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We study the set of solutions of random k-satisfiability formulae through the cavity method. It
is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential
number of pure states (clusters). We refine substantially this picture by: (i) determining the precise
location of the clustering transition; (ii) uncovering a second ‘condensation’ phase transition in the
structure of the solution set for k ≥ 4. These results both follow from computing the large deviation
rate of the internal entropy of pure states. From a technical point of view our main contributions
are a simplified version of the cavity formalism for special values of the Parisi replica symmetry
breaking parameter m (in particular for m = 1 via a correspondence with the tree reconstruction
problem) and new large-k expansions.

I. INTRODUCTION

An instance of k-satisfiability (k-SAT) consists in a Boolean formula in conjunctive normal form whereby each
elementary clause is the disjunction of k literals (a Boolean variable or its negation). Solving it amounts to determining
whether there exists an assignment of the variables such that at least one literal in each clause evaluates to true. The
k-SAT problem plays a central role in the theory of computational complexity, being the first decision problem
proven to be NP-complete [1] (for all k ≥ 3). Its optimization (minimize the number of unsatisfied clauses) and
enumeration (count the number of optimal assignments) versions are defined straightforwardly and are also hard from
the computational point of view.

Random k-satisfiability is the ensemble defined by drawing a uniformly random formula among all the ones involving
M k-clauses over N variables. Equivalently, each of the M clauses is drawn uniformly over the 2k

(
N
k

)
possible ones,

independently from the others. It was observed empirically earlier on [2] that, by tuning the clause density α = M/N ,
this ensemble could produce formulae which were hard for known algorithms. Hardness was argued to be related to
a sharp threshold in the satisfiability probability, emerging as N → ∞ with α fixed. More precisely, it is believed
that there exists a constant αs(k) such that random formulae are with high probability1 satisfiable if α < αs(k) and
unsatisfiable if α > αs(k). The existence of a sharp threshold was proven in [3], with, however, a critical point αs(k,N)
which might not converge when N → ∞. Despite important progresses [4, 5, 6] the rigorous proof of the existence
and determination of αs(k) remains a major open problem (with the notable exception of k = 2 [7]).

The connection between threshold phenomena and phase transitions spurred a considerable amount of work [8, 9,
10, 11, 12] using techniques from the theory of mean field spin glasses [13]. The main outcomes of this approach have
been: (i) A precise conjecture on the location of the satisfiability threshold αs(k) [10, 12]; (ii) The suggestion [9, 10]
for k ≥ 3 of another transition at αd(k) < αs(k) affecting the geometry of the solutions space; (iii) Most strikingly,
the proposal of a new and extremely effective message passing algorithm, Survey Propagation (SP) [10, 11]. This
exploits a detailed statistical picture of the solution space to efficiently find solutions.

According to statistical physics studies, in the intermediate regime α ∈ [αd(k), αs(k)] solutions tend to group
themselves in clusters that are somehow disconnected. As α increases, the number of these clusters decreases. The
satisfiability transition is thus due to the vanishing of the number of clusters, which still contain a large number
of solutions just before αs(k). The phase transition at αd(k) has been referred to as “clustering phase transition”

1 Here and below ‘with high probability’ (w.h.p.) means with probability converging to 1 as N → ∞.
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or “dynamic phase transition” depending on the feature emphasized. Its nature and location, as well as a refined
description of the regime α ∈ [αd(k), αs(k)] will be the main topic of this paper. More precisely:

(i) We will argue that previous determinations of αd(k) [10, 11, 12] have to be corrected when fluctuations of the
cluster sizes are taken into account;

(ii) We will uncover (for k ≥ 4) a new ‘condensation’ phase transition at αc(k) ∈ [αd(k), αs(k)]. For α ∈
[αd(k), αc(k)] the relevant clusters are exponentially numerous. For α ∈ [αc(k), αs(k)] most of the solutions
are contained in a number of clusters that remains bounded as N → ∞.

The paper is organized as follows. In Section II we recall some general features of mean-field disordered models,
emphasizing the notions of dynamical transitions and replica symmetry breaking. In Section III we define more
precisely the ensemble of random formulas studied and describe the replica symmetric (RS) and one step of replica
symmetry breaking (1RSB) approach to this model. We then apply the program of Section II to the random k-
satisfiability problem and present our main results in Section IV. For the sake of clarity some technicalities of the
1RSB treatment are presented shortly afterward, see Section V. To complement these results, which are partly based
on a numerical resolution of integral equations, we present in Section VI an asymptotic expansion in the large k limit
which gives further credit to our theses. We draw our conclusions in Sec. VII. Technical details are deferred to three
appendices.

