The asymptotic error floor of LDPC ensembles under BP decoding
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Abstract— We consider communication over binary memory- We let A, = N/ > A, b = P./%, P.. Fur-
less symmetric channels using random elements from irregular ther, we denote by, p) the edge-perspective distribution:
low density parity check code (LDPC) ensembles, and belief N = ZAI/ZZ Ay, pr = rP./> ., 7'P,. Finally, the
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propagation (BP) decoding. Under the assumption that the : - . o -1
corresponding Tanner graph includes a non-vanishing fraction corresponding generating functions arer) = >, Az’

of degree 2 variable nodes, we determine the large blocklength p(x) = ZT Prffr_l-
behavior of the bit error rate for noise levels below threshold. As a performance measure, we shall consider the expected

More precisely, we show that the BP bit error rate is, asymp- bit error rate after BP iterations. to be denoted & t,n)
tcc())tf;!l)r/{t.%/n' where n is the blocklength and§ an explicit For finite blocklengths thé — oo limit does not necessarily

Surprisingly, this is the same behavior found for maximum ~ €xists. We thus set the iteration number by defining
likelihood (ML) decoding, implying that the BP and ML error
floor are asymptotically equal. ﬁ)n) _ ”;E F{f’") .

@)

I. INTRODUCTION AND MAIN RESULT ) ) ) ] )
Taking theinf over the iterations number is a reasonable

Density evolution analysis of LDPC ensembles [1] implieggice because this is done before the ensemble average.

the existence of a threshold noise levgp such that the bit We may think of estimating the optimal(n) once and for
error rate vanishes (asymptotically in the blocklength ang;; 4nq ‘then using it in implementations As we shall see, it

numb?r ofoit;arations) forel < eBll,’ a;_nd remains bfounded turns out thatt,(n) = ©(logn). Below we shall compare
away from0 for ¢ > egp. In applications one is of course =(n) .
limited to use a finite blocklength. For ‘reasonable’ channel Py V\_”th the expected b'l ﬁ[{?fn{""re under symbol MAP
models, the bit error rate is then a smooth and strictiff€coding, to be denoted & _ _
positive function ofe. For n large enough, two regimes 1he channelBMS(e) can be uniquely characterized
can be distinguished in the performance curves: the ‘erréprough its log-likelihood distribution [1]. We denote the
floor at low noise, and the ‘waterfall’ close to threshold.corresponding random variable &s Di and Urbanke [3], [1]
Mathematically, the first one can be studied by taking- de&ej{gmed the asymptotic error floor under MAP decoding:
oo at e < epp fixed, while the second corresponds to thégl() ™ = F(e)n~t +o(n~1). The constan§(e) is given
singular limitn — oo, € — ep. A third, extreme low noise either in terms of the quantities, = P.{Z(™ < 0} +
regime (corresponding te — 0 at n fixed) has also been 3P{Z™ = 0} (Z(™)’s being the sum ofn i.i.d. copies
investigated extensively in the literature [4], [5]. of Z), or of the normalized generating functiofiw) =
This papers deals with the error floor for communicatior\’(0)p'(1)E exp{iwZ}:
over binary memoryless symmetric chann®831S(e), for

sparse graph code ensembles. Surprisingly little is known ) — 1 = N(0) (1)) 2
about this regime. Basic questions remain unanswered: How 8 2 ;( 0 (L) pn @
does the error probability decreases if the blocklength is 1 [ flw) -~

doubled? Is the error floor under BP decoding much worse = %) 1w f(w) dw, 3)

than the ML one?
To Dbe definite, we focus here on the standargheref(w) = rd(w) + iPL.
LDPC(n, A, P) ensemble [6]. Let us recall that an element o, main result is stated below. In order to keep the

from this ensemble is generated by constructing a TanNgf,sement as simple as possible, we consider a channeyfamil
graph onn variable nodes (of whicth, of degree2, A; of — rpnig(c)) ordered by physical degradation and continuous
degrees, ..., Ay,,, Of degreelnax) andm check nodes i respect to the noise level By continuous we mean

