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Abstract

We consider the Ising model with inverse temperature β and without external field on sequences of
graphs Gn which converge locally to the k-regular tree. We show that for such graphs the Ising measure
locally weak converges to the symmetric mixture of the Ising model with + boundary conditions and the
− boundary conditions on the k-regular tree with inverse temperature β. In the case where the graphs
Gn are expanders we derive a more detailed understanding by showing convergence of the Ising measure
condition on positive magnetization (sum of spins) to the + measure on the tree.

1 Introduction

An Ising model on the finite graph G (with vertex set V , and edge set E) is defined by the following
distribution over x = {xi : i ∈ V }, with xi ∈ {+1,−1}

µ(x) =
1

Z(β,B)
exp

{

β
∑

(i,j)∈E

xixj +B
∑

i∈V

xi

}

. (1.1)

The model is ferromagnetic if β ≥ 0 and, by symmetry, we can always assume B ≥ 0. Here Z(β,B) is a
normalizing constant (partition function).

The most important feature of the distribution µ( · ) is the ‘phase transition’ phenomenon. On a variety
of large graphs G, for large enough β and B = 0, the measure decomposes into the convex combination
of two well separated simpler components. This phenomenon has been studied in detail in the case of
grids [2, 3, 4, 5], and on the complete graph [1]. In this paper we consider sequences of regular graphs
Gn = (Vn, En) with increasing vertex sets Vn = [n] = {1, . . . , n} that converge locally to trees and prove
a local characterization of the corresponding sequence of measures µn( · ), which corresponds to the phase
transition phenomenon.

More precisely, consider the case in which Gn is a sequence of regular graphs of degree k ≥ 3 with
diverging girth. The neighborhood of Bi any vertex i in Gn converges to an infinite regular tree of degree k.
It is natural to assume that the marginal distribution µn,Bi

( · ) converges to the marginal of a neighborhood
of the root for an Ising Gibbs measure on the infinite tree. For large β, however, there are uncountably
many Gibbs measures on the tree so it is natural to ask which is the limit
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A special role is played by the plus/minus boundary conditions Gibbs measures on the infinite tree, to
be denoted, respectively, by ν+( · ) and ν−( · ). It was proved in [9] that, for any β, and any B > 0, µn( · )
converges locally to ν+ as n→ ∞ and by symmetry when B < 0 µn( · ) converges locally to ν− as n→ ∞.

In this paper we cover the remaining (and most interesting) case proving that

µn( · ) −→
n

1

2
ν+( · ) +

1

2
ν−( · ) for B = 0 and any β ≥ 0 . (1.2)

In fact, we prove a sharper result. If µn,+( · ) and µn,−( · ) denote the Ising measure (1.1) conditioned to,
respectively,

∑

i∈V xi > 0 and
∑

i∈V xi < 0, then we have

µn,±( · ) −→
n

ν±( · ) for B = 0 and any β ≥ 0 , (1.3)

and moreover the convergence above holds for almost all vertices of the graph. Since µn = 1
2µ+,n + 1

2µ−,n

(exactly for n odd and approximately for even n), this result implies (1.2).

2 Definitions and main results

2.1 Locally tree-like graphs

We denote by Gn = (Vn, En) a graph with vertex set Vn ≡ [n] = {1, . . . , n}. The distance d(i, j) between
i, j ∈ Vn is the length of the shortest path from i to j in Gn. Given a vertex i ∈ Vn, we denote by Bi(t) the
set of vertices whose distance from i is at most t (and with a slight abuse of notation it will also denote
the subgraph induced by those vertices). We will let I denote a vertex chosen uniformly from the vertices
Vn, let Un denote the measure induced by I and let J denote a uniformly random neighbor of I.

This paper is concerned by sequence of graphs {Gn}n∈N of diverging size, that converge locally to Tk,
the infinite rooted tree of degree k. Let Tk(t) be the subset of vertices of Tk whose distance from the
root ø is at most t (and, by an abuse of notation, the induced subgraph). For a rooted tree T , we write
T ≃ Tk(t) if there is a graph isomorphism between T and Tk(t) which maps the root of T to that of Tk(t).
The following definition defines what we mean by convergence in the local weak topology.

Definition 2.1. Consider a sequence of graphs {Gn}n∈N, and let Un be the law of a uniformly random
vertex I in Vn. We say that {Gn} converges locally to the degree-k regular tree Tk if, for any t,

lim
n→∞

Un{BI(t) ≃ Tk(t)} = 1 . (2.1)

Part of our results hold for sequences of expanders (more precisely, edge expanders), whose definition
we now recall. For a subset of vertices S ⊂ V , we will denote by ∂S the subset of edges (i, j) ∈ E having
only one endpoint in S.

Definition 2.2. The k-regular graph G = (V,E) is a (γ, λ) (edge) expander if, for any set of vertices
S ⊆ V with |S| ≤ nγ, |∂S| ≥ λS.

2.2 Local weak convergence

In analogy with the definition of locally tree-like graph sequences, we introduce local weak convergence for
Ising measures. This done in two different ways. First one can look at a random vertex and the random
configuration in the neighbourhood of the vertex and examine its limiting measure. Alternatively, we may
choose a random vertex and consider the marginal distribution of the variables in a neighborhood under the
Ising model. This induces (via the random choice of the vertex) a distribution over probability measures.
We can therefore ask whether this measure converges to a probability measure over Gibbs measures.
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Recall that an Ising measure µ on the infinite tree Tk may be either defined as a weak limit of Gibbs
measures on Tk(t) or in terms of the DLR conditions, see e.g. [11]. An Ising model is in particular a
probability measure over {−1,+1}Tk endowed with the σ-algebra generated by cylindrical sets. We let Gk

denote the space of Ising Gibbs measures on Tk and let Hk denote the space of all probability measures
on {+1,−1}Tk . We endow both these spaces with the topology of weak convergence. Since {+1,−1}Tk is
compact, Gk and Hk are also compact in the weak topology by Prohorov’s theorem.

We define Mk (respectively MG
k ) to be the space of probability measures over (Hk,BH) (resp. (Gk,BH)),

with BΩ the Borel σ-algebra. Also Mk, M
G
k are compact in the weak topology.