A short account of our results has been published in [14], and a detailed analysis of the related q-coloring problem
in [15]. While the present work was being finished two very interesting papers confirmed the generality of the results
of [14]. The first concerned 3-SAT [16] and the second bi-coloring of random hypergraphs [17].

II. MEAN-FIELD DISORDERED SYSTEMS

The goal of this section is to provide a quick overview of the cavity method [13, 18]. We will further propose a
more precise mathematical formulation of several notions that are crucial in the statistical physics approach.

A. Statistical mechanics and graphical models

Let us start by considering a general model defined by:
(1) A factor graph [19], i.e. a bipartite graph G = (V, F,E). Here V , |V | = N , are ‘variable nodes’ corresponding

to variables, F , |F | = M , are ‘function (or factor) nodes’ describing interactions among these variables, and E are
edges between variables and factors. Given i ∈ V (resp. a ∈ F ), we shall denote by ∂i = {a ∈ F : (ia) ∈ E} (resp.
∂a = {i ∈ V : (ia) ∈ E}) its neighborhood. Further, given i, j ∈ V , we let d(i, j) be their graph theoretic distance
(the minimal number of factor nodes encountered on a path between i and j).

(2) A space of configurations X V , with X a finite alphabet, (a configuration will be denoted in the following as
σ = (σ1, . . . , σN ) ∈ X V ). For any set A ⊆ V , we let σA = {σi : i ∈ A}.

(3) A set of non negative weights {wa : a ∈ F}, wa : X ∂a → R+, σ∂a 7→ wa(σ∂a). In the case of constraint

satisfaction problems, these are often taken to be indicator functions (more details on this particular case will be given
in Sec. II D).

Given these ingredients, a measure over X V is defined as

µN (σ) =
1

ZN
wN (σ) , wN (σ) =

∏

a∈F

wa(σ∂a) . (1)

This is well defined only if there exists at least one configuration σ∗ that makes all the weights strictly positive,
namely wa(σ∗

∂a) > 0 for each a. We will assume this to be the case throughout the paper (i.e. we focus on the
‘satisfiable’ phase). Further, it will be understood that we consider sequences of graphs (and weights) of diverging
size N (although we shall often drop the subscript N).

An important role is played by the large-N behavior of the partition function ZN . This is described by the
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free-entropy density2 ,

φ = lim
N→∞

1

N
logZN , ZN =

∑

σ

wN (σ) . (2)

B. Pure states and replica symmetry breaking

The replica/cavity method allows to compute a hierarchy of approximations to φ. This is thought to yield the
exact value of φ itself in ‘mean field’ models. The hierarchy is ordered according to the so-called number of steps of
replica symmetry breaking (RSB). At each level the calculation is based on some hypotheses on the typical structure
of µ, a pivotal role being played by the notion of pure state. Since this concept is only intuitively defined in the
physics literature, we propose here two mathematically precise definitions. In both cases a pure state is a (sequence
of) probability measures ρN on XN .

• Definition of pure states through correlation decay

We define the correlation function of ρN as

CN (r) = sup
A,B: d(A,B)≥r

∑

σA,σB

|ρN (σA, σB) − ρN (σA)ρN (σB)| , (3)

where the sup is taken over all subset of variable nodes A,B ⊆ V such that the distance between any pair of
nodes (i, j) ∈ A × B is greater than r. Then ρN is a pure state if this correlation function decays at large r.
Technically, we let C∞(r) = lim supN→∞CN (r), and require C∞(r) → 0 as r → ∞.

• Definition of pure states through conductance

We let the (ǫ, δ)-conductance of ρN be

FN(ǫ, δ) = inf
A⊂XN

{
ρN (∂ǫA)

ρN (A)(1 − ρN (A))
: δ ≤ ρN (A) ≤ 1 − δ

}
. (4)

Here the inf is taken over all subsets of the configuration space. Further, letting D denote the Hamming distance
in XN , we defined the boundary of A as ∂ǫA = {σ ∈ XN \ A | D(σ,A) ≤ Nǫ}. With these definitions ρN is
pure if its conductance is bounded below by an inverse polynomial in N for all ǫ and δ (while non-pure states
have a conductance which typically decays exponentially with N).

