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Abstract— We consider communication over binary memory-
less symmetric channels using random elements from irregular
low density parity check code (LDPC) ensembles, and belief
propagation (BP) decoding. Under the assumption that the
corresponding Tanner graph includes a non-vanishing fraction
of degree 2 variable nodes, we determine the large blocklength
behavior of the bit error rate for noise levels below threshold.
More precisely, we show that the BP bit error rate is, asymp-
totically, F/n, where n is the blocklength and F an explicit
constant.

Surprisingly, this is the same behavior found for maximum
likelihood (ML) decoding, implying that the BP and ML error
floor are asymptotically equal.

I. I NTRODUCTION AND MAIN RESULT

Density evolution analysis of LDPC ensembles [1] implies
the existence of a threshold noise levelǫBP such that the bit
error rate vanishes (asymptotically in the blocklength and
number of iterations) forǫ < ǫBP and remains bounded
away from0 for ǫ > ǫBP. In applications one is of course
limited to use a finite blocklengthn. For ‘reasonable’ channel
models, the bit error rate is then a smooth and strictly
positive function of ǫ. For n large enough, two regimes
can be distinguished in the performance curves: the ‘error
floor’ at low noise, and the ‘waterfall’ close to threshold.
Mathematically, the first one can be studied by takingn →
∞ at ǫ < ǫBP fixed, while the second corresponds to the
singular limit n → ∞, ǫ → ǫBP. A third, extreme low noise
regime (corresponding toǫ → 0 at n fixed) has also been
investigated extensively in the literature [4], [5].

This papers deals with the error floor for communication
over binary memoryless symmetric channelsBMS(ǫ), for
sparse graph code ensembles. Surprisingly little is known
about this regime. Basic questions remain unanswered: How
does the error probability decreases if the blocklength is
doubled? Is the error floor under BP decoding much worse
than the ML one?

To be definite, we focus here on the standard
LDPC(n,Λ, P ) ensemble [6]. Let us recall that an element
from this ensemble is generated by constructing a Tanner
graph onn variable nodes (of whichΛ2 of degree2, Λ3 of
degree3, . . . , Λlmax

of degreelmax) and m check nodes
(of which P3 of degree3, P4 of degree4, . . . , Λrmax

of degreermax) as follows. To each node we associate
a number of sockets equal to its degree, and then match
check and variable sockets according to a uniformly random
permutation.
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We let Λ̂l = Λl/
∑

l′ Λl′ , P̂l = Pr/
∑

r′ Pr′ . Fur-
ther, we denote by(λ, ρ) the edge-perspective distribution:
λl = lΛl/

∑
l′ l′Λl′ , ρr = rPr/

∑
r′ r′Pr′ . Finally, the

corresponding generating functions areλ(x) =
∑

l λlx
l−1,

ρ(x) =
∑

r ρrx
r−1.

As a performance measure, we shall consider the expected
bit error rate aftert BP iterations, to be denoted asP

(t,n)

b .
For finite blocklengths thet → ∞ limit does not necessarily
exists. We thus set the iteration number by defining

P
(n)

b ≡ inf
t≥0

P
(t,n)

b . (1)

Taking the inf over the iterations number is a reasonable
choice because this is done before the ensemble average.
We may think of estimating the optimalt∗(n) once and for
all and then using it in implementations As we shall see, it
turns out thatt∗(n) = Θ(log n). Below we shall compare

P
(n)

b with the expected bit error rare under symbol MAP

decoding, to be denoted asP
(MAP,n)

b .
The channel BMS(ǫ) can be uniquely characterized

through its log-likelihood distribution [1]. We denote the
corresponding random variable asZ. Di and Urbanke [3], [1]
determined the asymptotic error floor under MAP decoding:
P

(MAP,n)

b = F(ǫ)n−1 + o(n−1). The constantF(ǫ) is given
either in terms of the quantitiespn ≡ Pǫ{Z(n) < 0} +
1
2Pǫ{Z(n) = 0} (Z(n)’s being the sum ofn i.i.d. copies
of Z), or of the normalized generating functionf(ω) =
λ′(0)ρ′(1)E exp{iωZ}:

F(ǫ) =
1

2

∞∑

n=1

(λ′(0)ρ′(1))
n

pn (2)

=
1

2π

∫ ∞

−∞

f(ω)

1 − f(ω)
θ̂(ω) dω , (3)

where θ̂(ω) ≡ πδ(ω) + iP 1
ω

.
Our main result is stated below. In order to keep the

statement as simple as possible, we consider a channel family
{BMS(ǫ)}, ordered by physical degradation and continuous
with respect to the noise levelǫ. By continuous we mean
that expectations of continuous bounded functionals of the
log-likelihood Z are continuous inǫ. Finally, we assume
BMS(ǫ = 0) to be the noiseless channel. In fact the proof
is more general but it would be hard to find interesting
examples outside this class.