We will use generically µ for Ising measures on Gn and ν for Ising measure on Tk. For a finite subset
of vertices S ⊆ Vn, we let µS be the marginal of µ on the variables xj , j ∈ S. We the shorthand µt for
when S = Bi(t) is the ball of radius t about i (i should be clear from the context). For a measure ν ∈ Gk

we let νt denote its marginal over the variables xj, j ∈ Tk(t). In other words νt is the projection of ν
on {+1,−1}Tk(t). For a measure m ∈ Mk we let m

t denote the measure on the space of measures on
{+1,−1}Tk(t) induced by such projection.

Definition 2.3. Consider a sequence of graphs/Ising measures pairs {(Gn, µn)}n∈N and let Pt
n(i) denote

the law of the pair (Bi(t), xBi(t)) when x is drawn with distribution µn and i ∈ [n] is vertex in the graph. Let
Un denote the uniform measure over a random vertex I ∈ [n]. Let Pt

n = EUn(Pt
n(I)) denote the average of

P
t
n(I).

A. The first mode of convergence concerns picking a random vertex I and a random local configuration
in the neighbourhood of I. Formally, for ν̄ ∈ Gk we say that {µn}n∈N converges locally on average
to ν̄ if for any t and any ǫ > 0 it holds that

lim
n→∞

dTV

(

P
t
n, δTk(t) × ν̄t

)

= 0. (2.2)

B. A stronger form of convergence involves picking a random vertex I and the associated random local
measure P

t
n(I) and asking if this distribution of distributions converges. Formally, we say that the

local distributions of {µn}n∈N converge locally to m ∈ MG
k if it holds that the law of Pt

n(I) converges
weakly to δTk(t) × m

t for all t.

C. If m is a point mass on ν̄ ∈ Gk and if the local distributions of {µn}n∈N converge locally to m then
we say that {µn}n∈N converges in probability locally to ν̄. Equivalently convergence in probability
locally to ν̄ says that for any t and any ǫ > 0 it holds that

lim
n→∞

Un

(

dTV(Pt
n(I), δTk(t) × νt

)

> ǫ) = 0. (2.3)

It is easy to verify that C ⇒ B ⇒ A.

Similar notions of the convergence has been studied before under the name metastates for Gibbs
measures. Aizenman and Wehr [6], while investigating the quenched behaviour of lattice random field
models, introduced the notion of a metastate which is a probability measures over Gibbs measures as a
function of the disorder (the random field). Here, rather than taking a finite graph and choosing a random
vertex they take a fixed random environment in Z

d, and study the measure over increasing finite volumes.
Rather than prove convergence (which depending on the model may not hold) they take subsequential
limits and study the properties of these limiting distributions of Gibbs measures (metastates). Another,
similar notion of convergence to metastates was developed by Newman and Stein [16] where they took the
empirical measure over Gibbs measures at over increasing volumes to study spin-glasses. More references
and discussions can be found in [13].
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In order to state our main result formally, we recall that an Ising measure on Tk is Gibbs if, for any
integer t ≥ 0

µTk(t)|Tc
k(t)(xTk(t)|xTc

k(t)) =
1

Zt,x(β)
exp







β
∑

(i,j)∈E(Tk(t+1))

xixj







, (2.4)

where Zt(β) is a normalization function that depends on the conditioning, namely on xTk(t+1)\Tk(t).
It is well known that if (k − 1) tanh β ≤ 1, there exist only one Gibbs measure on a k-regular tree

while for (k − 1) tanh β > 1 the Gibbs measures form a non-trivial convex set (see e.g. [11]). Two of its
extreme points, ν+ and ν− play a special role in the following. The ‘plus-boundary conditions’ measure
ν+ is defined as the monotone decreasing limit (with respect to the natural partial ordering on the space
of configurations {+1,−1}Tk ) of νt

+ as t→ ∞, where νt
+ is the measure on xTk(t) defined by

νt
+(xTk(t)) =

1

Z+,t(β)
exp







β
∑

(i,j)∈E(Tk(t))

xixj







∏

i∈Tk(t)\Tk(t−1)

I(xi = +1) . (2.5)

The measure ν− is defined analogously, by forcing spins on the boundary to take value −1 instead of +1.
The two measures are obviously related through spin reversal. Further it well known (and easy to prove)
that for any Gibbs measure ν we have ν− � ν � ν+ (with � the stochastic ordering induced by the partial
ordering on {+1,−1} configurations, see e.g. [14]). Our main result may be now stated as follows

Theorem 2.4. Let {Gn}n∈N be a sequence of k-regular graphs that converge locally to the tree Tk. For
(k − 1) tanh β > 1, define the sequence {µn}n∈N, {µn,+}n∈N by

µn,+(x) =
1

Zn,+(β)
exp

{

β
∑

(i,j)∈En

xixj

}

I

{

∑

i∈Vn

xi > 0
}

, (2.6)

µn(x) =
1

Zn(β)
exp

{

β
∑

(i,j)∈En

xixj

}

. (2.7)

Then

I. µn converges locally in probability to 1
2(ν+ + ν−)

II. If the graphs {Gn} are (1/2, λ) edge expanders for some λ > 0, then µn,+ converges locally in
probability to the plus-boundary Gibbs measure on the infinite tree ν+.

This characterization has a number of useful consequences. In particular, ‘spatial’ averages of local
functions are roughly constant under the conditional measure µn,+. To be more precise, for each i ∈ Vn,
let

fi,n : {+1,−1}Bi(ℓ) → [−1, 1],

be a function of its neighborhood Bi(ℓ).

