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Abstract

The (two) core of an hyper-graph is the maximal collection of hyper-edges within which no vertex
appears only once. It is of importance in tasks such as efficiently solving a large linear system over
GF[2], or iterative decoding of low-density parity-check codes used over the binary erasure channel.
Similar structures emerge in a variety of NP-hard combinatorial optimization and decision problems,
from vertex cover to satisfiability.

For a uniformly chosen random hyper-graph of m = nρ vertices and n hyper-edges, each consisting
of the same fixed number l ≥ 3 of vertices, the size of the core exhibits for large n a first order phase
transition, changing from o(n) for ρ > ρc to a positive fraction of n for ρ < ρc, with a transition window
size Θ(n−1/2) around ρc > 0. Analyzing the corresponding ‘leaf removal’ algorithm, we determine the
associated finite size scaling behavior. In particular, if ρ is inside the scaling window (more precisely,
ρ = ρc + r n−1/2), the probability of having a core of size Θ(n) has a limit strictly between 0 and 1, and
a leading correction of order Θ(n−1/6). The correction admits a sharp characterization in terms of the
distribution of a Brownian motion with quadratic shift, from which it inherits the scaling with n. This
behavior is expected to be universal for wide collection of combinatorial problems.

1 Introduction

The k-core of a non-directed graphG is the unique subgraph obtained by recursively removing all vertices
of degree less than k. In particular, the 2-core, hereafter called the core of G, is the maximal collection
of edges having no vertex appearing in only one of them. With an abuse of language we shall use the
same term for the induced subgraph. The core of an hyper-graph is analogously defined and plays an
important role in the analysis of many combinatorial problems.

In the first of such applications, Karp and Sipser [KS81] (hereafter KS) considered the problem of
finding the largest possible matching (i.e. vertex disjoint set of edges) in a graph G. They proposed an
algorithm that recursively selects an edge (i, j) ∈ G for which the vertex i has degree one. If no such edge
exists, the algorithms declares a failure. Otherwise it includes it in the matching and removes it from
the graph together with all the edges incident on j (that cannot belong to the matching). Whenever
the algorithm successfully matches all vertices, the resulting matching can be proved to have maximal
size. KS analyze the performance of such an algorithm on uniformly random graphs with N vertices
and M = ⌊Nc/2⌋ edges as N → ∞, using the ODE asymptotic approximation for random processes,
based on [Ku70] (c.f. [AFP98, DFP93] for recent contributions).

It is easy to realize that the algorithm is successful if an only if a properly constructed hyper-graph
G̃ does not contain a core. The hyper-graph G̃ includes a node ẽ for each edge e in G, and an hyper-edge

∗Research partially supported by NSF grant #DMS-0406042 and #DMS-FRG-0244323.
† Research partially supported by the European Union under the IP EVERGROW.

AMS (2000) Subject Classification: Primary: 05C80, 60J10, 60F17; Secondary: 68R10, 94A29
Keywords: Core, random hyper-graph, random graph, low-density parity-check codes, XOR-SAT, finite size scaling

1



 0

 0.2

 0.4

 0.6

 0.8

 1

 1  1.1  1.2  1.3  1.4  1.5

100

200

300

400

600

ρ

Pl(n, ρ)

Figure 1: Probability that a random l = 3-hyper-graph with m vertices and n = m/ρ hyper-edges has
a non-empty 2-core estimated numerically for m = 100, . . . , 600. The vertical line corresponds to the
asymptotic threshold ρc ≈ 1.2218.

ĩ for each vertex i of degree two or more in G. The hyper-edge ĩ is incident on ẽ in G̃ if and only if e is
incident on i in G.

A more recent application is related to the XOR-SAT problem, a simplified version of satisfiability
introduced in [CD99]. One is given a linear system over m binary variables, composed of n equations
modulo 2, each involving exactly l ≥ 3 variables. The authors of [CDMM03, MRZ03] propose a simple
‘leaf removal’ algorithm to solve such a linear system. The algorithm recursively selects a variable that
appears in a single equation, and eliminates the corresponding equation from the system. In fact, such
an equation can be eventually satisfied by properly setting the selected variable. If all the equations are
removed by this procedure, a solution can be constructed by running the process backward and fixing
along the way the selected variables.

An hyper-graph G is associated to the linear system by including a vertex for each variable, and
an hyper-edge for each equation. Hyper-edge e is incident on vertex i if and only if the corresponding
equation involves the i-th variable with non-zero coefficient. It is easy to realize that the leaf removal
algorithm is successful if and only if the corresponding hyper-graph G does not contain a core.

Uniformly random linear systems with n equations andm = ρn variables are considered in [CDMM03,
MRZ03]. It is proved there that the algorithm is successful with high probability if ρ is larger than
a critical value ρc, and fails with high probability if ρ < ρc. See Fig. 1 for an illustration of this
phenomenon. Further, it is shown there that the structure of the set of solutions of the linear system
changes dramatically at ρc, exhibiting a ‘clustering effect’ when ρ < ρc.

The same ‘solution clustering’ phenomenon has been conjectured for a variety of random combinato-
rial decision problems, on the basis of non-rigorous statistical mechanics calculations. The most studied
among these problems is the random K-satisfiability, for which some indication of clustering is rigor-
ously proved in [MMZ05b, AR06]. Several authors suggest that the solution clustering phenomenon is
related to the poor performance of search algorithms on properly chosen ensembles of random instances.
Still within random K-satisfiability, the performance of certain standard solution heuristics (such as the
‘pure-literal’ rule), is also related to the appearance of properly defined cores (see [Mol05]).

We conclude with the application to the analysis of low-density parity-check code ensembles, used for
communication over the binary erasure channel, which is the most relevant motivation for our work. The
decoding of a noisy message amounts in this case to finding the unique solution of a linear system over
GF[2] (the solution exists by construction, but is not necessarily unique, in which case decoding fails).
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If the linear system includes an equation with only one variable, we thus determine the value of this
variable, and substitute it throughout the system. Repeated recursively, this procedure either determines
all the variables, thus yielding the unique solution of the system, or halt on a linear sub-system each of
whose equations involves at least two variables. While such an algorithm is not optimal (when it halts,
the resulting linear sub-system might still have a unique solution), it is the simplest instance of the
widely used belief propagation decoding strategy, that has proved extremely successful. For example,
on properly optimized code ensembles, this algorithm has been shown to achieve the theoretical limits
for reliable communication, i.e., Shannon’s channel capacity (see [LMSS01]).

Once again, one can construct an hyper-graph G by associating an hyper-edge to each variable,
and a vertex to each equation (notice that this representation is ‘dual’ with respect to the one used
for XOR-SAT). Decoding is successful (it finds the unique solution) if and only if this hyper-graph
does not contain a core. For a ‘reasonable’ code ensemble the probability of this event approaches 1
(respectively 0) when the noise level is smaller (larger) than a certain critical value. See [LMSS01] for an
explicit characterization of the critical noise value via an application of the ODE method (based again
on [Ku70, PSW96]). Though this result has been successfully used for code design, it is often a poor
approximation for the moderate code block-length (say, n = 102 to 105) that are relevant in practice.

To overcome this problem, a finite size scaling law is derived in [AMRU04], providing the probability
of successfully decoding in the double limit of large size n, and noise level approaching the critical value.
In [AMRU04] the authors also conjecture a ‘refined’ law that describe how the finite-size scaling limit is
approached, and demonstrate empirically that this refined scaling formula is very accurate already for
short message lengths n ≈ 100, opening the way to an efficient code design procedure (c.f. [AMU06]).

In this paper we resolve the conjecture by rigorously proving the refined scaling law. To simplify the
exposition we focus on a specific choice of the random ensemble of equations, but our proof generalizes
without much difficulties to a large variety of other cases, and in particular to all those mentioned in
the conjecture of [AMRU04] (In the coding language, the example we consider corresponds to LDPC
ensembles with regular left and Poisson right degree, it also coincides with the random XOR-SAT
ensemble introduced in [CD99] and treated in [CDMM03, MRZ03]). In graph-theoretical terms, we
determine the probability that a uniformly random1 l-hyper-graph (that is, an hyper-graph with hyper-
edges of size l), with n hyper-edges and m = nρ vertices has a non-empty core as n grows and ρ = ρ(n)
approaches ρc. In the process of establishing the refined scaling law we gain much insight about the
core of such random hyper-graphs. For example, we determine the fluctuations in the size of the core at
criticality (see Remark 2.6), and show that if the hyper-graph is build one hyper-edge at a time, then
its core size jumps from zero to a positive fraction of m at a random time nc, the distribution of which
we explicitly determine (c.f. Remark 2.5).

Our proof strategy should apply without conceptual changes to other phase transitions within the
same class, such as k-core percolation on random graphs (with k ≥ 3), or the pure literal rule threshold
in random k-SAT (with k ≥ 3, c.f. [FS96]). Even beyond this family of closely related phenomena, the
form of the refined scaling law (in particular, the scaling with n of the scaling window and of the first
correction) are likely to be quite universal. For instance, in [AMRU04] it has been empirically found
to hold for iterative decoding of LDPC codes over general channels. Within statistical physics, several
core phase transitions have been studied as special examples of ‘mean field dynamical glass transition’
[SBT05]. It is possible that the refined finite size scaling law generalizes to this (quite large) class as
well.

Finite size scaling has been the object of several investigations in statistical physics and in combi-
natorics. Most of these studies estimate the size of the corresponding scaling window. That is, fixing
a small value of ε > 0, they find the amount of change in some control parameter which moves the
probability of a relevant event from ε to 1 − ε. A remarkably general result in this direction is the rig-
orous formulation of a ‘Harris criterion’ in [CCFS86, Wil02]. Under mild assumptions, this implies that
the scaling window has to be at least Ω(n−1/2) for a properly defined control parameter (for instance,
the ratio ρ of the number of nodes to hyper-edges in our problem). A more precise result has recently
been obtained for the satisfiable-unsatisfiable phase transition for the random 2-SAT problem, yielding

1Indeed, we work with a properly defined ‘configurational’ model (somewhat similar to the one introduced in [Bo80]) to be
defined in the next section.
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a window of size Θ(n−1/3) [BBCK01]. Note however that statistical physics arguments suggest that the
phase transition we consider here is not from the same universality class as the satisfiable-unsatisfiable
transition for random 2-SAT problem.

In contrast with the preceding, we provide a much sharper characterization, yielding beyond the
scaling window and the limiting scaling function, also the asymptotic form of corrections to this limit.
In this respect, our work is closer in its level of precision to that for the scaling behavior in the emergence
of the giant component in Erdős-Rényi random graphs (for more on the latter, see [JKLP93] and the
references therein).

At the level of degenerate (or zero-one) fluid-limits, the asymptotic size of k-core of random graphs
is determined by [PSW96] via the ODE method. See also [Mol05] for a general approach for deriving
such results without recourse to ODE approximations (using instead a method analogous to the ‘density
evolution’ technique from coding theory).

Darling and Norris determine in [DN05] the asymptotic size of the 2-core of a random hyper-graph
which is the ‘dual’ of the model we consider here. Indeed, the hyper-edges in their model are of random,
Poisson distributed, sizes, which allows for a particularly simple Markovian description of the recursive
algorithm that constructs the core. Dealing as we do, with random hyper-graphs at the critical point,
where the asymptotic core size exhibits a discontinuity, they describe the fluctuations around the deter-
ministic limit via a certain linear SDE. In doing so, they heavily rely on the powerful theory of weak
convergence, in particular in the context of convergence of Markov processes. For further results that
are derived along the same line of reasoning, see [DLN04, GN04, Go05].

In contrast, as we outline in the next section, the focus of this paper is on correction terms and rates of
convergence. These are well beyond the scope of weak convergence theory, which is thus irrelevant here.
This is also why many steps in our proof involve delicate coupling arguments, expanding and keeping
track of the rate of decay of approximation errors (in terms of n). Our technique can easily be extended
to provide rates of convergence (in the sup-norm) as n grows, for distributions of inhomogeneous Markov
chains on Rd whose transition kernels Wt,n(xt+1 − xt = y|xt = x) are approximately (in n) linear in x,
and “strongly-elliptic” of uniformly bounded support with respect to y.

2 Main result and outline of proof

We consider hyper-graphs with n hyper-edges over m = ⌊nρ⌋ vertices, ρ > 0. Each hyper-edge is an
ordered list of l ≥ 3, not necessarily distinct vertices chosen independently and uniformly at random
with replacement. We are interested in the probability Pl(n, ρ) that a random hyper-graph from this
ensemble has a non-empty 2-core (i.e. the existence of a non-empty list of hyper-edges such that, if a
vertex appears in this list then it does so at least twice).

In the next section we construct an inhomogeneous Markov chain {~z(τ) = (z1(τ), z2(τ)), n ≥ τ ≥ 0},
where z1(τ) and z2(τ) keep track, respectively, of the number of vertices of degree 1 and of degree at
least 2 after τ steps of the decimation algorithm. As we show in Section 5, in the large n limit, this
chain is well approximated by a simpler chain with transition probabilities,

P̂n,ρ {~z(τ + 1) = ~z + (q1 − q0,−q1) |~z(τ) = ~z } =

(
l− 1

q0 − 1, q1, q2

)
p
q0−1
0 p

q1
1 p

q2
2 . (2.1)

For ~x = ~z/n, θ = τ/n,

p0 =
max(x1, 0)

l(1 − θ)
, p1 =

x2λ
2

l(1 − θ)(eλ − 1 − λ)
, p2 =

x2λ

l(1 − θ)
, (2.2)

where for x2 > 0, we set λ as the unique positive solution of

f1(λ) ≡
λ(eλ − 1)

eλ − 1 − λ
=
l(1 − θ) − max(x1, 0)

x2
(2.3)

enforcing p0 + p1 + p2 = 1, while for x2 = 0, we instead set by continuity p1 = 0 and p2 = 1 − p0.
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Further, we show in Lemma 4.4 that n−1~z(0) converges to the non-random vector

~y(0) = (l e−l/ρ, ρ(1 − e−l/ρ) − le−l/ρ) . (2.4)

Since the chain (2.1) has bounded increments, and the corresponding probabilities depend on the state
only through the macroscopic variables ~x and θ, it is not hard to verify that the scaled process n−1~z(θn)
concentrates around the solution of the ODE

d~y

dθ
(θ) = ~F (~y(θ), θ) , (2.5)

where ~F (~x, θ) = (−1 + (l− 1)(p1 − p0),−(l− 1)p1) is the mean of ~z(τ + 1)− ~z(τ) under the transitions
of (2.1), see for instance [LMSS01, MRZ03, CDMM03]. The solution of this ODE will be denoted by
~y(θ, ρ), often using the shorthand ~y(θ) (where the fixed value of ρ is clear from the context). From the
solution, one finds that y1(θ) remains strictly positive for all θ ∈ [0, 1) if and only if ρ > ρc (see (4.3)).
As shown in [LMSS01] this indicates that, with high probability the algorithm successfully decimates
the whole hyper-graph without ever running out of degree one vertices if ρ > ρc. Vice versa, for ρ < ρc,
the solution ~y(θ) crosses the y1 = 0 plane: this is shown to imply that the algorithm stops and returns
a large core with high probability. In the critical case ρ = ρc, the solution ~y(θ) touches the y1 = 0 plane
at the unique time θ = θc ∈ (0, 1) (see Proposition 4.2). The principal conclusion of Section 5 is that,
near criticality, Pl(n, ρ), can be estimated by the probability that ~z(τ) is small in a neighborhood of
τ = nθc. More precisely,

Proposition 2.1. Let β ∈ (3/4, 1), Jn = [nθc − nβ , nθc + nβ ] and |ρ − ρc| ≤ nβ
′−1 with β′ < 2β − 1.

Then for εn = A logn,

P̂n,ρ

{
inf
τ∈Jn

z1(τ) ≤ −εn
}
− δn ≤ Pl(n, ρ) ≤ P̂n,ρ

{
inf
τ∈Jn

z1(τ) ≤ εn

}
+ δn . (2.6)

where δn ≡ Dn−1/2(log n)2

At the critical point (i.e. for ρ = ρc and θ = θc) the solution of the ODE (2.5) is tangent to the
y1 = 0 plane and fluctuations in the y1 direction determine whether a large core exists or not. Further,
in a neighborhood of θc, we have y1(θ) ≃ 1

2 F̃ (θ − θc)
2, for some F̃ > 0. In the same neighborhood, the

contribution of fluctuations to the change of z1 is approximately

√
G̃n(θ − θc), with G̃ > 0. Comparing

these two contributions we see that the relevant scaling is Xn(t) = n−1/3[z1(nθc+n
2/3t)−z1(nθc)], which

for large n converges, by strong approximation, to X(t) = 1
2 F̃ t

2 +
√
G̃W (t), for a standard two-sided

Brownian motion W (t) (see Lemma 6.1 for a precise quantitative statement). Clearly,

F̃ ≡ d2y1
dθ2

(θc) =
dF1

dθ
(~y(θc), θc) =

∂F1

∂θ
+
∂F1

∂y2
F2 . (2.7)

In the last expression we adopted the convention (to be followed hereafter) of omitting the arguments
whenever they refer to the critical point θ = θc, ~y = ~y(θc) and the trajectory considered is the critical
one, i.e. ρ = ρc.

Fluctuations of ~z(nθc) around n~y(θc) are accumulated in nθc stochastic steps, and are therefore of
order

√
n. As shown in Section 6, the rescaled variable (~z(nθ) − n~y(θ))/

√
n converges to a Gaussian

random variable. Its covariance matrix Q(θ, ρ) = {Qab(θ, ρ); 1 ≤ a, b ≤ 2} is the symmetric positive
definite solution of the ODE:

dQ(θ)

dθ
= G(~y(θ), θ) + A(~y(θ), θ)Q(θ) + Q(θ)A(~y(θ), θ)† , (2.8)

where A(~x, θ) ≡ {Aab(~x, θ) ; 1 ≤ a, b ≤ 2} for Aab(~x, θ) = ∂xb
Fa(~x, θ), and G(~x, θ) is the covariance

of ~z(τ + 1) − ~z(τ) under the transitions (2.1), that is, the non-negative definite symmetric matrix with
entries





G11(~x, θ) = (l − 1)[p0 + p1 − (p0 − p1)
2] ,

G12(~x, θ) = −(l − 1)[p0p1 + p1(1 − p1)] ,
G22(~x, θ) = (l − 1)p1(1 − p1)

(2.9)
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Here again we use the convention Q(θ) ≡ Q(θ, ρ) when the value of ρ is clear from the context. The
positive definite initial condition Q(0) for Eq. (2.8) is computed on the original graph ensemble, and
given by





Q11(0) = l
γ γ e

−2γ(eγ − 1 + γ − γ2) ,

Q12(0) = − l
γ γ e

−2γ(eγ − 1 − γ2) ,

Q22(0) = l
γ e

−2γ [(eγ − 1) + γ(eγ − 2) − γ2(1 + γ)] ,

(2.10)

where γ = l/ρ (see Section 4.2 for details).