These two definitions mimic the well-known ones on Z
d in terms of tail triviality and extremality [20]. Further,

the second one is clearly related to the behavior of local Monte Carlo Markov chain dynamics. A small conductance
amounts to a bottleneck in the distribution and hence to a large relaxation time. While we expect them to be
equivalent for a large family of models, proving this is a largely open problem. Moreover we should emphasize that
the heuristic cavity method followed in this paper never explicitly uses either of these definitions.

The hypotheses implicit in the cavity method can be expressed in terms of the pure states decomposition of µ. This
is a partition of the configuration space (dependent on the graph and weights) such that the measure µ constrained
to each element of this partition is a pure state. More precisely, let us call {Aγ}γ a partition of XN , and define

Zγ =
∑

σ∈Aγ

w(σ) , Wγ =
Zγ

Z
, µγ(σ) =

1

Zγ
w(σ)I(σ ∈ Aγ) . (5)

Clearly µ can be written as the convex combination of the µγ with coefficients Wγ . This defines a pure state
decomposition if: (i) each of the µγ is a pure state in the sense given above, (ii) this is the ‘finest’ such partition, in
the sense that the µγ are no longer pure if any subset of them is replaced by their union.

Statistical physics calculations suggest that a wide class of mean field models is described by one of the following
‘universal behaviors’. The terminology used here is inherited from the literature on mean field spin glasses [21, 22].

2 One usually assumes that the limit exists. If the model is disordered, almost sure limit can be used, or, equivalently, log ZN is replaced
by its expectation.
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RS Most of the measure is contained in a single element of the partition, namely Wmax = maxγ Wγ → 1 as N → ∞
(replica symmetric).

d1RSB Most of the measure is carried by N .
= eNΣ∗ pure states3, each one with a weight Wγ

.
= e−NΣ∗ (dynamical

one-step replica symmetry breaking).

1RSB The measure condensates on a subexponential number of pure states, namely, if W[γ] is the weight of the γ-th

largest state, then limn→∞ limN→∞

∑n
γ=1W[γ] = 1 (one step replica symmetry breaking).

The reader will notice that this list does not include full replica symmetry breaking phases, in which pure states
are organized according to an ultrametric structure. While this behavior is as generic as the previous ones, our
understanding of it in sparse graph models is still rather poor.

We are mostly concerned with families of models of the type defined in Eq. (1) indexed by a continuous parameter
α (such as the clause density in k-SAT). In this setting, the above behaviors often appear in sequence as listed above
when the system becomes more and more constrained (e.g. as α is increased in k-SAT). The different regimes are
then separated by phase transitions: the ‘dynamical’ or ‘clustering’ phase transition from RS to d1RSB (at αd) and
the ‘condensation’ phase transition between d1RSB and 1RSB (at αc). The paradigmatic example of such transitions
is the fully-connected p-spin model [21, 22], where they are encountered upon lowering the temperature.

Let us stress that the above definitions are insensitive to what happens in a fraction of the space of configurations
of vanishing measure. For instance, we neglect metastable states whose overall weight is exponentially small4.

A convenient tool for distinguishing these various behaviors is the replicated free-entropy [23],

Φ(m) = lim
N→∞

1

N
E log

{
∑

γ

Zm
γ

}
, (6)

where m is an arbitrary real number (known as Parisi replica symmetry breaking parameter) which allows to weight
differently the various pure states according to their sizes. Suppose indeed that the number of pure states γ with
internal free-entropy density φγ = (logZγ)/N behave at leading order as exp{NΣ(φγ)}, where Σ(φ) is known as the
complexity (or configurational entropy) of the states. The sum in (6) can then be computed by the Laplace method;
if one assumes for simplicity that Σ is positive on an interval [φ−, φ+], this leads to

Φ(m) = sup
φ∈[φ−,φ+]

[Σ(φ) +mφ] . (7)

Provided Σ is concave, it can be reconstructed in a parametric way from Φ(m) by a Legendre inversion [23],

Σ(φint(m)) = Φ(m) −mΦ′(m) , φint(m) = Φ′(m) , (8)

where m is such that the supremum in (7) lies in the interior of [φ−, φ+], which defines a range [m−,m+]. Usually
Σ vanishes continuously at φ+. As explained below, when zero energy states are concerned φint(m) coincides with
the internal entropy of such states. Note that a given value of m selects the point of the curve Σ(φ) of slope −m; in
particular the value m = 0 corresponds to the maximum of the curve.