Theorem 2.5. Let {Gn}n∈N be a sequence of k-regular (1/2, λ) edge expanders, for some λ > 0, that
converge locally to the tree Tk. For each n, let {fi,n}

n
i=1 be a collection of local functions as above. Then,

for any ε > 0

lim
n→∞

µn,+

{∣

∣

∣

1

n

∑

i∈Vn

[fi,n(xBi(ℓ)) − µn,+

(

1

n

∑

i∈Vn

fi,n(xBi(ℓ)))

)

]
∣

∣

∣ ≥ ε
}

= 0 . (2.8)

The proof can be found in Section 5.
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2.3 Examples and remarks

Notice that, for (k − 1) tanh β ≤ 1, the set of Ising Gibbs measures on Tk contains a unique element, that
can be obtained as limit of free boundary measures. Therefore, the local limits of {µn}n∈N, {µn,+}n∈N

coincide trivially with this unique Gibbs measure.
Therefore, the claim I is proved under the weakest possible, hypothesis, namely local convergence of

the graphs to Tk. An important class of graphs for which Theorem 2.4 is applicable are random k-regular
graphs. These are known to converge locally to Tk [17].

The expansion condition (or an analogous ‘connectedness’ condition) is needed to obtain the convergence
of the conditional measures µn,+. For example consider r identical but disjoint graphs on n/r vertices.
Then conditioning on the sum of the spins being positive the probability that the sum of spins in a specific
component is positive is of order r−1/2. Therefore in this case we have:

µn,+ → (1 − q)ν+ + qν− ,

with q = 1/2−O(r−1/2). A similar construction may be repeated with a small number of edges connecting
different components, e.g., when the components are connected in a cyclic fashion.

In order to identify the limit for µn and obtain our results, there are a number of challenges that
need to be overcome. First, while soft compactness arguments imply that subsequential limits exist, such
arguments do not imply the existence of a proper limit. Second, recalling that there are uncountably many
extremal Gibbs measures for Tk, it is remarkable we are able to identify precisely those that appear in the
limit. Finally, for conditional measures such as µn,+ it is not even a priori clear that (subsequential) limits
are in fact Gibbs measures.

2.4 Proof strategy

The basic idea of the proof is the following. Look at a ball of radius t around a vertex i in Gn. Since Gn is
tree like, the ball is with high probability a tree. The measure µn restricted to the ball is clearly a Gibbs
measure on a tree of radius t. The same is true (although less obvious) for µn,+.

In order to characterize the limit of this measure as n→ ∞,

1. The probability of agreement between neighboring spins in the ball is asymptotically the same as in
the measure ν+ on the infinite tree.

2. We further show that ν+ maximizes the probability of agreement between neighboring spins among
all Gibbs measures on the tree. These two facts together imply that any local limit must converge
to a convex combination of ν+ and ν−.

3. By symmetry this already implies converges of µn to 1
2 (ν+ +ν−). Note that this step does not require

expansion, just the local weak convergence of the tree.

4. In order to deal with the conditional measure, we use expansion to show that it is unlikely that
simultaneously a positive fraction of the vertices have their neighborhood “in the + state” and
another positive fraction “in the − state”.

3 Proof of the main theorem

We now proceed with the proof. For each of claims I and II we break the proof into 3 steps:

(i) We consider a subsequence of sizes {n(m)}m∈N along which µn(m) or µn(m),+ converge locally in
average to a limit ν̄ or ν̄+ (respectively).
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(ii) We prove that any such limit is in fact always the same and is ν̄ = (1/2)(ν+ + ν−) for µn(m) and
(using expansion) ν̄+ = ν+ for µn(m),+. As a consequence the sequences themselves converge.

(iii) Finally we show how is it possible to deduce local convergence from convergence in average.

3.1 Subsequential limits

The construction of subsequential weak limits is based on a standard diagonal argument, for similar results
see [8]. For the sake of simplicity we refer to the measures µn,+, and construct the subsequential limit ν̄+,
but the same procedure works for µn with limit ν̄. Let BI(t) be the ball of radius t centered at a uniformly
random vertex I in Vn, and x be an Ising configuration with distribution µn,+. If Pn denotes the joint
distribution of (BI(t), xBI(t)), we let

µt
+,n(x∗

Tk(t)) ≡ Pn

{

(BI(t), xBI (t)) ≃ (Tk(t), x
∗
Tk(t))

}

. (3.1)

Since this is a sequence of measures over a finite state space, it converges over some subsequence {nt(m)}m≥0.
Further, since by hypothesis Pn{Bi(t) ≃ Tk(t)} → 1, the limits of µt

+,nt(m) and µt
nt(m) are in fact probability

measures. We call the limit ν̄t
+.

Fix one of these subsequences {nt0(m)}m≥0 for t = t0, leading to the limit ν̄t0
+ , and recursively refine it

to {nt0(m)}m≥0 ⊇ {nt0+1(m)}m≥0 ⊇ {nt0+2(m)}m≥0 ⊇ . . . leading to limits ν̄t
+ for all t ≥ t0. Notice that,

for any graph Gn, any vertex i and any t we have

µt
n,+(xBi(t)) =

∑

x
Bi(t+1)\Bi(t)

µt+1
n,+(xBi(t+1)) . (3.2)

As a consequence, for any t, the measures limit ν̄
(t)
+ measure satisfies

ν̄t
+(xTk(t)) =

∑

x
Tk(t+1)\Tk(t)

ν̄t+1
+ (xTk(t+1)) . (3.3)

By Kolmogorov extension theorem, there exist measures ν̄+ over {+1,−1}Tk such that ν̄t
+ are the marginals

of ν̄+ over the variables in the subtree Tk(t). By taking the diagonal subsequence n(m) = nm(m) we obtain
the desired subsequence {n(m)}m∈N such that µn(m),+ converges locally on average to ν̄+.

3.2 ν̄ = 1
2
(ν+ + ν−)

In this section we carry out our program in the case of the unconditional measures µn. It is immediate that,
since each of the measures µt

n is a Gibbs measure on Tk (although with a complicate boundary condition),
the limit measure ν̄ is also a Gibbs measure on Tk (i.e. ν̄ ∈ Gk).

For proving convergence of the unconditional measure we need two lemmas. The first one establishes
that the + (equivalently −) Gibbs measure ν+ has the correct expected number of edge disagreements (in
physics terms, the correct energy density).

