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Abstract—‘Approximate message passing’ algorithms proved  Note that AMP is an approximation to the following
to be extremely effective in reconstructing sparse signalffom  message-passing algorithm. For allj [N] anda,b € [n]

a small number of incoherent linear measurements. Extenses (here and belowN] = {1,2 N}) start with messages
numerical experiments further showed that their dynamics & Ty

0
accurately tracked by a simple one-dimensional iterationérmed ¥j—a
state evolution. In this paper we provide the first rigorous

= 0 and proceed by

. . . A t _ t
foundation to state evolution. We prove that indeed it holds “a—i = Ya — Z AajTi s (1.2)
asymptotically in the large system limit for sensing matri@s with JE[N\i
iid gaussian entries. 1 +
While our focus is on message passing algorithms for com- ;5. = e Z Apizyi)-
pressed sensing, the analysis extends beyond this settirtg, a bE[n]\a

general class of algorithms on dense graphs. In this context : . )
state evolution plays the role that density evolution has fosparse As argued in [DMM10], AMP accurately approximates mes

graphs. sage passing in the large system limit. An important tool for
the analysis of message passing algorithms is provided by
|. INTRODUCTION AND MAIN RESULTS density evolution [RU08]. Density evolution is known to Hol
asymptotically for sequences of sparse graphs that aréyloca
Given ann x N matrix A, the compressed sensing retree-like. The factor graph underlying the algorithm (1ig)
construction problem requires to reconstruct a sparseoveciense: indeed it is the complete bipartite graph. Statestool
zo € RN from a (small) vector of linear observationsplays the role of density evolution for dense graphs, and can
y = Azo € R". Recently [DMMO09] suggested the followingpe regarded (in a very precise sense) as the limit of density
first orderapproximate message-passing (AM#jorithm for  evolution for dense graphs.
reconstructingry given A, y. Start with an initial guess’ = 0 For the sake of concreteness, we will focus on the algorithm
and proceed by (1.1). Nevertheless our analysis applies to a much largeitya
41 . 1 . of message passing algorithms on dense graphs, for instance
e = (A% + ), (1) the multi-user detection algorithm studied in [Kab03], P&}
2=y — Azt + lzt—l%_l(mzt—l + a2, [MTO6]. Itis important to mention that the algorithms (1dand
Y (1.2) are completely different from gaussian belief progizan
for an appropriate sequence of threshold functi¢ng,>o. (BP). More generally, none of the existing rigorous restdts
The goal is to show that’ converges tar, (cf. [DMM09] BP can be used here.
for deta"s)_ Here we assume that the columnsfhave It is truly remarkable that density evolution (|n its Spécia
¢ norm (approximately) equal td, and, given a vector incarnation, SE) holds for dense graphs. This upsets a very
v € RY we write f(x) for the vector obtained by applying Popular piece of wisdom: ‘density evolution (and message

componentwise. Furthes, = n/N, (v) = N~ Zl_\il v; and Passing) workdecausehe graph is locally tree-like, and does
A* is the transpose of matrix. - not work on graphs with many short loops.’

Two type of findings were presented in [DMMO9(1) A Main result
For random or pseudo-random matricds the behavior of _ L y )
AMP algorithms is accurately described by the so calledésta CGven @ probability distributionx,, let 7y = E{Xg}/4,
evolution’ (SE) formalism;(2) The sparsity-undersampling@"d define recursively for > 0,
tradeoff of AMP as derived from SE coincides, for an ap- s 1 9
propriate choice of the functiong;, with the one of (much Tt+1 = SE {ln(Xo +m2) = X0}, (1:3)

more complex) convex optimization approaches. with Xy ~ px, andZ ~ N(0, 1) independent. Also a function
These findings were based on heuristic arguments atgd: R™ — R is called pseudo-Lipschitaf there exist a

extensive numerical simulations. In this paper we proviee t .qnstantZ, such that for allz y € R, |p(z) — d(y)| <
first rigorous support to finding (1), by proving that SE hdlus ’ B

. : . > max([z]], [y, L)l — yll.
the large system limit, for a special class of sensing mesric



