t m

t
q +

Qt+1(Q̂t+1)
−1Y ∗

t+1m
t
⊥ + P⊥

Qt+1
ÃP⊥

Mt
mt + qt andzt|St,t

d
=

Yt(Q̂t)
−1Q∗

t q
t
q
+Mt(M̂t)

−1X∗
t q

t
⊥ + P⊥

Mt
ÃP⊥

Qt
qt − λtm

t−1.
Now using equations (II.13), we only need to show
−Qt(M̂t)

−1M∗
t m

t
q
+Qt+1(Q̂t+1)

−1Y ∗
t+1m

t
⊥ + qt = Qt~ot(1)

and [0|Mt−1]Λt(Q̂t)
−1Q∗

t q
t
q +Mt(M̂t)

−1X∗
t q

t
⊥ − λtm

t−1 =

Mt~ot(1). Recall thatmt
q
=Mt~α andqt

q
= Qt

~β. On the other
handY ∗

t+1m
t
⊥ = Z∗

t+1m
t
⊥ becauseMtm

t
⊥ = 0. Similarly,

X∗
t q

t
⊥ = H∗

t q
t
⊥. Hence we need to show

−Qt~α+Qt+1(Q̂t+1)
−1

Z
∗

t+1m
t
⊥ + q

t = Qt~ot(1) (II.14)

[0|Mt−1]Λt
~β +Mt(M̂t)

−1
H

∗

t q
t
⊥ − λtm

t−1 = Mt~ot(1). (II.15)

Here is our strategy to prove (II.15) (proof of (II.14) is
similar). The left hand side is a linear combination of vectors
m0, . . . ,mt−1. For anyℓ = 1, . . . , t we will prove that the
coefficient of eachmℓ−1 converges to0. This coefficient in
the left hand side is equal to

[
(M̂t)

−1H∗
t q

t
⊥

]
ℓ
− λℓ(−βℓ)Iℓ 6=t

which can be written as
∑t

r=1 δ
−1

[
(M̂t/n)

−1
]
ℓ,r

〈hr, qt −
∑t−1

s=0 βsq
s〉−λℓ(−βℓ)Iℓ 6=t . To simplify the notation denote the

matrix M̂t/n by G. ThereforelimN→∞ Coefficient ofmℓ−1

is equal to

lim
N→∞

{ t∑

r=1

(G−1)ℓ,r〈hr, qt−
t−1∑

s=0

βsq
s〉1
δ
−λℓ(−βℓ)Iℓ 6=t

}
.

But using induction hypothesisHt(d), the term 〈hr, qt −∑t−1
s=0 βsq

s〉/δ is almost surely equal to the limit of
〈hr, ht〉λt − ∑t−1

s=0 βs〈hr, hs〉λs. This can be modified,
using induction hypothesisHt(c), to 〈mr−1,mt−1〉λt −∑t−1

s=0 βs〈mr−1,ms−1〉λs almost surely, which can be written
asGr,tλt −

∑t−1
s=0 βsGr,sλs. Hence

lim
N→∞

Coefficient ofmℓ−1 a.s.
=

lim
N→∞

{ t∑

r=1

(G−1)ℓ,r[Gr,tλt −
t−1∑

s=0

βsGr,sλs]− λℓ(−βℓ)Iℓ 6=t
}

a.s.
= lim

N→∞
{λtIt=ℓ −

t−1∑

s=0

βsλsIℓ=s − λℓ(−βℓ)Iℓ 6=t} a.s.
= 0

Similarly, usingg′(x) = −1, (II.14) can be shown by

lim
N→∞

{
[(Q̂t+1)

−1Z∗
t+1m

t
⊥]ℓ + (−αℓ)

Iℓ 6=t
} a.s.

= 0.

(c) For r, s < t we can use induction hypothesis. Fors =
t, r < t, using (II.2) for t that was just proved,

〈zt, zr〉|St,t

d
=

t−1∑

i=0

βi〈zi, zr〉+ 〈Ãqt⊥, zr〉+
t−1∑

i=0

o(1)〈mi, zr〉.

Now, by induction hypothesisZt−1(d) each term〈mi, zr〉 has
a finite limit. Thus, limn→∞

∑t−1
i=0 o(1)〈mi, zr〉 a.s.

= 0. Now
we can use induction hypothesisZr(c) or Zi(c) for each term
of the form〈zi, zr〉 and use Lemma 5 for〈Ãqt⊥, zi〉 to obtain

lim
n→∞

〈zt, zr〉 a.s.
= lim

n→∞

1

δ

t−1∑

i=0

βi〈qi, qr〉

a.s.
= lim

n→∞

1

δ
〈qt

q
, qr〉 a.s.

= lim
n→∞

1

δ
〈qt, qr〉 .

Last line uses the definition ofβi andqt⊥⊥qr.



For the case ofr = s = t, we have

〈zt, zt〉|St,t

d
=

t−1∑

i,j=0

βiβj〈zi, zj〉+ 〈Ãqt⊥, Ãqt⊥〉+ o(1).