Lemma 3.1. Let {Gn}n∈N be a sequence of k-regular graphs converging locally to Tk, let I be a uniformly
random vertex in Gn, and J be chosen uniformly among its k neighbors. Then

lim
n→∞

EUn µn,+(xI · xJ) = lim
n→∞

EUn µn(xI · xJ) = ν+(xø · x1) = ν−(xø · x1) , (3.4)

where 1 is one of the neighbors of the root in Tk, and EUn denotes the expectation over the random edge
(I, J) in Gn.
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For the proof of this Lemma we refer to Section 4.2. Notice that ν+ and ν− have the same expectation
of the product xøx1 by symmetry under inversion {xi} → {−xi}. The probability that the spins at ø and
1 agree is simply (1 + ν(xø · x1))/2. The second Lemma shows that ν+, ν− are uniquely characterized by
this agreement probability among all Ising Gibbs measures on Tk.

Lemma 3.2. Let ν be a Gibbs measure for the Ising model on Tk. Then

ν(xø · x1) ≤ ν+(xø · x1) = ν−(xø · x1) , (3.5)

and the inequality is strict unless ν is a convex combination of ν+ and ν−.

The proof of this Lemma can be found in Section 4.3. We can now prove the following:

Proposition 3.3. Let {Gn}n∈N be a sequence of k-regular graphs that converge locally to the tree Tk.
Then for (k − 1) tanh β > 1, it holds that µn converges locally in average to (1/2)(ν+ + ν−).

Proof. By Lemma 3.1 and weak convergence, we have ν̄(xø · x1) = ν+(xø · x1). By Lemma 3.2, ν̄ =
(1 − q)ν+ + qν̄− for some q ∈ [0, 1]. On the other hand µn,+ is symmetric under spin inversion for each n,
and therefore ν̄ must be symmetric as well, whence q = 1/2 �

We can now prove the first part of our main result.

Proof (Theorem 2.4, part I). By a similar construction to the one recalled in Section 3.1, and compactness
of Mk, we can construct a subsequence {n(m)}m∈N such that µn(m) converges locally (not only in average)
to a distribution m over Hk. By the arguments above, m is in fact a measure over the space Ising Gibbs
measures Gk.

We claim that any such subsequential weak limit m is in fact a point mass at (1/2)(ν+ + ν−). Since
ν 7→ ν(xø · x1) is continuous in the weak topology it follows that

lim
m→∞

EUnµn(m)(xI · xJ) =

∫

ν(xø · x1) m(dν) . (3.6)

By Lemma 3.1, this implies

∫

ν(xø · x1) dm(ν) = ν+(xø · x1) , (3.7)

and therefore, by Lemma 3.2, m is supported on Ising Gibbs measures ν that are convex combinations
of ν+ and ν−. Finally, µn is almost surely symmetric for any n. Here ‘symmetric’ means that, for any
configuration xBi(t), µ

t
n(xBi(t)) = µt

n(−xBi(t)). Therefore m is supported on Ising Gibbs measures that are
symmetric.

There is only one Ising Gibbs measure that is a convex combination of ν+ and ν− and is symmetric,
namely ν = (1/2)(ν+ + ν−). Hence m is a point mass on this distribution. �

3.3 ν̄+ = ν+

We now turn to the subsequence of conditional measures {µn(m),+}m∈N converging locally in average to
ν̄+. The goal of this subsection is to show that ν̄+ is equal to ν+.

For this we repeat the previous proof with two additional ingredients. First we need to show that ν̄+

is a Gibbs measure on the tree Tk. This requires proof since the conditioning on {
∑

i∈Vn
xi > 0} implies

that the measures µt
n,+ are not Gibbs measures. The Gibbs property is only recovered in the limit.
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Second even after we have established that ν̄+ is a Gibbs measure, this measure is not symmetric with
respect to spin flip. Therefore the argument above only implies that ν̄+ = (1 − q)ν+ + qν−. It remains
to show that q = 0. This is where the expansion assumption is used. The first lemma we prove is the
following:

Lemma 3.4. Any subsequential limit ν̄+ constructed as above is an Ising-Gibbs measure on Tk.

We defer the proof to Section 4.1. Given Lemma 3.4 the following lemma follows immediately from
Lemmas 3.1 and 3.2.

Lemma 3.5. For any subsequential limit ν̄+ there exists a q ∈ [0, 1] such that

ν̄+ = (1 − q) ν+ + q ν− . (3.8)

Proof. By Lemma 3.4 the measure ν̄+ is an Ising Gibbs measure on Tk. If it was not a convex combination
of ν+ and ν− a contradiction to Lemma 3.2 would be derived. �.

The last step consists of arguing that q = 0. Given a vertex i (either in a graph Gn of the sequence or
of Tk), an integer ℓ ≥ 1 and a random Ising configuration x, let

Fi(ℓ, δ, x) ≡ I

{

∑

j∈Bi(ℓ)

xj ≤ −δ |Bi(ℓ)|
}

, (3.9)

where δ ∈ (0, 1) will be chosen below. Roughly speaking Fi indicates which vertices are in the “− state”.
We will drop reference to δ and to the configuration x when clear from the context. The following lemmas
will be proven in Section 4.4.

Lemma 3.6. Let {Gn} be a sequence of graphs converging locally to Tk, and, for each n, x = x(n) be a
configuration in the support of µn,+. Then there exists n0, depending on δ, ℓ and the graph sequence, but
not on x, such that, for all n ≥ n0,

EUn(FI(ℓ, δ, x)) ≤
1

1 + δ/2
, (3.10)

where EUn denotes expectation with respect to the uniformly random vertex I in Vn.

The following lemma is an immediate consequence of the definition of local weak convergence.

Lemma 3.7. Consider a uniformly random vertex I in Gn, let J be one of its neighbors (again uniformly
random), and let {n(m)}m∈N a subsequence of graph sizes along which µn(m),+ converges locally on average
to ν̄+. Then we have

lim
m→∞

EUn(m)
µn(m),+(FI(ℓ)) = ν̄+(Fø(ℓ)) , (3.11)

lim
m→∞

EUn(m)
µn(m),+(FI(ℓ) 6= FJ(ℓ)) = ν̄+(Fø(ℓ) 6= F1(ℓ)) , (3.12)

with E denoting expectation with respect to the law Un(m) of vertices I and J , and 1 one of the neighbors
of ø.

Now the limit quantities can be estimated as follows.

