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Abstract

This paper surveys recent work in applying ideas from graphical models and message passing
algorithms to solve large scale regularized regression problems. In particular, the focus is on
compressed sensing reconstruction via ℓ1 penalized least-squares (known as LASSO or BPDN).
We discuss how to derive fast approximate message passing algorithms to solve this problem.
Surprisingly, the analysis of such algorithms allows to prove exact high-dimensional limit results
for the LASSO risk.

This paper will appear as a chapter in a book on ‘Compressed Sensing’ edited by Yonina Eldar
and Gitta Kutynok.

1 Introduction

The problem of recostructing a high-dimensional vector x ∈ R
n from a collection of observations

y ∈ R
m arises in a number of contexts, ranging from statistical learning to signal processing. It is

often assumed that the measurement process is approximately linear, i.e. that

y = Ax+ w , (1.1)

where A ∈ R
m×n is a known measurement matrix, and w is a noise vector.

The graphical models approach to such reconstruction problem postulates a joint probability
distribution on (x, y) which takes, without loss of generality, the form

p(dx, dy) = p(dy|x) p(dx) . (1.2)

The conditional distribution p(dy|x) models the noise process, while the prior p(dx) encodes in-
formation on the vector x. In particular, within compressed sensing, it can describe its sparsity
properties. In particular, within a graphical models approach, either of these distributions (or both)
factorizes according to a specific graph structure. The resulting posterior distribution p(dx|y) is used
for inferring x given y.

There are many reasons to be skeptical about the idea that the joint probability distribution
p(dx, dy) can be determined, and hence used for reconstructing x. One might be tempted to drop
the whole approach as a consequence. We argue that sticking to this point of view is instead fruitful
for several reasons:
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1. Algorithmic. Most of existing reconstruction methods can be derived as Bayesian estimators
(e.g. maximum a posteriori probability) for specific forms of p(dx) and p(dy|x). The connection
is useful both in interpreting/comparing different methods, and in adapting known algorithms
for Bayes estimation (e.g. graphical models inference algorithms).

2. Minimax. When the prior p(dx) or the noise distributions, and therefore the conditional
distribution p(dy|x), ‘exist’ but are unknown, it is reasonable to assume that they belong to
specific structure classes. For instace, within compressed sensing one often assumes that x has
at most k non-zero entries. One can then take p(dx) to be a distribution supported on k-sparse
vectors x ∈ R

n. If Fn,k denotes the class of such distributions, the minimax criterion approach
strives to achieve the best uniform guarantee over Fn,k. In other words, the minimax estimator
achieves the smallest expected error (e.g. mean square error) for the worst distribution in Fn,k.

It is a remarkable fact in statistical decision theory that the minimax estimator coincides with
the Bayes estimator for a specific (worst case) p ∈ Fn,k.

3. Modeling. In some applications it is is possible to construct fairly accurate models both of the
prior distribution p(dx) and of the measurement process p(dy|x). This is the case for instance
in some communications problems, whereby x is the signal produced by a transmitter (and
generated uniformly at random according to a known codebook), and w is the noise produced
by a well-defined physical process (e.g. thermal noise in the receiver circuitry).

The rest of this chapter is organized as follows. Section 2 describes a graphical model natu-
rally associated to the compressed sensing reconstruction problem. Section 3 provides important
background on the one-dimensional case. Section 4 describes a standard message passing algorithm
–the min-sum algorithm– and how it can be simplified to solve the LASSO optimization problem.
The algorithm is further simplified in Section 5 yielding the AMP algoritm. The analysis of this
algorithm is outlined in Section 6. As a consequence of this analysis, it is possible to compute exact
high-dimensional limits for the behavior of the LASSO estimator. Finally in Section 7 we discuss a
few examples of how the approach developed here can be used to address reconstruction problems
in which a richer structural information is available.

2 The basic model and its graph structure

Specifying the conditional distribution of y given x is equivalent to specifying the distribution of the
noise vector w. In the rest of this chapter we shall take p(w) to be a gaussian distribution of mean
0 and variance β−1I, whence

p(dy|x) =
( β

2π

)n/2
exp

{
− β

2
‖y −Ax‖2

}
. (2.1)

The simplest choice for the prior consists in taking p(dx) to be a product distribution with identical
components. We thus obtain the joint distribution

p(dx, dy) =
( β

2π

)n/2
exp

{
− β

2
‖y −Ax‖2

}
dy

n∏

i=1

p(dxi) . (2.2)

It is clear at the outset that generalizations of this basic model can be easily defined, in such a way
to incorporating further information on the vector x or on the measurement process. As an example,
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Figure 1: Factor graph associated to the probability distribution (2.5). Empty circles correspond to variables

xi, i ∈ [n] and squares correspond to measurements ya, a ∈ [m].

consider the case of block-sparse signals: The index set [n] is partitioned into blocks B(1), B(2),
. . .B(ℓ) of equal length n/ℓ, and only a small fraction of blocks is non-vanishing. This situation
can be captured by assuming that the prior p(dx) factors over blocks. One thus obtain the joint
distribution

p(dx, dy) =
( β

2π

)n/2
exp

{
− 1

2σ2
0

‖y −Ax‖2
}

dy

ℓ∏

j=1

p(dxB(j)) , (2.3)

where xB(j) ≡ (xi : i ∈ B(j)) ∈ R
n/ℓ. Other examples of structured priors will be discussed in

Section 7.
The posterior distribution of x given observations y is easily computed from Eq. (2.2):

p(dx| y) =
1

Z(y)
exp

{
− β

2
‖y −Ax‖2

} n∏

i=1

p(dxi) , (2.4)

where Z(y) = (2π/β)n/2p(y) ensures the normalization
∫
p(dx|y) = 1. Finally, the square residuals

‖y −Ax‖2 decompose in a sum of m terms yielding

p(dx| y) =
1

Z(y)

m∏

a=1

exp
{
− β

2

(
ya −AT

a x
)2

} n∏

i=1

p(dxi) , (2.5)

where Aa is the a-th row of the matrix a. This factorized structure is conveniently described by a
factor graph, i.e. a bipartite graph including a ‘variable node’ i ∈ [n] for each variable xi, and a
‘factor node’ a ∈ [m] for each term ψa(x) = exp{−β(ya − AT

a x)
2/2}. Variable i and factor a are

connected by an edge if and only if ψa(x) depends non-trivially on xi, i.e. if Aai 6= 0. One such
factor graphs is reproduced in Fig. 1.

An estimate of the signal can be extracted from the posterior distribution (2.5) in various ways.
One possibility is to use conditional expectation

x̂β(y; p) ≡
∫

Rn

x p(dx|y) . (2.6)

3



Classically, this is justified by the fact that it achieves the minimal mean square provided the p(dx,dy)
is the actual joint distribtion of (x, y). In the present context, the best justification is that a broad
class of estimators can be written in the form (2.6).

An important problem with the estimator (2.6) is that it is in general hard to compute. In order
to obtain a tractable estimator, we assume that p(dxi) = c pβh(xi)dxi for pβh(xi) = e−βh(xi) an un-
normalized probability density function. One can then replace the integral in dx with a maximization
over x and define

x̂(y;h) ≡ argminz∈RnCA,y(z;λ) , (2.7)

CA,y(z; θ) ≡
1

2
‖y −Az‖2 +

n∑

i=1

h(zi) ,

where we assumed for simplicity that CA,y(z; θ) has a unique minimum.
The estimator x̂(y; θ) can be thought of as the β → ∞ limit of the general estimator (2.6).

Indeed, it is easy to check that, provided xi 7→ h(xi) is upper semicontinuous, we have

lim
β→∞

x̂β(y; pβh) = x̂(y;h) .