Theorem 1. Consider communication over a continuous
channel family {BMS(ǫ)} using random elements from the
ensemble LDPC(n,Λ, P ), and BP decoding. Then there
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Fig. 1. Belief propagation error floor (bit error rate) for the (2, 3)
regular ensemble (λ(x) = x, ρ(x) = x3), used over the AWGN channel.
Continuous lines correspond to the asymptotic prediction ofTheorem 1, and
symbols to numerical simulations (error bars are smaller that the symbols
in most cases).

exists ǫ∗ ∈ (0, ǫBP] such that, for any ǫ < ǫ∗, P
(n)

b =
F(ǫ)n−1 + o(n−1).

Explicit estimates forǫ∗ can be obtained by carefully
reconsidering the proofs of Propositions 1, 2 below below.
We think however that these are of limited interest because
of the following

Conjecture 1. Theorem 1 holds true with ǫ∗ = ǫBP.

It is immediate to see thatF(ǫ) is strictly positive at
any non-vanishing noise value if and only if the Tanner
graph contains a finite fraction of degree 2 variable nodes
(i.e. λ′(0) > 0). As a straightforward consequence, the BP
and MAP error floors are asymptotically equal for large
blocklengths.

Corollary 1. Assume λ2 > 0, and ǫ < ǫ∗. Then, for any
δ > 0, P

(n)
b ≤ (1+δ)P

(MAP,n)
b with probability approaching

1 in the large blocklength limit.

Notice that the relation holds for any given code with
high probability thanks to the fact thatP(n)

b ≥ P
(MAP,n)
b

by definition and noticing thatP(MAP,n)
b = Θ(1/n) with

high probability (this is a consequence of the proof in [3]).

II. N UMERICAL SIMULATIONS

It is interesting to compare Theorem 1 with numerical
simulations for at least two reasons. First, as our statement
is only asymptotic1, it is important to understand whether it
provides a good description for finite values ofn. Second, we
conjectured such an asymptotic form holds for allǫ < ǫBP.
Simulations may provide some support to this claim.

In Figures 1 to 4, we present the outcome of numerical
simulations for two code ensembles, respectively a regu-
lar one and an irregular optimized one (see caption for
the precise degree distribution). In both cases we consid-
ered communication over the additive white noise gaussian

1In principle upper and lower bounds on the expected bit errorrate can
be constructed by carefully reconsidering the estimates in Section III-A.
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Fig. 2. More data as in figure 1, plotted as a function of the noise parameter
w. Here we consider the rescaled bit error ratenP

(n)
b , converging to the

limit theoretical curve (continuous line).
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Fig. 3. As in Fig. 1 for the irregular ensemble defined byλ(x) =
0.266191x + 0.256412x2 + 0.04605470x3 + 0.431342x9 and ρ(x) =
0.65x6 + 0.35x7.
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Fig. 4. As in Fig. 2 for the irregular ensemble defined byλ(x) =
0.266191x + 0.256412x2 + 0.04605470x3 + 0.431342x9 and ρ(x) =
0.65x6 + 0.35x7.



i

Fig. 5. An example of deptht = 2 neighborhood of nodei in a Tanner
graph from the LDPC(n, λ, ρ) ensemble. More precisely, this is an example
of tree neighborhoodT2.

(AWGN) channel with noise varianceǫ (explicitly, on input
X ∈ {+1,−1}, the channel output isY = X +

√
ǫ U , U

being a standard normal random variable). In all cases ran
BP for a 50 iterations and averaged over105 channel/code
realizations.

For the regular ensemble, the asymptotic prediction is very
accurate already at small blocklengths: already atn = 100
the relative error is only a few percent. For the optimized
ensemble, the approach is slower. Nevertheless the agreement
is reasonably good from moderate blocklengths (n & 1000
or n & 2000 depending on the noise level).