Lemma 3.8. Assume (k − 1) tanh β > 1 and let ν = (1 − q)ν+ + qν− be a mixture of the plus and minus
measures for the Ising model on Tk. Then there exist δ = δ(β) > 0 such that, letting Fi(ℓ) = Fi(ℓ, δ;x),

lim
ℓ→∞

ν(Fø(ℓ) = 1) = q , (3.13)

lim
ℓ→∞

ν(Fø(ℓ) 6= F1(ℓ)) = 0 . (3.14)
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We can now prove the following:

Proposition 3.9. Let {Gn}n∈N be a sequence of k-regular graphs that are (1/2, λ) expanders for some
λ > 0 and converge locally to the tree Tk. Then for (k − 1) tanh β > 1, it holds that µn,+ converges locally
on average to ν+

Proof. Let n(m) be a subsequence along which µn,+ converges locally on average to some ν̄+. By Lemma 3.5
we can write this in the form ν̄+ = (1 − q) ν+ + q ν−. Then by Eqs. (3.11), (3.12), for any ε > 0, there
exists ℓ, such that for large enough n(m),

Eµn(m),+(FI(ℓ)) ≥ q − ε , (3.15)

Eµn(m),+(I{FI(ℓ) 6= FJ(ℓ)}) ≤ ε . (3.16)

On the other hand, since Gn is a (1/2, λ) expander, and using Eq. (3.10), we have

∑

(i,j)∈En

I{Fi(ℓ) 6= Fj(ℓ)} ≥ λ min(
∑

i∈Vn

Fi(ℓ),
∑

i∈Vn

(1 − Fi(ℓ))) (3.17)

≥ λmin(
∑

i∈Vn

Fi(ℓ), nδ/(2 + δ)) (3.18)

≥
λδ

2 + δ

∑

i∈Vn

Fi(ℓ) . (3.19)

Recalling (3.15), (3.16), taking expectation of both sides with respect to µn,+ and representing the sums
over En, Vn as expectations, we get

k

2
ε ≥

k

2
Eµn(m),+(I{FI(ℓ) 6= FJ(ℓ)}) ≥

λδ

2 + δ
Eµn(m),+(FI(ℓ)) ≥

λδ

2 + δ
(q − ε). (3.20)

Since ε > 0 is arbitrary, we derive a contradiction unless q = 0. The proof follows. �

We can now complete the proof of Theorem 2.4.

Proof (Theorem 2.4, part II). Let n(m) be a subsequence along which the local distributions of µn,+ con-
verge locally to some m (by the same compactness arguments used in the previous section, one always
exists). Now by Proposition 3.9 it follows that ν+ =

∫

Gk
ν m(dν) which implies that m is a point measure

on ν+ since it is extremal. This implies local convergence in probability to ν+, which completes the proof.
�

4 Proofs of Lemmas

4.1 Proof of Lemma 3.4

We start from a very general remark, which is implicit in [10] holding for a general Markov random field
on a graph G = (V,E)

µ(x) =
1

Z

∏

(i,j)∈E

ψi,j(xi, xj) (4.1)

where x = {xi}i∈V ∈ X V for a finite spin alphabet X , and ψij : X × X → R is a collection of potentials.
Recall that a subset S of the vertices of G is an independent set if, for any i, j ∈ S, (i, j) 6∈ E.

9



Lemma 4.1. Assume 0 < ψmin ≤ ψij(xi, xj) ≤ ψmax, let k be the maximum degree of G, and I(G) the
maximum size of an independent set of G. Then there exists a constant C = C(k, ψmax/ψmin) > 0 such
that, for any x ∈ X and any ℓ ∈ N,

µ
(

∑

i∈V

Ixi=x = ℓ
)

≤
C

√

I(G)
. (4.2)

Proof. Let S be a maximum size independent set and Sc = V \ S its complement. Further, let YU ≡
∑

i∈U Ixi=x for U ⊆ V . Conditioning on xSc = {xi : i ∈ Sc}

µ
(

∑

i∈V

Ixi=x = ℓ
)

= Eµ

{

µ
(

YS = ℓ− YSc |xSc

)}

. (4.3)

Conditional on xSc , the variables {xi}i∈S are independent with δ ≤ µ(xi = x|xSc) ≤ 1 − δ for some δ > 0
depending on k and ψmax/ψmin. As a consequence YS is the sum of |S| = I(G) independent Bernoulli
random variables with expectation bounded away from 0 and 1. By the Berry-Esseen Theorem

µ
(

YS = ℓ− YSc |xSc

)

≤
C

√

I(G)
, (4.4)

which implies the thesis. �

Proof. (Lemma 3.4) Recall that for Tk, the infinite rooted k-regular tree, we denote by Tk(t) the subtree
induced by nodes with distance at most t from the root ø. Also, denote Tk(t, t+) = Tk(t+) \ Tk(t), the
subgraph induced by nodes i with distance t + 1 ≤ d(i, ø) ≤ t+. Let ν̄+ denote a subsequential limit
of the measures µn,+ constructed as in Section 2.4. For any t ≥ 1 and t+ > t we will prove that the
conditional distribution of xTk(t) given xTk(t,t+) is given by (here and below we adopt the convention of
writing p(x|y) ∼= f(x, y) for a conditional distribution p, whenever p(x|y) = f(x, y)/

∑

x′ f(x′, y)):

ν̄
Tk(t)|Tk(t,t+)
+ (xTk(t)|xTk(t,t+))

∼= exp







β
∑

(i,j)∈E(Tk(t+1))

xixj







. (4.5)

This establishes the DLR conditions and implies that ν̄+ is a Gibbs measure as required.
In analogy with the notation introduced above (and recalling that Bi(t) is the ball of radius t around

vertex i in Gn), we let Bi(t, t+) = Bi(t+) \ Bi(t) be the subgraph induced by vertices j such that t+ 1 ≤
d(i, j) ≤ t+. Also Ei(t) will be the set of edges in Bi(t), and E

c
i (t) = En \ E

c
i (t). The marginal distribution

of xBi(t+) under µn,+ is given by

µ
t+
n,+(xBi(t+))