Theorem 1. Let {A(N)} v be a sequence of sensing matrice§,, ;, to be thes-algebra generated by’, ... z"'~! (thus
A € R™N indexed byN, with iid entries A;; ~ N(0,1/n), includingm?, ... m**=1)andz® h',... K’ (thus including
and assume,/N — § € (0,00). Consider further a sequenceq’, ..., ¢"2). We are interested in finding the distributions of
of signals{xzo(N)} , whose empirical distributions convergesandom variables’|s, , and,h'*!|s, ., ,.
weakly to a probability measugey, onR, and have uniformly  Since h,z* are column vectors, the equations for
bounded fourth moment. Then, for any pseudo-Lipschitzfun€, ... z!~! andhl,..., k! can be written in matrix form as:
tion ¢ : R2 — R and all t, almost surely
LW (bt = ¢°|h® = g'] - [n =" ] = A" [m°] . fm"
Am > v(af w0.:) = Elp(n—1(Xo + 71-12), Xo)] . (1.4) X, M,
i=1 [20|zl + )\1m0| . |Zt—1 + )\t_lmt—z] —A [q0| o |qt—1] )

Up to a trivial change of variables, this is a formalizatioir

of the findings of [DMMOQ9] (cf. in particular Egs. [7], [8] and

Finding 2 in that paper). or in shortY; = AQ; and X, = A*M,. For each matrixj/

Note 1. The empirical distribution of the vectar, € RY is W€ definel = M*M. - o )
the probability distribution that puts a point masgN at each ~ We also introduce the notation; for the projection ofm

Yy Q:

of the N entries of the vector. onto column space a¥/; and definen’, = m'—m/. Similarly,
) _ defineq!, ¢’ to be the parallel and orthogonal projections of
B. Alternative representation of AMP ¢' onto column space of),.
Let ht = 2o — (A*2!7 1 + 2171, f(2) = f(z,20) = 20 — For vectorsu,v € R™ define (u) = >, u;/m and
n(xzo — z), andg(z) = —z. Also definem’ = g(z"), ¢" = (u,v) = >°;", u;v;/m. For random variableX, Y the notion

f(h'), and A, = 5(f'(h")). Therefore, we will obtain the x %>y means thatl andY are equal almost surely < v
following equivalent version of AMP. Start with® = Azy  that they are equal in distribution.

(or Mg =0, ¢° = ) and proceed by
it = A*mt + ¢t B. Main technical Lemma
2t =Ag" = xm'! (1.5) We prove the following more general result.

Note 2. (a) It is simple to see that algorithn(5) and (I.1) | emma 1. Let {A(N)} be a sequence of sensing matrices as
are equivalent with a simple change of variable. We only ugg Theorem 1, with/N = §. Assumex, to have i.i.d. entries

(1.5) to simplify the analysis ofl.1). However, sincgo = 20 with distribution px,, having finite fourth moment. Then the
is unknown in practice, one should u@el) to recoverx. following hold for allt € NU {0}

(b) Due to symmetry, for eachall coordinates of the vector (@)
ht have the same distribution{, ¢ and m! are similar).
(c) Our proof holds for all systems of algorithms of the t—1 _
type(1.5) and all functionsf, ¢ that have bounded derivative. Wt s 4 Zaih”l + A*m + Q:(1) (1.1)

For this general case the coefficientgfin the first equation i=0
should be changed fromhto —(g’(z)). . PR .

(d) Also, the proof applies to any sequence of scalar 2o, = ZﬁizleAqLJthot(l) (I1.2)
functions{ f:, g: }+>0 with k' = fi(¢*) and m® = g;(2"). For =0

simplicity, we shall drop the time dependencefof. where A is an independent copy of and coefficientsy;, 3;

Il. ANALYSIS satisfym| = Y, a;m’ and g} = Y2, fiq’. Hereg,(1) €
The proof is based on a conditioning technique develop&l is a finite dimensional random vector that converges to 0
by Erwin Bolthausen for the analysis of the so-called TABIMOSt surely asV —oo. _
equations in spin glass theory [Bol09]. Related ideas cam al (0) For any pseudo-Lipschitz functiaf: R™*!' -5 R
be found in [Don06].