Further, x̂(y;h) takes the familiar form of a regression estimator with separable regularization. If
h( · ) is convex, the computation of x̂ is tractable. Important special cases include h(xi) = λx2

i , which
corresponds to ridge regression, and h(xi) = λ|xi| which corresponds to the LASSO [Tib96] or basis
pursuit denoising (BPDN) [CD95]. Due to the special role it plays in compressed sensing, we will
devote special attention to this case, that we rewrite explicitely below with a slight abuse of notation

x̂(y) ≡ argminz∈RnCA,y(z) , (2.8)

CA,y(z) ≡
1

2
‖y −Az‖2 + λ‖z‖1 .

3 Revisiting the scalar case

Before proceeding further, it is convenient to pause for a moment and consider the special case of a
single measurement of a scalar quantity, i.e. the case m = n = 1. We therefore have

y = x+ w , (3.1)

and want to estimate x from y. Despite the apparent simplicity, there exists a copious literature
on this problem with many open problems [DJHS92, DJ94b, DJ94a, Joh02]. Here we only want to
clarify a few points that will come up again in what follows.

In order to compare various estimators we will assume that (x, y) are indeed random variables
with some underlying probability distribution p0(dx,dy) = p0(dx)p0(dy|x). It is important to stress
that this distribution is conceptually distinct from the one used in inference, cf. Eq. (2.6), and that
generally the two do not coincide.

For the sake of simplicity we also consider gaussian noise w ∼ N(0, σ2) with known noise level
σ2. Various estimator will be comparerd with resect to the resulting mean square error

MSE = E{|x̂(y) − x|2} .

We shall then consider two cases
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Figure 2: Mean square error for estimating a three points random variable, with probability of non-zero

ε = 0.1, in gaussian noise. Red line: Minimal mean square error achieved by conditional expectation (thick) and
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(thick) and its small noise asymptote (thin).

I. The signal distribution p0(x) is known as well. This can be regarded as an ‘oracle’ case. To
make contact with compressed sensing, we shall consider distributions that generate sparse
signals, i.e. that put mass at least 1 − ε on x = 0. In formulae p0({0}) ≥ 1 − ε.

II. The signal distribution is unknown but it is known that it is ‘sparse’, namely that it belongs
to the class

Fε ≡
{
p0 : p0({0}) ≥ 1 − ε

}
. (3.2)

In the first case, it is known that the minimum mean square error is achieved by the conditional
expectation

x̂MMSE(y) =

∫

R

x p0(dx|y)

In Figure 2 we plot the resulting MSE for a 3 point distribution

p0 =
ε

2
δ+1 + (1 − ε) δ0 +

ε

2
δ−1 . (3.3)

The MMSE is non-decreasing in σ2, converges to 0 in the noiseless limit σ → 0 (indeed the simple
rule x̂(y) = y achieves MSE equal to σ2) and to ε in the large noise limit σ → ∞ (MSE equal to ε
is achieved by x̂ = 0).

In the more realistic situaton II, we do not know the prior. An interesting exercise (indeed not
a trivial one) is to consider the LASSO estimator (2.8), which in this case reduces to

x̂(y;λ) = argminz∈R

{1

2
(y − z)2 + λ |z|

}
. (3.4)
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This one dimensional optimization admits an explicit solution in terms of the soft thresholding func-
tion η : R × R+ → R defined as follows

η(y; θ) =





y − θ if x > θ,
0 if −θ ≤ y ≤ θ,
y + θ otherwise.

(3.5)

The threshold value θ has to be chosen equal to the regularization parameter λ yielding the simple
solution

x̂(y;λ) = η(y; θ) , for λ = θ . (3.6)

(We emphasize the identity of λ and θ in the scalar case, because it breaks down in the vector case.)
In Fig. 2 we plot the resulting MSE when θ = ασ, with α ≈ 1.1402.

How should the parameter θ (or equivalently λ) be fixed? The rule is conceptually simple: θ
should minimize the maximal mean square error for the class Fε. Remarkably this complex saddle
point problem can be solved rather explicitely.

Let us outline this solution. First of all, it makes sense to scale λ as the noise standard deviation,
because the estimator is supposed to filter out the noise. We then let θ = ασ. We then denote
the LASSO/soft thresholding mean square error by mse(σ2; p0, α) when the noise variance is σ2,
x ∼ p0, and the regularization parameter is θ = ασ. The worst case mean square error is given by
supp0∈Fε

mse(σ2; p0, α). Since the class Fε is invariant by rescaling, this worst case MSE must be
proportional to the only scale in the problem, i.e. σ2. We get

sup
p0∈Fε

mse(σ2; p0, α) = M(ε, α)σ2 . (3.7)

The function M can be computed explictly yielding

M(ε, α) = ε (1 + α2) + (1 − ε)[2(1 + α2)Φ(−α) − 2αφ(α)] (3.8)

where φ(z) = e−z2/2/
√

2π is the gaussian density and Φ(z) =
∫ z
−∞ φ(u) du is the gaussian distri-

bution. It is also not hard to show that that M(ε, α) is the slope of the soft thresholding MSE at
σ2 = 0 in a plot like the one in Fig. 2.

Minimizing the above espression over α, we obtain the soft thresholding minimax risk, and the
corresponding optimal threshold value

M#(ε) ≡ min
α∈R+

M(ε, α) , α#(ε) ≡ arg min
α∈R+

M(ε, α) . (3.9)

The functions M#(ε) and α#(ε) are plotted in Fig. 3. For comparison we also plot the analogous
functions when the class Fε is replaced by Fε(a) = {p0 ∈ Fε :

∫
x2 p0(dx) ≤ a2} of sparse random

variables with bounded second moment. Of particular interest is the behavior of these curves in the
very sparse limit ε→ 0

M#(ε) = 2ε log(1/ε) ·
{
1 + o(1)

}
, α#(ε) =

√
2 log(1/ε) ·

{
1 + o(1)

}
. (3.10)

Getting back to Fig. 2, the reader will notice that there is a significant gap between the minimal
MSE and the MSE achieved by soft-thresholding. This is the price paid by using an estimator that
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is uniformly good over the class Fε instead of one that is tailored for the distribution p0 at hand.
Figure 4 compares the two estimators for σ = 0.3. One might wonder whether all this price has to
be paid, i.e. whether we can reduce the gap by using a more sophisticate nonlinearity instead of
the soft threshold η(y; θ). The answer is yes and no. On one hand, there exist provably superior
–although more complex– minimax estimators over Fε. On the other, such estimators have the same
minimax risk M#(ε) = (2 log(1/ε))−1 ·

{
1 + o(1)

}
in the very sparse limit.

4 Inference via message passing

The task of extending the theory of the previous section to the vector case (1.1) might appear daunt-
ing. It turns hout that such extension in instead possible in specific high-dimensional limits. The
key step consists in introducing an appropriate message passing algorithm to solve the optimization
problem (2.8) and then analyzing its behavior.