∼= FBi(t+)(xBi(t+)) ZBi(t+)(xBi(t+)) (4.6)

FBi(t+)(xBi(t+)) ≡ exp
{

β
∑

(l,j)∈Ei(t+)

xlxj

}

, (4.7)

ZBi(t+)(xBi(t+)) ≡
∑

xVn\Bi(t+)

exp
{

β
∑

(l,j)∈Ec
i (t+)

xlxj

}

I

(

∑

j∈Bc
i (t+)

xj > −
∑

j∈Bi(t+)

xj

)

. (4.8)

We, therefore, have the following expression for the conditional distribution of xBi(t), given xBi(t,t+):

µ
Bi(t+)|Bi(t,t+)
n,+ (xBi(t+)|xBi(t,t+)) =

FBi(t+)(xBi(t+)) ZBi(t+)(xBi(t+))
∑

x
Bi(t)

FBi(t+)(xBi(t+)) ZBi(t+)(xBi(t+))
. (4.9)
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On the other hand we have Z−
Bi(t+)(xBi(t+)) ≤ ZBi(t+)(xBi(t+)) ≤ Z+

Bi(t+)(xBi(t+)) where we define

Z±
Bi(t+)(xBi(t+)) ≡

∑

xVn\Bi(t+)

exp
{

β
∑

(l,j)∈Ec
i (t+)

xixj

}

I

(

∑

j∈Bc
i(t+)

xj > ∓|Bi(t+)|
)

. (4.10)

Notice that Z±
Bi(t+)(xBi(t+)) depend on xBi(t+) only through xBi(t,t+). Using the expression (4.9) for the

conditional probability (and dropping subscripts on µ to lighten the notation), we have

µn,+(xBi(t+)|xBi(t,t+)) ≤ µ∗(xBi(t+)|xBi(t,t+)) max
x∈{+1,−1}Tk(t,t+)

Z+
Bi(t+)(x)

Z−
Bi(t+)(x)

, (4.11)

µn,+(xBi(t+)|xBi(t,t+)) ≥ µ∗(xBi(t+)|xBi(t,t+)) min
x∈{+1,−1}Tk(t,t+)

Z−
Bi(t+)(x)

Z+
Bi(t+)(x)

, (4.12)

with

µ∗(xBi(t+)|xBi(t,t+))
∼= exp

{

β
∑

(l,j)∈Ei(t+1)

xlxj

}

. (4.13)

The claim (4.5) thus follows from the fact that Bi(t+) ≃ Tk(t+) with probability going to 1 as n → ∞, if
we can show that

Z−
Bi(t+)(x)

Z+
Bi(t+)(x)

→ 1 (4.14)

for all x ∈ {+1,−1}Tk(t,t+) as n→ ∞.
Let µ̂ denote the Ising measure on xBc

i (t+) with boundary conditions xBi(t+)

µ̂(xBc
i (t+)) =

1

Ẑ(xBi(t+))
exp

{

β
∑

(l,j)∈Ec
i (t+)

xixj

}

. (4.15)

Now

1 −
Z−

Bi(t+)(x)

Z+
Bi(t+)(x)

=
µ̂
(

∑

j∈Bc
i (t+) xj > −|Bi(t+)|

)

− µ̂
(

∑

j∈Bc
i (t+) xj > |Bi(t+)|

)

µ̂
(

∑

j∈Bc
i (t+) xj > −|Bi(t+)|

) .

Observe that by the Gibbs construction of µ for any xBc
i (t+), we have that

µ̂(xBc
i (t+)) ≥ exp(−2βk|Bi(t

+)|)µn(xBc
i (t+))

as this is the maximum affect that conditioning on a set of size |Bi(t
+)| can have on the measure µ. By

symmetry of the measure µn with respect to the sign of x,

µ̂
(

∑

j∈Bc
i (t+)

xj > −|Bi(t+)|
)

≥ µ̂
(

∑

j∈Bc
i (t+)

xj ≥ 0
)

≥ exp(−2βk|Bi(t
+)|)µn

(

∑

j∈Bc
i (t+)

xj ≥ 0
)

≥
1

2
exp(−2βk|Bi(t

+)|). (4.16)
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Now applying Lemma 4.1 to the measure µ̂ we have that

µ̂
(

∑

j∈Bc
i (t+)

xj > −|Bi(t+)|
)

− µ̂
(

∑

j∈Bc
i (t+)

xj > |Bi(t+)|
)

= µ̂
(

∣

∣

∑

j∈Bc
i (t+)

xj

∣

∣ ≤ |Bi(t+)|
)

≤
2C|Bi(t+)|
√

n− |Bi(t+)|
→ 0 (4.17)

for some C = C(k, β) as n → ∞. Combining equations (4.17) and (4.16) we establish equation (4.14)
which completes the proof. �

4.2 Proof of Lemma 3.1

For the convenience of the reader, we restate the main result of [9] in the case of k-regular graphs, with no
magnetic field B. This provides an asymptotic estimate of the partition function

Zn(β) =
∑

x

exp
{

β
∑

(i,j)∈E

xixj +
∑

i∈V

xi

}

. (4.18)

Theorem 4.2. Let {Gn}n∈N be a sequence of graphs that converges locally to the k-regular tree Tk. For
β > 0, let h be the largest solution of

h = (k − 1) tanh[tanh(β) tanh(h)] . (4.19)

Then limn→∞
1
n logZn = φ(β), where

φ(β) ≡
k

2
log cosh(β) −

k

2
log{1 + tanh(β) tanh(h)2}

+ log
{

[1 + tanh(β) tanh(h)]k + [1 − tanh(β) tanh(h)]k
}

, (4.20)

For the proof of Lemma 3.1 we start by noticing that, by symmetry under change of sign of the xi’s,
we have µn,+(xi · xj) = µn(xi · xj). Simple calculus yields

1

n

∂

∂β
logZn(β) =

1

n

∑

(i,j)∈En

µn(xi · xj) =
k

2
Eµn(xI · xJ) , (4.21)

where the expectation E is taken with respect to I uniformly random vertex, and J one of its neighbors
taken uniformly at random.