N

First we introduce some new notations and then state aqﬁn 1 Bl pitl yas g 7 7. X
prove a more general result than Theorem 1. N—oo N ;gb( i b T0) (#7020, -, 772, Xo)]
A. Definitions . (1.3)

When the update equation f@r‘*! in (1.5) is used, all lim EZQS(Z?""’ZD a':S'E[¢(TOZo,...7TtZt)],
values ofz0, ..., 2" and alsoh!,. .., h* have been previously n—roo n
calculated. Additionally any deterministic function ofetin (1.4)
(m°,....,m! and ¢',...,¢") is known as well. Hence, we A A
can consider the distribution df‘*! when it is conditioned where Z, ..., Z; (Zo,...,Z;) haveN(0, 1) distribution and

on all these known variables ancd,. In particular, define are independent oK.



(c) For all 0 < r,s < ¢ the following equations hold and Further, Py, . is the orthogonal projector onto subspace
all limits exist, are bounded and non-random. Viyiew = {AJAQy, = 0,A*M;, = 0}, defined by
Pvi,i, (A) = Py, APg, . Here Py =1— Py, , Py, =
I — Py, , and Py, , Py, are ortﬁogonal projector onto

as 1 . i
5 lim (q", ¢°). (11.6) column spaces af);, and M, respectively.
n—oo

lim (R, petl) 22
—00

| Jim (m7,m),(115)

1%

3 T s
At #)

Recall the following well-known formula.

(d) For all 0 < r,s <t, and for any differentiable function | smyma 3. Let » ¢ R™ be a random vector of iicN (0, )
¢ with bounded first derivative, the following equations holgayiables and leth € R™*" be a linear operator. The’n for

and all limits exist, are bounded and non-random. any constant vectob € R™ the distribution ofz conditioned
i r+l s+1yy &8 g Ll gLy (pstl on Dz = b satisfies:
i (R p(RPTR)) = lim (AT AT (O (RTT),
N (-0 2|pss S D*(DD*) b+ Pp._o(3)
lim (2", 0(2%)) = lim (2", 2°){(¢/(2°)). (1.8)
N —oc0 N—o0

wherePp._o) is the orthogonal projection onto the subspace
Note 3. (a) Above and in the followind |s 2y means that {Dz =0} and z is a random vector of iidN(0, «). Moreover,
for any integrable functiony and for any random variablgZ D*(DD*)~'b = argmin. {||z[?|Dz = b} .

measurable o6, E{¢(X)Z} = E{¢(Y)Z}.

(b) Egs. (11.7) and (11.8) have the form of Stein’s Iemm%
[Ste72] (Lemma 6 in our Section II-D).

Lemma 2 follows from applying Lemma 3 to the operator
that mapsA to (AQ, M*A). Note that for finite values of

t asN — oo the matricesl/w\t and@t are non-singular almost
C. Proof of Theorem 1 surely. To the interest of space we leave a detailed proof of

Consider first the case in which/N = § and 2 has iid Lemma 2 to a longer version of this paper.

entries with distributiorpy,. By definitionz!™t = n(A* 2! +
2t) = n(xo — h'*t1). Therefore, applying Lemma 1(b) to the
function ¢(y0, e Uty ,To,i) = w(n(wo,i — yt), 1‘071') we obtain E:—ﬁ-l,tmt as. Xt(]/\zt)_lMt*m‘t, + Qt+1 (Q\t+l)—ln:—1mi’

Lemma 4. The following holds

N
1 . (11.11)
lim — ’L/J(.I'E,.Toﬂ') = E{z/][n(XO _Tt_lz)’XO}} a.s a 5
N N ; Eiaq "2 Y,(Q)7'Qiat + M(My) ' X7 (112)
with ZdN N(0, 1) independent ofX, which yields the claim Proof: Wriing m! = m! + m{ and using
asZ = —Z. 1.L10) and the fact thatM;m!{ = 0, we obtain

Let us sketch the generalization to a deterministic s%—* ‘ A T
quence of vectorgzo(N)}n>1 with converging empirical t+1’tfl:9f+l(%t+:) Yttlmr on the* Othej hand
distribution. Notice that, by symmetry, we can replagéN) 't M=) i M T*Mfa' Then using A"M = X,
by the random vector obtained by uniformly permuting itgl'g)’ and [P, ., (A)]'m; = 0 dwe have, cond|t|0nac\jlly
coordinates. Let us keep the notation(N) for this vector. on &1, Ef,, ,m/!