The parameter describing the fluctuations of z1(nθ)−z1(nθc) for θ near θc is simply G̃ = G11(~y(θc), θc).
As we show in Section 6, this analysis allows us to approximate the probability that ~z(τ) approaches
the z1 = 0 plane, by replacing {~z(τ)} by an appropriately constructed Gaussian process.

Proposition 2.2. Let X(t) = 1
2 F̃ t

2 +
√
G̃W (t) where W (t) is a doubly infinite standard Brownian

motion conditioned to W (0) = 0. Further, let ξ(r) be a normal random variable of mean
(
∂y1
∂ρ

)
r and

variance Q11 (both evaluated at θ = θc and ρ = ρc), which is independent of W (t).
For some β ∈ (3/4, 1), any η < 5/26, all A > 0, r ∈ R and n large enough, if ρn = ρc + r n−1/2 and

εn = A logn, then
∣∣∣∣P̂n,ρn

{
inf
τ∈Jn

z1(τ) ≤ ±εn
}
− P

{
n1/6ξ + inf

t
X(t) ≤ 0

}∣∣∣∣ ≤ n−η . (2.11)

The key to the validity of Proposition 2.2 is the fact that within the critical time window Jn the
Markov chain of transition probabilities (2.1) is well approximated by the chain

~z ′(τ + 1) = ~z ′(τ) + Ãτ (n
−1~z ′(τ) − ~y(τ/n)) + ∆τ (2.12)

with Ãτ ≡ Iτ<τn
A(~y(τ/n, ρ), τ/n) for τn ≡ ⌊nθc−nβ⌋, and independent random variables {∆τ} of mean

~F (~y(τ/n), τ/n) and covariance G(~y(τ/n), τ/n) (c.f. Proposition 5.5). In particular, taking

B̃τσ ≡
(

I +
1

n
Ãτ

)
·
(

I +
1

n
Ãτ−1

)
· · ·
(

I +
1

n
Ãσ

)
, (2.13)

for integers 0 ≤ σ ≤ τ (while B̃τσ ≡ I in case τ < σ), we see that

~z ′(τ) = B̃τ−1
0 ~z ′(0) +

τ−1∑

σ=0

B̃τ−1
σ+1(∆τ − Ãσ~y(σ/n)) , (2.14)

is a sum of (bounded) independent random variables, hence of approximately normal distribution. Fur-
ther, the mean and covariance of ~z ′(τ) are given by discretized versions of (2.5) and (2.8), hence are
sufficiently close to the solutions ~y(θ, ρ) and Q(θ, ρ) of these ODEs (c.f. Lemma 4.3).

Combining Proposition 2.1 and Proposition 2.2 we are now able to estimate the desired probability
Pl(n, ρ) in terms of the distribution of the global minimum of the process {X(t)} (that is, a Brownian
motion plus a quadratic shift). The latter has been determined already in [Gr89], yielding the following
conclusion, which is our main result. Figure 2 illustrates the accuracy of the finite size scaling expression
proved below, by comparing it with numerical simulations.

Theorem 2.3. Let l ≥ 3, and define αl =
√
Q11

(
∂y1
∂ρ

)−1

, βl = 1√
Q11

G̃2/3 F̃−1/3, ρn = ρc + r n−1/2.

Then, for any η < 5/26

Pl(n, ρn) = Φ(−r/αl) + βlΩ Φ′(−r/αl) n−1/6 +O(n−η) , (2.15)

where Φ(x) denotes the distribution function for a standard normal random variable, the finite constant
Ω is given by the integral

Ω ≡
∫ ∞

0

[1 −K(z)2] dz , (2.16)
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Figure 2: The numerical estimates for the core probabilities in Fig. 1, plotted versus scaling variables r̃1,
r̃2. On the left: r̃1 =

√
n(ρ − ρc)/αl. On the right: r̃2 =

√
n(ρ − ρc − δln

−2/3)/αl where δl = αlβlΩ.
According to Theorem 2.3, corrections to the asymptotic curve Φ(−r̃) (dashed) are Θ(n−1/6) on the left,
and O(n−5/26+ǫ) on the right.

where

K(z) ≡ 1

2

∫ ∞

−∞

Ai(iy)Bi(21/3z + iy) − Ai(21/3z + iy)Bi(iy)

Ai(iy)
dy , (2.17)

and Ai(·), Bi(·) are the Airy functions (as defined in [AS64, Page 446]).

Remark 2.4. The simulations in Figure 2 suggest that the approximation of Pl(n, ρn) we provide in
(2.15) is more accurate than the O(n−5/26+ǫ) correction term suggests. Our proof shows that one can-
not hope for a better error estimate than Θ(n−1/3) as we neglect the second order term in expanding
Φ(−r/αl + Cn−1/6), see (2.18). We believe this is indeed the order of the next term in the expansion
(2.15). Determining its form is an open problem.

Remark 2.5. It is of interest to consider the (time) evolution of the core for the hyper-graph process
in which one hyper-edge is added uniformly at random at each time step. In other words, n increases
with time, while the number of vertices m is kept fixed. Let S(n) be the corresponding (random) number
of hyper-edges in the core of the hyper-graph at time n and nc ≡ min{n : S(n) ≥ 1} the onset of a
non-empty core. From Lemma 4.7 we have that for any ρ > 0 there exist κ > 0 and C < ∞ such that
{S(n) : 0 ≤ n ≤ m/ρ} intersects [1,mκ] with probability at most Cm1−l/2. Further, fixing ρ < ρc, the
probability of an empty core, i.e. S(m/ρ) = 0, decays (exponentially) in m. We thus deduce that for
large m most of the trajectories {S(n)} jump from having no core to a linear (at least mκ) core size
at the well defined (random) critical edge number nc. By the monotonicity of S(n) we also know that
Pm{nc ≤ m/ρ} = Pl(ρ,m/ρ). Therefore, Theorem 2.3 allows us to determine the asymptotic distribution
of nc. Indeed, expressing n in terms of m in Eq. (2.15) we get that for each fixed x ∈ R,

P

{
nc ≤ mρ−1

c +m1/2ρ−3/2
c αl x

}
= Φ(x) + βlΩρ

1/6
c Φ′(x)m−1/6 +O(m−η) ,

whence we read off that n̂c ≡ (nc −m/ρc)/(
√
mρ

−3/2
c αl) + βlΩρ

1/6
c m−1/6 converge in distribution to the

standard normal law (and the corresponding distribution functions converge pointwise to Φ(x) at rate
which is faster than m−η for any η < 5/26).

Remark 2.6. Our techniques are applicable to many other properties of the core in the ‘scaling regime’
ρn = ρc+r n

−1/2. For example, the distribution of the number of hyper-edges S in the core can be derived
from the approximation of the trajectory of the decimation algorithm. Namely, as shown in Section 6,
for such ρn, near the critical time z1(t) ≃

√
nξ(r)+Xn(t) for ξ(r) and Xn(t) ≡ n1/3X(n−2/3(t−nθc)) as
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in Proposition 2.2. With EXn(t) =
eF

2n (t−nθc)2, upon noting that n−S = min{t : z1(t) = 0}, we obtain

that, conditional to the existence of a non-empty core, (S − n(1 − θc))/n
3/4 converges in distribution

to (4Q11/F̃
2)1/4 Z with Z a non-degenerate random variable. Indeed, at the relevant time window

nθc±O(n3/4) the contribution of Xn(·)−EXn(·) to the fluctuations of S is negligible in comparison with

that of
√
nξ(r). So, more precisely, based on the explicit distribution of ξ(r) we have that Z

d
=

√
U − rb

for b ≡ Q
−1/2
11

∂y1
∂ρ and U a standard normal random variable conditioned to U ≥ rb. In formulae, Z is

supported on R+ and admits there the probability density

pZ(z) =
2z e−

1
2 (rb+z2)2

√
2π [1 − Φ(rb)]

.

Naively one expects the core size to have Θ(n1/2) fluctuations. This is indeed the asymptotic behavior
for a fixed ρ < ρc, but as usual in phase transitions, fluctuations are enhanced near the critical point.

The distribution of the fractions of vertices with a given degree within the core can be computed along
the same lines.

Proof. Putting together Propositions 2.1 and 2.2, we get that

Pl(n, ρn) = P

{
n1/6ξ + inf

t
X(t) ≤ 0

}
+ O(n−η) .

By Brownian scaling, X(t) = F̃−1/3G̃2/3X̃(F̃ 2/3G̃−1/3t), where X̃(t) = 1
2 t

2 + W̃ (t) and W̃ (t) is also a

two sided standard Brownian motion. With Z = inft X̃(t), and Y a standard normal random variable

which is independent of X̃(t), we clearly have that

Pl(n, ρn) = P

{
n1/6

(
∂y1
∂ρ

)
r + n1/6

√
Q11Y + F̃−1/3G̃2/3Z ≤ 0

}
+O(n−η)

= E

{
Φ
(
− r

αl
− βln

−1/6Z
)}

+O(n−η) . (2.18)

The proof of the theorem is thus completed by a first order Taylor expansion of Φ( · ) around −r/αl, as
soon as we show that EZ = −Ω, and E|Z|2 is finite. To this end, from [Gr89, Theorem 3.1], we easily
deduce that Z has the continuous distribution function FZ(z) = 1−K(−z)2, for z < 0, while FZ(z) = 1
for z ≥ 0, resulting after integration by parts with the explicit formula (2.16) for Ω. We note in passing
that taking c = 1/2 and s = 0 in [Gr89, (5.2)] provides the explicit formula (2.17) for K(x), en-route to
which [Gr89] also proves the the finiteness of the relevant integral. Further, [Gr89, Corollary 3.4] shows

that the probability that the minimum of X̃(t) is achieved as some t 6∈ [−T, T ] is at most A−1
0 e−A0T

3

for a positive constant A0. With X̃(t) ≥ W̃ (t) we therefore have that

FZ(z) ≡ P{Z ≤ z} ≤ P

{
inf

t∈[−T,T ]
X̃(t) ≤ z

}
+A−1

0 e−A0T
3 ≤ e−z

2/2T +A−1
0 e−A0T

3

,

Taking T =
√
z we deduce that if z < 0, then FZ(z) < C−1 exp(−C|z|3/2) for some C > 0, which yields

the stated finiteness of each moment of Z (and in particular, of E|Z|2 and Ω). �

3 Ensembles and transition probabilities: exact expressions

3.1 Model for the (initial) graph

Throughout the paper we follow the coding literature and identify the hyper-graph with a bipartite
graph with two types of nodes: v-nodes, corresponding to hyper-edges, and c-nodes to vertices. A graph
G in the ensemble G = Gl(n,m) consists of a set of v-nodes V ≡ [n], a set of c-nodes C ≡ [m] and an
ordered list of edges, i.e. couples (i, a) with i ∈ V and a ∈ C

E = [(1, a1), (1, a2), . . . , (1, al); (2, al+1), . . . ; (n, a(n−1)l+1), . . . , (n, anl)] ,
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where a couple (i, a) appears before (j, b) whenever i < j and each v-node i appears exactly l times in
the list, with l ≥ 3 a fixed integer parameter. The total number of graphs in this ensemble is thus

|Gl(n,m)| = mnl = coeff[(ex)m,xnl] (nl)! (3.1)

The ensemble of graphs G is endowed with the uniform distribution. One way to sample from this
distribution is by considering the v-nodes in order, i = 1, . . . , n, where for each v-node and for j = 1, . . . , l,
we choose independently and uniformly at random a c-node a = a(i−1)l+j ∈ C and add the couple (i, a)
to the list E. An alternative way to sample from the same distribution is by first attributing l sockets
to each v-node, with sockets (i − 1)l + 1, . . . , il attributed to the i-th v-node. Then, we attribute ka
sockets to each c-node a, where ka’s are mutually independent Poisson(ζ) random variables, conditioned
upon their sum being nl (these sockets are ordered using any pre-established convention). Finally, we
connect the v-node sockets to the c-node sockets according to a permutation σ of {1, . . . , nl} that is
chosen uniformly at random and independently of the choice of ka’s.

3.2 Model for the graph produced by the algorithm

The ensemble is characterized by the non-negative integers (z1, z2) ≡ ~z, τ and l ≥ 3, n,m and denoted 2

as G(~z, τ). In order for G(~z, τ) to be non-empty, we require either z2 ≥ 1 and z1 + 2z2 ≤ (n − τ)l or
z2 = 0 and z1 = (n− τ)l. An element in the ensemble is a graph G = (U, V ;R,S, T ;E) where U, V are
disjoint subsets of [n] with U ∪ V = [n] and R,S, T are disjoint subsets of [m] with R ∪ S ∪ T = [m],
having the cardinalities |U | = τ , |V | = n − τ , |R| = m − z1 − z2, |S| = z1, |T | = z2. Finally, E is an
ordered list of (n− τ)l edges

E = [(i1, a1), . . . , (i1, al); (i2, al+1), . . . ; (in−τ , a(n−τ−1)l+1), . . . , (in−τ , a(n−τ)l)] ,

such that a couple (i, a) appears before (j, b) whenever i < j. Moreover, each i ∈ V appears as the
first coordinate of exactly l edges in E, while each j ∈ U does not appear in any of the couples in E.
Similarly, each a ∈ R does not appear in E, each b ∈ S appears as the second coordinate of exactly one
edge in E, and each c ∈ T appears in at least two such edges. The total number of elements in G(~z, τ)
is thus

h(~z, τ) ≡ |G(~z, τ)| =

(
m

z1, z2, ·

)(
n

τ

)
coeff[(ex − 1 − x)z2 ,x(n−τ)l−z1 ]((n− τ)l)! .

The ensemble G(~z, τ) is endowed with the uniform distribution. In order to sample from it, first
partition [n] into U and V uniformly at random under the constraints |U | = τ and |V | = (n− τ) (there
are

(
n
τ

)
ways of doing this), and independently partition [m] to R ∪ S ∪ T uniformly at random under

the constraints |R| = m − z1 − z2, |S| = z1 and |T | = z2 (of which there are
(

m
z1,z2,·

)
possibilities).

Then, attribute l v-sockets to each i ∈ V and number them from 1 to (n − τ)l according to some pre-
established convention. Attribute one c-socket to each a ∈ S and ka c-sockets to each a ∈ T , where ka
are mutually independent Poisson(ζ) random variables conditioned upon ka ≥ 2, and further conditioned
upon

∑
a∈T ka being (n− τ)l− z1. Finally, connect the v-sockets and c-sockets according to a uniformly

random permutation on (n− τ)l objects, chosen independently of the ka’s.

3.3 Transition probabilities

We consider the graph process {G(τ), τ ≥ 0}, defined as follows. The initial graph G(0) is a uniformly
random element of Gl(n,m). At each time τ = 0, 1, . . . , if there is a non-empty set of c-nodes of degree
1, one of them (let’s say a) is chosen uniformly at random. The corresponding edge (i, a) is deleted,
together with all the edges incident to the v-node i. The graph thus obtained is G(τ+1). In the opposite
case, where there are no c-nodes of degree 1 in G(τ), we set G(τ + 1) = G(τ).

We define furthermore the process {~z(τ) = (z1(τ), z2(τ)), τ ≥ 0} on Z2
+. Here z1(τ) and z2(τ) are,

respectively, the number of c-nodes in G(τ), having degree one or larger than one, which necessarily
satisfy that (n− τ̂ )l ≥ z1(τ) + 2z2(τ) for τ̂ ≡ min(τ, inf{τ ′ ≥ 0 : z1(τ

′) = 0}).

2Since n, m and l do not vary during the execution of the algorithm, we leave them implicit in the ensemble notation.
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Lemma 3.1. The process {~z(τ) τ ≥ 0} is an inhomogeneous Markov process, whose transition probabil-
ities, denoted by

W+
τ (∆~z|~z) ≡ P{~z(τ + 1) = ~z + ∆~z |~z(τ) = ~z }

(here ∆~z ≡ (∆z1,∆z2)), are such that W+
τ (∆~z|~z) = I(∆~z = 0) in case z1 = 0, whereas for z1 > 0,

W+
τ (∆~z|~z) =

h(~z′, τ + 1)

h(~z, τ)
(τ + 1) l!

∑

D

(
m− z′1 − z′2
q0, p0, ·

)(
z′1
q1

)(
z′2
q2

)
q0
z1

·coeff[(ex − 1 − x)p0(ex − 1)q1+q2 ,xl−q0 ] . (3.2)

Here z′1 = z1 + ∆z1, z
′
2 = z2 + ∆z2. Also, using the notation z0 = m − z1 − z2 and z′0 = m − z′1 − z′2,

the collection D consists of all integers p0, q0, q1, q2 ≥ 0, satisfying the equalities




z0 = z′0 − q0 − p0 ,
z1 = z′1 + q0 − q1 ,
z2 = z′2 + p0 + q1 ,

(3.3)

and the inequalities (n− τ)l − (z1 + 2z2) ≥ l− (2p0 + q0 + q1) ≥ q2, q0 + p0 ≤ z′0, q1 ≤ z′1 (equivalently,
q0 ≤ z1), q2 ≤ z′2 (equivalently, p0 + q1 + q2 ≤ z2).