The replica/cavity method at the level of one step of replica symmetry breaking allows to compute the replicated
free-entropy Φ(m) under an appropriate hypothesis on the organization of pure states. The various regimes can be
distinguished through the behavior of this function, namely

RS Φ(m) = mφ∗, where φ∗ is the contribution of the single dominant pure state, Z[1]
.
= eNφ∗ .

d1RSB Φ(m)/m achieves its minimum for m ∈ [0, 1] at m = 1, with Σ∗ = Φ(1) − Φ′(1) > 0. Then the measure µ
decomposes into approximately eNΣ∗ pure states of internal free-entropy Φ′(1).

1RSB Φ(m)/m achieves its minimum over the interval [0, 1] at ms ∈ (0, 1). Then the ordered sequence of weights
W[1] ≥ W[2] ≥ W[3] ≥ · · · keep fluctuating in the thermodynamic limit, and converges to a Poisson-Dirichlet
process [24] of parameter ms. The internal free-entropy of these states is Φ′(ms).

In all these cases the total free-entropy density is estimated by minimizing Φ(m)/m in the interval [0, 1].

3 Here and in the following
.
= means equality at the leading exponential order.

4 In the fully connected models such metastable states are indeed seen as solutions of the Thouless-Anderson-Palmer equations, well above
the dynamical phase transition.
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C. Cavity equations

We shall now recall the fundamental equations used within the 1RSB cavity method and propose a somehow original
derivation. In the following we will be interested in factor graphs that converge locally5 to trees in the thermodynamic
limit.

In consequence, let us first consider the case of a model of type (1) whose underlying factor graph is a tree, and
discuss later how the long loops are taken into account by the cavity method. Tree factor graph models are easily
solved by a ‘message passing’ procedure [19]. One associates to each directed edge from factor a to variable i (resp.
from i to a) a “message” ηa→i (resp. ηi→a). Messages are probability measures on X . On trees, they can be defined
as the marginal law of σi with respect to the modified factor graph Ga→i (resp. Gi→a) where all factor nodes in
∂i \ a (resp. the factor node a) have been removed. Simple computations yield the following local equations between
messages,

ηa→i = fa→i({ηj→a}j∈∂a\i) , fa→i({ηj→a})(σi) =
1

za→i({ηj→a})
∑

σ∂a\i

wa(σ∂a)
∏

j∈∂a\i

ηj→a(σj) , (9)

ηi→a = fi→a({ηb→i}b∈∂i\a) , fi→a({ηb→i})(σi) =
1

zi→a({ηb→i})
∏

b∈∂i\a

ηb→i(σi) , (10)

where the functions z are fixed by the normalization of the η’s. As we consider a tree factor graph these equations
have a unique solution, easily determined in a single sweep of updates from the leaves of the graph towards its inside.
Moreover the free entropy of the model follows from this solution and reads

Nφ = logZ = −
∑

(i,a)

log zia(ηa→i, ηi→a) +
∑

a

log za({ηi→a}i∈∂a) +
∑

i

log zi({ηa→i}a∈∂i) . (11)

Here the first sum runs over the undirected edges of the factor graph and the z’s are given by

zia =
∑

σi

ηa→i(σi)ηi→a(σi) , za =
∑

σ∂a

wa(σ∂a)
∏

i∈∂a

ηi→a(σi) , zi =
∑

σi

∏

a∈∂i

ηa→i(σi) . (12)

This computation is correct only on tree factor graphs. Nevertheless it is expected to yield good estimates of the
marginals and free entropy for a number of models on locally tree-like graphs. The belief propagation (BP) algorithm
consists in iterating Eqs. (9,10) in order to find an (approximate) fixed point. In particular, whenever the RS scenario
holds, there should be one approximate solution of the above equations that yields the correct leading order of the free
entropy density in the thermodynamic limit. In any case, when dealing with random factor graphs, one can always
turn this simple computation into a probabilistic one, defining a distribution of random messages by reading (9,10)
in a distributional sense with random weight functions and variables’ degrees. The RS estimate of the average free
entropy is then obtained by averaging the various terms in (11) with respect to these random messages.