Armt L ama L oxa 2
Let 24(N) be the random vector whose entries are iid wit, (A7 M)~ My Mg = X, (M;FM,)~*M;ymt. Since all

o |la

distributionp .y, . Itis possible to construct a coupling such thagides are measurable @y, ;, Eq. (11.11) follows.
E{|lzo — x5/[*} = o(N). The proof is completed by showing  gimilarly, useq! — ¢ +d\, ¢ =Qf andQi¢, =0to

that this impliesE{|[z — (z')'|]*} = o(N) for all t. The gptain (I1.12). -
generalization toi/N — 4 is proved analogously. ®  We will also use the following strong law of large numbers
D. Useful properties (SLLN) which follows from [HT97][Theorem 2.1].

In order to calculate 2'[s,,. " " [s,,,, We find Theorem 2 (SLLN, [HT97]). Let {X,;: 1 < i < n,n >
Ao, Ale .- 1} be an array of random variables withX,, 1,..., X, )

Lemma 2. Let (t1,45) = (t,t) or (t1,t2) = (¢ + 1,t). Then mutually independent with mean equal zero for each

the distribution of the conditional random variablé|s,, ,, almd 7IZE|Xn,i|2+“ < C for somex > 0, C < oco. Then
satisfies =31 Xim — 0 as. forn — oco.

Als,, . 4 Et, 1, + Py, , (A). (11.9) Next, we present a standard property of Gaussian matrices
oy without proof.
Here A = A is a random matrix independent &f;, ;,. Also,

inisti N n
Ei, 1, = E(AS,, ,,) is equal to Lemma 5. For any deterministicu € R and p € R

with |lu| = |[v] = 1 and a gaussian matrixd distributed
Ei v, = Ytl(@tl)‘lQ;‘I + My, (M) X7, as A we ~hav;v*[lu 4 Z/+/n where Z ~ N(0,1) and
— My, (M) M7 Y, Q)7 QE . (11.10) lim,, o0 ||Au||* = 1 almost surely.



Lemma 6 (Stein's Lemma [Ste72]) For jointly gaussian and[0|M;_1]A¢(Q:) " Qiql + My(M,) "' X7 ¢!, — Aym!~! =

random variablesZ;, Z, and anyC' functiony : R — R 1,5,(1). Recall thatm;, = M;d andq, = Q:f. On the other

the following holds E[Z1p(Z2)] = CovW(Z1, Z2)E[¢' (Z2)]. hand Y}* 1mL = ZthL becauseM;m! = 0. Similarly,
Xrq' = H;‘qL Hence we need to show

E. Proof of Lemma 1

The proof is by induction or. Let #,, be the property _QtoerQt“/(\Qil); tZt“ml if - Qtft(l) (11.14)
that (11.1), (11.3), (I.5) and (11.7) are correct. Similgy let 2, [1Me-a]Af + Me(Me) ™ HiqL —Am™ = Mig(1). (11.15)

be the property that (11.2), (11.4), (11.6) and (11.8) hol@he  Here is our strategy to prove (I1.15) (proof of (I1.14) is

inductive proof consists of the following three main stel3. similar). The left hand side is a linear combination of vesto
Zp holds. (2) If Z,, H, hold for allr < ¢t ands <t thenZ, 0 m'=1. For any/ = 1,...,t we will prove that the

geeey

holds. (3) If 2., H, hold for all < ¢ ands <t thenH;11 coefficient of eachn’~! converges td). This coefficient in

holds. : f AT N—1717% .t I
the left hand side is equal td M, H — Ae(—Bp)'e#t
Step 1:Z. Note thatz? = Ax. d %( 07 H qLL e(=Be)

(a) G, is generated by = z. Also ¢° = ¢} sinceQ, Which can be written a$~_, 6~} [(J\Z/n)*lh (h",q" —