Moreover, conditional on {~z(τ ′), 0 ≤ τ ′ ≤ τ}, the graph G(τ) is uniformly distributed over G(~z, τ̂ ).
That is,

P {G(τ) = G|{~z(τ ′), 0 ≤ τ ′ ≤ τ}} =
1

h(~z, τ̂)
I(G ∈ G(~z, τ̂)) . (3.4)

Proof. Fixing τ , ~z = ~z(τ) such that z1 > 0, ~z′ = ~z(τ + 1) and G′ ∈ G(~z′, τ + 1), let N(G′|~z, τ) count the
pairs of graphs G ∈ G(~z, τ) and choices of the deleted c-node from S that result with G′ upon applying
a single step of our algorithm. Obviously, G and G′ must be such that R ⊂ R′, S ⊆ R′ ∪S′ and T ′ ⊆ T .
So, let q0 ≥ 0 denote the size of R′ ∩ S, p0 ≥ 0 the size of R′ ∩ T , and q1 ≥ 0 the size of S′ ∩ T .
We have q0 + p0 ≤ m − z′1 − z′2, q1 ≤ z′1, and the equalities of (3.3) follow as well. Let T ∗ denote the
set of c-nodes a ∈ T ′ for which ka > k′a, and denote the size of T ∗ by q2 ≤ z′2. Observe that of the l
edges of the v-node i deleted by the algorithm in the move from G to G′, exactly one edge hits each of
the nodes in R′ ∩ S, at least one edge hits each of the nodes in S′ ∩ T , and each of the nodes in T ∗,
while at least two edges hit each of the notes in R′ ∩ T . Consequently, 2p0 + q0 + q1 + q2 ≤ l. Since
z1 > 0 we know that τ̂ = τ and further, (n− τ − 1)l ≥ z′1 + 2z′2, which in view of (3.3) is equivalent to
(n− τ)l − (z1 + 2z2) ≥ l − (2p0 + q0 + q1) ≥ q2 as claimed.

To count N(G′|~z, τ) we first select the v-node i to add to G′ from among the τ + 1 elements of U ′,
and the order (permutation) of the l sockets of i that we use when connecting it to the c-nodes for
creating G ∈ G(~z, τ). Summing over the set D of allowed values of p0, q0, q1, q2, for each such value we

have
(
m−z′1−z′2
q0,p0,·

)
ways to select the nodes of R′ that are assigned to S, T and R, then

(
z′1
q1

)
ways to select

those of S′ that are assigned to T and
(
z′2
q2

)
ways to select those of T ′ that are assigned to T ∗. We further

have coeff[(ex−1−x)p0(ex−1)q1+q2 ,xl−q0 ] ways to select the precise number of edges (≥ 2) from i that
we are to connect to each of the p0 nodes in R′ ∩ T , and the precise number of edges (≥ 1) from i that
we are to connect to each of the q1 nodes in S′ ∩ T and to each of the q2 nodes in T ∗, while allocating
in this manner exactly l− q0 edges out of i (the remaining q0 then used to connect to nodes in R′ ∩ S).
Finally, noting that for each of the graphs G thus created we have exactly q0 ways to choose the deleted
node from S while still resulting with the graph G′, we conclude that

N(G′|~z, τ) = (τ + 1) l!
∑

D

(
m− z′1 − z′2
q0, p0, ·

)(
z′1
q1

)(
z′2
q2

)
q0coeff[(ex − 1 − x)p0(ex − 1)q1+q2 ,xl−q0 ] .

We start at τ = 0 with a uniform distribution of G(0) within each possible ensemble G(~z(0), 0). Since
N(G′|~ω, τ) depends on G′ only via ~ω′ it follows by induction on τ = 1, 2, . . . that this property, namely
(3.4), is preserved as long as τ̂ = τ , since if z1(τ) > 0, then

P {G(τ + 1) = G′|{~z(τ ′), 0 ≤ τ ′ ≤ τ}} =
1

z1

N(G′|~z(τ), τ)
h(~z(τ), τ)

,
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is the same for all G′ ∈ G(~z+∆~z, τ+1). Since there are exactly h(~z+∆~z, τ+1) graphs in this ensemble,
we thus recover also (3.2). Finally, noting that G(τ) = G(τ̂ ) and ~z(τ) = ~z(τ̂ ) we deduce that (3.4) holds
also when τ̂ < τ . �

4 Asymptotic expressions

4.1 Properties of the ordinary differential equations

We derive here the properties of solutions of the ODEs (2.5) and (2.8) that are needed for our analysis.
This is based on the continuity of (~x, θ) 7→ pa(~x, θ), a = 0, 1, 2 on the following compact subsets of
R2 × R+,

q̂(ǫ) ≡ {(~x, θ) : −l ≤ x1 ; 0 ≤ x2 ; θ ∈ [0, 1 − ǫ] ; 0 ≤ (1 − θ)l − max(x1, 0) − 2x2} ,

and q̂+(ǫ) = q̂(ǫ) ∩ {x1 ≥ 0}, as stated in

Lemma 4.1. For any ǫ > 0, the functions (~x, θ) 7→ pa(~x, θ), a = 0, 1, 2 are [0, 1]-valued, Lipschitz
continuous on q̂(ǫ). Further, on q̂+(ǫ) the functions (~x, θ) 7→ pa(~x, θ) have Lipschitz continuous partial
derivatives.

Proof. Fixing ǫ > 0, the stated Lipschitz continuity holds for p0(~x, θ) since both max(x1, 0) and 1/(1−θ)
are Lipschitz continuous and bounded on q̂(ǫ). Further, p0(~x, θ) ∈ [0, 1] throughout q̂(ǫ). Setting f1(0) =
2, note that f1 : R+ → [2,∞) of (2.3) is a monotone increasing, twice continuously differentiable function,
with f ′

1(λ) = [(eλ−1)2−λ2eλ]/(eλ−1−λ)2 strictly positive and bounded away from zero throughout R+.
Consequently, the inverse mapping f−1

1 is well defined and twice continuously differentiable on [2,∞),
from which we deduce that for each δ > 0 the non-negative function λ(~x, θ) is well defined, bounded and
continuously differentiable on the compact set q̂(ǫ) ∩ {(~x, θ) : x2 ≥ δ}. Though λ(~x, θ) ↑ ∞ as x2 ↓ 0,
note that p2 = (1 − p0)(1 − g(λ)) for g(λ) ≡ λ/(eλ − 1). In particular, since p2 = 1 − p0 in case x2 = 0,
it follows that p2(~x, θ) is continuous throughout q̂(ǫ). Since p0(~x, θ) is Lipschitz continuous on q̂(ǫ),
the Lipschitz continuity of p2 follows by showing that, for x1 6= 0, g(λ(~x, θ)) has bounded derivatives

as x2 ↓ 0. By letting ~ξ ≡ (~x, θ) ∈ q̂(ǫ), we have ∂ξi
g(λ) = g′(λ)∂ξi

λ. Using the definition (2.3), and
recalling that f ′

1(λ) is bounded away from zero, it follows that |∂ξi
λ| ≤ Cx−2

2 as x2 ↓ 0. On the other

hand, |g′(λ)| ≤ Ce−λ ≤ Ce−C
′/x2 in the same limit thus implying that ∂ξi

g(λ) is bounded.
Further, the identity (2.3) is equivalent to p0+p1+p2 = 1, which thus implies that p1 is also Lipschitz

continuous on q̂(ǫ). Finally, since both λ(~x, θ) and x2 are non-negative throughout q̂(ǫ), the same applies
for p1 and p2, and consequently, pa ∈ [0, 1] for a = 0, 1, 2.

Considering for the remainder of the proof ~ξ = (~x, θ) ∈ q̂+(ǫ), we replace max(x1, 0) by x1 in
the definition of (p0, p1, p2). The stated regularity of p0 is then obvious and as before the regularity of
p1 = 1−p0−p2 follows from that of p2 = (1−p0)(1−g(λ)). To this end, we see that it suffices to show that

∂ξi
g(λ) = g′(λ)∂ξi

λ, are Lipschitz continuous in ~ξ on the compact set q̂+(ǫ). As seen already λ 7→ g′(λ) is

bounded and Lipschitz continuous on R+, and ∂ξi
λ(~ξ) is bounded and has bounded derivatives on q̂+(ǫ)∩

{~ξ : x2 ≥ δ}. The proof is completed by showing that ∂ξj
[g′(λ)∂ξi

λ] = g′′(λ)∂ξi
λ∂ξj

λ + g′(λ)∂ξi
∂ξj

λ
converges to zero as x2 → 0. This is proved similarly to what was already done for the first order
derivatives. Indeed, the first and second derivatives of λ 7→ f1(λ) as well as ~ξ 7→ ∂ξi

[x2f1(λ)] and its
partial derivatives are all bounded, hence |∂ξi

λ| ≤ Cx−2
2 and |∂ξi

∂ξj
λ| ≤ Cx−4

2 as x2 → 0, which since
λ→ ∞ inversely proportional to x2 → 0, is more than compensated by the exponential decay in λ of g′

and g′′. �

Setting hρ(u) ≡ u− 1 + exp(−lul−1/ρ) and the finite and positive critical density

ρc ≡ inf{ρ > 0 : hρ(u) > 0 ∀u ∈ (0, 1]} ,

we have the following properties of the ODEs.
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Proposition 4.2. For any ρ > 0, the ODE (2.5) admits a unique solution ~y subject to the initial
conditions (2.4), and the ODE (2.8) admits a unique, positive definite, solution Q subject to the initial
conditions (2.10), such that:

(a) For any ǫ > 0, θ < 1 − ǫ, we have that (~y(θ, ρ), θ) is in the interior of q̂(ǫ), with both functions
(θ, ρ) 7→ ~y and θ 7→ Q Lipschitz continuous on (θ, ρ) ∈ [0, 1 − ǫ) × [ǫ, 1/ǫ].

(b) Let u(θ) ≡ (1 − θ)1/l and θ−(ρ) ≡ inf{θ ≥ 0 : hρ(u(θ)) < 0} ∧ 1. Then, for θ ∈ [0, θ−(ρ)]

y1(θ, ρ) = lu(θ)l−1[u(θ) − 1 + e−γu(θ)l−1

] , (4.1)

y2(θ, ρ) =
l

γ
[1 − e−γu(θ)l−1 − γu(θ)l−1e−γu(θ)l−1

] (4.2)

(where γ = l/ρ). In particular, (θ, ρ) 7→ ~y is infinitely continuously differentiable and (θ, ρ) 7→ Q

is Lipschitz continuous on {(θ, ρ) : θ ≤ min(θ−(ρ), 1 − ǫ), ǫ ≤ ρ ≤ 1/ǫ}.
(c) Let θ∗(ρ) ≡ inf{θ ≥ 0 : hρ(u(θ)) ≤ 0}. Then, θ∗(ρ) = sup{θ ≤ 1 : y1(θ

′, ρ) > 0 for all θ′ ∈ [0, θ)}
and the critical density is such that

ρc = inf{ρ > 0 : θ∗(ρ) = 1} = inf{ρ > 0 : y1(θ, ρ) > 0 ∀θ ∈ [0, 1)} . (4.3)

(d) The critical time θc ≡ θ∗(ρc) is in (0, 1), whereas θ−(ρc) = 1. For ρ = ρc the infinitely continuously
differentiable function θ 7→ y1(θ) is positive for θ 6= θc, θ 6= 1, with y1(θc) = y′1(θc) = 0, and
y′′1 (θc) > 0, while y1(1 − δ) = lδ + o(δ) for any δ > 0.

Proof. (a) For any ρ > 0 the initial condition ~y(0) of (2.4) is such that (~y(0), 0) is in the interior of q̂(ǫ).

Further, fixing ǫ > 0, by Lemma 4.1 we have that ~F (~x, θ) is bounded and Lipschitz continuous on q̂(ǫ).

Consequently, for θ ∈ [0, θǫ] there exists a unique solution ~y(θ) of the ODE (2.5) (i.e. d~y
dθ = ~F (~y, θ)),

starting at this initial condition, where θǫ = inf{θ > 0 : (~y(θ), θ) /∈ q̂(ǫ)} is strictly positive, and
(~y(θǫ), θǫ) is necessarily on the boundary of q̂(ǫ). We proceed to verify that θǫ = 1 − ǫ by showing that:

(i) y1(θǫ) > −l. Indeed, since y1(0) > 0 and F1(~y(θ), θ) ≥ −l, we have y1(θǫ) ≥ −lθǫ > −l.
(ii) y2(θǫ) > 0. In fact x2 = 0 implies p1(~x, θ) = 0, and therefore F2(~x, θ) = 0. By the Lipschitz

continuity of F2 on q̂(ǫ) it follows that F2(~x, θ) ≥ −Cx2 for some finite C and all x2 in q̂(ǫ).
Therefore, y2(θǫ) ≥ y2(0)e−Cθǫ > 0.

(iii) v(θǫ) > 0, where v(θ) = w(~y(θ), θ) for w(~x, θ) = l(1 − θ) − max(x1, 0) − 2x2. Indeed, note that
v(0) > 0 and

dv

dθ
= [−l + 2(l− 1)p1(~y, θ)] I(y1(θ) ≤ 0) − (l − 1)p2(~y, θ) I(y1(θ) > 0) .

Further, recall that if w(~x, θ) = 0 then p2(~x, θ) = 0, and if in addition x1 ≤ 0, then also p1(~x, θ) = 1.
Hence, by the Lipschitz continuity of p1(·, ·) and p2(·, ·) on q̂(ǫ) we have that p2(~x, θ) ≤ 2Cw(~x, θ)
and p1(~x, θ) ≥ (1 − Cw(~x, θ))I(x1 ≤ 0) for some finite C > 0, throughout q̂(ǫ). Since l ≥ 2, it
follows that dv

dθ ≥ −2(l − 1)Cv(θ) for all θ ∈ [0, θǫ], resulting with v(θǫ) ≥ v(0)e−2(l−1)Cθǫ > 0.

Lemma 4.1 further implies that for any a, b ∈ {1, 2} both Aab(~x, θ) ≡ ∂xb
Fa(~x, θ) and Gab(~x, θ) are

uniformly bounded over q̂(ǫ). The linear ODE (2.8) has these functions as its coefficients, for ~x = ~y(θ).
We thus deduce that there exists a unique solution Q(θ) of the initial value problem for this ODE at
least for θ ∈ [0, θǫ]. With θǫ = 1− ǫ and ǫ > 0 arbitrarily small we established the existence of a unique
solution (~y,Q) for θ ∈ [0, 1).

If also follows from the above discussion that θǫ = 1 − ǫ and ~y(θ, ρ) is Lipschitz continuous in θ

on [0, 1 − ǫ] × [ǫ, 1/ǫ]. Further, applying Gronwall’s lemma, the Lipschitz continuity of ~F (~x, θ) implies
that the solution ~y(θ) of the ODE is then also Lipschitz continuous with respect to the initial condition
~y(0), with a uniform in θ ≤ 1 − ǫ bound on the corresponding Lipschitz norm. Clearly, ~y(0) of (2.4) is
differentiable in ρ with a uniformly bounded derivative when ρ ∈ [ǫ, 1/ǫ]. Consequently, we arrive at the
stated Lipschitz continuity of (θ, ρ) 7→ ~y(θ, ρ).
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The same argument shows that the initial conditions (2.10) for the ODE (2.8) are bounded in
ρ ∈ [ǫ, 1/ǫ]. Further, ~y(θ, ρ) stays in q̂(ǫ) and with the coefficients of the linear ODE (2.8) uniformly
bounded on [0, 1−ǫ]×[ǫ, 1/ǫ], its solution Q is also Lipschitz continuous in θ. Suppressing the dependence

of the various matrices on ρ, set B
ζ
ζ = I and, for θ ≥ ζ

dBθζ

dθ
= A(~y(θ), θ)Bθζ . (4.4)

It is easy to check that the unique solution of (2.8) is given by

Q(θ) = Bθ0 Q(0) (Bθ0)
† +

∫ θ

0

Bθζ G(~y(ζ), ζ) (Bθζ )
†dζ , (4.5)

for the non-negative definite matrix G(~x, θ) of (2.9). In particular, starting from the symmetric, positive
definite Q(0) of (2.10), this implies that Q(θ) is non-negative definite. Further, since detB0

0 = 1 and

d(detBθ0)

dθ
= (detBθ0)Trace(A(~y(θ), θ)) ,

with the entries of A(~x, θ) uniformly bounded, it follows that detBθ0 > 0, hence the solution Q(θ) of (2.8)
is positive definite.
(b) Though this is a special case of a result of [LMSS01], we provide its short proof for the reader’s
convenience. We first check that ~y(θ, ρ) of Eqs. (4.1) and (4.2) is the unique solution of the ODE (2.5)
for θ ∈ [0, θ−(ρ)]. To this end, first note that for θ = 0 the functions ~y(θ, ρ) of Eqs. (4.1) and (4.2) satisfy
the initial condition (2.4). Further, the function y1(θ, ρ) of Eq. (4.1) is non-negative for θ ∈ [0, θ−(ρ)].
Hence, upon substituting y1(θ, ρ) for max(x1, 0) and y2(θ, ρ) for x2 on the right hand side of Eq. (2.3), and
noticing that (1−θ) = u(θ)l, it is not hard to verify that this equation is satisfied by λ(~y(θ), θ) = γu(θ)l−1.