4.1 The min-sum algorithm

We start by considering the min-sum algorithm. Min-sum is a popular optimization algorithm for
graph-structured cost fuctions (see for instance [Pea88, MM09, MR07] and references therein). In
order to introduce the algorithm, we consider a general cost function over x = (x1, . . . , xn), that
decomposes according to a factor graph as the one shown in Fig. 1:

C(x) =
∑

a∈F

Ca(x∂a) +
∑

i∈V

Ci(xi) . (4.1)

Here F is the set of m factor nodes (squares in Fig. 1) and V is the set of n variable nodes (circles
in the same figure). Further ∂a is the set of neighbors of node a and x∂a = (xi : i ∈ ∂a). The
min-sum algorithm is an iterative algorithm of the belief-propagation type. Its basic variables are
messages: a message is associated to each directed edge in the underlying factor graph. In the
present case, messages are functions on the optimization variables, and we will denote them as
J t

i→a(xi) (from variable to factor), Ĵ t
a→i(xi) (from factor to variable), with t indicating the iteration

number. Messages are meaningful up to an additive constant, and therefore we will use the special
symbol ∼= to denote identity up to an additive constant independent of the argument xi. At t-th
iteration they are updates as follows

J t+1
i→a(xi) ∼= Ci(xi) +

∑

b∈∂i\a

Ĵ t
b→i(xi) , (4.2)

Ĵ t
a→i(xi) ∼= min

x∂a\i

{
Ca(x∂a) +

∑

j∈∂a\i

J t
j→a(xj)

}
. (4.3)

Eventually the optimum is approximated by

x̂t+1
i = arg min

xi∈R

J t+1
i (xi) , (4.4)

J t+1
i (xi) ∼= Ci(xi) +

∑

b∈∂i

Ĵ t
b→i(xi) (4.5)

There exists a vast literature justifying the use of algorithms of this type, applying them on concrete
problems, and developing modifications of the basic iteration with better properties. Here we limit
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ourself to recalling that the iteration (4.2), (4.3) can be regarded as a dynamic programming-like
iteration that computes the minimum cost when the underlyng graph is a tree. Its application to
loopy graphs is not generally guaranteed to converge.

At this point we notice that the LASSO cost function Eq. (2.8) can be decomposed as in Eq. (4.1)

CA,y(x) ≡ 1
2

∑
a∈F (ya −AT

a x)
2 + λ

∑
i∈V |xi| . (4.6)

Since we will focus on dense measurement matrices, we can assume that the factor graph is the
complete bipartite graph. The min-sum updates read

J t+1
i→a(xi) ∼= λ|xi| +

∑

b∈[m]\a

Ĵ t
b→i(xi) , (4.7)

Ĵ t
a→i(xi) ∼= min

x∂a\i

{1

2
(ya −AT

a x)
2 +

∑

j∈[n]\i

J t
j→a(xj)

}
. (4.8)

4.2 Simplifying min-sum by quadratic approximation

Unfortunately, an exact implementation of the min-sum iteration appears extremely difficult because
it requires to keep track of 2mn messages, each being a function on the real axis. A possible approach
consists in developing numerical approximations to the messages. This line of research was initiated
in [SBB10].

Here we will overview an alternative approach that consists in deriving analytical approximations
[DMM09, DMM10a, DMM10b]. Its advantage is that it leads to a remarkably simple algorithm, which
will be discussed in the next section. In order to justfy this algorithm we will first derive a simplified
message passing algorithm, whose messages are simple real numbers (instead of functions), and then
(in the next section) reduce the number of messages from 2mn to m+ n.

Throughout the derivation we shall assume that the matrix A is normalized in such a way that
its columns have zero mean and unit ℓ2 norm. Explicitely, we have

∑n
a=1Aai = 0 and

∑n
a=1A

2
ai = 1.

We also assume that its entries have roughly the same magnitude O(1/
√
n). These assumptions are

verified by many examples of sensing matrices in compressed sensing, e.g. random matrices with
i.i.d. entries or random Fourier sections. Modifications of the basic algorithm that cope with strong
violations of these assumptions are discussed in Ref. [BM10a].

It is easy to see by induction that the messages J t
i→a(xi), Ĵ

t
a→i(xi) remain, for any t, convex

functions, provided they are initialized as convex functions at t = 0. In order to simplify the min-
sum equations, we will approximate them by quadratic functions. Our first step consists in noticing
that, as a consequence of Eq. (4.8), the function Ĵ t

a→i(xi) depends on its argument only through the
combination Aaixi. Since Aai ≪ 1, we can approximate this dependence through a Taylor expansion
(without loss of generality setting Ĵ t

a→i(0) = 0):

Ĵ t
a→i(xi) ∼= −αt

a→i(Aaixi) +
1

2
βt

a→i(Aaixi)
2 +O(A3

aix
3
i ) . (4.9)

The reason for stopping this expanson at third order should become clear in a moment. Indeed
substituting in Eq. (4.7) we get

J t+1
i→a(xi) ∼= λ|xi| −

( ∑

b∈∂i\a

Abiα
t
b→i

)
xi +

1

2

( ∑

b∈∂i\a

A2
biβ

t
a→i

)
x2

i +O(nA3
·ix

3
i ) . (4.10)
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Since Aai = O(1/
√
n), the last term is negligible. At this point we want to approximate J t

i→a by its
second order Taylor expansion around its minimum. The reason for ths is that only this order of
the expansion matters when plugging these messages in Eq. (4.8) to compute αt

a→i, β
t
a→i. We thus

define the quantities xt
i→a, γ

t
i→a as parameters of this Taylor expansion:

J t
i→a(xi) ∼=

1

2γt
i→a

(xi − xt
i→a)

2 +O((xi − xt
i→a)

3) . (4.11)

Here we include also the case in which the minimum of J t
i→a(xi) is achieved at xi = 0 (and hence

the function is not differentiable at its minimum) by letting γt
i→a = 0 in that case. Comparing

Eqs. (4.10) and (4.11), and recalling the definition of η( · ; · ), cf. Eq. (3.5), we get

xt+1
i→a = η(a1; a2) , γt+1

i→a = η′(a1; a2) , (4.12)

where η′( · ; · ) denotes the derivative of η with respect to its first argument and we defined

a1 ≡
∑

b∈∂i\aAbiα
t
b→i∑

b∈∂i\aA
2
biβ

t
b→i

, a2 ≡ λ∑
b∈∂i\aA

2
biβ

t
b→i

, (4.13)

Finally, by plugging the parametrization (4.11) in Eq. (4.8) and comparing with Eq. (4.9), we can
compute the parameters αt

a→i, β
t
a→i. A long but straightforward calculation yields

αt
a→i =

1

1 +
∑

j∈∂a\iA
2
ajγ

t
j→a

{
ya −

∑

j∈∂a\i

Aajx
t
j→a

}
, (4.14)

βt
a→i =

1

1 +
∑

j∈∂a\iA
2
ajγ

t
j→a

. (4.15)

Equations (4.12) to (4.15) define a message passing algorithm that is considerably simpler than the
original min-sum algorithm: each message consists of a pair of real numbers, namely (xt

i→a, γ
t
i→a) for

variable-to-factor messages and (αa→i, βa→i) for factor-to-variable messages. In the next section we
will simplify it further and construct an algorithm (AMP) with several interesting properties. Let
us pause a moment for making two observations:

1. The soft-thresholding operator that played an important role in the scalar case, cf. Eq. (3),
reappeared in Eq. (4.12). Notice however the threshold value that follows as a consequence
of our derivation is not the naive one, namely the regularization parameter λ, but rather a
renormalized one.

2. Our derivation leveraged on the assumption that the matrix entries Aai are all of the same
order, namely O(1/

√
n). It would be interesting to repeat the above derivation under different

assumptions on the sensing matrix.

5 Approximate message passing

The algorithm derived above is still complex in that its memory requirements scale proportionally to
the product of the number of dimensions of the signal and of the number of measurements. Further
its complexity scales quadratically as well. In this section we will introduce a simpler algorithm, and
subsequently discuss its derivation from the one in the previous section.
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5.1 The AMP algorithm, some of its properties, . . .

The AMP (for approximate message passing) algorithm is parameterized by two sequences of scalars:
the thresholds {θt}t≥0 and the ‘reaction terms’ {bt}t≥0. Starting with initial condition x0 = 0, it
constructs a sequence of estimates xt ∈ R

N , and residuals rt ∈ R
n, according to the following

iteration

xt+1 = η(xt +AT rt ; θt), (5.1)

rt = y −Axt + bt r
t−1 , (5.2)

for all t ≥ 0. Here and below, given a scalar function f : R → R, and a vector u ∈ R
ℓ, we adopt the

convention of denoting by f(u) the vector (f(u1), . . . , f(uℓ)).
The choice of parameters {θt}t≥0 and {bt}t≥0 is tightly constrained by the connection with the

min-sum algorithm, as it will be discussed below, but the connection with the LASSO is more general.