: . 0 . o ,
is an empty matrix. Hence’|s,, = Azo = Ag]. You0 Bsq®) = Ae(—Be)"#. To simplify the notation denote the
(b) Let¢ : R — R be a pseudo-Lipschitz function with Con'matnx M, /n by G. Thereforelimy Coefficient ofmi—1

stantL, and assume w.l.0.@:(0) = 0. Conditioning ong® = is equal to e

o, the random variable® = " | ¢((Axz); )/n is a sum of

iid random variables. By Lemma bAx,); = Z||:170||/\/_ . B

for Z ~ N(0,1). By the SLLN: lim, oo [|lzo][2/n = Jim { Z(G (b’ q" Zﬁsq (=B}

E(X8)/6 = 78 < oo. Hence, for allp > 2, there
exist a constant”,, such thatE|(Axz,),|’ < C,. There- But usmg induction hypothesi#{;(d), the term (h",¢" —
fore E|¢([Axo]:)|? < max(L3E|(Axo);|3, ]E|(A:c0) ) < ¢ 17 Bsq%)/d is almost surely equal to the limit of
for a constantC. Now, we can apply Theorem 2 to get(h" h'))\, — ZZ;E Bs(h",h%)As. This can be modified,
limy, o0 £ 30 [0(2)) — Ea(2?)] = 0 whence, by the using induction hypothesisH;(c), to (m™~',m!=")\, —

above calculation S2E28 Bs(m™ 1 m*~ 1)\, almost surely, which can be written
asGr A — >t BsGyr.s\s. Hence
a.s.
J;H;oaD’ = E[¢(n2)] s
lim Coefficient ofm™™ " =
N—o00

t—1

¢) Using Lemma 5Jim,, o (2", 2°)=lim,, o || Az n
( ) g 7 < > - H OH / N—)oo { Z E T[Gr,tAt - ZOBSGT,S)\S] - Al(_ﬂl)h#t}

= limy o0 (g°,¢%) /0 = E(Xo)/5

(d) Using part (a) fort = 0, and ¢(z) = zg(z) we
obtainlim,,—, (2%, g(2°)) = E(70Zg(r0Z)), which is equal sl O, — Al — Ap(— B A1 25
to 72E[¢’ (10 Z)] using Lemma 6. On the other hand, in proof Ngnoo{ e Zﬁs oleme = Ae(=00771)

r=1

a.s s=0
of (b) we showedim,, (2’ 2°) = 72. Now, applylng part . L
(b) 10 6(x) = ¢'(x) we getlim, o (g'(=0)) 2 Elg' (o Z)] Similarly, usingg’(xz) = —1, (11.14) can be shown by
_ _ - m lim { (Qu1)” YZEaml e+ (—ag)' e} 0

Step 2: Z,. This part is analogous to step 1 albeit more N=
complex. u

(a) Note that (c) Forr,s < ¢t we can use induction hypothesis. For=

t,r < t, using (II.2) fort that was just proved,
Vi =27+ [0|Mi—1]As,  Xe = Hp — Qy, (1.13) o1

where Z; = [2°]---|2'71], Ay = diag\o,...,\—1) and (252" s, = ZBZ 2 27) + (Agl, 2 >+ZO(1)<mlazT>-
Hy = [+ 1] =0

Now, by induction hypothes@t 1( ) each terrer z") has
a finite limit. Thus,lim,, .. >i—4 o(1)(m?, 2") =" 0. Now
we can use induction hypothesis( ) or Z;(c) for each term

Lemma 7. The foIIowing holds
(a) h’f+1|¢t+1r L H, MM mt + PQMA*Pth + Qu0:(1).

(b) 'l £ Z:(Q0) ' Qidl + Pii, AP, a" + Midi(1). of the form (27, 2") and use Lemma 5 fofAq", , »*) to obtain
Proof: In light of Lemmas 2 and 4 we _

have At 1|Ct+” 4 Xo(My M)~ *Mymt  + lim (zf,2") % 1 Z

Qt+1(Qt+1) t+1mJ_ + PéHAPL m' +q" andzt|Ctt < A n =0

Yi(Q)7'Qiq! + My(My) "' X7t + Piy AP q* — \em! L, i+ (g, q") = lim %<qt’qT>'

Now using equations (I1.13), we only ‘need to show n—o0
—Qt(Mt) Mpmt +Qt+1(Qt+1) YHlmL +¢' =Q0,(1) Last line uses the definition of; andq’ L¢".