As expected, the agreement worsens close to the BP
threshold. However, in both cases considered above, the data
suggest that the asymptotic behavior in Theorem 1 is indeed
correct for anyǫ < ǫBP.

III. O UTLINE OF THE PROOF

This Section contains a sketch of the proof of Theorem
1. This is based on two propositions stated in Section III-
A whose proof is deferred to a longer publication. The
argument for Theorem 1 is provided in Section III-B.

A. Propositions

The proof is based on a careful analysis of the local
structure of the TannerG graph associated to a random
element from the LDPC(n,Λ, P ) ensemble. To this end we
introduce some notations. Unless specified otherwise, we
shall denote byi, j, k, . . . variable nodes and bya, b, c, . . .
check nodes. The distanced(i, j) between two variable nodes
is the length of the shortest path joining them on the Tanner
graph (the path length being the number of check nodes
encountered along the path). The distance between a variable
and a check noded(i, a) is defined analogously (the path
length will not include counting nodea: thus ifxi is involved
in the a-th check,d(i, a) = 0).

Given an integert ≥ 0, we let B(i, t) be the subgraph of
G induced by the variable nodesj such thatd(i, j) ≤ t and
by the check nodesa such thatd(i, a) ≤ t−1 (as well as all
the edges joining them). AnalogouslŷB(i, t) is the subgraph
induced by variable nodes withd(i, j) ≤ t and check nodes
with d(i, a) ≤ t. Examples are shown in Figures 5, 6. In both
cases, it is understood that the degree of ‘boundary’ nodes is
included in the description ofB(i, t), B̂(i, t) (in other words,
degrees are ‘attached’, or ‘written in’ the nodes).

i

i(∗)

Fig. 6. Example of single-loop neighborhoodR(1)
2 .

We also use generically the symbolsTt, T̂t to denote
rooted tree-Tanner graphs of ‘depth’t, the root being denoted
as0. For Tt, this means that all variable nodesj ∈ Tt have
distanced(0, j) ≤ t and all check nodesa ∈ Tt distance
d(0, a) ≤ t − 1. For T̂t, d(0, j), d(0, a) ≤ t.

We want to determine the asymptoticn → ∞ behavior
of the distribution ofB(i, t) when G is drawn from the
LDPC(Λ, P, n) ensemble. The basic underpinning of density
evolution analysis is the observation that for any fixedt,
B(i, t) is a tree with probability approaching1 as n → ∞
and that its distribution converges to

P0 {B(i, t) = Tt} = Λ̂l0

∏

j∈Tt\0

λlj

∏

a∈Tt

ρra
, (4)

where we denoted bylj (respectivelyra) the degree of
variable nodej (check nodea). In words, a tree from the
distributionP0 { · } is generated by drawing the root degree
from Λ̂l, connect tol check nodes and proceed recursively.
For each newly added node, the corresponding degree is
drawn from λl (if it is a variable node) orρr (if it is a
check node), independently from the others.

The first ingredient in out proof is an estimate for the
error probability at the root of a random code from the tree
ensembleP0{ · }.

Proposition 1. Let the degree distributions (λ, ρ) be given
and Tt be a random rooted tree Tanner graph drawn
from the corresponding ensemble P0{ · }. Let Ct be the low
density parity check code associated to Tt and assume a
codeword from the Ct is transmitted through the channel
family {BMS(ǫ)}. Finally let P

(t,tree)

b be the expected error
probability for the root bit under symbol MAP decoding.
Then for any ǫ small enough there exists a positive constant
κ(ǫ) such that

P
(t,tree)

b ≤ e−κ(ǫ)t , (5)

Further κ(ǫ) ↑ ∞ as ǫ ↓ 0.

Similar statements (or proofs implying this one) have been
proved several times in the literature, see for instance [7].

In this paper we improve over the tree description of the
neighborhood ofB(i, t) in two ways: first we include sub-
dominant contributions that yield leading order corrections
to density evolution; second we establish error bounds for
the new refined model. In the following we shall denote by



β = (lmax − 1)(kmax − 1) the maximum growth rate of the
neighborhood ofi (more precisely|B(i, t)| ≤ βt)

The refined model differs in two ways with respect to
the limiting one, cf. Eq. (4). First of all the probability
that B(i, t) = Tt for any particular treeTt changes due to
correlations of degrees at different nodes. This change will
be denoted byf(Tt).