Proposition 5.1. Let (x∗, z∗) be a fixed point of the iteration (5.1), (5.2) for θt = θ, bt = b fixed.
Then (x∗, y∗) is a minimum of the LASSO cost function (2.8) for

λ = θ(1 − b) . (5.3)

Proof. From Eq. (5.1) we get the fixed point condition

x+ θv = x+AT r , (5.4)

for v ∈ R
n such that vi = sign(xi) if xi 6= 0 and vi ∈ [−1,+1] otherwise. In other words, v is

in the subgradient of the ℓ1-norm at x, ∂‖x‖1. Further from Eq. (5.2) we get (1 − b)r = y − Ax.
Substituting in the above, we get

θ(1 − b)v = AT (y −Ax) ,

which is just the stationarity condition for the LASSO cost function if λ = b(1 − θ).

As a consequence of this proposition, if we find sequences {θt}t≥0, {bt}t≥0 that converge, and such
that the estimates xt converge as well, then we are guaranteed that the limit is a LASSO optimum.
The connection with the message passing min-sum algorithm (see below) implies an unambiguous
prescription for bt:

bt =
1

m
‖xt‖0 , (5.5)

where ‖u‖0 denothes the 0 pseudo-norm of vector u, i.e. the number of its non-zero components.
The choice of the sequence of thresholds {θt}t≥0 is somewhat more flexible. Recalling the discussion
of the scalar case, it appears to be a good choice to use θt = ατt where α > 0 and τt is the root mean
square error of the un-thresholded estimate (xt + AT rt). It can be shown that the latter is (in an
high-dimensional setting) well approximated by (‖rt‖2/m)1/2. We thus obtain the prescription

θt = ατ̂t , τ̂2
t =

1

m
‖rt‖2 . (5.6)
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Alternative estimates can used to replace τ̂t, for instance using the median of {|zt
i |}i∈[m]. Explicitely,

denoting by |u|(ℓ) the ℓ-th largest magnitude among the entries of a vector u, we can use

τ̂2
t =

1

Φ−1(3/4)
|rt|(m/2) , (5.7)

with Φ−1(3/4) ≈ 0.6745 the median of the absolute values of a gaussian random variable.
By Proposition 5.1, if the iteration converges to (x̂, r̂), then this is minimum of the LASSO cost

function, with regularization parameter

λ = α
‖r̂‖2

m

(
1 − ‖x̂‖0

m

)
. (5.8)

(in case the the threshold is chosen as per Eq. (5.6)). While the relation between α and λ is not fully
explicit (it requires to find the optimum x̂), in practice α is as useful as a λ: both play the role of
knobs to adjust the level of sparsity of the solution seeked.

We conclude by noting that the AMP algorithm (5.1), (5.2) is quite close to iterative soft thresh-
olding (IST), a well known algorithm for the same problem that proceeds by

xt+1 = η(xt +AT rt ; θt) , (5.9)

rt = y −Axt . (5.10)

The only (but important) difference lies in the addition of the term btr
t−1. This can be regarded as

a momentum term with a very specific prescription on its size, cf. Eq. (5.5). A similar term –with
motivations analogous to the one presented below– is popular under the name of ‘Onsager term’ in
statistical physics.

5.2 . . . and its derivation

In this section we present an heuristic derivation of the AMP iteration in Eqs. (5.1), (5.2) starting
from the standard message passing formulation given by Eq. (4.12) to (4.15). Our objective is
to develop an intuitive understanding of the AMP iteration, as well as of the prescription (5.5).
Throughout our argument, we treat m as scaling linearly with n.

We start by noticing that the sums
∑

j∈∂a\iA
2
ajγ

t
j→a and

∑
b∈∂i\aA

2
biβ

t
b→i are sums of Θ(n)

terms, each of order 1/n (because A2
ai = O(1/n)). It is reasonable to think that a law of large

numbers applies and that therefore these sums can be replaced by quantities that do not depend on
the instance or on the row/column index.

We then let rt
a→i = αt

a→i/β
t
a→i and rewrite the message passing iteration as

zt
a→i = ya −

∑

j∈[n]\i

Aajx
t
j→a , (5.11)

xt+1
i→a = η

( ∑

b∈[m]\a

Abiz
t
b→i; θt

)
, (5.12)

where θt ≈ λ/
∑

b∈∂i\aA
2
biβ

t
b→i is –as mentioned– treated as independent of b.

Notice that on the right-hand side of both equations above, the messages appears in sums over
Θ(n) terms. Consider for instance the messages {zt

a→i}i∈[n] for a fixed node a ∈ [m]. These depend

12



on i ∈ [n] only because the term excluded from the sum changes. It is therefore natural to guess
that rt

a→i = rt
a + O(n−1/2) and xt

i→a = xt
i + O(m−1/2), where rt

a only depends on the index a (and
not on i), and xt

i only depends on i (and not on a).
A näıve approximation would consist in neglecting theO(n−1/2) correction but this approximation

turns out to produce a non-vanishing error in the large-n limit. We instead set

zt
a→i = zt

a + δzt
a→i , xt

i→a = xt
i + δxt

i→a .

Substituting in Eq. (5.11), we get

zt
a + δzt

a→i = ya −
∑

j∈[n]

Aaj(x
t
j + δxt

j→a) +Aai(x
t
i + δxt

i→a) ,

xt+1
i + δxt+1

i→a = η
( ∑

b∈[m]

Abi(z
t
b + δzt

b→i) −Aai(z
t
a + δzt

a→i); θt

)
.

We will now drop the terms that are negligible without writing explicitly the error terms. First of all
notice that single terms of the type Aaiδz

t
a→i are of order 1/n and can be safely neglected. Indeed

δza→i = O(n−1/2) by our anzatz, and Aai = O(n−1/2) by definition. We get

zt
a + δzt

a→i = ya −
∑

j∈[n]

Aaj(x
t
j + δxt

j→a) +Aaix
t
i ,

xt+1
i + δxt+1

i→a = η
( ∑

b∈[m]

Abi(z
t
b + δzt

b→i) −Aaiz
t
a; θt

)
.

We next expand the second equation to linear order in δxt
i→a and δzt

a→i:

zt
a + δzt

a→i = ya −
∑

j∈[n]

Aaj(x
t
j + δxt

j→a) +Aaix
t
i ,

xt+1
i + δxt+1

i→a = η
( ∑

b∈[m]

Abi(z
t
b + δzt

b→i); θt

)
− η′

( ∑

b∈[m]

Abi(z
t
b + δzt

b→i); θt

)
Aaiz

t
a .

Notice that the last term on the right hand side of the first equation is the only one dependent on i,
and we can therefore identify this term with δzt

a→i. We obtain the decomposition

zt
a = ya −

∑

j∈[n]

Aaj(x
t
j + δxt

j→a) , (5.13)

δzt
a→i = Aaix

t
i . (5.14)

Analogously for the second equation we get

xt+1
i = η

( ∑

b∈[m]

Abi(z
t
b + δzt

b→i); θt

)
, (5.15)

δxt+1
i→a = −η′

( ∑

b∈[n]

Abi(z
t
b + δzt

b→i); θt

)
Aaiz

t
a . (5.16)
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Substituting Eq. (5.14) in Eq. (5.15) to eliminate δzt
b→i we get

xt+1
i = η

( ∑

b∈[n]

Abiz
t
b +

∑

b∈[n]

A2
bix

t
i; θt

)
, (5.17)

and using the normalization of A, we get
∑

b∈[m]A
2
bi → 1, whence

xt+1 = η(xt +AT rt; θt) . (5.18)

Analogously substituting Eq. (5.16) in (5.13), we get

zt
a = ya −

∑

j∈[n]

Aajx
t
j +

∑

j∈[n]

A2
ajη

′(xt−1
j + (AT rt−1)j ; θt−1)z

t−1
a . (5.19)

Again, using the law of large numbers and the normalization of A, we get

∑

j∈[n]

A2
ajη

′(xt−1
j + (AT rt−1)j ; θt−1) ≈

1

m

∑

j∈[n]

η′(xt−1
j + (AT rt−1)j ; θt−1) =

1

m
‖xt‖0 , (5.20)

whence substituting in (5.19), we obtain Eq. (5.2), withe the prescription (5.5) for the Onsager term.
This finishes our derivation.