For the case of = s = ¢, we have

Z /B’Lﬁj 2 Z

,j=0

<Z Z |Ctt <AQL7AqL>+O(1)

Note that we used similar argument (Lemma 5 and
Z:_1(c)) to show the contribution of all products of the form E{( ZﬁrnZ +6754 1 2)%

(M;3(1),-) and(Aq’ , 2*) a.s. tend td). Now, using induction
hypothesis and Lemma 5

t—1 i
a.s. q. <q7qj> . t 12
A Dy
2,9
a,:s. 11m <q\|1q|\> + hm <qiﬁqi>
t .t
as o (654
n— 00

(b) Using part (a) we can writep(z),...,z2!)|s,, as
G20, .. 2 S Bee” + Agl + Mya,(1));). First we
would like to drop the error terthJt( ). For sim-
plicity let a;., (20,207 2s,,) and b,

(29, .., 2 [y B + flqi]z). Since ¢ is pseudo-
Lipschitz with constantL we have [¢(an,i) — ¢(bni)| <
max (L, ||am|\ ||bm|\)|zr omilo(1). Therefore, the differ-
encen Y0 dlani) — iy d(bni)| is less than

G 1 D [ e e
[max(L,; ma— 1n )7 [

Il
=)

T

(11.16)

using Cauchy-Schwartz inequality twice. Also note that

n-! Zn 1 Hal nH2 < Zt71< " T> + <Zt Zt>|(5” which is

finite almost surely, using |nduct|0n hypothesis and pat

(c) that was just proven. Similarly,=* Y7 [|ai |
Zf;}J(mr, m") are finite. Hence for any finite (11.16) goes
to 0 almost surely whem goes toco.

_Now glven 29

Xin = ¢(0 AU 4+ (Ag)) and X, =

XW I[-EA)Qn Proceeding as in Step 1, and using the pseudo-
Lipschitz property ofe, it is easy to check the conditions offHT97]

Theorem 2. We therefore get

n t—1
. 1 0 r At
t—1 B
= nllir;oﬁzEA¢ a---a[ZBrZT‘f'qu_]i)'
=0

Note that[Aq" ]; is a gaussian random variable with variancEV08]

HqJ_H /6 Hence we can use induction hypothesis ;(b)

forg(ef,..., 2" ) = Bzo(s, ... 3 Bral 6 °lg" |1 2)
whereZ is an |ndependen\l(0, 1) random vanable, to show

Aé(zz P [Z:‘;B /BTZT + qu_]’b)
n
t—1

) Z BrTrZr + 57.5”Qi”2)

r=0

n

lim

n— o0

2 EEzé(1072,. ..

£ (m” m")] *o(1)

,z!=1, consider the random variablegDon06]

Note thatZi;lo By Zr+075|q" || Z is gaussian. All that is
needed is to show that the variance of this gaussiag.iBut
using what we just proved for the pseudo-Lipschitz function
é(yo, - -,yr) = yZ, we have
t—1

2 lim (2%, 2% (11.17)
—0 n—oo

a.s.

On the other hand in part (c) we provéieh,, .. (z*, 2*)
lim o0 51 (f (), (A1)

By the induction hypothesis#.(b) for the pseudo-
Lipschitz function é(yo,- .., y:) fly)?> we get
lim,, o0 6L (f(RY), f(RY)) = 67 'E(f(1:_12)?). So by the
definition (1.3), both sides of (11.17) are equal 8.

(d) Very similar to the proof ofZ,(d), using part (b) for
the pseudo-Lipschitz function : R**! — R that is given by
oo, - - - yt) = yeg(ys) we can obtainim,, (2%, g(2*)) a5
E[r: Z:g(1sZ)] for jointly gaussianZ;, Z, with distribution
N(0,1). Using Lemma 6, this is almost surely equal to
Cov(r,Zy, 75 Z5)E(g (s Zs)). And another application of part
(b) for &(yo,...,y:) = ysy: transforms Co(/rtZt,rSZS) to
lim,, 00 (2%, 2%). Similarly, E(¢/(1.Z,)) can be transformed
to llmn_m(g’(zt)) almost surely. This finishes the proof of
d

Step 3:H:+1. Due to symmetry, proof of this step is exactly
similar to the proof of step 2.

)
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