Using this value of λ yields after some algebra that F1(~y(θ), θ) = −1− (l−1)
u (u−1+e−γu

l−1−γul−1e−γu
l−1

)

and F2(~y(θ), θ) = −γ(l − 1)ul−2e−γu
l−1

. With du
dθ = −u1−l/l, it is then immediate to verify that the

functions given by Eqs. (4.1) and (4.2) indeed satisfy Eq. (2.5) as long as θ ≤ θ−(ρ). Clearly, ~y(θ, ρ) of
Eqs. (4.1) and (4.2) is infinitely continuously differentiable on [0, 1− ǫ]× [ǫ, 1/ǫ]. With Q(θ, ρ) Lipschitz
continuous in θ (by (a)), it remains only to show that this function is Lipschitz continuous with respect
to ρ ∈ [ǫ, 1/ǫ]. Since the ODE (2.8) is linear and of bounded coefficients, with initial condition Q(0) of
(2.10) that is Lipschitz continuous in ρ ∈ [ǫ, 1/ǫ] it suffices to show that the coefficients Aab(~x, θ) and
Gab(~x, θ), are Lipschitz continuous in ~x on q̂+(ǫ). We deduce the latter property from Lemma 4.1 upon
noting that these coefficients are smooth bounded functions of pa and ∂xb

pa.
(c) We turn to verify that ρc satisfies (4.3). We have already seen that the solution of (2.5) starting
at ~y(0) of (2.4) is given for θ ≤ θ∗(ρ) ≤ θ−(ρ) by Eqs. (4.1) and (4.2), and in particular is such that
y1(θ, ρ) > 0 for all θ < θ∗(ρ). Further, ρ 7→ θ∗(ρ) is monotone non-decreasing, and since u(1) = 0, we
see that θ∗(ρ) ≤ 1 for all ρ > 0. Thus, to complete the proof it suffices to assume that for some positive
δ and ρ0 the solution of the ODE (2.5) is such that y1(θ, ρ0) > 0 for all θ ∈ [0, θ∗(ρ0) + δ] and arrive at
a contradiction. To this end, note that for ρ = ρ0 and θ ≤ θ∗(ρ0) + δ, the solution of (2.5) must also
satisfy the modified ODE

d~y

dθ
(θ) = ~F ∗(~y(θ), θ) , (4.6)

where ~F ∗(~x, θ) = (−1 + (l − 1)(p∗1 − p∗0),−(l − 1)p∗1) and p∗a are obtained by replacing max(x1, 0) in
Eqs. (2.2) and (2.3) with x1. Modifying the set q̂(ǫ) in the same manner, it is easy to verify that the
statement and proof of Lemma 4.1 remain valid for p∗a(~x, θ) (apart from the fact that the latter are
not [0, 1] valued). We also find that θǫ = 1 − ǫ for the ODE (4.6), from which we can deduce that the
latter ODE also admits a unique solution subject to the initial condition (2.4). Further, the preceding
computations show that for every ρ > 0 the solution of (4.6) starting at (2.4) is given by Eqs. (4.1) and
(4.2). In particular, at ρ = ρ0 this is also the solution of the ODE (2.5) on [0, θ∗(ρ0) + δ]. However, by
definition of θ∗(ρ), necessarily y1(θ, ρ0) of (4.1) is non-positive for some θ ∈ (θ∗(ρ0), θ∗(ρ0)+δ), resulting
with the desired contradiction.
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(d) Simple calculus shows that either u 7→ hρ(u) is monotone increasing and positive on (0,∞), which
happens for all ρ large enough, or h′ρ(u) = 0 has exactly two positive solutions, u1 = u1(ρ) corresponding
to a local maximum of hρ and u2 = u2(ρ) > u1 corresponding to a local minimum of hρ. With hρ(0) = 0
and hρ(·) positive on [1,∞), while hρ(u2(ρ)) < 0 for all ρ > 0 small enough, it follows from the definition
of ρc that hρc(u2) = 0 at u2 = u2(ρc) ∈ (0, 1) and hρc(u) is positive at any positive u 6= u2. Hence,
by definition θ−(ρc) = 1 while θ∗(ρc) = 1 − u2(ρc)

l ∈ (0, 1). From part (b) of the proposition we thus
have that at ρ = ρc the function y1(θ) is infinitely continuously differentiable, with y1(θ) = h(u(θ)) for
h(u) = lul−1hρc(u) (c.f. Eq. (4.1)). In particular, y1(θ) is then zero when θ = θc or θ = 1 and positive
elsewhere (per the preceding analysis of hρc). Further, at θ = θc we have u(θ) = u2(ρc), an isolated
minimizer of h(u), and as u′(θc) > 0, it follows by elementary calculus that y′1(θc) = 0 and y′′1 (θc) > 0.
Also, h(u) = lul(1 +O(ul−2)) for small u, hence y1(1 − δ) = lδ + o(δ) at ρ = ρc. �

We conclude this section by showing that the discrete recursions corresponding to the mean and
covariance of the process ~z ′(·) of (2.12) are near the solution of the relevant ODEs (at least for ρ near

ρc and up to time τn ≡ ⌊nθc − nβ⌋). More precisely, for Ãτ ≡ Iτ<τn
A(~y(τ/n, ρ), τ/n), let

~y ∗(τ + 1) = ~y ∗(τ) + n−1Ãτ (~y
∗(τ) − ~y(τ/n)) + n−1 ~F (~y(τ/n), τ/n) , (4.7)

starting at ~y ∗(0) ≡ ~y(0, ρ) and consider the positive definite matrices

Qτ = B̃τ−1
0 Q(0, ρ)(B̃τ−1

0 )† +

τ−1∑

σ=0

B̃τ−1
σ+1 G(~y(σ/n), σ/n) (B̃τ−1

σ+1)
† (4.8)

for B̃τσ of (2.13). Then,

Lemma 4.3. Fixing β ∈ (3/4, 1) and β′ < 2β − 1 we have for all n large enough and |ρ− ρc| ≤ nβ
′−1

|n1/2y ∗
1 (τn) − F̃

2
n2β−3/2 − n1/2(ρ− ρc)

∂y1
∂ρ

(θc, ρc)| ≤ Cn3β−5/2 , (4.9)

the matrices {B̃τσ : σ, τ ≤ n} and their inverses are uniformly bounded with respect to the L2-operator
norm (denoted ‖ · ‖), and

||Qτn
− Q(θc, ρc)|| ≤ Cnβ−1 , (4.10)

for some finite C = C(β, β′) and all n.

Proof. Recall part (a) of Proposition 4.2 that ~y(θ, ρ) ∈ q̂(ǫ) for θ ≤ 1 − 2ǫ and ρ ∈ [ǫ, 1/ǫ]. Thus, fixing

β, β′ and 0 < ǫ < (1− θc)/2, it follows that the operator norm of Ãτ is uniformly bounded over τ ≤ τn,
|ρ− ρc| ≤ nβ

′−1 and n ≥ n0 (hereafter ni and ci, i = 0, 1, . . . are two non-decreasing sequences of finite

constants, each depending only on l, β, β′ and ǫ). Consequently, the matrices B̃τσ of (2.13) and their
inverses are also uniformly bounded with respect to the L2-operator norm for n ≥ n1, σ, τ and ρ as
before.

We proceed to show that {~y ∗(τ), τ ≤ τn} is close to the solution ~y(·, ρ) of the ODE (2.5). To this

end, let D∗
n(τ) ≡ ~y ∗(τ)− ~y(τ/n, ρ), noting that by definition D∗

n(τ +1) = (I +n−1Ãτ )D
∗
n(τ) + ~ξn(τ) for

τ ≥ 0, with D∗
n(0) = 0 and

~ξn(τ) =

∫ τ+1
n

τ
n

[
~F (~y(τ/n), τ/n) − ~F (~y(θ), θ)

]
dθ .

By the Lipschitz continuity of (θ, ρ) 7→ ~y on [0, 1 − ǫ] × [ǫ, 1/ǫ] (see Proposition 4.2), we know that
||~y(θ) − ~y(τ/n)|| ≤ c0/n for some finite c0, all θ ∈ [τ/n, τ/n+ 1/n] and any τ < (1 − ǫ)n. Further, since

||~F (~x, θ)|| ≤ 2l and (~x, θ) 7→ ~F = (−1 + (l− 1)(p1 − p0),−(l− 1)p1) is Lipschitz continuous on q̂(ǫ) (see
Lemma 4.1), we deduce that for some finite constant C∗ = C∗(l, ǫ) all n, τ < (1 − ǫ)n and ρ ∈ [ǫ, 1/ǫ],

||~ξn(τ)|| ≤
1

n
sup

θ∈[τ/n,τ/n+1/n]

||~F (~y(θ), θ) − ~F (~y(τ/n), τ/n)|| ≤ C∗n
−2 . (4.11)
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Since D∗
n(τ) =

∑τ−1
σ=0 B̃τ−1

σ+1
~ξn(σ), and ||B̃τσ|| are uniformly bounded, we deduce that

sup
n≥n2

sup
|ρ−ρc|≤nβ′

−1

sup
τ≤τn

n||~y ∗(τ) − ~y(τ/n, ρ)|| ≤ c1 <∞ . (4.12)

Let θn ≡ τn/n, ∆θn ≡ θn − θc = −nβ−1 and ∆ρ ≡ ρ − ρc. Note that y1(θ, ρc) ≥ c(∆θn)2 for some
c > 0, all n and θ ∈ [0, θn] (see part (d) of Proposition 4.2). Further, recall that |∆ρ| ≤ nβ

′−1 = o((∆θn)2)
by our choice of β′ < 2β−1. The Lipschitz continuity of ρ 7→ ~y(θ, ρ) for θ ≤ θ−(ρ) thus implies that both
(θc, ρc) and (θn, ρ) for n ≥ n4 and |ρ−ρc| ≤ nβ

′−1 are in the set Aǫ ≡ {(θ, ρ) : θ ≤ min(θ−(ρ), 1−ǫ), ǫ ≤
ρ ≤ 1/ǫ} where (θ, ρ) 7→ ~y is infinitely continuously differentiable (see part (b) of Proposition 4.2). Hence,
by Taylor expanding y1(·) around (θc, ρc) where y1 = ∂y1

∂θ = 0, we obtain that for some c′2, c2 and all n,

∣∣∣∣y1(θn, ρ) − ∆ρ
∂y1
∂ρ

− 1

2
(∆θn)

2 ∂
2y1
∂θ2

∣∣∣∣ ≤ c′2(|∆ρ| + |∆θn|)( |∆ρ| + (∆θn)
2 ) ≤ c2n

3(β−1) (4.13)

(with all partial derivatives evaluated at (θc, ρc)). Recall that F̃ ≡ ∂2y1
∂θ2 , so the left side of (4.9) is

bounded above by

n1/2||~y ∗(τn) − ~y(τn/n, ρ)|| + n1/2

∣∣∣∣y1(θn, ρ) − ∆ρ
∂y1
∂ρ

− 1

2
(∆θn)

2 ∂
2y1
∂θ2

∣∣∣∣ .

Thus, controlling the first term via (4.12) and the second term via (4.13) yields the bound of (4.9).
Turning now to the proof of (4.10), recall that the solution Q(·) of Eq. (2.8) is Lipschitz continuous

in (θ, ρ) on the set Aǫ (see part (b) of Proposition 4.2). As both (θc, ρc) and (θn, ρ), n ≥ n4 are in this
set, it follows that for some finite c′3, c3 and all n,

‖Q(θn, ρ) − Q(θc, ρc)‖ ≤ c′3(|∆θn| + |∆ρ|) ≤ c3n
β−1

(recall that β′ < 2β − 1 < β). Further, Q(θ, ρ) is given by (4.5), where the matrices G(~y(ζ), ζ) are
bounded and Lipschitz continuous in ζ (with respect to the L2 operator norm) uniformly in n ≥ n4 and
ζ ≤ θn. The same uniform boundedness applies for Q(0, ρ) and Bθζ , 0 ≤ ζ ≤ θ ≤ 1 − ǫ (see proof of
part (a) of Proposition 4.2). Hence, comparing Eqs. (4.5) and (4.8) we thus deduce that (4.10) is an
immediate consequence of

sup
0≤ζ≤θn

|| B̃τn−1
⌈nζ⌉ − B

θn

ζ || ≤ c4 n
−1 , (4.14)

holding for some finite c4 and all n. To this end, let Dn(σ, τ) ≡ || B̃τ−1
σ − B

τ/n
σ/n ||, noting that by the

definition of Bθζ and B̃τσ we have that Dn(σ, σ) = 0 and for all τ ≥ σ,

Dn(σ, τ + 1) ≤ Dn(σ, τ) + n−1 sup
θ∈[ τ

n
, τ+1

n ]

∣∣∣
∣∣∣Ãτ B̃τ−1

σ − A(~y(θ, ρ), θ)Bθσ/n

∣∣∣
∣∣∣ . (4.15)

As (~y(θ, ρ), θ), θ ≤ θn and n ≥ n4 are in the set q̂+(ǫ) in which (~x, θ) 7→ A(~x, θ) is bounded and Lipschitz
continuous (for the operator norm), it follows that for some c5 finite and all n,

sup
τ<τn

sup
θ∈[ τ

n
, τ+1

n ]
||Ãτ − A(~y(θ, ρ), θ)|| ≤ c5n

−1 . (4.16)

Further, with ||A(~y(θ, ρ), θ)|| bounded uniformly in (θ, ρ), we have from (4.4) the existence of c6 finite,
such that

||Bθζ − Bθ
′

ζ′ || ≤ c6(|θ − θ′| + |ζ − ζ′|) , (4.17)

for any ρ ∈ [ǫ, 1/ǫ] 0 ≤ ζ ≤ θ ≤ 1 − ǫ, and 0 ≤ ζ′ ≤ θ′ ≤ 1 − ǫ. So, with Ãτ , B
τ/n
σ/n and A(·) uniformly

bounded, by the Lipschitz properties (4.16) and (4.17) we have that

||Ãτ B̃τ−1
σ − A(~y(θ), θ)Bθσ/n|| ≤ c7Dn(σ, τ) + c8n

−1 ,
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for some c7, c8 finite and all n, σ ≤ τ ≤ τn and θ ∈ [τ/n, (τ + 1)/n]. Plugging this bound in (4.15) we
have that Dn(σ, τ +1) ≤ (1+ c7n

−1)Dn(σ, τ)+ c8n
−2, from which we deduce that for some c9 finite and

all n,
max

0≤σ≤τ≤τn

Dn(σ, τ) ≤ c9 n
−1 .

By (4.17), this yields the bound (4.14), hence completing the proof of (4.10) and that of the lemma. �

4.2 Asymptotic enumeration of the graph ensemble

Here we show that the initial distribution of the Markov chain ~z(·) of Section 3 is well approximated
by a multivariate Gaussian law of mean n~y(0) and positive definite covariance matrix nQ(0), with the
rescaled mean ~y(0) and covariance Q(0) given by the initial condition of the corresponding ODE’s,
namely, Eqs. (2.4) and (2.10), respectively.

Lemma 4.4. For ~x ∈ Rd and a positive definite d-dimensional matrix A, let Gd(·|~x; A) denote the d-
dimensional normal density of mean ~x and covariance A. Further, let ~z = (z1, z2) denotes the number of
c-nodes of degree 1 and of degree strictly greater than 1 in a random graph from the Gl(n, ⌊nρ⌋) ensemble.
Then, for any ǫ > 0 there exist finite, positive constants κ0, κ1, κ2 and κ3, such that for all n, r, and
ρ ∈ [ǫ, 1/ǫ],

‖E~z − n~y(0)‖ ≤ κ0 , (4.18)

P{|| ~z − E~z || ≥ r} ≤ κ1 e
−r2/κ2n , (4.19)

sup
~u∈R2

sup
x∈R

∣∣∣∣P{~u · ~z ≤ x} −
∫

~u·~z≤x
G2(~z|n~y(0);nQ(0)) d~z

∣∣∣∣ ≤ κ3n
−1/2 . (4.20)

Proof. Set m = ⌊nρ⌋ and γ = l/ρ. Recall that the description of the ensemble Gl(n,m) in Section 3.1
provides the following expression for the probability P(~z) of having exactly z1 c-nodes of degree one and
z2 c-nodes of degree strictly greater than one,

P(~z) =
h(~z, 0)

mnl
=

Pγ

{
~Sm = (z1, z2, nl)

}

Pγ

{
S

(3)
m = nl

} , (4.21)

where ~Sm =
∑m

i=1
~Xi for ~Xi = (INi=1, INi≥2, Ni) ∈ Z3

+ and Ni that are i.i.d. Poisson(γ) random
variables. Consequently,

E z1 = mPγ{N1 = 1}Pγ{S(3)
m−1 = nl − 1}

Pγ

{
S

(3)
m = nl

}

E z2 = m− Ez1 −mPγ{N1 = 0}Pγ{S(3)
m−1 = nl}

Pγ

{
S

(3)
m = nl

} .

With |ρn−m| ≤ 1 and ~y(0) of Eq. (2.4) such that n~y(0) = nρ(Pγ{N1 = 1},Pγ{N1 ≥ 2}), we easily get

(4.18) upon using the fact that S
(3)
k is a Poisson(kγ) random variable and the sequence m|e(1− 1

m )m−1|
is uniformly bounded.

By (4.18), in deriving (4.19) we may and shall replace E~z by m
ρ ~y(0) = (ES

(1)
m ,ES

(2)
m ). In view of

(4.21), the stated bound (4.19) is then merely,

Pγ

{
|S(1)
m − ES(1)

m |2 + |S(2)
m − ES(2)

m |2 ≥ r2
∣∣∣S(3)

m = nl
}
≤ κ1 e

−r2/κ2n ,

which is an immediate consequence of Hoeffding’s inequality for the partial sums (S
(1)
m , S

(2)
m ) and the

uniform lower bound Pγ{S(3)
m = nl} ≥ cn−1/2 with c > 0 depending only on ǫ and l.
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Observe next that ~Xi are non-degenerate lattice random variables on R3, having minimal lattice Z3,
finite moments of all orders and such that

cov( ~Xi) ≡ V =




p1(1 − p1) −p1p≥2 p1(1 − γ)
−p1p≥2 p≥2(1 − p≥2) γ − p1 − γp≥2

p1(1 − γ) γ − p1 − γp≥2 γ


 ,

with p1 = Pγ(Ni = 1) = γ e−γ and p≥2 = Pγ(Ni ≥ 2) = 1 − e−γ − γ e−γ . Thus, upon bounding

(1 + ‖~u‖3)P1(−G3(·|~0,V) : {ξν})(~u) for the correction term P1 of [BR76, (7.19)] (with {ξν} denoting the

cumulants of the law of ~X1), uniformly in γ ∈ [ǫ′, 1/ǫ′] and ~u ∈ R3, it follows from Corollary 22.3 of
[BR76] (with s = 3 there), that for some finite c = c(ǫ′), any such γ, all m and ~z ∈ Z2,

∣∣∣Pγ
{
~Sm = ~ze

}
− G3(~ze |m~xe; mV)

∣∣∣ ≤ cm−2

1 +m−3/2‖ ~ze −m~xe ‖3
, (4.22)

where ~ze = (~z, nl) and ~xe ≡ ρ−1(~y(0), l) = Eγ ~X1. Applying the same argument for S
(3)
m ∈ R1, and

possibly enlarging c(ǫ′) as needed we further have that

|Pγ{S(3)
m = nl} − G1(nl |mγ; mV33)| ≤ cm−1 . (4.23)

Next, summing the bound of (4.22) over ~z ∈ Z2, we deduce that for some finite c′ = c′(ǫ) any γ and m,

∑

~z∈Z2

∣∣∣Pγ
{
~Sm = ~ze

}
− G3(~ze |m~xe; mV)

∣∣∣ ≤ c′m−1 . (4.24)

Further, Pγ{S(3)
m = nl} =

∑
~z Pγ{~Sm = ~ze}, hence we get from Eq. (4.21) and the bounds of (4.23) and

(4.24) that for some finite κ = κ(ǫ′) and any γ and m,

∑

~z∈Z2

∣∣∣∣P(~z) − G3(~ze |m~xemV)

G1(nl |mγ; mV33)

∣∣∣∣ ≤
cm−1 + c′m−1

G1(nl |mγ; mV33)
≤ κn−1/2 (4.25)

(with the rightmost inequality due to the uniform lower bound on m1/2G1(nl |mγ; mV33) for |nl−mγ| ≤
l/ǫ′). The ratio G3(· · · )/G1(· · · ) appearing in (4.25), is the conditional distribution of (z1, z2), given
z3 = nl, under the (joint) law G3(· · · ), which is thus a Gaussian distribution of mean n′~y(0) and the

positive definite covariance matrix n′Ṽ, with n′ ≡ m/ρ and the entries of the 2-dimensional matrix Ṽ

given by Ṽij = ρ[Vij − Vi3Vj3/V33]. Upon substituting the expressions for p1 and p≥2, we see that Ṽ

coincides with Q(0) of Eq. (2.10).
So, it follows from (4.25) that

sup
~u∈R2

sup
x∈R

∣∣∣∣∣∣
P{~u · ~z ≤ x} −

∑

~u·~z≤x
G2(~z|n′~y(0); n′Q(0))

∣∣∣∣∣∣
≤ κn−1/2 .