6 High-dimensional analysis

The AMP algorithm enjoys several unique properties. In particular it admits an asymptotically exact
analysis along sequences of instances of diverging size. This is quite remarkable, since all analysis
available for other algorithms that solve the LASSO hold only ‘up to undetermined constants’.

In particular in the large system limit (and with the exception of a ‘phase transition’ line), AMP
can be shown to converge exponentially fast to the LASSO optimum. Hence the analysis of AMP
yields asymptotically exact predictions on the behavior of the LASSO, including in particular the
asymptotic mean square error per variable.

How is this small miracle possible? Figure 5 illustrates the key point. It shows the distribution
of un-thresholded estimates (xt + AT rt)i for coordinates i such that the original signal had value
xi = +1. These estimates where were obtained using the AMP algorithm (5.1), (5.2) with choice (5.5)
of bt (plot on the left) and the iterative soft thresholding algorithm (5.9), (5.10) (plot on the right).
The same instances (i.e. the same matrices A and measurement vectors y) were used in the two
cases, but the resulting distributions are dramatically different. In the case of AMP, the distribution
is close to gaussian, with mean on the correct value, xi = +1. For iterative soft thresholding the
estimates do not have the correct mean and are not gaussian.

As we will see in the next sections, these empirical observations can be confirmed rigorously in
the limit of a large number of dimensions.

6.1 State evolution

We will consider sequences of instances of increasing sizes, along which the AMP algorithm behavior
admits a non-trivial limit. While rigorous results have been proved so far only in the case in which
the sensing matrices A have i.i.d. gaussian entries, it is nevertheless useful to collect a few basic
properties that the sequence needs to satisfy.
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Figure 5: Distributions of un-thresholded estimates for AMP (left) and IST (right), after t = 10 iterations.

These data were obtained using sensing matrices with m = 2000, n = 4000 and i.i.d. entries uniform in

{+1/
√
m,−1/

√
m}. The signal x contained 500 non-zero entries uniform in {+1,−1}. A total of 40 instances

was used to build the histograms. Blue lines are gaussian fits and vertical lines represent the fitted mean.

Definition 1. The sequence of instances {x(n), w(n), A(n)}n∈N indexed by n is said to be a converg-
ing sequence if x(n) ∈ R

n, w(n) ∈ R
m, A(n) ∈ R

m×n with m = m(n) is such that m/n → δ ∈ (0,∞),
and in addition the following conditions hold:

(a) The empirical distribution of the entries of x(n) converges weakly to a probability measure p0

on R with bounded second moment. Further n−1
∑n

i=1 xi(n)2 → Ep0
{X2

0}.

(b) The empirical distribution of the entries of w(n) converges weakly to a probability measure pW

on R with bounded second moment. Further m−1
∑m

i=1 wi(n)2 → EpW
{W 2}.

(c) If {ei}1≤i≤n, ei ∈ R
n denotes the standard basis, then maxi∈[n] ‖A(n)ei‖2, mini∈[n] ‖A(n)ei‖2 →

1, as n→ ∞ where [n] ≡ {1, 2, . . . , n}.

As mentioned above, rigorous results have been proved only for a subclass of converging sequences,
namely under the assumption that the matrices A(n) have i.i.d. gaussian entries. However, numerical
simulations show that the same limit behavior should apply within a much broader domain, including
for instance random matrices with i.i.d. entries under an appropriate moment condition. This
universality phenomenon is well-known in random matrix theory whereby asymptotic results initially
estabilished for gaussian matrices where subsequently proved for a broad universality class. Rigorous
evidence in this direction is presented in [KM10] where the normalized cost C(x̂)/N is shown to have
a limit as N → ∞ which is universal with respect to random matrices A with iid entries. (More
precisely, it is universal provided E{Aij} = 0, E{A2

ij} = 1/n and E{A6
ij} ≤ C/n3 for some uniform

constant C.)
For a converging sequence of instances, and an arbitrary sequence of thresholds {θt}t≥0 (in-

dependent of n), the AMP iteration (5.1), (5.2) admits an high-dimensional limit which can be
characterized exactly, provided Eq. (5.5) is used for fixing the Onsager term. This limit is given in
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terms of the trajectory of a simple one-dimensional iteration termed state evolution which we will
describe next.

Define the sequence {τ2
t }t≥0 by setting τ2

0 = σ2 + E{X2
0}/δ (for X0 ∼ p0 and σ2 ≡ E{W 2},

W ∼ pW ) and letting, for all t ≥ 0:

τ2
t+1 = F(τ2

t , θt) , (6.1)

F(τ2, θ) ≡ σ2 +
1

δ
E{ [η(X0 + τZ; θ) −X0]

2} , (6.2)

where Z ∼ N(0, 1) is independent of X0. Notice that the function F depends implicitly on the law
p0.

We say a function ψ : R
k → R is pseudo-Lipschitz if there exist a constant L > 0 such that for

all x, y ∈ R
k: |ψ(x) − ψ(y)| ≤ L(1 + ‖x‖2 + ‖y‖2)‖x − y‖2. (This is a special case of the definition

used in [BM10b] where such a function is called pseudo-Lipschitz of order 2.)
The following theorem that was conjectured in [DMM09] and proved in [BM10b]. It shows that

the behavior of AMP can be tracked by the above state evolution recursion.

Theorem 6.1 ([BM10b]). Let {x(n), w(n), A(n)}n∈N be a converging sequence of instances with the
entries of A(n) iid normal with mean 0 and variance 1/m. Let ψ1 : R → R, ψ2 : R × R → R be a
pseudo-Lipschitz functions. Then, almost surely

lim
N→∞

1

N

N∑

i=1

ψ1

(
zt
i

)
= E

{
ψ1

(
τtZ

)}
, (6.3)

lim
n→∞

1

n

n∑

i=1

ψ2

(
xt+1

i , xi

)
= E

{
ψ2

(
η(X0 + τtZ; θt),X0

)}
, (6.4)

where Z ∼ N(0, 1) is independent of X0 ∼ p0.

Notice that this theorem holds for any choice of the sequence of thresholds {θt} and does not
require –for instance– that the latter converge. Indeed [BM10b] proves a more general result that
holds for a any choice of nonlinearities η( · ; ·, ) (not just soft-thresholding), under mild regularity
assumptions, provided the AMP iteration is suitably modified.

Also, this theorem motivate both the use of soft thresholding, and the choice of the threshold
level in Eq. (5.6) or (5.7). Indeed Eq. (6.3) states that the components of rt are approximately i.i.d.
N(0, τ2

t ), and hence both definitions of τ̂t in Eq. (5.6) or (5.7) provide consistent estimators of τt.
Further, Eq. (6.3) implies that the components of the deviation (xt+AT rt−x) are also approximately
i.i.d. N(0, τ2

t ). In other words, the estimate (xt + AT rt) is equal to the actual signal plus noise of
variance τ2

t , as illustrated in Fig. 5. According to our discussion of scalar estimation in Section 3,
the correct way of reducing the noise is to apply soft thresholding with threshold level ατt.