(of which P; of degree3, P, of degreed, ..., Ar,..  that expectations of continuous bounded functionals of the

of degreer.x) as follows. To each node we associal§yy jivelihood Z are continuous ire. Finally, we assume
a number of sockets equal to its degree, and then matghi g, — ) to be the noiseless channel. In fact the proof

check and variable sockets according to a uniformly randopg more general but it would be hard to find interesting
permutation. examples outside this class.
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Fig. 1.  Belief propagation error floor (bit error rate) forettf2, 3)
regular ensembleX(z) = z, p(x) = x3), used over the AWGN channel. _. s . .
Continuous lines correspond to the asymptotic predictiofingorem 1, and F19- 2. More data as in figure 1, plotted as a furl:(t:l(gn of the@piarameter
symbols to numerical simulations (error bars are smaller thasgmbols w. Here we consider the rescaled bit error rate, ’, converging to the
in most cases). limit theoretical curve (continuous line).

exists e, € (0,epp] such that, for any ¢ < e, P.” =
F(e)n=t +o(n=t).

0.01
Explicit estimates fore, can be obtained by carefully ’

reconsidering the proofs of Propositions 1, 2 below below. R %

We think however that these are of limited interest because ~ °%'[ % W; 065 ]

of the following “w=o o e

Conjecture 1. Theorem 1 holds true with e, = egp. o 1e04 ¢ T e ]
It is immediate to see thaf(e) is strictly positive at w=025 « %% e

any non-vanishing noise value if and only if the Tanner 1805 ¢ x Tkl ]

graph contains a finite fraction of degree 2 variable nodes X

(i.e. A’(0) > 0). As a straightforward consequence, the BP 1606 ‘ ‘

and MAP error floors are asymptotically equal for large 100 1000 10000

blocklengths. n

Corollary 1. Assume Ay > 0, and € < €. Then, for any Fig. 3. As in Fig. 1 for the irregular ensemble defined bjr)

. iy . 2 3 9
§>0, Pl()n) < (1+(5)P£MAP7”) with probablhty approachl ng 82?2}5941%;5(;35641% + 0.04605470z° + 0.431342z” and p(z)

1 in the large blocklength limit.

Notice that the relation holds for any given code with
high probability thanks to the fact th&tl()”) > P,(JMAP’")

by definition and noticing thaP,SMAPm) = ©(1/n) with

high probability (this is a consequence of the proof in [3]). O a0 —o o % 7
n=1600 —*— S} =
[I. NUMERICAL SIMULATIONS 1 n=6400 —5— o 4

It is interesting to compare Theorem 1 with numerical BB

simulations for at least two reasons. First, as our statemene oLy 1

is only asymptotit, it is important to understand whether it © -

provides a good description for finite valuesrofSecond, we 001 ¢ g’g 1

conjectured such an asymptotic form holds forea¥ epp.

Simulations may provide some support to this claim. 0001 ¥ @ ]
In Figures 1 to 4, we present the outcome of numerical eoa o oo

simulations for two code ensembles, respectively a regu- 0 01 02 03 04 05 06 07 08

lar one and an irregular optimized one (see caption for £

the precise degree distribution). In both cases we consid-

ered communication over the additive white noise gaussidff; »: =~AS in Fig. 2 for the iregular ensemble defined biu)

266191z + 0.25641222 + 0.04605470x3 + 0.4313422° and p(z)
0.65z% 4 0.3527.

1In principle upper and lower bounds on the expected bit emte can
be constructed by carefully reconsidering the estimatesati& IlI-A.
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Fig. 5.  An example of depth = 2 neighborhood of nodé in a Tanner Fig. 6. Example of single-loop neighborhoagw.
graph from the LDPCn, A, p) ensemble. More precisely, this is an example
of tree neighborhood ;.