Note that we used similar argument (Lemma 5 and
Zt−1(c)) to show the contribution of all products of the form
〈Mt~ot(1), ·〉 and〈Ãqt⊥, zi〉 a.s. tend to0. Now, using induction
hypothesis and Lemma 5

lim
n→∞

〈zt, zt〉|St,t

a.s.
= lim

n→∞

t−1∑

i,j=0

βiβj
〈qi, qj〉
δ

+ lim
n→∞

‖qt⊥‖2

a.s.
= lim

n→∞

〈qtq, qtq〉
δ

+ lim
n→∞

〈qt⊥, qt⊥〉
δ

a.s.
= lim

n→∞

〈qt, qt〉
δ

.

(b) Using part (a) we can writeφ(z0i , . . . , z
t
i)|St,t

as
φ(z0i , . . . , z

t−1
i , [

∑t−1
r=0 βrz

r + Ãqt⊥ + Mt~ot(1)]i). First we
would like to drop the error termMt~ot(1). For sim-
plicity let ai,n = (z0i , . . . , z

t−1
i , zti |St,t

) and bi,n =

(z0i , . . . , z
t−1
i , [

∑t−1
r=0 βrz

r + Ãqt⊥]i). Since φ is pseudo-
Lipschitz with constantL we have |φ(an,i) − φ(bn,i)| ≤
max(L, ‖ai,n‖, ‖bi,n‖)|

∑t−1
r=0m

r
i |o(1). Therefore, the differ-

encen−1|
∑n

i=1 φ(an,i)−
∑n

i=1 φ(bn,i)| is less than

[
max(L,

n∑

i=1

‖ai,n‖2
n

,

∑n

i=1 ‖bi,n‖2
n

)
] 1

2
[ t−1∑

r=0

t
1
2 〈mr,mr〉

] 1
2 o(1),

(II.16)

using Cauchy-Schwartz inequality twice. Also note that
n−1

∑n

i=1 ‖ai,n‖2 ≤ ∑t−1
r=0〈zr, zr〉 + 〈zt, zt〉|St,t

which is
finite almost surely, using induction hypothesis and part
(c) that was just proven. Similarlyn−1

∑n
i=1 ‖ai,n‖2 and∑t−1

r=0〈mr,mr〉 are finite. Hence for any finitet, (II.16) goes
to 0 almost surely whenn goes to∞.

Now given, z0, . . . , zt−1, consider the random variables
X̃i,n = φ(z0i , . . . , z

t−1
i ,

∑t−1
r=0 βrz

r
i + (Ãqt⊥)i) and Xi,n ≡

X̃i,n−EÃX̃i,n. Proceeding as in Step 1, and using the pseudo-
Lipschitz property ofφ, it is easy to check the conditions of
Theorem 2. We therefore get

lim
n→∞

1

n

n∑

i=1

φ(z0i , . . . , [

t−1∑

r=0

βrz
r + Ãqt⊥]i)

a.s.
= lim

n→∞

1

n

n∑

i=1

EÃφ(z
0
i , . . . , [

t−1∑

r=0

βrz
r + Ãqt⊥]i).

Note that[Ãqt⊥]i is a gaussian random variable with variance
‖qt⊥‖2/δ. Hence we can use induction hypothesisZt−1(b)

for φ̂(z0i , . . . , z
t−1) = EZφ(z

0
i , . . . ,

∑t−1
r=0 βrz

r
i +δ

−.5‖qt⊥‖Z)
whereZ is an independentN(0, 1) random variable, to show

lim
n→∞

∑n

i=1
EÃφ(z

0
i , . . . , [

∑t−1

r=0
βrz

r + Ãqt⊥]i)

n

a.s.
= EEZφ(τ0Z0, . . . ,

t−1∑

r=0

βrτrZr + δ
−.5‖qt⊥‖Z)

Note that
∑t−1

r=0 βrτrZr + δ−.5‖qt⊥‖Z is gaussian. All that is
needed is to show that the variance of this gaussian isτ2t . But
using what we just proved for the pseudo-Lipschitz function
φ(y0, . . . , yt) = y2t , we have

E{(
t−1∑

r=0

βrτrZr + δ−.5‖qt⊥‖Z)2}
a.s.
= lim

n→∞
〈zt, zt〉 (II.17)

On the other hand in part (c) we provedlimn→∞〈zt, zt〉 a.s.
=

limn→∞ δ−1〈f(ht), f(ht)〉.
By the induction hypothesisHt(b) for the pseudo-

Lipschitz function φ(y0, . . . , yt) = f(yt)
2 we get

limn→∞ δ−1〈f(ht), f(ht)〉 a.s.
= δ−1

E(f(τt−1Z)
2). So by the

definition (I.3), both sides of (II.17) are equal toτ2t .
(d) Very similar to the proof ofZ0(d), using part (b) for

the pseudo-Lipschitz functionφ : Rt+1 → R that is given by
φ(y0, . . . , yt) = ytg(ys) we can obtainlimn→∞〈zt, g(zs)〉 a.s.

=
E[τtẐtg(τsẐs)] for jointly gaussianẐt, Ẑs with distribution
N(0, 1). Using Lemma 6, this is almost surely equal to
Cov(τtẐt, τsẐs)E(g

′(τsẐs)). And another application of part
(b) for φ(y0, . . . , yt) = ysyt transforms Cov(τtẐt, τsẐs) to
limn→∞〈zt, zs〉. Similarly, E(g′(τsẐs)) can be transformed
to limn→∞〈g′(zt)〉 almost surely. This finishes the proof of
(d).

Step 3:Ht+1. Due to symmetry, proof of this step is exactly
similar to the proof of step 2.
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