The choice θt = ατt with α fixed has another important advantage. In this case, the sequence
{τt}t≥0 is determined by the one-dimensional homogeneous recursion

τ2
t+1 = F(τ2

t , ατt) . (6.5)

The function τ2 7→ F(τ2, ατ) depends on the distribution of X0 as well as on the other parameters of
the problem. An example is plotted in Fig. (6). It turns out that the behavior shown here is generic:
the function is always non-decreasing and concave. This remark allows to easily prove the following.
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Figure 6: Mapping τ2 7→ F(τ2, ατ) for α = 2, δ = 0.64, σ2 = 0.2, p0({+1}) = p0({−1}) = 0.064 and
p0({0}) = 0.872.

Proposition 6.2 ([DMM10b]). Let αmin = αmin(δ) be the unique non-negative solution of the equa-
tion

(1 + α2)Φ(−α) − αφ(α) =
δ

2
, (6.6)

with φ(z) ≡ e−z2/2/
√

2π the standard gaussian density and Φ(z) ≡
∫ z
−∞ φ(x) dx.

For any σ2 > 0, α > αmin(δ), the fixed point equation τ2 = F(τ2, ατ) admits a unique solution.
Denoting by τ∗ = τ∗(α) this solution, we have limt→∞ τt = τ∗(α).

It can also be shown that, under the choice θt = ατt, convergence is exponentially fast unless
the problem parameters take some ‘exceptional’ values (namely on the phase transition boundary
discussed below).

6.2 The risk of the LASSO

State evolution provides a scaling limit of the AMP dynamics in the high-dimensional setting. By
showing that AMP converges to the LASSO estimator, one can transfer this information to a scaling
limit result of the LASSO estimator itself.

Before stating the limit, we have to describe a calibration mapping between the AMP parameter
α (that defines the sequence of thresholds {θt}t≥0) and the LASSO regularization parameter λ. The
connection was first introduced in [DMM10b].

We define the function α 7→ λ(α) on (αmin(δ),∞), by

λ(α) ≡ ατ∗

[
1 − 1

δ
P
{
|X0 + τ∗Z| ≥ ατ∗

}]
, (6.7)
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where τ∗ = τ∗(α) is the state evolution fixed point defined as per Proposition 6.2. Notice that
this relation corresponds to the scaling limit of the general relation (5.3), provided we assume that
the solution of the LASSO optimization problem (2.8) is indeed described by the fixed point of
state evolution (equivalently, by its t → ∞ limit). This follows by noting that θt → ατ∗ and that
‖x‖0/n → E{η′(X0 +τ∗Z;ατ∗)}. While this is just an interpretation of the definition (6.7), the result
presented next implies that the interpretation is indeed correct.

In the following we will need to invert the function α 7→ λ(α). We thus define α : (0,∞) →
(αmin,∞) in such a way that

α(λ) ∈
{
a ∈ (αmin,∞) : λ(a) = λ

}
.

The fact that the right-hand side is non-empty, and therefore the function λ 7→ α(λ) is well defined,
is part of the main result of this section.

Theorem 6.3. Let {x(n), w(n), A(n)}n∈N be a converging sequence of instances with the entries of
A(n) iid normal with mean 0 and variance 1/m. Denote by x̂(λ) the LASSO estimator for instance
(x(n), w(n), A(n)), with σ2, λ > 0, and let ψ : R × R → R be a pseudo-Lipschitz function. Then,
almost surely

lim
n→∞

1

n

n∑

i=1

ψ
(
x̂i, xi

)
= E

{
ψ

(
η(X0 + τ∗Z; θ∗),X0

)}
, (6.8)

where Z ∼ N(0, 1) is independent of X0 ∼ p0, τ∗ = τ∗(α(λ)) and θ∗ = α(λ)τ∗(α(λ)).
Further, the function λ 7→ α(λ) is well defined and unique on (0,∞).

The assumption of a converging problem-sequence is important for the result to hold, while
the hypothesis of gaussian measurement matrices A(n) is necessary for the proof technique to be
applicable. On the other hand, the restrictions λ, σ2 > 0, and P{X0 6= 0} > 0 (whence τ∗ 6= 0 using
Eq. (6.7)) are made in order to avoid technical complications due to degenerate cases. Such cases
can be resolved by continuity arguments.

Let us now discuss some limitations of this result. Theorem 6.3 assumes that the entries of matrix
A are iid gaussians. Further, our result is asymptotic, while and one might wonder how accurate it
is for instances of moderate dimensions.

Numerical simulations were carried out in [DMM10b, BBM10] and suggest that the result is
universal over a broader class of matrices and that is relevant already for n of the order of a few
hundreds. As an illustration, we present in Figs. 7 and 8 the outcome of such simulations for two
types of random matrices. Simulations with real data can be found in [BBM10]. We generated the
signal vector randomly with entries in {+1, 0,−1} and P(x0,i = +1) = P(x0,i = −1) = 0.064. The
noise vector w was generated by using i.i.d. N(0, 0.2) entries.

We solved the LASSO problem (2.8) and computed estimator x̂ using CVX, a package for specifying
and solving convex programs [GB10] and OWLQN, a package for solving large-scale versions of LASSO
[AJ07]. We used several values of λ between 0 and 2 and N equal to 200, 500, 1000, and 2000. The
aspect ratio of matrices was fixed in all cases to δ = 0.64. For each case, the point (λ,MSE) was
plotted and the results are shown in the figures. Continuous lines corresponds to the asymptotic
prediction by Theorem 6.3 for ψ(a, b) = (a− b)2, namely

lim
n→∞

1

n
‖x̂− x‖2 = E

{[
η(X0 + τ∗Z; θ∗) −X0

]2}
= δ(τ2

∗ − σ2) .
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Figure 7: Mean square error (MSE) as a function of the regularization parameter λ compared to the
asymptotic prediction for δ = 0.64 and σ2 = 0.2. Here the measurement matrix A has iid N(0, 1/m)
entries. Each point in this plot is generated by finding the LASSO predictor x̂ using a measurement
vector y = Ax + w for an independent signal vector x0, an independent noise vector w, and an
independent matrix A.

The agreement is remarkably good already for n,m of the order of a few hundreds, and deviations
are consistent with statistical fluctuations.

The two figures correspond to different entries distributions: (i) Random gaussian matrices with
aspect ratio δ and iid N(0, 1/m) entries (as in Theorem 6.3); (ii) Random ±1 matrices with aspect
ratio δ. Each entry is independently equal to +1/

√
m or −1/

√
m with equal probability.

Notice that the asymptotic prediction has a minimum as a function of λ. The location of this
minimum can be used to select the regularization parameter.

6.3 A decoupling principle

There exists a suggestive interpretation of the state evolution result in Theorem 6.1, as well as of
the scaling limit of the LASSO estabilished in Theorem 6.3. The estimation problem in the vector
model y = Ax+w reduces –asymptotically– to n uncoupled scalar estimation problems ỹi = xi + w̃i.
However the noise variance is increased from σ2 to τ2

t (or τ∗
2 in the case of the LASSO), due to

‘interference’ between the original coordinates:

y = Ax+ w ⇔





ỹ1 = x1 + w̃1

ỹ2 = x2 + w̃2
...
ỹn = xn + w̃n

. (6.9)
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Figure 8: As in Fig. 7, but the measurement matrix A has iid entries that are equal to ±1/
√
m with

equal probabilities.

An analogous phenomenon is well known in statistical physics and probability theory and takes
sometimes the name of ‘correlation decay’ [Wei05, GK06, MM09]. In the context of CDMA system
analysis via replica method, the same phenomenon was also called ‘decoupling principle’ [Tan02,
GV05].

Notice that the AMP algorithm gives a precise realization of this decoupling principle, since for
each i ∈ [n], and for each number of iterations t, it produces an estimate, namely (xt +AT rt)i that
can be considered a realization of the observation ỹi above. Indeed Theorem 6.1 (see also discussion
below the theorem) states that (xt +AT rt)i = xi + w̃i with w̃i asymptotically gaussian with mean 0
and variance τ2

t .
The fact that observations of distinct coordinates are asymptotically decoupled is stated precisely

below.