Next, with some finite probabilityB(i, t) includes one
cycle (the probability that its cyclic number is larger than
one being a sub-leading correction). We can distinguish two
cases. We denote byS(s)

t a unicyclic graph of radiust
centered ati, such that the smallest neighborhood ofi not
being a tree isB(i, s) (with an abuse of notation we refer here
to the neighborhood ofi in a specific graph, namelyS(s)

t ).
Analogously, we letR(s)

t be a unicyclic graph of radiust
centered ati, such that the smallest neighborhood ofi not
being a tree iŝB(i, s). Denote byi(∗) (respectively, bya(∗))
the node on the loop farthest away fromi. Then we introduce
the following distributions of such classes of neighborhoods:

P1,s(S
(s)
t ) =

li(∗) − 1

λ′(1)

(
q(s)

2

)−1

Λ̂l0

∏

i∈S
(s)
t

λli

∏

a∈S
(s)
t

ρra
,

(6)

P̂1,s(R
(s)
t ) =

ra(∗) − 1

ρ′(1)

(
q̂(s)

2

)−1

Λ̂l0

∏

i∈R
(s)
t

λli

∏

a∈R
(s)
t

ρra
.

(7)

In words, the distributionP1,s( · ) is described as follows:
generate the firsts levels of S

(s)
t according to the model

P0( · ) (i.e. drawing the root degree from̂Λ· the other node
degrees independently fromλ (for variable nodes) andρ
(check nodes). Then pick two nodes uniformly at random
among the ones at generations and identify them. Denote
the resulting node asi(∗). Finally, generate the last(t − s)
levels once again usingλ, ρ i.i.d. degrees, except for the
nodei(∗) whose degree has distribution(l − 1)λl/λ′(1).

The probability that the actually neighborhood ofB(i, t)

is of the typeS
(s)
t (respectivelyR(s)

t ) will be approximated
by δs/n (δ̂s/n), where

δs =
λ′

∫
λ

2
[ρ′′λ′ + λ′′ρ′2] (λ′ρ′)s−1 1 − (λ′ρ′)s

1 − λ′ρ′
, (8)

δ̂s =
ρ′

∫
ρ

2
λ′2[ρ′′λ′ + λ′′ρ′2] (λ′ρ′)s−1 1 − (λ′ρ′)s

1 − λ′ρ′
+ (9)

+
1

2
λ′′(λ′ρ′)s .

All the polynomials in this expressions are understood to
be evaluated at1. Notice thatδs, δ̂s ≤ Cβ2t/n for some
constantC.

Finally, we recall that the total variation distance||µ −
ν||TV between two distributions on a finite setX is defined
as ||µ − ν||TV = 1

2

∑
x∈X |µ(x) − ν(x)|.

Proposition 2. Consider a Tanner graph from the
LDPC(n,Λ, P ) ensemble, let B(i, t) be the radius t-
neighborhood of a uniformly random variable node i, and

ℓ

Fig. 7. An isolated loop of lengthℓ is equivalent to a ‘loop’ or repetition
code.

denote by P{ · } its distribution. Assume Λl, Pr > nξ, and
lmax, rmax to be given. Then there exists a function f(Tt)
and positive constant C depending uniquely on ξ and K
such that, for any t and n |f(Tt)| ≤ Cβ2t/n, and:

∣∣∣
∣∣∣P { · } − (1 + f( · ))P0 { · } −

t∑

s=1

δs P1,s { · }} (10)

−
t−1∑

s=1

δ̂s P̂1,s { · }
∣∣∣
∣∣∣
TV

≤ C β3t

n2
.

The proof of this statement consists in writing down ex-
plicit formulas for the actual probabilitiesP {B(i, t) = Tt},

P

{
B(i, t) = S

(s)
t

}
, etc., and Taylor expanding these formu-

lae asn → ∞.

B. Proof of Theorem 1

First notice that, using the result of [3], and the optimality
of MAP decoding it is enough to prove an upper bound of
the formP

(n)

b ≤ F(ǫ)/n + o(n−1).

By linearity of expectation, the average bit error rateP
(n,t)

b

is just the expectation with respect to the graph ensemble, of
the probabilityP(t)

i (G) that biti is incorrectly decoded aftert
iterations. This in turns depends on the graphG only through
the deptht neighborhood ofi, B(i, t). By Proposition 2 we
have

P
(t,n)

b = EP
(t)
i (B(i, t)) (11)

≤ E0P
(t)
i (Tt) +

t∑

s=1

δs

n
E1,sP

(t)
i (S

(s)
t )

+

t−1∑

s=1

δ̂s

n
Ê1,sP

(t)
i (R

(s)
t ) +

C β3t

n2
,

whereE0, E1,s, Ê1,s denote expectation with respect to the
neighborhood ensembles defined in the previous section.