We thus arrive to (4.20) upon observing first that

sup
h≤1

sup
~u∈R2

sup
x∈R

1

h

∣∣∣∣∣∣

∑

~u·~z≤x
G2(~z|h−2~y(0); h−2Q(0)) −

∫

~u·~z≤x
G2(~z|h−2~y(0);h−2Q(0)) d~z

∣∣∣∣∣∣

is uniformly bounded in γ by the Euler-MacLaurin sum formula (c.f. Theorem A.4.3 of [BR76] for the
Schwartz function G2(·|~0; Q(0)), where the correction in Λ1(~x) of [BR76, (A.4.20)] to the Gaussian distri-
bution is then at most κ′h for a finite κ′(ǫ), all ~x ∈ R2 and γ), then noting that

√
n sup~u supx |G(~u, x;n)−

G(~u, x;n′)| is bounded in γ, n and |n′ − n| ≤ 1/ǫ for the Gaussian distribution function G(~u, x; r) ≡∫
~u·~z≤x G2(~z|r~y(0); rQ(0))d~z. �
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4.3 Asymptotic transition probabilities

We next prove an approximated formula for the transition probabilities W+
τ (∆~z|~z), that we often use

in the sequel. This formula is valid throughout Q+(ǫ) ≡ Q(ǫ) ∩ {z1 ≥ 1} ⊆ Z3, where for each ǫ > 0,

Q(ǫ) ≡ {(~z, τ) : −nl+ nǫ ≤ z1 ; nǫ ≤ z2 ; 0 ≤ τ ≤ n(1 − ǫ) ; nǫ ≤ (n− τ)l − max(z1, 0) − 2z2} ,

is a finite subset of Z3. As many of our approximations involve the rescaled variables ~x ≡ n−1~z and
θ ≡ τ/n, we note in passing that if (~z, τ) ∈ Q(ǫ) then necessarily (~x, θ) is in the set q̂(ǫ) of Lemma 4.1
and if further (~z, τ) ∈ Q+(ǫ) then also (~x, θ) ∈ q̂+(ǫ).

Lemma 4.5. For each θ ∈ [0, 1) let Kθ : R2 → Kθ denote the projection onto the convex set Kθ ≡ {~x ∈
R2

+ : x1 + 2x2 ≤ l(1 − θ)}. Recall that each θ ∈ [0, 1) and ~x ∈ Kθ specifies by Eqs. (2.2) a well defined
probability vector (p0, p1, p2). For such θ, ~x define the transition kernel

Ŵθ(∆~z|~x) ≡
(

l − 1

q0 − 1, q1, q2

)
p
q0−1
0 p

q1
1 p

q2
2 , (4.26)

where q0 = −∆z1 − ∆z2 ≥ 1, q1 = −∆z2 ≥ 0, q2 = l + ∆z1 + 2∆z2 ≥ 0. For any ~x ∈ R2, set
Ŵθ(·|~x) ≡ Ŵθ(·|Kθ(~x)). That is, ∆z1 = −1 − q̃0 + q1 and ∆z2 = −q1, with (q̃0, q1, q2) having the
multinomial law of parameters l − 1, p0, p1, p2 that correspond to the projection of ~x onto Kθ.

Then, there exist a positive constant C = C(l, ǫ), such that, for any ρ ∈ [ǫ, 1/ǫ], (~z, τ) ∈ Q+(ǫ),
∆z1 ∈ {−l, . . . , l − 2}, ∆z2 ∈ {−(l − 1), . . . , 0}, and all n

∣∣∣W+
τ (∆~z|~z) − Ŵτ/n(∆~z|n−1~z)

∣∣∣ ≤ C

n
.

Proof. Following the notations of Lemma 3.1, for each ~q = (p0, q0, q1, q2) ∈ D, let

cl(~q) =

(
p0 + q1 + q2
p0, q1, q2

)
coeff[(ex − 1 − x)p0(ex − 1)q1+q2 ,xl−q0 ] , (4.27)

and for ~z = (z1, z2) let

gl(~z) =
∑

~q∈D

(
z1 − 1

q0 − 1

)(
z2

p0 + q1 + q2

)
cl(~q) .

Using the identities z0 = z′0 − q0 − p0, z
′
1 − q1 = z1 − q0 and z′2 − q2 = z2 − p0 − q1 − q2 of (3.3) it follows

after elementary algebra that gl(~z) equals the sum over D in (3.2) times the term
(

m
z0,z1,z2

)
/
(

m
z′0,z

′

1,z
′

2

)
.

Next note that for any λ > 0, and integers t, s ≥ 1,

pλ(t, s) = coeff[(ex − 1 − x)t,xs]λs(eλ − 1 − λ)−t , (4.28)

is precisely

pλ(t, s) = Pλ

{
t∑

i=1

Ni = s

}
,

where {Ni} are i.i.d. random variables, with Pλ(N1 = k) = P(Nλ = k|Nλ ≥ 2) and Nλ a Poisson
random variable of parameter λ > 0. It is not hard to explicitly compute

f1(λ) = Eλ(N1) =
λ(eλ − 1)

eλ − 1 − λ
,

f2(λ)
2 = Varλ(N1) =

λ

(eλ − 1 − λ)2
[(eλ − 1)2 − λ2eλ] ,

and the normalized k-th moment fk(λ) = Eλ(N1 − f1(λ))
k/f2(λ)

k, k ≥ 3.
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The behavior of f1 was already considered in the proof of Lemma 4.1. Moreover f2 : R+ → R+

is bounded away from zero and infinity when λ is bounded away from zero and infinity, respectively,
resulting with fk(λ) that are also bounded away from infinity for each k.

Using (4.28) and writing explicitly the remaining terms in the expression (3.2), it is not hard to
verify that

W+
τ (∆~z|~z) = nl−1

(
l(n− τ) − 1

l− 1

)−1

λl+∆z1 (eλ − 1 − λ)∆z2
pλ(z

′
2, (n− τ − 1)l − z′1)

pλ(z2, (n− τ)l − z1)
ĝl(~z) , (4.29)

where z′1 = z1 + ∆z1, z
′
2 = z2 + ∆z2 and ĝl(~z) ≡ gl(~z)/n

(l−1).
Let ξ ≡ ((n − τ)l − z1)/z2. Since (n− τ)l ≥ z1 + 2z2 we have that ξ ≥ 2, and there exists a unique

non-negative solution of f1(λ) = ξ. Further, as long as (~z, τ) ∈ Q+(ǫ) we get that 2 + (ǫ/ρ) ≤ ξ ≤ l/ǫ
and hence ǫ2 ≤ λ ≤ l/ǫ (for ρ ≤ 1/ǫ). We show in the sequel that this implies that there exist a positive
constant C̃ = C̃(l, ǫ), such that, for any ∆z1 ∈ {−l, . . . , l − 2} and ∆z2 ∈ {−(l− 1), . . . , 0},

∣∣∣∣
pλ(z2 + ∆z2, (n− τ)l − z1 − l − ∆z1)

pλ(z2, (n− τ)l − z1)
− 1

∣∣∣∣ ≤
C̃

n
. (4.30)

Further, the positive term λl+∆z1 (eλ − 1 − λ)∆z2 does not depend on n, whereas elementary calculus
implies that

nl−1

(
(n− τ)l − 1

l − 1

)−1

=
(l − 1)!

[l(1 − θ)]l−1
(1 +Rn) , (4.31)

where |Rn| ≤ C̄(l)/(nǫ) in Q+(ǫ).
We turn to the asymptotic of ĝl(~z) for (~z, τ) ∈ Q+(ǫ). To this end, note that the condition 2p0 +q0 +

q1+q2 ≤ l implies that the set D is at most of size l4 and that the non-negative coefficients cl(~q) of (4.27)
are bounded, uniformly in ~q by someK = K(l) <∞ that is independent of z1 and z2 (hence independent
of n). On Q+(ǫ) the contribution to ĝl(~z) of the term indexed by ~q is at mostKn−(l−1)(nl)p0+q0+q1+q2−1.
As 2p0+q0+q1+q2 ≤ l, the sum over terms with either p0 > 0 or q2 < l−q0−q1 is at most Kll−p0+3n−1.

Consider now ~q with p0 = 0 and q2 = l− q0− q1, in which case q1 = −∆z2 and q0 = −∆z1−∆z2 ≥ 1
are uniquely determined by ∆~z. Note that cl(~q) =

(
l−q0
q1

)
for these choices of p0 and q2, resulting with

ĝl(~z) = n−(q0−1) (z1 − 1)!

(z1 − q0)!

1

(l − 1)!
xl−q02

(
l − 1

q0 − 1, q1, q2

)
+ R̃n , (4.32)

for some |R̃n| ≤ K̃(l, ǫ)/n. Since,

xq0−1
1

(
1 − l2

n

)
≤ n−(q0−1) (z1 − 1)!

(z1 − q0)!
≤ xq0−1

1 ,

replacing n−(q0−1)(z1 − 1)!/(z1 − q0)! in (4.32) by xq0−1
1 and collecting together (4.29), (4.30), (4.31),

and (4.32), results with the statement (4.26) of the lemma (note that 2q1 + q2 = l + ∆z1).
We complete the proof of the lemma by showing that (4.30) is a consequence of a local CLT for

the sum Sk of i.i.d. lattice random variables Xi = (Ni − ξ)/f2(λ). Indeed, Xi have zero mean, unit
variance and for some finite Ck we have that |E(Xk

1 )| = |fk(λ)| ≤ Ck for all (~z, τ) ∈ Q+(ǫ). Further,
pλ(z2, (n − τ)l − z1) = P(Sk = 0) and pλ(z2 + ∆z2, (n − τ)l − z1 − l − ∆z1) = P(Sk′ = η) for k = z2,
k′ − k = ∆z2 ∈ {−(l − 1), . . . , 0} and η = −(l + ∆z1 + ξ∆z2)/f2(λ). Note that η is uniformly bounded
by some c1 = c1(l, ǫ) on Q+(ǫ) and in the lattice of span b = f2(λ)

−1 of possible values of Sk′ . Thus,
for some finite c2 = c2(l, ǫ), all η and k′ as above, we have by Theorem 5.4 and (5.27) of [Hal82] that,

|f2(λ)
√
k′P(Sk′ = η) − φ(

η√
k′

) +
f3(λ)

6
√
k′
φ(3)(

η√
k′

)| ≤ c2
k′
,

where φ(u) = e−u
2/2/

√
2π and φ(3)(u) denotes its third derivative. The same applies for k and η = 0,

yielding that

|f2(λ)
√
kP(Sk = 0) − φ(0)| ≤ c2

k
.
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In particular, with k ≥ nǫ, we see that P(Sk = 0) ≥ c3/
√
n for some c3 > 0 and all n ≥ n0, both

depending only upon l and ǫ. As φ(u) is an even function with uniformly bounded derivatives of any
order, k, k′ ≥ ǫn, |η| ≤ c1 and |k − k′| ≤ l, it follows that for some finite c4 = c4(l, ǫ),

|
√
k√
k′
φ(

η√
k′

) − φ(0) −
√
kf3(λ)

6k′
φ(3)(

η√
k′

)| ≤ c4
n
,

from which (4.30) now directly follows. �

We often rely on the following regularity property of (~x, θ) 7→ Ŵθ(·|~x) for the transition kernels of
(4.26).

Lemma 4.6. With || · ||TV denoting the total variation norm and || · || the Euclidean norm in R2, there
exist positive constants L = L(l, ǫ) such that for any θ, θ′ ∈ [0, 1 − ǫ] and ~x, ~x ′ ∈ R2,

∣∣∣
∣∣∣Ŵθ′( · |~x ′) − Ŵθ( · |~x)

∣∣∣
∣∣∣
TV

≤ L (||~x ′ − ~x|| + |θ′ − θ|) . (4.33)

Proof. With (~x, θ) 7→ Kθ(~x) Lipschitz continuous, given that one finite set supports the kernels Ŵθ(·|~x)
for all (~x, θ) and that Ŵθ(∆~z|~x) of (4.26) is a smooth function of (p0, p1, p2) for ~x ∈ Kθ, we get (4.33)
out of the Lipschitz continuity of (p0, p1, p2) on q̂(ǫ), proved in Lemma 4.1. �

4.4 Absence of small cores

A considerable simplification of our analysis comes from the observation that a typical large random
hyper-graph does not have a non-empty core of size below a certain threshold. For the convenience of
the reader, we next adapt a result of [OVZ05] (and its proof) to the context of our graph ensemble.

Lemma 4.7. A subset of v-nodes of a hyper-graph is called a stopping set if the restriction of the
hyper-graph to this subset has no c-node of degree one. For l ≥ 3 and any ǫ > 0 there exist κ(l, ǫ) > 0
and C(l, ǫ) finite such that for any m ≥ ǫn the probability that a random hyper-graph from the ensemble
Gl(n,m) has a stopping set of less than mκ(l, ǫ) v-nodes is at most C(l, ǫ)m1−l/2.

Remark 4.8. Since the core is the stopping set including the maximal number of v-nodes, the lemma
implies that for m ≥ ǫn the probability that a random hyper-graph from the ensemble Gl(n,m) has a
non-empty core of size less than mκ(l, ǫ) is at most C(l, ǫ)m1−l/2. With n ≤ m/ǫ, upon changing κ to
κ/ǫ and increasing C as needed, it further follows that the probability of having a non-empty core with
less than nκ v-nodes is at most C n1−l/2.

Proof. Let N(s, r) denote the number of stopping sets in our random hyper-graph which involve exactly
s v-nodes and r c-nodes. Then, necessarily r ≤ ⌊ls/2⌋ and

EN(s, r) =

(
n

s

)(
m

r

)
1

msl
coeff[(ex − 1 − x)r ,xsl](sl)!

(multiply the number of sets of s v-nodes and r c-nodes by the probability that such a set forms a
stopping set, with coeff[(ex − 1− x)r ,xsl](sl)! counting the number of ways of connecting the s v-nodes
to these r c-nodes so as to form a stopping set, while msl is the total number of ways of connecting the
s v-nodes in our graph ensemble). It is easy to see that for any integers r, t ≥ 1,

coeff[(ex − 1 − x)r,xt] ≤ (ex − 1 − x)r |x=1≤ 1 .

Hence, for some ζ = ζ(l, ǫ) finite, any m ≥ ǫn, sl ≤ m and r ≤ ⌊ls/2⌋,

EN(s, r) ≤
(
n

s

)(
m

r

)
(sl)!

msl
≤ ns

s!

m⌊sl/2⌋

⌊sl/2⌋!
(sl)!

msl
≤ ns

s!

(
sl

m

)⌈sl/2⌉
≤
[
ζ
( s
m

)l/2−1
]s
.
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Thus, fixing 0 < κ < 1/l (so sl ≤ m whenever s ≤ κm), for l ≥ 3, the probability that a random
hyper-graph from the ensemble Gl(n,m) has a stopping set of size at most mκ is bounded above by

E

[ mκ∑

s=1

⌊ls/2⌋∑

r=1

N(s, r)
]
≤ ζm1−l/2

∞∑

s=1

sl(ζκl/2−1)s−1 ≤ 4ζlm1−l/2 ,

provided ζκl/2−1 ≤ 1/2. �

5 Auxiliary processes and proof of Proposition 2.1

In this section we provide relations between two auxiliary inhomogeneous Z2-valued Markov processes
whose distributions are denoted, respectively as Pn,ρ( · ) and P̂n,ρ( · ). In both cases, we denote the
process as {~z(τ) = (z1(τ), z2(τ)), 0 ≤ τ ≤ n}, and use for both the same initial condition

Pn,ρ(~z(0) = ~z) = P̂n,ρ(~z(0) = ~z) = PGl(n,m)(~z(G) = ~z) =
h(~z, 0)

mnl
,

if ~z ∈ Z2
+ is such that z1+2z2 ≤ nl, and Pn,ρ(~z(0) = ~z) = P̂n,ρ(~z(0) = ~z) = 0 otherwise. Here PGl(n,m)( · )

is the uniform distribution on the graph ensemble Gl(n,m) and m ≡ ⌊nρ⌋.
Turning to specify the transition kernels, recall the triangles Kθ ≡ {~x ∈ R2

+ : x1 + 2x2 ≤ l(1 − θ)},
θ ∈ [0, 1), and set

Wτ (∆~z|~z) =

{
W+
τ (∆~z|~z) if z1 ≥ 1, n−1~z ∈ Kτ/n ,

Ŵτ/n(∆~z|n−1~z) otherwise ,

for W+
τ ( · | · ) of (3.2) and the simpler kernel Ŵθ( · | · ) of (4.26). The transition probabilities are then,

Pn,ρ(~z(τ + 1) = ~z + ∆~z |~z(τ) = ~z) = Wτ (∆~z|~z) , (5.1)

P̂n,ρ(~z(τ + 1) = ~z + ∆~z |~z(τ) = ~z) = Ŵτ/n(∆~z|n−1~z) , (5.2)

for τ = 0, 1 . . . , n − 1. While the Markov process of Lemma 3.1 describing the evolution under the
decimation algorithm has n−1~z(τ) ∈ Kτ/n this is not necessarily the case for the two auxiliary processes
we consider here. Nevertheless, the Markov process of Lemma 3.1 coincides with the one associated with
Pn,ρ(·) up to the first time τ at which z1(τ) = 0, i.e., when the decimation algorithm terminates at the
core of the hyper-graph.