We also use generically the symbols, T, to denote

(AWGN) channel with noise variance(explicitly, on input ~rooted tree-Tanner graphs of ‘depththe root being denoted
X € {+1,—1}, the channel output i¥ = X + \/eU, U as0. For T, this means that all variable nod¢s T, have
being a standard normal random variable). In all cases rafstanced(0,;j) < ¢ and all check nodea € T, distance
BP for a50 iterations and averaged ove®® channelicode @(0,a) <t — 1. ForT,, d(0,5),d(0,a) <
realizations. We want to determine the asymptobizc—> oo behavior
For the regular ensemble, the asymptotic prediction is ve§f the distribution ofB(i,¢) when G is drawn from the
accurate already at small blocklengths: already.at 100 LDPC(A, P, n) ensemble. The basic underpinning of density
the relative error is only a few percent. For the optimize@Vvolution analysis is the observation that for any fixed
ensemble, the approach is slower. Nevertheless the agneentd(i, ) is a tree with probability approachingasn — oo
is reasonably good from moderate blocklengths> 1000 and that its distribution converges to
or n 2 2000 depending on the noise level). CoN 4
As expected, the agreement worsens close to the BP Po {B(1,t) = Tu} = Ay H A H Pras “)
threshold. However, in both cases considered above, tlae dat JETAD - a€Te
suggest that the asymptotic behavior in Theorem 1 is inde&¢here we denoted by; (respectivelyr,) the degree of
correct for anye < egp. variable node;j (check nodea). In words, a tree from the
1. OUTLINE OF THE PROOF distribution, { - } is generated by drawing the root de_gree
' from A;, connect tol check nodes and proceed recursively.
This Section contains a sketch of the proof of Theoremor each newly added node, the corresponding degree is
1. This is based on two propositions stated in Section Iligrawn from ), (if it is a variable node) orp, (if it is a
A whose proof is deferred to a longer publication. Theheck node), independently from the others.
argument for Theorem 1 is provided in Section IlI-B. The first ingredient in out proof is an estimate for the
A. Propositions error probability at the root of a random code from the tree

The proof is based on a careful analysis of the Iocaefnsembld%{ +
structure of the Tanneti graph associated to a randomProposition 1. Let the degree distributions (), p) be given
element from the LDP@:, A, P) ensemble. To this end we and T, be a random rooted tree Tanner graph drawn
introduce some notations. Unless specified otherwise, viom the corresponding ensemble Po{ - }. Let C; be the low
shall denote by, j, k, ... variable nodes and by, b, c, density parity check code associated to T; and assume a
check nodes. The distandéi, j) between two variable nodes codeword from the C, is transmitted through the channel
is the length of the shortest path joining them on the Tannésmily {BMS(e)}. Finally let P(t tree) pe the expected error
graph (the path length being the number of check nodggobability for the root bit under symbol MAP decoding.
encountered along the path). The distance between a variatphen for any « small enough there exists a positive constant
and a check nodé(:,a) is defined analogously (the path r(€) such that
length will not include counting node thus if z; is involved —(t.treo)
in the a-th check,d(i, a) = 0). P, < et (5)
Given an integet > 0, we letB(i, t) be the subgraph of
G induced by the variable nodgssuch thatd(i, j) < ¢ and Further (e) T oo ase | 0.
by the check nodes such thati(i,a) <t—1 (as well as all Similar statements (or proofs implying this one) have been
the edges joining them). Analogouﬁ(z t) is the subgraph proved several times in the literature, see for instance [7]
induced by variable nodes witly(i, j) < t and check nodes In this paper we improve over the tree description of the
with d(i,a) < t. Examples are shown in Figures 5, 6. In botmeighborhood ofB(i, t) in two ways: first we include sub-
cases, it is understood that the degree of ‘boundary’ nadesdominant contributions that yield leading order correusio
included in the description d8(i,t), B(4, ) (in other words, to density evolution; second we establish error bounds for
degrees are ‘attached’, or ‘written in’ the nodes). the new refined model. In the following we shall denote by