This approach can be refined in d1RSB and 1RSB regimes. The BP equations (9,10) should be approximately valid
if one computes the messages ηa→i and ηi→a as marginal laws of the measure µγ restricted to a single pure state γ.
When the number of pure states is very large, one considers a distribution (with respect to the pure states γ with
their weights Wγ) of messages on each directed edge of the factor graph.

A simple and suggestive derivation of the 1RSB equations goes as follows. Assume that the factor graph is a tree,
and choose a subset B of the variable nodes that will act as a boundary, for instance (but not necessarily) the leaves of
the factor graph. Each configuration σB of the variables in B induces a conditional distribution µσB on the remaining
variables,

µσB (τ ) =
1

ZσB
w(τ )I(τB = σB) , (13)

where here and in the following I denotes the indicator function of an event, and the normalizing factor ZσB is the
partition function restricted to the configurations coinciding with σB on the boundary.

5 More precisely, any finite neighborhood of a uniformly chosen random vertex converges to a tree.
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Since the factor graph corresponding to µσB is still a tree, the corresponding marginals and partition function ZσB

can be computed iterating the message passing equations (9,10), with an appropriate prescription for the messages
ηi→a emerging from variables i ∈ B, namely ηi→a(τi) = δσi,τi

. Let us denote by η
σB

a→i and η
σB

i→a the corresponding set
of messages, solutions of (9,10) on all edges of the factor graph. Further define, for m ∈ R, a probability measure on
the boundary conditions as

µ̃(σB) =
(ZσB )m

∑
σ′

B
(Zσ′

B )m
. (14)

The idea is to mimic the pure states of a large, loopy factor graph model, by the boundary configurations of a tree
model. Calling Pa→i (resp. Pi→a) the distribution of the messages η

σB

a→i (resp. η
σB

i→a) with respect to µ̃ 6, a short
reasoning reveals that

Pa→i(η) =
1

Z[{Pj→a},m]

∫ ∏

j∈∂a\i

dPj→a(ηj→a) δ(η − fa→i({ηj→a})) za→i({ηj→a})m , (15)

Pi→a(η) =
1

Z[{Pb→i},m]

∫ ∏

b∈∂i\a

dPb→i(ηb→i) δ(η − fi→a({ηb→i})) zi→a({ηb→i})m , (16)

where the functions f and z are defined in Eq. (9), (10), and the Z[· · · ] are normalizing factors determined by the
condition

∫
dPa→i(η) =

∫
dPi→a(η) = 1. Equations (15), (16) coincide with the standard 1RSB equations with Parisi

parameter m [25]. In addition the free entropy density associated to the law µ̃, NΦ(m) ≡ log{∑σB
(ZσB )m} can be

shown to be

NΦ(m) = −
∑

(i,a)∈E

logZia[Pa→i, Pi→a,m] +
∑

a∈F

logZa[{Pi→a}i∈∂a,m] +
∑

i∈V

logZi[{Pa→i}a∈∂i,m] , (17)

where the factors Z··· are fractional moments of the ones z··· defined in Eq. (12), namely

Zia =

∫
dPa→i(ηa→i)dPi→a(ηi→a) zm

ia , Za =

∫ ∏

i∈∂a

dPi→a(ηi→a) zm
a , Zi =

∫ ∏

a∈∂i

dPa→i(ηa→i) z
m
i . (18)

As in the RS case, one can heuristically apply (15,16) on any graph, even if it is not a tree. Of particular interest
is the limit B → ∅. Equations (15), (16) may have two behaviors in this limit: (i) All the distributions Pi→a, Pa→i

become Dirac deltas in this limit. In this case a ‘far away’ boundary has small influence on the system, and it is
easily seen by comparing (11) and (17) that Φ(m) = mφ. (ii) These distributions remain non-trivial in the limit
B → ∅. This case is interpreted as a consequence of the existence of many pure states. In this situation, even a small
boundary influences the system by selecting one of such states. We thus interpret the B = ∅ limit of Φ(m) as an
estimate of the replicated potential (6).