We next provide a coupling that keeps the process of distribution Pn,ρ( · ) ‘very close’ to its ‘approx-

imation’ by the process of distribution P̂n,ρ( · ) as long as the former belongs to Q(η) for some η > 0.
We shall see in Corollary 5.4 that up to an exponentially small probability (as n → ∞), this is indeed

the case for τ ≤ (1 − ǫ)n, allowing us to focus on the properties of the simpler distribution P̂n,ρ(·).

Lemma 5.1. There exist finite C∗ = C∗(l, ǫ) and positive λ∗ = λ∗(l, ǫ), and a coupling between {~z(τ)} d
=

Pn,ρ( · ) and {~z ′(τ)} d
= P̂n,ρ( · ), such that for any n, ρ ∈ [ǫ, 1/ǫ] and r > 0,

P

{
sup
τ≤τ∗

||~z(τ) − ~z ′(τ)|| > r

}
≤ C∗ e

−λ∗r , (5.3)

where τ∗ ≤ n denotes the first time such that (~z(τ∗), τ∗) 6∈ Q(ǫ).

Proof. To construct the coupling between the two processes, start with ~z ′(0) = ~z(0), which is possible
since ~z(0) and ~z ′(0) are identically distributed. Then, for τ = 0, 1 . . . , n − 1, with ~z(τ) = ~z and
~z ′(τ) = ~z ′, set ~z(τ + 1) = ~z + ∆~z and ~z ′(τ + 1) = ~z ′ + ∆~z ′, where the joint distribution (coupling) of
(∆~z,∆~z ′) is chosen such that

P(∆~z 6= ∆~z ′|~z, ~z ′) =
∣∣∣
∣∣∣Wτ (·|~z) − Ŵτ/n(·|n−1~z ′)

∣∣∣
∣∣∣
TV

. (5.4)
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Clearly, it suffices to show that ∆n(λ∗) ≤ C∗ for some λ∗ > 0 and C∗ < ∞ that depend only on l
and ǫ, where

Z(τ) ≡ sup
σ≤τ∧τ∗

||~z(σ) − ~z ′(σ)|| , ∆τ (λ) ≡ E[eλZ(τ)] ,

for τ = {0, . . . , n} and λ ≥ 0. To this end, note first that by our definition of Wτ ( · |~z), we have from
Lemma 4.5 that for some finite c̃ = c̃(l, ǫ), any (~z, τ) ∈ Q(ǫ), and all n,

∣∣∣
∣∣∣Wτ (·|~z) − Ŵτ/n(·|n−1~z)

∣∣∣
∣∣∣
TV

≤ c̃

n
(5.5)

(since the kernels Wτ (·|~z) and Ŵτ/n(·|n−1~z) are non-zero for at most 2l2 points). Further, with ||∆~z|| ≤
2l and ||∆~z ′|| ≤ 2l, we have that for any 0 ≤ λ ≤ 1/(4l) (so e4lλ ≤ 1 + 8lλ), σ = 0, 1, . . . , n − 1 and
realizations of the two processes,

eλZ(σ+1) ≤
{
1 + 8lλ I{∆~z(σ) 6=∆~z ′(σ),σ<τ∗}

}
eλZ(σ) .

As τ∗ is a stopping time and our coupling satisfies (5.4), upon considering the expectation of the preceding
inequality we get that

∆σ+1(λ) ≤ ∆σ(λ) + 8lλE

{∣∣∣
∣∣∣Wσ(·|~z(σ)) − Ŵσ/n(·|n−1~z ′(σ))

∣∣∣
∣∣∣
TV

Iσ<τ∗ e
λZ(σ)

}
. (5.6)

Recall that as long as (~z(σ), σ) ∈ Q(ǫ), by (5.5) and Lemma 4.6

∣∣∣
∣∣∣Wσ(·|~z(σ)) − Ŵσ/n(·|n−1~z ′(σ))

∣∣∣
∣∣∣
TV

≤ c̃

n
+
L

n
||~z(σ) − ~z ′(σ)|| . (5.7)

Since ||~z(σ) − ~z ′(σ)||Iσ<τ∗ ≤ Z(σ), combining the bounds of (5.6) and (5.7), we deduce that

∆σ+1(λ) ≤
[
1 + 8lc̃n−1λ

]
E

{(
1 + n−18lLλZ(σ)

)
eλZ(σ)

}

≤
[
1 + 8lc̃n−1λ

]
∆σ(λ(1 + 8lLn−1)) . (5.8)

Since ∆0(λ) = 1, taking λ = λ∗ = exp(−8lL)/(4l) ≤ 1/(4l), and applying the inequality (5.8) for
the monotone increasing sequence {λσ, σ ≥ 0} with λ0 = λ∗ and λσ+1 = λσ(1 + 8lLn−1), such that
λn = λ∗(1 + 8lL/n)n ≤ 1/(4l), we get that

∆n(λ∗) ≤
n−1∏

σ=0

(1 + 8lc̃n−1λσ) ≤ exp
{
8lc̃n−1

n−1∑

σ=0

λσ
}
≤ exp {8lc̃λn} ≤ exp {2c̃} ,

completing the proof of the lemma. �

We turn to establish some of the asymptotic (in n → ∞) properties of our approximating processes

(of distribution P̂n,ρ( · )).
Lemma 5.2. For any l ≥ 3 and ǫ > 0 there exist positive, finite constants η ≤ ǫ, and C0, C1, C2, C3,
such that, for any n, ρ ∈ [ǫ, 1/ǫ] and τ ∈ {0, . . . , ⌊n(1 − ǫ)⌋},
(a) ~z(τ) is exponentially concentrated around its mean

P̂n,ρ {||~z(τ) − E~z(τ)|| ≥ r} ≤ 4 e−
r2

C0n . (5.9)

(b) ~z(τ) is close to the solution of the ODE (2.5),

E||~z(τ) − n~y(τ/n)|| ≤ C1

√
n logn . (5.10)
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(c) (~z(τ), τ) ∈ Q(η) with high probability, more precisely

P̂n,ρ {(~z(τ), τ) 6∈ Q(η)} ≤ C2 e
−C3n . (5.11)

Proof. (a) For τ = 0, upon taking C0 large enough, this is an immediate consequence of (4.19). Turning
to the general case, applying the Azuma-Hoeffding inequality for Doob’s martingale

Z(σ) = E[~z(τ) |~z(0), . . . , ~z(σ)] , σ ∈ {0, . . . , τ} ,

we see that for some c0 = c0(ǫ) finite, any n, r > 0, τ = 1, . . . , n(1 − ǫ) and ρ ∈ [ǫ, 1/ǫ],

P̂n,ρ {||~z(τ) − E [~z(τ)|~z(0)]|| ≥ r} ≤ 4 exp(−r2/(2c20τ)) , (5.12)

provided esssup||Z(σ) − Z(σ − 1)|| ≤ c0 for all 1 ≤ σ ≤ τ . To this end, with ~z(·) a Markov process, we
have the bound

esssup||Z(σ) − Z(σ − 1)|| ≤ sup
~z(1),~z(2)

||E[~z(τ) |~z(σ) = ~z(1)] − E[~z(τ) |~z(σ) = ~z(2)]|| , (5.13)

where the preceding supremum is over all ~z(1), ~z(2) such that some trajectories {~z(0) . . . ~z(σ− 1), ~z(σ) =
~z(1)} and {~z(0) . . . ~z(σ−1), ~z(σ) = ~z(2)} are both of positive probability. In particular, ||~z(1)−~z(2)|| ≤ 4l.
Fixing such ~z(1) and ~z(2), let ~z(1)(ν) and ~z(2)(ν) denote the realizations of two Markov processes of

same transition kernels Ŵθ( · | · ), starting at ~z(1)(σ) = ~z(1) and ~z(2)(σ) = ~z(2), respectively, where for
ν = σ, . . . , τ − 1 the joint distribution (coupling) of ∆~z(1)(ν) ≡ ~z(1)(ν + 1) − ~z(1)(ν) and ∆~z(2)(ν) ≡
~z(2)(ν + 1) − ~z(2)(ν) is chosen such that

P(∆~z(1)(ν) 6= ∆~z(2)(ν) |~z(1)(ν), ~z(2)(ν)) = ||Ŵν/n( · |n−1~z(1)(ν)) − Ŵν/n( · |n−1~z(2)(ν))||TV .

With ∆(ν) ≡ E||~z(1)(ν) − ~z(1)(ν)||, the right-hand-side of (5.13) is upper bounded by the supremum of
∆(τ) over all possible pairs of initial conditions such that ∆(σ) = ||~z(1) − ~z(2)|| ≤ 4l. Further, due to
the Markov property of ~z and the preceding coupling, for σ ≤ ν < τ we have by (4.33) that

∆(ν + 1) ≤ E||~z(1)(ν) − ~z(2)(ν)|| + E

{
E

[∣∣∣
∣∣∣∆~z(1)(ν) − ∆~z(2)(ν)

∣∣∣
∣∣∣
∣∣∣~z(1)(ν), ~z(2)(ν)

]}

≤ ∆(ν) + 4lE
{∣∣∣
∣∣∣Ŵν/n( · |n−1~z(1)(ν)) − Ŵν/n( · |n−1~z(2)(ν))

∣∣∣
∣∣∣
TV

}
≤
(

1 +
4lL

n

)
∆(ν) .

With τ ≤ n, it thus follows that ∆(τ) ≤ exp(4lL)∆(σ) ≤ 4l exp(4lL) =: c0, as claimed.
Further, the preceding argument shows that ψ(~z) ≡ E[~z(τ) |~z(0) = ~z] is uniformly Lipschitz contin-

uous function of ~z, of Lipschitz constant ‖ψ‖L = exp(4lL) that is independent of τ , n and ρ. Hence,
from (4.19) we have that

P{||ψ(~z(0)) − ψ(E~z(0) )|| ≥ r‖ψ‖L} ≤ P{||~z(0) − E~z(0) || ≥ r} ≤ κ1 e
−r2/κ2n .

Integrating this over r ≥ 0 we have that ‖Eψ(~z(0)) − ψ(E~z(0) )‖ ≤ c
√
n for some finite constant c

depending only on ǫ and l, yielding that

P̂n,ρ {||E [~z(τ)|~z(0)] − E[~z(τ)]|| ≥ r} = P{||ψ(~z(0)) − Eψ(~z(0))|| ≥ r} ≤ C ′
1e

−r2/c′2n ,

for some C′
1 and c′2 which depend only on ǫ and l, which, together with (5.12), concludes the proof of

(5.9).
(b) Since ||~z(τ)|| ≤ 2nl, choosing r =

√
C0n logn in (5.9) we find that

E||~z(τ) − E~z(τ)|| ≤ c1
√
n logn , (5.14)

for some finite c1(ǫ). Denote by ∆m(τ) ≡ ||E~z(τ)−n~y(τ/n)|| the error made in replacing the expectation

of the process ~z(τ) of distribution P̂n,ρ(·) with the (rescaled) solution of the ODE. Then, fixing τ ≤
n(1 − ǫ), we have by the Markov property of ~z(·) that

∆m(τ + 1) = ||E~z(τ) − n~y(τ/n) + E {E[∆~z(τ)|~z(τ)]} − n[~y(τ/n+ 1/n) − ~y(τ/n)]|| .
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Recall that for θ ≤ 1 − ǫ,

d~y

dθ
= ~F (~y, θ) =

∑

∆~z

Ŵθ(∆~z|~y)∆~z ,

so by the triangle inequality we get that

∆m(τ + 1) ≤ ∆m(τ) +

∣∣∣∣∣

∣∣∣∣∣E
{∑

∆~z

[Ŵτ/n(∆~z|n−1~z(τ)) − Ŵτ/n(∆~z|n−1E~z(τ))] ∆~z
}
∣∣∣∣∣

∣∣∣∣∣

+

∣∣∣∣∣

∣∣∣∣∣E
{∑

∆~z

[Ŵτ/n(∆~z|n−1E~z(τ)) − Ŵτ/n(∆~z|~y(τ/n)] ∆~z
}
∣∣∣∣∣

∣∣∣∣∣

+ n

∣∣∣∣∣

∣∣∣∣∣

∫ τ/n+1/n

τ/n

[
~F (~y(θ), θ) − ~F (~y(τ/n), τ/n)

]
dθ

∣∣∣∣∣

∣∣∣∣∣

≡ ∆m(τ) + δ(0)m (τ) + δ(1)m (τ) + δ(2)m (τ) .

Recall as in (4.11) that δ
(2)
m (τ) ≤ C∗n−1. Since ||∆~z|| ≤ 4l, we have by (4.33) that

δ(1)m (τ) ≤ 4lE||Ŵτ/n(∆~z|n−1E~z(τ)) − Ŵτ/n(∆~z|~y(τ/n))||TV ≤ 4lL

n
||E~z(τ) − n~y(τ/n)|| =

4lL

n
∆m(τ) .

Similarly, by (4.33) and (5.14), for some c2 = c2(ǫ) finite,

δ(0)m (τ) ≤ 4lL

n
E ||~z(τ) − E~z(τ)|| ≤ c2

√
logn

n
,

so putting these estimate together, we obtain the inequality

∆m(τ + 1) ≤
(

1 +
4lL

n

)
∆m(τ) + c3

√
logn

n
.

Further, recall (4.18) of Lemma 4.4 that ∆m(0) is bounded in n and m = ⌊ρn⌋, provided ρ ∈ [ǫ, 1/ǫ].
Thus, we easily get (5.10) upon applying the preceding recursion for τ = 0, . . . , n− 1.
(c) In the course of proving part (a) of Proposition 4.2 we have seen that there exists η = η(ǫ, l) > 0 such
that if ρ ∈ [ǫ, 1/ǫ] and θ ≤ (1−ǫ) then y1(θ) ≥ −l+2η, y2(θ) ≥ 2η and (1−θ)l−max(y1(θ), 0)−2y2(θ) ≥
2η. Consequently, taking η ≤ ǫ, for such ρ and τ ∈ {0, . . . , ⌊n(1− ǫ)⌋}, if ||~z(τ)−n~y(τ/n)|| ≤ nη/3 then
clearly (~z(τ), τ) ∈ Q(η). We thus get (5.11) upon considering (5.9) and (5.10) for r = nη/6 and n such
that C1

√
n logn ≤ nη/6. �

The first consequence of Lemma 5.2 is the existence of ‘critical time window’. That is, for ρ near ρc

a typical trajectory {~z(τ) ; 0 ≤ τ ≤ (1 − ǫ)n} does not traverse the z1 = 0 plane if τ is not near nθc.

Corollary 5.3. Fixing β ∈ (3/4, 1), β′ < 2β − 1 and ǫ > 0, let In ≡ [0, nθc − nβ] ∪ [nθc + nβ, n(1 − ǫ)].
Then, for some C4 finite, η positive, all n and |ρ− ρc| ≤ nβ

′−1,

P̂n,ρ

{
min
τ∈In

z1(τ) ≤ nβ
′

}
≤ C4 e

−nη

.

Proof. From part (d) of Proposition 4.2, we have that n y1(τ/n, ρc) ≥ cn2β−1 for some c > 0, all n and
τ ∈ In. Since ρ 7→ ~y(θ, ρ) is Lipschitz continuous (by Proposition 4.2, part (a)), there exists a finite
constant c′ such that ||~y(θ, ρ) − ~y(θ, ρc)|| ≤ c′nβ

′−1 for any θ ∈ [0, 1 − ǫ] and |ρ− ρc| ≤ nβ
′−1.

By part (b) of Lemma 5.2, we thus get that for β′ < 2β − 1, β > 3/4, some positive C = C(β, β′)
and all n large enough, if τ ∈ In and |ρ− ρc| ≤ nβ

′−1 then

E z1(τ) ≥ ny1(τ/n, ρ) − C1

√
n logn ≥ ny1(τ/n, ρc) − c′nβ

′ − C1

√
n logn ≥ 2Cn2β−1 .
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Applying now Lemma 5.2, part (a), we see that for any η < (4β − 3)/2, some C′ = C′(β, β′, η) finite
and all n large enough

P̂n,ρ{z1(τ) ≤ nβ
′} ≤ P̂n,ρ{||~z(τ) − E~z(τ)|| ≥ Cn2β−1} ≤ C′ e−n

2η

,

whenever τ ∈ In and |ρ− ρc| ≤ nβ
′−1. To conclude, recall that there are at most n integers τ ∈ In. �

The second consequence of Lemma 5.2 is that with high probability also the process {~z(τ)} of
distribution Pn,ρ(·) belongs to the set Q(η) as long as τ/n is bounded away from 1.