8 = (Imax — 1) (kmax — 1) the maximum growth rate of the
neighborhood of (more preciselyB(i, t)| < 3¢)
The refined model differs in two ways with respect to ¢
the limiting one, cf. Eq. (4). First of all the probability
that B(i,t) = T, for any particular tre€l; changes due to
correlations of degrees at different nodes. This changke wil
be denoted by (T;).
Next, with some finite probabilityB(i,¢) includes one
cycle (the probability that its cyclic number is larger than
one being a sub-leading correction). We can distinguish twgg. 7. An isolated loop of length is equivalent to a ‘loop’ or repetition
cases. We denote bs§5> a unicyclic graph of radiug ~ c0de:
centered at, such that the smallest neighborhood:afiot

being a tree i8(:, s) (with an abuse of notation we refer heredenote by P{-} its distribution. Assume A, P, > né, and
to the neighborhood of in a specific graph, nameISﬁ)). Lnases Tmax 0 b given. Then there exists a%unction }(Tt)

Analogously, we Ieﬂ?ﬁs) be a unicyclic graph of radius 54 positive constant C' depending uniquely on ¢ and K
centered at, such that the smallest neighborhoodiafiot g, that. for any ¢ and n | f(T,)| < CB% /n, and:

being a tree ié(i, s). Denote byi(x) (respectively, byu(x))

the node on the loop farthest away franThen we introduce !
the following distributions of such classes of neighborgo HP{ 3= A4 FC)Po{-} - Z 05 Prs {1} (10)
s=1
oy iy =1 (a7 S st
]P)LS(SE)): (,) () Alo ]i[)\l7 Hpmv _Z(S Py {} Sci
M) 2 iesl®  aesl® s—1 o v n?

. ®6) The proof of this statement consists in writing down ex-

= s Ta) — 1 (G(s)\ ~ « licit formulas for the actual probabilitieB {B(i,t) = T;},
Pl,s(RE )) _ (,) < ( )> Alo H )\li H Pr. - p . ) p { ( ) t}

p'(1) 2 0 o) P {B(z,t) =S, } etc., and Taylor expanding these formu-

1€Ry a€Ry

@) lae asn — oo.
In words, the distributiorP; ,( - ) is described as follows: B- Proof of Theorem 1
generate the first levels of Sis) according to the model  First notice that, using the result of [3], and the optinyalit
Py(-) (i.e. drawing the root degree from. the other node of MAP decoding it is enough to prove an upper bound of
degrees independently from (for variable nodes) ang  the formﬁé") < F(e)/n+o(n ).
(check nodes). Then pick two nodes uniformly at random gy jinearity of expectation, the average bit error rﬁfﬁ"t)
among the ones at generatierand identify them. Denote g i st the expectation with respect to the graph ensemble, o
the resulting node af(x). Finally, generate the last —s) e propabilityP'?) () that biti is incorrectly decoded after
levels once again using, p i.i.d. degrees, except for the iterations. This in turns depends on the gr&pbnly through

nodei(x) whose degree has distributign— 1)\, /\'(1). the deptht neighborhood of, B(i,t). By Proposition 2 we
The probability that the actually neighborhood Bfi, ) P g - B(i.1)- By Prop

, (s) : () _ have
is of the typeS,™ (respectivelyR;™’) will be approximated ) .
by &, /n (35/n), where P, = EP{ (B(i,1)) (11)
t
N [\ (M NS 53 N
0y = 2f [P”X + )\//p/2} ()\/p/)s—l% , (8) < EOPEt)(Tt) + Z = IEl,SPEt)(Sﬁ ))
AP s=1
"~ P/fp 121 1\ " 12 I s—ll - ()‘/pl)s t—1 o 3t
s === A" [p" N + X'p"] (Np) —+ (9) s = (t) /p(s) cp
- —E;P;’(R -,
2 1 A 14 + ézzl n st ( t ) =+ ng

1
+§)\Il()\/pl)s. N . .
whereEy, E, ,, E; s denote expectation with respect to the

All the polynomials in this expressions are understood t@eighborhood ensembles defined in the previous section.

be evaluated at. Notice that(Ss,gS < Cp? /n for some Sinceﬁ") _ inft?f"’t) we obtain an upper bound on
constantC. ’ >