Corollary 6.4 (Decoupling principle, [BM10b]). Under the assumption of Theorem 6.1, fix ℓ ≥ 2,
let ψ : R

2ℓ → R be any Lipschitz function, and denote by E expectation with respect to a uniformly
random subset of distinct indices J(1), . . . , J(ℓ) ∈ [n].

Further, for some fixed t > 0, let ỹt = xt +AT rt ∈ R
n. Then, almost surely

lim
n→∞

Eψ(ỹt
J(1), . . . , ỹ

t
J(ℓ), xJ(1), . . . , xJ(ℓ)) = E

{
ψ

(
X0,1 + τtZ1, . . . ,X0,ℓ + τtZℓ,X0,1, . . . ,X0,ℓ

)}
,

for X0,i ∼ p0 and Zi ∼ N(0, 1), i = 1, . . . , ℓ mutually independent.
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6.4 An heuristic derivation of state evolution

The state evolution recursion has a simple heuristic description, that is useful to present here since
it clarifies the difficulties involved in the proof. In particular, this description brings up the key role
played by the ‘Onsager term’ appearing in Eq. (5.2) [DMM09].

Consider again the recursion (5.1), (5.2) but introduce the following three modifications: (i)
Replace the random matrix A with a new independent copy A(t) at each iteration t; (ii) Corre-
spondingly replace the observation vector y with yt = A(t)x0 + w; (iii) Eliminate the last term in
the update equation for rt. We thus get the following dynamics:

xt+1 = η(A(t)T rt + xt; θt) , (6.10)

rt = yt −A(t)xt , (6.11)

where A(0), A(1), A(2), . . . are iid matrices of dimensionsm×n with i.i.d. entries Aij(t) ∼ N(0, 1/m).
(Notice that, unlike in the rest of the article, we use here the argument of A to denote the iteration
number, and not the matrix dimensions.)

This recursion is most conveniently written by eliminating rt:

xt+1 = η
(
A(t)T yt + (I −A(t)TA(t))xt; θt

)
,

= η
(
x+A(t)Tw +B(t)(xt − x); θt

)
, (6.12)

where we defined B(t) = I − A(t)∗A(t) ∈ R
n×n. Notice that this recursion does not correspond to

any concrete algorithm, since the matrix A changes from iteration to iteration. It is nevertheless
useful for developing intuition.

Using the central limit theorem, it is easy to show that each entry of B(t) is approximately
normal, with zero mean and variance 1/m. Further, distinct entries are approximately pairwise
independent. Therefore, if we let τ̃2

t = limN→∞ ‖xt − x‖2/n, we obtain that B(t)(xt − x) converges
to a vector with iid normal entries with 0 mean and variance nτ̃2

t /m = τ̃2
t /δ. Notice that this is true

because A(t) is independent of {A(s)}1≤s≤t−1 and, in particular, of (xt − x).
Conditional on w, A(t)Tw is a vector of iid normal entries with mean 0 and variance (1/m)‖w‖2

which converges by the law of large numbers to σ2. A slightly longer exercise shows that these entries
are approximately independent from the ones of B(t)(xt−x0). Summarizing, each entry of the vector
in the argument of η in Eq. (6.12) converges to X0 + τtZ with Z ∼ N(0, 1) independent of X0, and

τ2
t = σ2 +

1

δ
τ̃2
t , (6.13)

τ̃2
t = lim

n→∞

1

n
‖xt − x‖2 .

On the other hand, by Eq. (6.12), each entry of xt+1 − x converges to η(X0 + τt Z; θt) − X0, and
therefore

τ̃2
t+1 = lim

n→∞

1

n
‖xt+1 − x‖2 = E

{
[η(X0 + τt Z; θt) −X0]

2
}
. (6.14)

Using together Eq. (6.13) and (6.14) we finally obtain the state evolution recursion, Eq. (6.1).
We conclude that state evolution would hold if the matrix A was drawn independently from

the same gaussian distribution at each iteration. In the case of interest, A does not change across
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Figure 9: Noise sensitivity phase transition in the plane (δ, ρ) (here δ = m/n is the undersampling ratio

and ρ = ‖x‖0/m is the number of non-zero coefficients per measurement). Red line: The phase transition

boundary ρ = ρc(δ). Blue lines: Level curves for the LASSO minimax M∗(δ, ρ). Notice that M∗(δ, ρ) ↑ ∞ as

ρ ↑ ρc(δ).

iterations, and the above argument falls apart because xt and A are dependent. This dependency
is non-negligible even in the large system limit n → ∞. This point can be clarified by considering
the IST alforithm fiven by Eqs. (5.9), (5.10). Numerical studies of iterative soft thresholding [MD10,
DMM09] show that its behavior is dramatically different from the one of AMP and in particular
state evolution does not hold for IST, even in the large system limit.

This is not a surprise: the correlations between A and xt simply cannot be neglected. On the
other hand, adding the Onsager term leads to an asymptotic cancelation of these correlations. As a
consequence, state evolution holds for the AMP iteration.

6.5 The noise sensitivity phase transition

The formalism developed so far allows to extend the minimax analysis carried out in the scalar case
in Section 3 to the vector estimation problem [DMM10b]. We define the LASSO mean square error
per coordinate when the empirical distribution of the signal converges to p0, as

MSE(σ2; p0, λ) = lim
n→∞

1

n
E

{
‖x̂(λ) − x‖2

}
, (6.15)

where the limit is taken along a converging sequence. This quantity can be computed using Theorem
6.3 for any specific distribution p0.

We consider again the sparsity class Fε with ε = ρδ. Hence ρ = ‖x‖0/m measures the number
of non-zero coordinates per measurement. Taking the worst case MSE over this class, and then the
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minimum over the regularization parameter λ, we get a result that depends on ρ, δ, as well as on
the noise level σ2. The dependence on σ2 must be linear because the class Fρδ is scale invariant, and
we obtain therefore

inf
λ

sup
p0∈Fρδ

MSE(σ2; p0, λ) = M∗(δ, ρ)σ2 , (6.16)

for some function (δ, ρ) 7→M∗(δ, ρ). We call this the LASSO minimax risk. It can be interpreted as
the sensitivity (in terms of mean square error) of the LASSO estimator to noise in the measurements.

It ids clear that the prediction for MSE(σ2; p0, λ) provided by Theorem 6.3 can me used to
characterize the LASSO minimax risk. What is remarkable is that the resulting formula is so simple.

Theorem 6.5 ([DMM10b]). Assume the hypotheses of Theorem 6.3, and recall that M#(ε) denotes
the soft thresholding minimax risk over the class Fε. Further let ρc(δ) be the unique solution of
ρ = M#(ρδ).

Then for any ρ < ρc(δ) the LASSO minimax risk is bounded and given by

M∗(δ, ρ) =
M#(ρδ)

1 −M#(ρδ)/δ
. (6.17)

Viceversa, for any ρ ≥ ρc(δ), M
∗(δ, ρ) = ∞.

Figure 9 shows the location of the noise sensitivity boundary ρc(δ) as well as the level lines of
M∗(δ, ρ) for ρ < ρc(δ). Above ρc(δ) the LASSO MSE is not uniormly bounded in terms of the
measurement noise σ2. Other estimators (for instance one step of soft thresholding) can offer better
stability guarantees in this region.

One remarkable fact is that the phase boundary ρ = ρc(δ) coincides with the phase transition
for ℓ0 − ℓ1 equivalence derived earlier by Donoho on the basis of random polytope geometry results
by Affentranger-Schneider. The same phase transition was further studied in a series of papers by
Donoho, Tanner and coworkers, in connection with the noiseless estimation problem. For ρ < ρc

estimating x by ℓ1-norm minimization returns the correct signal with high probability (over the
choice of the random matrix A). For ρ > ρc(δ), ℓ1-minimization fails.