Corollary 5.4. For any ǫ > 0, there exists η > 0 and positive, finite constants C5, C6 such that if
ρ ∈ [ǫ, 1/ǫ] then

Pn,ρ

{
(~z(τ), τ) ∈ Q(η) ∀ 0 ≤ τ ≤ n(1 − ǫ)

}
≥ 1 − C5 e

−C6n . (5.15)

Proof. From part (c) of Lemma 5.2 we have that for some η′ ∈ (0, ǫ), positive and finite c5 and c6,

P̂n,ρ

{
(~z(τ), τ) ∈ Q(η′) ∀ 0 ≤ τ ≤ n(1 − ǫ)

}
≥ 1 − c5 e

−c6n . (5.16)

Applying the coupling of Lemma 5.1 with η = η′/4 for the value of ǫ in the statement of this lemma, we
also have that

P

{
sup
τ≤τf

||~z(τ) − ~z ′(τ)|| > ηn
}
≤ c7 e

−c8n , (5.17)

where τf ≤ n denotes the first time such that (~z(τ), τ) 6∈ Q(η). Further, if τf ≤ n(1 − ǫ) and
supτ≤τf

||~z(τ) − ~z ′(τ)|| ≤ ηn then necessarily (~z ′(τ), τ) /∈ Q(4η) = Q(η′) for τ = τf ≤ n(1 − ǫ),

an event whose probability is at most c5e
−c6n (by (5.16)). Combining the latter bound with (5.17) we

find that
Pn,ρ{τf ≤ n(1 − ǫ)} ≤ c5e

−c6n + c7e
−c8n ,

yielding (5.15) for C5 = c5 + c7 and C6 = min(c6, c8), both finite and positive. �

Proof of Proposition 2.1. For {~z(τ); τ ≥ 0} distributed according to Pn,ρ( · ) let τ∗∗ denote the first time
at which z1(τ) ≤ 0. Since by construction (and using Lemma 3.1), the sequence {z1(τ); 0 ≤ τ ≤ τ∗∗}
is distributed as the number of c-nodes of the graphs G(τ) having degree one under the decimation
algorithm, we see that Pl(n, ρ) = Pn,ρ {τ∗∗ ≤ n− 1}
Further, the core of the initial graph G(0) includes at most n− τ∗∗ vertices. Consequently, by Lemma
4.7 (c.f. Remark 4.8), we can choose D <∞ and 0 < κ < 1 − θc such that

Pn,ρ {τ∗∗ ≤ n(1 − κ)} ≤ Pl(n, ρ) ≤ Pn,ρ {τ∗∗ ≤ n(1 − κ)} +
1

4
δn ,

for |ρ− ρc| ≤ nβ
′−1 and δn ≡ Dn−1/2(log n)2.

By Corollary 5.4, there exist 0 < η ≤ ǫ < κ and finite, positive C5, C6, such that {~z(τ), 0 ≤ τ ≤
n(1 − ǫ)} ⊆ Q(η) with probability at least 1 − C5e

−C6n, for all n. Hence, we have that

Pn,ρ

{
min

0≤τ≤τ∗
z1(τ) ≤ 0

}
≤ Pl(n, ρ) ≤ Pn,ρ

{
min

0≤τ≤τ∗
z1(τ) ≤ 0

}
+ C5 e

−C6n +
1

4
δn ,

for

τ∗ = n(1 − κ) ∧ min{τ : (~z(τ), τ) 6∈ Q(η)} .

By Lemma 5.1, there exists A > 0, and a coupling of the process {~z(τ)} with a process {~z ′(τ)} of

distribution P̂n,ρ( · ), such that, with probability larger that 1−1/2n, up to time τ∗ the distance between
these two processes is at most ǫn ≡ A logn. Therefore, enlarging D if necessary, we have that

P

{
min

0≤τ≤τ∗
z′1(τ) ≤ −εn

}
− 1

n
≤ Pl(n, ρ) ≤ P

{
min

0≤τ≤τ∗
z′1(τ) ≤ εn

}
+

1

n
+

1

4
δn .
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We have seen that τ∗ < n(1 − κ) with probability of at most C5e
−C6n. Hence, enlarging D once more,

we find that

P̂n,ρ

{
min

0≤τ≤n(1−κ)
z1(τ) ≤ −εn

}
− 1

2
δn ≤ Pl(n, ρ) ≤ P̂n,ρ

{
min

0≤τ≤n(1−κ)
z1(τ) ≤ εn

}
+

1

2
δn .

With θc < (1− κ), the set [0, n(1− κ)] is the disjoint union of Jn as in the statement of the proposition
and a set of the form In of Corollary 5.3. Thus, bounding the probability of the event minτ∈In

z1(τ) ≤ εn
via the latter corollary, yields the thesis of the proposition (enlarging D as needed for absorbing the
term C4 exp(−nη) into δn). �

Let Pn,ρ( · ) denote the law of the R2-valued Markov chain {~z ′(τ)} of (2.12), where ~z ′(0) has the
uniform distribution PGl(n,m)( · ) on the graph ensemble Gl(n,m) for m ≡ ⌊nρ⌋, and

Pn,ρ(~z
′(τ + 1) = ~z ′(τ) + ∆τ + Ãτ (n

−1~z ′(τ) − ~y(τ/n)) |~z ′(τ) = ~z ′) = Ŵτ/n(∆τ |~y(τ/n)) .

We conclude this section by providing a coupling that keeps the process {~z ′(·)} ‘sufficiently close’ to

{~z(·)} of distribution P̂n,ρ( · ) throughout the time interval Jn of interest to us.

Proposition 5.5. Fixing β ∈ (3/4, 1) and β′ < 2β − 1, for any δ > β − 1/2 there exist finite constants

α, c and a coupling of the processes {~z(·)} of distribution P̂n,ρ( · ) and {~z ′(·)} of distribution Pn,ρ( · )
such that for all n and |ρ− ρc| ≤ nβ

′−1,

P

{
sup
τ∈Jn

‖~z(τ) − ~z ′(τ)‖ ≥ cnδ
}

≤ α

4n
. (5.18)

The key to Proposition 5.5 is the following elementary martingale concentration property.

Lemma 5.6. Consider an Rd-valued discrete-time martingale (Zs,Fs) with Z0 = 0 and Us = Zs+1−Zs
such that for some finite Γ and a stopping time τ∗ for Fs

E[ ‖Us‖2eλ·Us | Fs] ≤ Γ E[eλ·Us | Fs] <∞ whenever s < τ∗ , ||λ|| < 1 (5.19)

Then, for any 0 ≤ a < tΓ
√
d,

P
{
‖Zmin(t,τ∗)‖ ≥ a

}
≤ 2d exp

{
− a2

2dΓt

}
.

Proof. Recall that for real-valued variable V , if E[V ] = 0 and E[V 2 exp(uV )] ≤ κE[exp(uV )] < ∞ for
all u ∈ [0, 1], then E[exp(V )] ≤ exp(κ/2) (bound the value of φ(1) for φ(u) ≡ log E[exp(uV )] using
φ(0) = φ′(0) = 0 and φ′′(u) ≤ κ). In the special case of d = 1 and τ∗ = ∞, we have from (5.19)
that the preceding assumptions hold for κ = Γλ2, ||λ|| < 1 and V having the law of λUs conditional
on Fs. Consequently, then E[exp(λUs)|Fs] ≤ exp(Γλ2/2), implying that E[Mt] ≤ E[M0] = 1 for the
super-martingale Ms = exp(λZs − Γλ2s/2). Considering a ∈ [0, tΓ) and λ = a/(Γt), we thus deduce
that P{Zt ≥ a} ≤ exp{−a2/(2Γt)} in case Zs is a real-valued martingale for Fs and (5.19) holds for all
s <∞. The stated bound for Rd-valued martingale Zt of coordinates Zt,i follows upon noting that the

event {‖Zt‖ ≥ a} is contained in the union of the events {uZt,i ≥ a/
√
d} for u = −1, 1 and i = 1, . . . , d,

with uZs,i real valued martingales. Finally, we get the thesis in the general case, where P(τ∗ <∞) > 0,
upon considering the (stopped) martingale Zmin(s,τ∗). �

Proof of Proposition 5.5. We couple the processes {~z ′(·)} d
= Pn,ρ(·), and {~z(τ)} d

= P̂n,ρ( · ) in a joint
Markov process, by letting ~z ′(0) = ~z(0) and for τ = 0, 1, 2, . . . , n− 1,

P(∆~z(τ) 6= ∆τ | Fτ ) = ||Ŵτ/n( · |n−1~z(τ)) − Ŵτ/n( · |~y(τ/n))||TV ,

where ∆~z(τ) ≡ ~z(τ + 1) − ~z(τ) and Fτ denotes the σ-algebra generated by {~z(σ), ~z ′(σ), σ ≤ τ}.
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Fixing ǫ < (1− θc)/2, let τ∗ ≤ n denote the first value of τ such that ||~z(τ)−n~y(τ/n)|| > K
√
n logn,

with a finite K = K(ǫ) such that by parts (a) and (b) of Lemma 5.2, for any n and ρ ∈ [ǫ, 1/ǫ],

P̂n,ρ {τ∗ ≤ n(1 − ǫ)} ≤ n−1 .

Fix β ∈ (3/4, 1), β′ and δ > β − 1/2. With at most n values for τ in Jn we thus obtain (5.18) once we
show that some c <∞, all n large enough

sup
τ∈Jn

P{τ < τ∗ , ‖~z ′(τ) − ~z(τ)‖ ≥ cnδ } ≤ n−2 . (5.20)

To this end, consider Doob’s decomposition of the adapted process Ns ≡ (B̃s−1
0 )−1(~z ′(s) − ~z(s)) as the

sum of an Fs-martingale {Zs}, null at zero, and the predictable sequence

Vτ+1 =

τ∑

s=0

∆Vs ≡
τ∑

s=0

E[Ns+1 −Ns|Fs] .

It follows from our coupling that ∆Vs = (B̃s−1
0 )−1 ~R(n−1~z(s), ~y(s/n), s/n), where

~R(~x ′, ~x, θ) ≡ ~F (~x, θ) + Iθ<θn
A(~x, θ)[~x ′ − ~x] − ~F (~x ′, θ)

(with θn ≡ τn/n = ⌊nθc − nβ⌋/n), and that for ∆∗
t ≡ ∆t − ∆~z(t),

Ut ≡ Zt+1 − Zt = (B̃t−1
0 )−1{∆∗

t − E[∆∗
t |Ft]} . (5.21)

Since Aab(~x, θ) = ∂xb
Fa(~x, θ) with ~F (~x, θ) having Lipschitz continuous derivatives on q̂+(ǫ), it follows

that ||~R(~x ′, ~x, θ)|| ≤ c0||~x ′ − ~x||2 for some c0 = c0(ǫ) finite, provided θ < θn and both (~x, θ) and (~x ′, θ)

are in q̂+(ǫ). By the Lipschitz continuity of ~F (~x, θ) we also have that ||~R(~x ′, ~x, θ)|| ≤ c0||~x ′ −~x|| in case
θ ≥ θn, as soon as (~x, θ) and (~x ′, θ) are in q̂(ǫ).

Recall Lemma 4.3 that for some finite n0 and κ we have that ||(B̃τ−1
0 )−1|| ≤ κ for all τ , ρ ∈ [ǫ, 1/ǫ] and

n ≥ n0. In the course of proving part (a) of Proposition 4.2 we have seen that the distance of (~y(θ, ρ), θ)
from the complement of q̂(ǫ) is bounded away from zero, uniformly in θ ≤ 1 − 2ǫ and ρ ∈ [ǫ, 1/ǫ].
Further, y1(θ, ρ) ≥ κ′n2(β−1) for some κ′ > 0, all n, |ρ− ρc| ≤ nβ

′−1, and θ ≤ θn (c.f. proof of Corollary
5.3). Consequently, for some finite n1 = n1(K, ǫ) and all n ≥ n1, the event {s < τ∗} implies that both
(n−1~z(s), s/n) and (~y(s/n), s/n) are in q̂(ǫ) when s ≤ nθc + nβ , and in case s < τn they are also in
q̂+(ǫ). We deduce that if n ≥ n1 and {s < τ∗} then

||∆Vs|| ≤ c0||(B̃s−1
0 )−1|| ||n−1~z(s) − ~y(s/n)||2 ≤ c0κK

2n−1 logn ,

when s < τn, whereas ||∆Vs|| ≤ c0κKn
−1/2(logn)1/2 for s ∈ Jn. Hence, for some finite c1 and all

n ≥ n1, the event {τ < τ∗} implies for τ ∈ Jn that ||Vτ || ≤ c1n
β−1/2(logn)1/2. Fixing η ∈ (1/4, β−1/2),

since ‖~z ′(τ) − ~z(τ)‖ ≤ ‖B̃τ−1
0 ‖[‖Vτ‖ + ‖Zτ‖] and ‖B̃τ−1

0 ‖ are bounded uniformly in n, τ , and ρ, we
thus get (5.20) by considering Lemma 5.6 at τ ∈ Jn and a = nη, provided we show that for some c2
finite, the martingale differences Ut of (5.21) satisfy the inequality (5.19) with Γ = c2n

−1/2(log n)1/2 (as
indeed nη ≤ τnΓ

√
d for all n large enough and n2η/2dΓn→ ∞). To this end, note first that by the total

variation bound of Lemma 4.6 and the definition of τ∗, for t < τ∗ our coupling of (~z, ~z ′) results with

P(∆∗
t 6= 0|Ft) ≤ L‖n−1~z(t) − ~y(t/n)‖ ≤ LKn−1/2(logn)1/2 ≡ un .

Further, the bounded support of Ŵθ(·|~x) implies that ‖∆∗
t ‖ ≤ 4l, so for t < τ∗ also

||E[∆∗
t |Ft]|| ≤ 4lP(∆∗

t 6= 0|Ft) ≤ 4lmin(un, 1) .

From the preceding estimates we deduce that Ut of (5.21) is such that ||Ut|| ≤ 8lκ and when t < τ∗, also

P(||Ut|| > 4lκmin(un, 1) | Ft) ≤ P(∆∗
t 6= 0 | Ft) ≤ un .

These two facts easily imply that if ||λ|| ≤ 1 and t < τ∗, then the inequality (5.19) holds for Γ =
2(8lκ)2e16lκun which as we already seen, completes the proof of the proposition. �
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6 Gaussian approximation and proof of Proposition 2.2

This section is devoted to the proof of Proposition 2.2. Specifically, building on Proposition 5.5, in
Section 6.1 we approximate the Markov process {~z(τ)} of distribution P̂n,ρ(·) by a Brownian motion
with a quadratic shift, when τ is within the window Jn around the critical time. Then, in Section 6.2 we
show how the one-sided Brownian motion with quadratic shift can be replaced by a two-sided motion,
once its initial condition is appropriately mapped to the distribution of the two-sided motion at the
critical time. Finally, in Section 6.3 we show that this distribution (which a-priori depends on the law
of ~z(0)), is also well approximated by a Gaussian law and complete the proof of Proposition 2.2.

6.1 Local approximation by a Brownian motion with quadratic shift

Our goal here is to approximate the probabilities of interest to us in terms of the minimal value of the
Brownian motion with quadratic shift

Xn(τ) ≡ n1/3[X(n−2/3(τ − 0.5 − nθc)) −X(n−2/3(τn − 0.5 − nθc))] , (6.1)

within Jn ≡ [nθc − nβ , nθc + nβ ], for the process {X(t)} of Proposition 2.2. As stated in the following
lemma, while doing this we also approximate the law of z1(τn) by that of the sum of ~un · [~z(0)− n~y(0)],

where ~un denotes the first row of B̃
τn−1
0 , and an independent normal random variable of mean ny ∗

1 (τn)
and variance n[(Qτn

)11 − ~u†n Q(0, ρ)~un].

Lemma 6.1. Fixing β ∈ (3/4, 1) and A > 0, set β′ < 2β − 1, εn = A logn as in Proposition 2.1 and
Yn ≡ inft∈Jn

Xn(t) for Xn(·) of (6.1). Then, for any δ > 3β − 2, there exist positive, finite constants α
and C such that for any n and |ρ− ρc| ≤ nβ

′−1,

P
{
ξ∗n + ξn + Yn ≤ −Cnδ

}
− α

n
≤ P̂n,ρ

{
min
τ∈Jn

z1(τ) ≤ ±εn
}

≤ P
{
ξ∗n + ξn + Yn ≤ Cnδ

}
+
α

n
,

where ξn ≡ ~un · [~z(0)−n~y(0)], the normal random variable ξ∗n of mean ny ∗
1 (τn) and variance n[(Qτn

)11−
~u†n Q(0, ρ)~un], and Xn(·), are mutually independent.

Proof. The strategy we follow is to progressively simplify the process {~z(τ)} of distribution P̂n,ρ( · ) till
be obtain the stated bounds of the lemma, where each simplification is justified by a coupling argument.
The first and most important step of this program has already been done in Proposition 5.5. Since
the chain {~z ′(·)} of law Pn,ρ(·) has independent increments for τ ≥ τn, we can apply Sakhanenko’s
refinement of the Hungarian construction for the uniformly bounded (by 4l) independent increments
ξi = z′1(τn + i) − z′1(τn + i− 1). We then deduce the existence of a real-valued Gaussian process bn(τ),
independent of z′1(τn), such that bn(τn) = 0, its independent increments ∆bn(τ) ≡ bn(τ + 1) − bn(τ)
have mean and variance

E∆bn(τ) = F1(~y(τ/n, ρ), τ/n) , Var∆bn(τ) = G11(~y(τ/n, ρ), τ/n)

(matching the corresponding moments of z′1(τ + 1)− z′1(τ)), such that for some finite c0, α and all n, ρ,

P{ sup
τ∈Jn

|z′1(τ) − z′1(τn) − bn(τ)| ≥ c0 logn} ≤ α

4n
(6.2)

(the latter follows by Chebyshev’s inequality from [Sak85], see for example [Sha95, Theorem A]).
Considering the representation (2.14) for ~z′(τn) we see that z′1(τn) − ξn is the sum of the uniformly

bounded real-valued independent variables (B̃τn−1
σ+1 ∆σ)1, σ = 0, . . . , τn − 1 plus a non-random constant.