Since P
(n)

b = inft P
(n,t)

b , we obtain an upper bound on

P
(n)

b by setting t = t∗(n) = ξ log n. In particular, if we
choseξ ∈ (0, 1/3)1 the last term in the above expression is
o(n−1). Further, by Proposition 1 we can takeǫ∗ such that
κ(ǫ)ξ > 1 for all ǫ ≤ ǫ∗. As a consequence forǫ ≤ ǫ∗, the
first term iso(n−1) as well.

We are now left with the task of estimating the two
sums in Eq. (11) that include expectations over unicyclic



neighborhoods. Given an integerT > 0, we distinguish in
each of the two sums the terms withs ≤ T and those with
s > T . We claim that the last one are negligible. More
precisely

t∗(n)∑

s=T+1

δs

n
E1,sP

(t)
i (S

(s)
t ) ≤ rT n−1 , (12)

where rT can be made arbitrarily small by takingT large
enough.

Before considering this claim, let us focus on the terms
with s ≤ T which form the leading contribution. Assume
for notational simplicity that the all zeros codeword has
been transmitted. Consider the graphS

(s)
t∗(n) and the BP

messages at anyt > 0. All the messages entering the
unique loop inS(s)

t∗(n) areexactly distributed according to the
tree ensemble, i.e. as predicted by density evolution. Since
t∗(n) = ξ log n ↑ ∞, this means that the incoming log-
likelihood ratios are, asymptotically int andn, +∞. If any
of the variable nodes in the loop has degree3 or larger, this
implies that along edges inside the loop positive messages
are passed at all times large enough. The root nodei will
be decoded correctly both if it belongs to the unique loop in
S

(s)
t , and if it does not.
Consider now the case in which all the variable nodes

on the loop have degree2. The BP dynamics inside the
loop will converge to the one inside a ‘loop code’ (an
LDPC code whose Tanner graph is a single loop, cf. Fig. 7.
This is in turn easily understood. Each variable-to-check
j → b message directed clockwise is equal to the one
flowing along the previous variable-to-check edge one time
step earlier, plus the log-likelihood ofxj (call it zj). An
analogous statement is valid of course for counter-clockwise
messages. Asymptotically for larget all the messages in
the loop are(

∑
j zj)t/ℓ. As a consequence the bits in the

loop are decoded correctly if and only if
∑

j zj > 0 (and
with probability 1/2, if

∑
j zj = 0). Notice that, in any

case, messages outgoing from the loop are either positive or
bounded uniformly int (if

∑
j zj = 0). The root nodei is

incorrectly decoded only if it belongs to such a loop and∑
j zj < 0 (and with probability1/2, if

∑
j zj = 0).

The above argument implies that, for fixeds and t → ∞
P

(t)
i (S

(s)
t ) → 0 if the loop in S

(s)
t contains nodes of degree

3 or larger, whileP
(t)
i (S

(s)
t ) → p2s otherwise. Further, it is

well known that the probability that the root belongs to such
a loop is 1

2n(2s) (λ
′(0)ρ′(1))2s.

Neighborhoods of the formR(s)
t are treated analogously.

By summing ons ≤ T , we get a contribution to the form
[F(ǫ) − r′T ]/n, wherer′T can be made arbitrarily small by
chosingT large enough.

The proof is completed by showing that the contribution
of loops of large size (larger than2T ) is negligible. This
can be done by showing that either of the two following
happens:(1) s > (1 − η)t∗(n) for some smallη: then only
a little fraction of received messages is used twice and one
can reduce itself to the tree case;(2) s < (1−η)t∗(n): then,
with high probability, all the messages entering the loop are

positive. One can reduce itself to the small loop case, but
for the fact that

∑
j zj > 0 whp.

IV. OPEN PROBLEMS

The analysis presented in this paper admit several general-
izations. Among the most immediate, it would be interesting
to generalize our main result to expurgated ensembles as
well to other message passing algorithms. It would be also
important to improve the accuracy by considering higher
order (multi-loop) structures.
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