Here this phase transition is derived from a completely different perspective, and using a new
method –the state evolution analysis of the AMP algorithm– which offers quantitative information
about the noisy case as well i.e. to compute the value of M∗(δ, ρ) for ρ < ρc(δ). Within the present
approach, the line ρc(δ) admits a very simple expresson. In parametric form, it is given by

δ =
2φ(α)

α+ 2(φ(α) − αΦ(−α))
, (6.18)

ρ = 1 − αΦ(−α)

φ(α)
, (6.19)

where φ and Φ are the gaussian density and gaussian distribution function, and α ∈ [0,∞) is the
parameter. Indeed α has a simple and practically important interpretation as well. Recall that the
AMP algorithm uses a sequence of thresholds θt = ατ̂t, cf. Eqs. (5.6) and (5.7). How should the
parameter α be fixed? A very simple prescription is obtained in the noiseless case. In order to
achieve exact reconstruction for all ρ < ρc(δ) for a given an undersampling ratio δ, α should be such
that (δ, ρc(δ)) = (δ(α), ρ(α)) with functions α 7→ δ(α), α 7→ ρ(α) defined as in Eq. (6.18), (6.19). In
other words, this parametric expression yields each point of the phase boundary as a function of the
threshold parameter used to achieve it via AMP.
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6.6 Comparison with other analysis approaches

The analysis presented here is significantly different from for more standard approaches. We derived
an exact characterization for the high-dimensional limit of the LASSO estimation problem under the
assumption of converging sequences of random sensing matrices.

Alternative approaches assume an appropriate ‘isometry’, or ‘incoherence’ condition to hold for
A. Under this condition upper bounds are proved for the mean square error. For instance Candes,
Romberg and Tao [CRT06] prove that the mean square error is bounded by Cσ2 for some constant
C. Work by Candes and Tao [CT07] on the analogous Dantzig selector, upper bounds the mean
square error by Cσ2(k/n) log n, with k the number of non-zero entries of the signal x.

These type of results are very robust but present two limitations: (i) They do not allow to
distinguish reconstruction methods that differ by a constant factor (e.g. two different values of λ);
(ii) The restricted isometry condition (or analogous ones) is quite restrictive. For instance, it holds
for random matrices only under very strong sparsity assumptions. These restrictions are intrinsic to
the worst-case point of view developed in [CRT06, CT07].

Guarantees have been proved for correct support recovery in [ZY06], under an incoherence as-
sumption on A. While support recovery is an interesting conceptualization for some applications
(e.g. model selection), the metric considered in the present paper (mean square error) provides
complementary information and is quite standard in many different fields.

Close to the spirit of the treatment presented here, [RFG09] derived expressions for the mean
square error under the same model considered here. Similar results were presented recently in
[KWT09, GBS09]. These papers argue that a sharp asymptotic characterization of the LASSO
risk can provide valuable guidance in practical applications. Unfortunately, these results were non-
rigorous and were obtained through the famously powerful ‘replica method’ from statistical physics
[MM09]. The approach discussed here offers two advantages over these recent developments: (i) It is
completely rigorous, thus putting on a firmer basis this line of research; (ii) It is algorithmic in that
the LASSO mean square error is shown to be equivalent to the one achieved by a low-complexity
message passing algorithm.

7 Structured priors and more general regressions

The single most important advantage of the point of view based on graphical models is that it offers
a unified disciplined approach to exploit structural information on the signal x. Such structural
information can be of combinatorial type –as in ‘model-based’ compressed sensing– but can as well
include probabilistic priors. Exploring such potential generalizations is –to a large extent– a future
research program which is still in its infancy. Here we will briefly mention a few examples.

The case of block-sparse signals was already mentioned in Section 2. We write x = (xB(1), xB(2),

. . . , xB(ℓ)) where xB(i) ∈ R
n/ℓ is a block for ℓ ∈ {1, . . . , ℓ}. Only a fraction ε ∈ (0, 1) of the blocks is

non-vanishing. It is customary in this setting to replace the LASSO cost function with the following

CBlock
A,y (z) ≡ 1

2
‖y −Az‖2 + λ

ℓ∑

i=1

‖zB(i)‖2 . (7.1)

The block-ℓ2 regularization promotes block sparsity. Of course, the new regularization can be inter-
preted in terms of a new assumed prior that factorizes over blocks. An approximate message passing
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algorithm suitable for this case is developed in [DM10]. Its analysis allows to generalize ℓ0− ℓ1 phase
transition curves to the block sparse case. This quantifies precisely the benefit of minimizing (7.1)
over simple ℓ1 penalization.

Tanaka and Raymond [TR10], and Som, Potter and Schniter and [SSS10] studied the case of
signals with multiple level of sparsity. The simplest example consists of a signal x = (xB(1), xB(2)),
where xB(1) ∈ R

n1, xB(2) ∈ R
n2, n1 + n2 = n. Block i ∈ {1, 2} has a fraction εi of non-zero entries,

with ε1 6= ε2. In the most complex case, one can consider a general factorized prior

p(dx) =

n∏

i=1

pi(dxi) ,

where each i ∈ [n] has a different sparsity parameter εi ∈ (0, 1), and pi ∈ Fεi
. In this case it is

natural to use a weighted–ℓ1 regularization, i.e. to minimize

Cweight
A,y (z) ≡ 1

2
‖y −Az‖2 + λ

n∑

i=1

wi |zi| , (7.2)

for a suitable choice of the weights w1, . . . , wn ≥ 0. The paper [TR10] studies the case λ→ 0 (equiv-
alent to minimizing

∑
iwi|zi| subject to y = Az), using non-rigorous statistical mechanics techniques

that are equivalent to the state evolution approach presented here. Within a high-dimensional limit,
it determines optimal tuning of the parameters wi, for given sparsities εi. The paper [SSS10] follows
instead the state approach explained in the present chapter, The authors develep a suitable AMP
iteration and compute the optimal thresholds to be used by the algorithm. These are in corre-
spondence with the optimal weights wi mentioned above, albeit can be easily interpreted within the
minimax framework develope in the previous pages.

The graphical model framework is particularly convenient for exploiting prior information that
is probabilistin in nature. For instance Schniter [Sch10] study the case in which the signal x is
generated by an Hidden Markov Model (HMM). In the simple case, the underlying Markov chain
has two states indexed by si ∈ {0, 1}, and

p(dx) =
∑

s1,...,sn

{ n∏

i=1

p(dxi|si) ·
n−1∏

i=1

p(si+1|si) · p1(s1)
}
, (7.3)

where p( · |0) and p( · |1) belong to two different sparsity classes Fε0
, Fε1

. For instance one can
consider the case in which ε0 = 0 and ε1 = 1, i.e. the support of x coincides with the subset of
coordinates such that si = 1. Message passing is used to perform reconstruction and AMP as a block
in the algorithm to treat the constraint y = Ax.

Finally, many of the ideas developed here are not necessarily restricted to regularized linear
regression. An important example is logistic regression, which is particularly suited for the case in
which the measurements y1, . . . ym are 0–1 valued. In the context of linear regression these are
modeled as independent Bernoulli random variables with

p(ya = 1|x) =
eA

T
a x

1 + eAT
a x
, (7.4)

with Aa a vector of ‘features’ that characterizes the a-th experiment. The objective is to learn the
vector x of coefficients that encodes the relevance of each feature. A possible approach consists in
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minimizing the regularized (negative) log-likelihood, that is

CLogReg
A,y (z) ≡ −

m∑

a=1

ya(A
T
a z) +

m∑

a=1

log
(
1 + eA

T
a z

)
+ λ‖z‖1 , (7.5)

The paper [BM10a] develops an approximate message passing algorithm for solving this minimization
problem.
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