Hence, similarly to the derivation of (6.2) we obtain that for some finite c0, α and all n, ρ,

P{|z′1(τn) − ξn − ξ∗n| ≥ c0 logn} ≤ α

4n
, (6.3)

where ξ∗n is a normal random variable, independent of ξn and bn(·), whose mean and variance match
those of z′1(τn) − ξn. It is not hard to verify that the latter mean and variance are indeed ny ∗

1 (τn) and
n[(Qτn

)11 − ~u†nQ(0, ρ)~un], as stated.
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We clearly have the representation

bn(τ) =
τ−1∑

σ=τn

E∆bn(σ) +B

(
τ−1∑

σ=τn

Var∆bn(σ)

)
,

for a standard Brownian motion B( · ). Further, the real-valued Gaussian process {Xn(t), t ≥ τn} of
(6.1) admits the representation

Xn(t) = F̃

∫ t−0.5

τn−0.5

(σ/n− θc)dσ +B(G̃(t− τn)) ,

for the same standard Brownian motion B(·), where G̃ = G11 and F̃ = dF1

dθ , both evaluated at θ = θc

and ~y = ~y(θc, ρc) (so F̃ is as defined in Eq. (2.7)). Combining (5.18), (6.2) and (6.3) we establish the
thesis of the lemma upon showing that the preceding coupling of bn(·) and Xn(·), is such that for some
α, c1 finite and all n,

P{ sup
t∈Jn

|bn([t]) −Xn(t)| ≥ 3c1n
δ} ≤ α

4n
. (6.4)

The sup in (6.4) is taken over all real valued t ∈ Jn = [nθc − nβ , nθc + nβ ], while in the sequel we use
τ ∈ Jn to denote an integer in the same interval.

With {Xn(τ + t) − Xn(τ) : t ∈ [0, 1]} having the same law as {B(G̃t) + an,τ (t) : t ∈ [0, 1]} for
non-random an,τ (t) which are bounded uniformly in t ∈ [0, 1], n and τ ∈ Jn, we obviously get (6.4) upon
showing that

sup
τ∈Jn

P{|bn(τ) −Xn(τ)| ≥ 2c1n
δ} ≤ n−2 . (6.5)

The inequality (6.5) is a direct consequence of having a finite κ such that, for ∆Xn(τ) = Xn(τ + 1) −
Xn(τ),

e1(τ) ≡ |Var∆bn(τ) − Var∆Xn(τ)| = |G11(~y(τ/n, ρ), τ/n) − G̃| ≤ κnβ−1 ,

e2(τ) ≡ |E∆bn(τ) − E∆Xn(τ)| = |F1(~y(τ/n, ρ), τ/n) − (τ/n− θc)F̃ | ≤ κn2(β−1) ,

for all τ ∈ Jn and |ρ−ρc| ≤ nβ
′−1. Indeed, since δ > β+2(β−1) > 1−β and the interval Jn is of length

2⌈nβ⌉, taking c1 large enough so c1n
δ ≥ κn2(β−1)|Jn| for all n, the stated bound on e2(·) guarantees

that |Ebn(τ)−EXn(τ)| ≤ c1n
δ for all τ ∈ Jn, whereas the corresponding bound on e1(·) guarantees that

Var(bn(τ) −Xn(τ)) ≤ c1n
δn1−β , leading (by standard Gaussian tail estimates) to (6.5).

Turning to bound e1(τ) and e2(τ), recall that τ ∈ Jn and |ρ − ρc| ≤ nβ
′−1 imply that (τ/n, ρ) ∈

[0, 1− ǫ)× [ǫ, 1/ǫ], so |~y(τ/n, ρ)−~y(τ/n, ρc)| ≤ C1|ρ− ρc| for some constant C1 = C1(ǫ) by the Lipschitz
continuity of ρ 7→ ~y(θ, ρ) (see part (a) of Proposition 4.2). Further, then (~y(τ/n, ρ), τ/n) ∈ q̂(ǫ), so by
Lemma 4.1 we have the Lipschitz continuity of ρ 7→ F1(~y(τ/n, ρ), τ/n) and ρ 7→ G11(~y(τ/n, ρ), τ/n).
That is, for some constant C2 = C2(ǫ) and all such τ , ρ, n,

e1(τ) ≤ |G11(~y(τ/n, ρc), τ/n) −G11(~y(θc, ρc), θc)| + C2|ρ− ρc| , (6.6)

e2(τ) ≤ |F̂1(τ/n) − (τ/n− θc)F̃ | + C2|ρ− ρc| , (6.7)

where F̂1(θ) ≡ F1(~y(θ, ρc), θ). Similarly, the Lipschitz continuity of θ 7→ ~y(θ, ρc) on [0, 1− ǫ) (from part
(a) of Proposition 4.2) together with that of (~x, θ) 7→ G11(~x, θ) on q̂(ǫ) (by Lemma 4.1), result in

|G11(~y(τ/n, ρc), τ/n) −G11(~y(θc, ρc), θc)| ≤ C3|τ/n− θc| ≤ C3n
β−1 ,

for some C3 = C3(ǫ) and all τ ∈ Jn. Thus, with β′− 1 < 2(β− 1), we get from (6.6) that e1(τ) ≤ κnβ−1

for all τ ∈ Jn and |ρ − ρc| ≤ nβ
′−1, as stated. As for bounding e2(τ), recall that θ 7→ ~y(θ, ρc) is

infinitely continuously differentiable on [0, 1 − ǫ] (c.f. parts (b) and (d) of Proposition 4.2). Further, as
(~y(θ, ρc), θ) ∈ q̂+(ǫ) for all θ ∈ [0, 1 − ǫ] (by (a) and (d) of Proposition 4.2), from Lemma 4.1 we have
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that F̂1(·) is differentiable on [0, 1− ǫ] with a Lipschitz continuous derivative. Recall that dy1/dθ = 0 at

θ = θc and ρ = ρc (see part (d) of Proposition 4.2). Hence, F̂1(θc) = 0 (in view of the ODE (2.5)), and

with F̃ = F̂1
′(θc) we deduce that for some C4 = C4(ǫ) and all θ ∈ [0, 1 − ǫ],

|F̂1(θ) − (θ − θc)F̃ | ≤ C4|θ − θc|2 .

Combining (6.7) with the latter bound (for θ = τ/n and τ ∈ Jn, so |θ − θc| ≤ nβ−1), we conclude that
e2(τ) ≤ κn2(β−1) for all τ ∈ Jn and |ρ− ρc| ≤ nβ

′−1, as stated.
�

6.2 Brownian computations

We show in the sequel that for large s and u the distribution of

Vs,u = inf
t∈[−s,u]

X(t) −X(−s) ,

is well approximated by that of V∗ − X̃(−s) for V∗ ≡ inft∈R X(t) and {X̃(t)} an independent copy of
{X(t)}. More precisely, we prove that,

Lemma 6.2. With the preceding definitions, for 0 < ϕ < 4(1 − ψ)/3 − 1, all s, u large enough and any
non-random v,

P{V∗ − X̃(−s) ≥ v + 2s−ψ} − 5e−s
ϕ ≤ P{Vs,u ≥ v} ≤ P{V∗ − X̃(−s) ≥ v − 2s−ψ} + 5e−(s∧u)ϕ

Proof. Conditioning upon the value ofX(−s) we have on account of the independence of {X(−t) : t ≥ 0}
and {X(t) : t ≥ 0} that

P{Vs,u ≥ v} = E[ps(v + X̃(−s), X̃(−s))q−u,0(v + X̃(−s))] ,

where for s > θ ≥ 0 and any a, b,

ps(a, b) ≡ P

{
inf

−s≤t≤0
X(t) ≥ a

∣∣∣ X(−s) = b
}
,

q−s,−θ(a) ≡ P

{
inf

−s≤t≤−θ
X(t) ≥ a

}
.

Recall that the law of {X(t) : −s ≤ t ≤ 0} conditional upon {X(−s) = b} is merely the law of
{Xb,s(t) ≡ X(t) − t

s(b−X(−s)) : −s ≤ t ≤ 0}. Thus, in particular,

P{Vs,u ≥ v} = E[p
(s)
−s,0(v + X̃(−s), X̃(−s))q−u,0(v + X̃(−s))] , (6.8)

where

p
(c)
−s,−θ(a, b) ≡ P

{
inf

−s≤t≤−θ
Xb,c(t) ≥ a

}
.

Similarly,

P{V∗ − X̃(−s) ≥ v} = E[q−∞,0(v + X̃(−s))2] . (6.9)

Fixing 0 < ϕ < 4(1 − ψ)/3 − 1, choose (ϕ + 1)/2 < κ < 2(1 − ψ)/3. Then, setting ρ = 1 − ψ − κ and

θ = sρ (so s−ψ = θ
ss
κ), it follows that if |b− 1

2 F̃ s
2| ≤ sκ, then for all s large enough

P{ sup
−θ≤t≤0

|Xb,s(t) −X(t)| ≥ 2s−ψ } ≤ P{|X(−s)− 1

2
F̃ s2| ≥ sκ} ≤ e−s

ϕ

. (6.10)

Consequently, for any value of a,

q−θ,0(a+ 2s−ψ) − e−s
ϕ ≤ p

(s)
−θ,0(a, b) ≤ q−θ,0(a− 2s−ψ) + e−s

ϕ

. (6.11)
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Relying upon these bounds we next show that if |b − 1
2 F̃ s

2| ≤ sκ then for s large enough and all a,

q−∞,0(a+ 2s−ψ) − 3e−s
ϕ ≤ p

(s)
−s,0(a, b) ≤ q−∞,0(a− 2s−ψ) + 3e−s

ϕ

. (6.12)

Indeed, with Xb,s(0) = X(0) = 0, clearly (6.12) holds for a > 0 (as then q−∞,0(a) = p
(s)
−s,0(a, b) = 0).

Next recall that for c ≥ s ≥ θ ≥ 0 and any a, b,

p
(c)
−θ,0(a, b) − [1 − p

(c)
−s,−θ(a, b)] ≤ p

(c)
−s,0(a, b) ≤ p

(c)
−θ,0(a, b) , (6.13)

q−∞,0(a) ≤ q−θ,0(a) ≤ q−∞,0(a) + [1 − q−∞,−θ(a)] . (6.14)

Combining these with the monotonicity in a of the functions p(c) and q, we thus get (6.12) also for a ≤ 0
out of (6.11) as soon as we show that for θ = sρ and all large s

1 − q−∞,−θ(2s
κ) = P

{
inf
t≤−θ

X(t) < 2sκ
}

≤ e−s
ϕ

, (6.15)

1 − p
(s)
−s,−θ(0, b) = P

{
inf

−s≤t≤−θ
Xb,s(t) < 0

}
≤ 2e−s

ϕ

. (6.16)

Now, since 2ρ > κ > ϕ, it follows by standard Gaussian tail estimates that for θ = sρ and s large

P

{
inf
t≤−θ

X(t) < 2sκ
}

≤
∞∑

τ=⌊θ⌋

[
P{
√
G̃W (τ) ≤ − F̃

6
τ2} + P{

√
G̃ inf

0≤t≤1
[W (τ + t) −W (τ)] ≤ − F̃

6
τ2}
]

≤ 3

∞∑

τ=⌊θ⌋
e−

eF 2τ2/(72 eG) ≤ e−s
ϕ

,

thus establishing (6.15). Further, as |Xb,s(t)−X(t)| ≤ |X(−s)− eF
2 s

2|+ |b− eF
2 s

2|, we deduce from (6.10)

that if |b− 1
2 F̃ s

2| ≤ sκ, then

P

{
sup

−s≤t≤0
|Xb,s(t) −X(t)| ≥ 2sκ

}
≤ e−s

ϕ

,

which together with (6.15) implies the bound (6.16).

We now apply in (6.8) standard gaussian tail estimates for |X̃(−s)− 1
2 F̃ s

2| > sκ, and the bounds of

(6.12) otherwise. With the [0, 1]-valued p
(c)
−s,0(a, b) and q−s,0(a) monotone in s and a, this results in

E[q−∞,0(v + X̃(−s) + 2s−ψ)2] − 4e−s
ϕ ≤ P{Vs,u ≥ v}

≤ E[q−∞,0(v + X̃(−s) − 2s−ψ)q−u,0(v + X̃(−s) − 2s−ψ)] + 4e−s
ϕ

. (6.17)

Finally, if a > 0 then q−u,0(a) = q−∞,0(a) = 0, whereas for a ≤ 0, taking θ = u in (6.14) we find by
(6.15) and the monotonicity of q−∞,−u(a) that q−u,0(a) ≤ q−∞,0(a) + exp(−uϕ) for u large. Combining
this upper bound on q−u,0 with (6.9) and (6.17) provides the thesis of the lemma. �

Since Yn of Lemma 6.1 has the same law as n1/3Vs,u for s = s(n) = n−2/3[nθc + 0.5 − τn] and
u = u(n) = n−2/3[nβ − 0.5], we have the following immediate corollary of Lemmas 6.1 and 6.2.

Corollary 6.3. Fixing β ∈ (3/4, 1) and A > 0, set Jn = [nθc−nβ , nθc+nβ ] and β′ < 2β−1, εn = A logn

as in Proposition 2.1. Let {X̃(t)} denote an i.i.d. copy of the process {X(t)} of Proposition 2.2. Then,
for any ν < min(7/3 − 3β, β/4 − 1/6), there exist c finite such that for all n and |ρ− ρc| ≤ nβ

′−1,

P

{
ξ̃n + inf

t
X(t) ≤ −n−ν

}
− c

n
≤ P̂n,ρ

{
min
τ∈Jn

z1(τ) ≤ ±εn
}

≤ P

{
ξ̃n + inf

t
X(t) ≤ n−ν

}
+
c

n
,

where ξ̃n ≡ n−1/3(ξn + ξ∗n)− X̃(−nβ−2/3) (and ξn and ξ∗n of Lemma 6.1 are independent of both {X(·)}
and {X̃(·)}).
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Proof. Fixing ν < min(7/3 − 3β, β/4 − 1/6), set δ > 3β − 2 of Lemma 6.1 and ψ ∈ (0, 1/4) of Lemma
6.2 such that ν < 1/3− δ and ν < ψ(β−2/3). Conditioning on the values of ξn and ξ∗n we apply Lemma
6.2 for the values of s = s(n) and u = u(n) indicated above, taking there v(n) = n−1/3[±Cnδ − ξn − ξ∗n]
for the finite constant C of Lemma 6.1. With s(n) ∧ u(n) ≥ nβ−2/3 − 2 and β > 2/3, the error terms
5 exp(−(s(n) ∧ u(n))ψ) are accommodated within c/(2n) for some finite c and all n. Further, enlarging
c if needed, with |s(n) − nβ−2/3| ≤ 2n−2/3 and ν < 2

3 (β − 2/3) < 1/3, it is easy to see that for all n,

P

{
|X̃(−s(n)) − X̃(−nβ−2/3)| ≥ 1

2
n−ν

}
≤ c

2n
.

Our choice of ψ and δ is such that Cnδ−1/3 +2s(n)−ψ ≤ 1
2n

−ν for all n ≥ n0, so adding to c the constant
α of Lemma 6.1 and making sure that c ≥ 2n0, upon taking the expectation over ξn and ξ∗n our thesis
follows from the latter lemma. �

6.3 Proof of Proposition 2.2

Fixing β ∈ (3/4, 1), r ∈ R and β′ < 2β − 1, we have that |ρn − ρc| ≤ nβ
′−1 for ρn = ρc + r n−1/2 and

all n large enough. Further, taking β = 10/13 ∈ (3/4, 1) which maximizes the bound ν0 ≡ min(5/2 −
3β, β/4)−1/6 on ν in Corollary 6.3 leads to ν0 = 5/26−1/6 > 0. Thus, fixing A > 0, the statement (2.11)
of the proposition is a consequence of Corollary 6.3, once we show that for any 1/6 < η < ν+1/6 < 5/26
and all n large enough,

∣∣∣P
{
ξ̃n + inf

t
X(t) ≤ ±n−ν

}
− P

{
n1/6ξ(r) + inf

t
X(t) ≤ 0

}∣∣∣ ≤ n−η ,

where ξ(r) denotes a normal random variable of mean
(
∂y1
∂ρ

)
r and varianceQ11 (both evaluated at θ = θc

and ρ = ρc), independent of X(·). Conditioning on ξ̃n and ξ(r), by the independence of {X(t) : t ≥ 0}
and {X(t) : t ≤ 0}, this is equivalent to

∣∣∣E [q(±n−ν − ξ̃n)2] − E [q(−n1/6ξ(r))2 ]
∣∣∣ ≤ n−η , (6.18)

where q(a) ≡ P(inft≤0X(t) ≥ a). With q2(a) a [0, 1]-valued monotone non-increasing function that
approaches zero as a→ ∞, we have that for any random variables Y, Z and non-random v,

|E [q(vZ)2] − E [q(vY )2 ]| ≤ sup
x

|P(Z ≤ x) − P(Y ≤ x)| .

Applying this for v = −n1/6, Z = n−1/6ξ̃n ± n−(ν+1/6) and Y = ξ(r) of bounded density, we deduce
that (6.18) holds for all n large enough, thus completing the proof of Proposition 2.2 as soon as we show
that for η < 5/2 − 3β and all n large enough,

sup
x∈R

∣∣∣P(n−1/6ξ̃n ≤ x) − P(ξ(r) ≤ x)
∣∣∣ ≤ n−η . (6.19)

To this end, recall that n−1/6ξ̃n = n−1/2ξn+n−1/2ξ∗n−n−1/6X̃(−nβ−2/3), where the latter three random
variables are independent of each other. Hence, in view of (4.20) we have that

sup
x∈R

∣∣∣P(n−1/6ξ̃n ≤ x) − P(ζn ≤ x)
∣∣∣ ≤ κ3n

−1/2

where ζn is obtained upon replacing ξn with a normal random variable of zero mean and variance
n~u†n Q(0, ρn)~un (for the positive definite initial condition Q(0, ρ) of the ODE (2.8) at ρ = ρn). With

Eζn = n1/2y ∗
1 (τn)− eF

2 n
2β−3/2, it follows from (4.9) that |E ζn−E ξ(r)| ≤ Cn3β−5/2. Similarly, it follows

from (4.10) that for some C finite and all n,

|Var(ζn) − Var(ξ(r))| = |(Qτn
)11 + G̃nβ−1 −Q11(θc, ρc)| ≤ Cnβ−1 ≤ Cn3β−5/2 .

With Var(ξ(r)) > 0 independent of n, our thesis (6.19) easily follows from these bounds on the difference
in the mean and variance of the normal random variables ζn and ξ(r). �
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