—=(n) . . _ . .
Finally, we recall that the total variation distanfie. — Sﬁosebgyesgtl?%)l_thtg ﬁz)st:efnioii ﬁhénagg\rgcglfr’rezs\?éi is
v||Tv between two distributions on a finite s&tis defined ' P

as|lp—vllrv = 32 en lu(z) — v(z)| o(n=1). Further, by Proposition 1 we can take such that

2 Zuzex 1 ' k(e)¢ > 1 for all e < e,. As a consequence far< ¢,, the
Proposition 2. Consider a Tanner graph from the first term iso(n™1) as well.
LDPC(n, A, P) ensemble, let B(i,t) be the radius t¢- We are now left with the task of estimating the two
neighborhood of a uniformly random variable node i, and sums in Eq. (11) that include expectations over unicyclic



neighborhoods. Given an integ&r > 0, we distinguish in positive. One can reduce itself to the small loop case, but
each of the two sums the terms with< 7" and those with for the fact that_, z; > 0 whp.

s > T. We claim that the last one are negligible. More

IV. OPEN PROBLEMS

The analysis presented in this paper admit several general-
izations. Among the most immediate, it would be interesting
to generalize our main result to expurgated ensembles as
well to other message passing algorithms. It would be also
important to improve the accuracy by considering higher

precisely
ti(n) 5
ST S ELPIS) <rpnt (12)
s=T+1 n
wherery can be made arbitrarily small by takirif large
enough.

Before considering this claim, let us focus on the terms
with s < T which form the leading contribution. Assume
for notational simplicity that the all zeros codeword hasiy
been transmitted. Consider the graﬁbf}n) and the BP
messages at any > 0. All the messages entering the [
unique loop insif)(n) areexactly distributed according to the
tree ensemble, i.e. as predicted by density evolution.eSinc
t.(n) = £logn T oo, this means that the incoming log- E{}
likelihood ratios are, asymptotically ihandn, +oo. If any
of the variable nodes in the loop has degsear larger, this  [9]
implies that along edges inside the loop positive messages
are passed at all times large enough. The root nodal 6]
be decoded correctly both if it belongs to the unique loop in
s{*), and if it does not.

Consider now the case in which all the variable nodeg7]
on the loop have degre2. The BP dynamics inside the
loop will converge to the one inside a ‘loop code’ (an
LDPC code whose Tanner graph is a single loop, cf. Fig. 7.
This is in turn easily understood. Each variable-to-check
j — b message directed clockwise is equal to the one
flowing along the previous variable-to-check edge one time
step earlier, plus the log-likelihood af; (call it z;). An
analogous statement is valid of course for counter-clos&wi
messages. Asymptotically for largeall the messages in
the loop are(3_, z;)t/¢. As a consequence the bits in the
loop are decoded correctly if and only Ej z; > 0 (and
with probability 1/2, if 3, 2; = 0). Notice that, in any
case, messages outgoing from the loop are either positive or
bounded uniformly in¢ (if Zj z; = 0). The root node is
incorrectly decoded only if it belongs to such a loop and
>-;#j <0 (and with probabilityl /2, if >, z; = 0).

The above argument implies that, for fixecandt — oo
P (s!*)) = 0 if the loop inS{*) contains nodes of degree
3 or larger, whiIePEt)(Sgs)) — pos Otherwise. Further, it is
well known that the probability that the root belongs to such
a loop iswl%)(/\/(())p/(l))%.

Neighborhoods of the fornﬁtgs) are treated analogously.

By summing ons < 7', we get a contribution to the form
[§(e) — r4]/n, wherer,. can be made arbitrarily small by
chosingT large enough.

The proof is completed by showing that the contribution
of loops of large size (larger tha?l’) is negligible. This
can be done by showing that either of the two following
happens(1) s > (1 — n)t.(n) for some small;: then only
a little fraction of received messages is used twice and one
can reduce itself to the tree cage) s < (1—n)t.(n): then,
with high probability, all the messages entering the loap ar

order (multi-loop) structures.
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