On the other hand, differentiating Eq. (4.20) with respect to β, and using the fixed point condition
(4.19), we get after some algebraic manipulations

∂

∂β
φ(β) =

k

2

tanhβ + (tanh h)2

1 + tanhβ(tanh h)2
=
k

2
ν+(xø · x1) . (4.22)

The last identification comes from the fact that the joint distribution of xø and x1 on a k-regular tree
under the plus-boundary Gibbs measure is ν+(xø, x1) ∝ exp{βxøx1 + hxø + hx1} (see [9]).

Further β 7→ 1
n logZn(β) is convex because its second derivative is proportional to the variance of

∑

(i,j) xixj with respect to the measure µn. Therefore, its derivative (k/2)Eµn(xi · xj) converges to
(k/2)ν+(xø · x1) for a dense subset of values of β. Since the limit β 7→ ν+(xø · x1) is continuous, con-
vergence takes place for every β.
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4.3 Proof of Lemma 3.2

Recalling that Tk denotes the infinite k-regular tree rooted at ø let T
ø and T

1 be the subtrees obtained by
removing the edge (ø, 1) where 1 is a neighbor of ø. It is sufficient to prove the claim when ν is an extremal
Gibbs measure on Tk since of course we may decompose any Gibbs measure into a mixture of extremal
measures. For i ∈ {ø, 1} define

mν
i = lim

ℓ→∞
ETi(xi | xBc

i (ℓ)∩Ti)

where ETi denotes expectation with respect to the Ising model on the tree Ti and the boundary condition
xBi(ℓ)∩Ti is chosen according to ν. The limit exists by the Backward Martingale Convergence Theorem.
Further it is a constant almost surely, because it is measurable with respect to the tail σ-field, and ν is
extremal.

By the monotonicity of the Ising model if ν � ν ′, then mν
i ≤ mν′

i . Furthermore

ν(xø) =
mν

ø + tanh(β)mν
1

1 + tanh(β)mν
øm

ν
1

. (4.23)

Now if ν 6= ν+ then ν(xø = 1) < ν+(xø = 1). Under the plus measure m
ν+
ø = m

ν+

1 = m+ which by the
monotonicity of the system is the maximal such value. Since the right hand side of Eq. (4.23) is increasing
in mø,m1 it follows that mν

ø = mν
1 = m+ if and only if ν = ν+.

An easy tree calculation shows that the expectation of xø · x1 is

ν(xø · x1) =
tanh(β) +mν

øm
ν
1

1 + tanh(β)mν
øm

ν
1

.

which is strictly increasing in mν
ø when mν

1 > 0. By symmetry it is also strictly increasing in mν
1 when

mν
ø > 0. Hence amongst measures ν with mν

ø ≥ 0, the expectation ν(xø · x1) is uniquely maximized
when mν

ø = mν
1 = m+, that is when ν = ν+. Similarly amongst measures ν with mν

ø ≤ 0 the agreement
probability is uniquely maximized by ν−, which completes the proof.

4.4 Proof of Lemma 3.6

Observe first by the local weak convergence of the graphs {Gn} that all but o(n) vertices appear in |Bi(ℓ)|
balls Bi(ℓ). Hence given a configuration x with

∑

i xi ≥ 0, we have

∑

i∈Vn





1

|Bi(ℓ)|

∑

j∈Bi(ℓ)

xj



 ≥ −o(n) . (4.24)

By Markov’s inequality (applied to the uniform choice of i ∈ Vn) we have

1

n

∑

i∈Vn

Fi(ℓ) ≤
1

1 + δ
+ on(1) ≤

1

1 + δ/2
, (4.25)

where the second inequality holds for all n large enough

4.5 Proof of Lemma 3.8

Setting ρ = ν+(xø) note that by invariance of ν+ under graph homomorphisms of Tk, we have

ν+

(

∑

j∈Bi(ℓ)

xj

)

= ρ |Bi(ℓ)| .
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Moreover, under ν+, along any path of vertices in Tk the states are distributed as a 2-state homogenous
Markov chain and hence

ν+(xj · xj′) − ν+(xj)ν+(x′j) = Abd(j,j′)

where d(j, j′) is the graph distance between vertices i and j, and b ∈ (0, 1) is a constant depending on β.
This in particular implies that

Varν+

(

∑

j∈Bi(ℓ)

xj

)

= o

(

∣

∣

∣Bi(ℓ)
∣

∣

∣

2
)

,

and therefore, using Chebychev inequality, 1
Bi(ℓ)

∑

j∈Bi(ℓ)
xj converges in probability to ρ as ℓ → ∞. Sim-

ilarly under the measure ν− we have that 1
Bi(ℓ)

∑

j∈Bi(ℓ)
xj converges in probability to −ρ. Now taking

0 < δ < ρ we have that

lim
ℓ→∞

ν+(Fø(ℓ) = 1) = 0 ,

lim
ℓ→∞

ν−(Fø(ℓ) = 1) = 1 .

Therefore, for ν = (1 − q)ν+ + qν−, we have ν+(Fø(ℓ) = 1) → q.
Moreover, by translation invariance

ν+(Fø(ℓ) 6= F1(ℓ)) = 2ν+(Fø(ℓ) = 1,F1(ℓ) = 0) ≤ 2ν+(Fø(ℓ) = 1) → 0 .

By applying the same argument to ν−, we deduce that the probability that Fø(ℓ) and F1(ℓ) differ goes to
0 under any mixture of ν+ and ν−. Since ν is a mixture of ν+ and ν− this completes the lemma.

5 Proof of Theorem 2.5

To simplify notation we will write fi or fi(x) for fi,n(xBi(ℓ)). We will prove that, denoting by Varn,+,
Covn,+ variance and covariance under µn,+,

lim
n→∞

Varn,+

( 1

n

∑

i∈Vn

fi(xBi(ℓ))
)

= lim
n→∞

EUnCovn,+(fI(xBI(ℓ)), fL(xBL(ℓ))) = 0 .

Here EUn denotes expectation with respect to two independent and uniformly random vertices I, L in Vn.
The thesis then follows by Chebyshev inequality.

Since the fi’s are bounded, we have for r > ℓ,

EUnCovn,+(fI , fL) ≤ PUn(d(I, L) ≤ 2r) + EUn

{

Covn,+(fI , fL); d(I, L) > 2r
}

.

Since {Gn}n∈N are k-regular, the probability d(I, L) ≤ 2r vanishes as n→ ∞. It therefore suffices to show
that

lim
r→∞

lim
n→∞

EUn

{

Covn,+(fU , fV ); d(U, V ) > 2r
}

= 0 .

Define

f̂+
i (r)(x) = En,+{f(xBi(ℓ))|xVn\Bi(r)} ,

the conditional expectation being taken with respect to µn,+. Then we have for all i, j that

I(d(i, j) > 2r)Covn,+(fi, fj) = I(d(i, j) > 2r)Covn,+(f̂+
i (r), fj) ≤

√

Varn,+(f̂+
i (r))
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and therefore

lim
r→∞

lim
n→∞

EUn

{

Covn,+(fI , fL); d(I, L) > 2r
}

≤ lim
r→∞

lim
n→∞

EUn

√

Varn,+(f̂+
I (r)) (5.1)

≤ lim
r→∞

lim
n→∞

√

EUnVarn,+(f̂+
U (r)) . (5.2)

Define the modified function

f̂i(r)(x) = En{f(xBi(ℓ))|xVn\Bi(r)} , (5.3)

where the expectation is taken with respect to the measure µn. Since the latter is a Gibbs measure f̂i(r)
depends on x only through the variables xj , j ∈ Bi(r) \ Bi(r − 1). Further f̂+

i (r) and f̂i(r) differ only if
|
∑

j∈Vn\Bi(r)
xj | ≤ |Bi(r)|. Therefore

Varn,+(f̂+
I (r)) ≤ 2Varn,+(f̂I(r)) + 2Varn,+(f̂+

I (r) − f̂I(r))

≤ 2Varn,+(f̂I(r)) + 8µn,+

(∣

∣

∣

∑

j∈Vn\BI (r)

xj

∣

∣

∣
≤ |BI(r)|

)

.

The last term vanishes as n→ ∞ by Lemma 4.1.
We are therefore left with the task of showing that limr→∞ limn→∞EUnVarn,+(f̂I(r)) = 0. For a

function f : {−1, 1}Tk(ℓ) → [−1, 1], let

f̄(r)(x) = Eν+{f(xTk(ℓ))|xTk\Tk(r)}.

For all functions whose domain is not {−1, 1}Tk(ℓ) we let f̄(r) = 0 by convention. Also, with an abuse of
notation, we define f̄i(r) = ḡ(r) for g = f̂i. Since f̂I(r) depends on x only through xBI(r), we obtain by
Theorem 2.4 for every ε > 0 that

lim
n→∞

EUn |Varn,+(f̂I(r)) − Varν+(f̄I(r))| ≤ 2ε+ lim
n→∞

Un

(

dTV

(

P
t
n(I), δTk(t) × νt

+

)

> ε
)

= 2ε ,

and therefore

lim
r→∞

lim
n→∞

EUnVarn,+(f̂I(r)) ≤ lim
r→∞

sup
{

Varν+(f̄(r)) | f : {−1, 1}Tk(ℓ) → [−1, 1]
}

.

By extremality of ν+, for each f : {−1, 1}Tk(ℓ) → [−1, 1], f̄(r) converges to an almost sure constant as
r → ∞ and since f is bounded, limr→∞ Varν+(f̄(r)) = 0. For each r, the map f → f̄(r) is a contraction in

L2 and therefore the map f →
√

Varν+(f̄(r)) is a Lipchitz map with constant 1. Since the set of functions

f : {−1, 1}Tk(ℓ) → [−1, 1] is compact in L2 and for each f we have limr→∞ Varν+(f̄(r)) = 0 we conclude
that

lim
r→∞

sup
{

Varν+(f̄(r)) | f : {−1, 1}Tk(ℓ) → [−1, 1]
}

= 0,

as needed.

Acknowledgements

A.M. was partially supported by by a Terman fellowship, the NSF CAREER award CCF-0743978 and the
NSF grant DMS-0806211. E.M. was partially supported by the NSF CAREER award grant DMS-0548249,
by DOD ONR grant (N0014-07-1-05-06), by ISF grant 1300/08 and by EU grant PIRG04-GA-2008-239317.

Part of this work was carried out while two of the authors (A.M. and E.M.) were visiting Microsoft
Research.

15



References

[1] R. S. Ellis and C. M. Newman, The statistics of Curie-Weiss models, J. Stat. Phys. 19 (1978) 149-161

[2] M. Aizenman, Translation invariance and instability of phase coexistence in the two-dimensional Ising
system, Comm. Math. Phys. 73 (1980) 8394

[3] R. Dobrushin and S. Shlosman, The problem of translation invariance of Gibbs states at low temper-
atures, Mathematical physics reviews, 5 (1985) 53195

[4] H.O. Georgii and Y. Higuchi, Percolation and number of phases in the two-dimensional Ising model,
J. Math. Phys. 41 (2000) 11531169

[5] T. Bodineau, Translation invariant Gibbs states for the Ising model, Pr. Th. Rel. Fields 135 (2006),
153-168

[6] M. Aizenman and J. Wehr, Rounding of first-order phase transitions in systems with quenched disorder,
Communications in Mathematical Physics, 130, (1990) 489-530.

[7] D. Aldous and J. M. Steele, The objective method: probabilistic combinatorial optimization and local
weak convergence, in “Probability on discrete structures”, H. Kesten Ed., Springer Verlag, New York,
2003.

[8] D. Aldous and R Lyons, Processes on unimodular random networks, Electron. J. Probab., 12, (2007)
1454-1508.

[9] A. Dembo and A. Montanari, Ising models on locally tree-like graphs, Ann. Appl. Prob. (2009), in
press.

[10] R. L. Dobrushin and B. Tirozzi, The central limit theorem and the problem of equivalence of ensembles.
Comm. Math. Phys. 54, 173-192.

[11] H.O. Georgii, “Gibbs measures and phase transitions,” Walter de Gruyter, Berlin, 1988.
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