In Sec. II B we emphasized the special role played by the value m = 1: the dynamical transition is signaled by
the appearance of a non-trivial solution of the 1RSB equations with m = 1. This is particularly clear in the present
derivation of the 1RSB equations. Indeed, the distribution µ̃ of the boundary condition coincides in this case with
the Boltzmann distribution µ.

The existence of a non-trivial solution of the 1RSB equations at m = 1 is thus related to a peculiar form of long
range correlations under µ, as first pointed out in [26]. Such correlations can be measured through a point-to-set
correlation function [27, 28, 29]. For concreteness let us give an expression of this correlation in the case of Ising
spins. Given a variable node i and a set of variable nodes B, we let

C(i, B) ≡
∑

σB

µ(σB)

(
∑

σi

µ(σi|σB)σi

)2

−
(
∑

σi

µ(σi)σi

)2

. (19)

The reader will recognize the analogy between this expression and the difference q1 − q0 of intra and inter-state
overlaps [30]. The Boltzmann measure has long range point-to-set correlations if C(i, B) does not decay to 0 when
d(i, B) grows. Such correlations were shown in [31, 32] to imply a diverging relaxation time.

6 more precisely, with respect to the measure µ̃a→i (resp. µ̃i→a) defined similarly for the factor graph Ga→i (resp. Gi→a).
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D. Application to constraint satisfaction problems

This short overview of the cavity method did not rely on any hypothesis on the form of the weight factors wa in
Eq. (1). We now comment briefly on the way this general formalism is applied to constraint satisfaction problems
(CSP), in order to clarify the relationship of the present work with previous studies. In a CSP the factors a correspond
to constraints, which can be either satisfied or not by the configuration of their adjacent variables, σ∂a. For a satisfiable
instance of a CSP one can take wa to be the indicator function of the event ‘constraint a is satisfied.’ Then the law
defined in (1) is the uniform distribution over the solutions of the CSP, the partition function counts the number of
such solutions and the free entropy reduces to the logarithm of the number of solutions. This “entropic” method [33]
is the most adequate to the study of the satisfiable phase.

This approach is however ill-defined for unsatisfiable instances. The usual way to handle this case is to define a cost
function E(σ) on the space of configurations, equal to the number of unsatisfied constraints under the assignment
σ. Following the traditional notations of statistical mechanics one introduces an inverse temperature β and weighs
the configurations with w(σ) = exp[−βE(σ)]. Small temperatures (large β) favor low-energy configurations, in the
limit β → ∞ the measure µ concentrates on the optimal configurations which maximizes the number of satisfied
constraints. Let us detail this approach which was originally followed in [10, 12, 34]. At the 1RSB level the pure
states are characterized by their energy density e and their entropy density s, with the free entropy density given by
φ = s − βe. Defining the complexity Σ(s, e) according to the number of pure states with these two characteristics,
Eq. (7) becomes

Φ(β,m) = sup
s,e

[Σ(s, e) +m(s− βe)] . (20)

If one takes now the limit β → ∞ and assume e > 0, the entropic term becomes irrelevant; to obtain a finite result
one has to take at the same time m → 0 such that the product βm, usually denoted y, remains finite. One thus
obtains

Φe(y) = sup
e

[Σe(e) − ye] , Σe(e) ≡ sup
s

Σ(s, e) . (21)

In the unsatisfiable phase, the ‘energetic’ cavity approach allows to characterize the minimal energy of the problem.
In the case of satisfiable problems, one has to perform a second limit y → ∞ (after β → ∞) to concentrate on

the pure states with e = 0. It follows that the complexity thus computed is sups Σ(s, e = 0), i.e. the maximum of
the entropic complexity. In other words the procedure y → ∞ after β → ∞ is equivalent to perform the entropic
computation with a Parisi parameter m = 0, i.e. to weigh all the pure states in a same way, irrespectively of their sizes.
This is not a problem for the determination of the satisfiability threshold αs, which corresponds to the disappearing
of all zero-energy pure states, hence to the vanishing of the maximal complexity Σ(m = 0). However the value of αd

in [10, 12] corresponds to the appearance of a solution of the 1RSB equations with m = 0, and not with m = 1 which
we argued to be the relevant value for the definition of αd.

In the rest of the paper we shall follow the entropic cavity method, i.e. we take (1) to be the uniform measure
over the solutions of the CSP under study and keep a finite value for the Parisi parameter m. Before entering the
details of this approach on the example of random k-satisfiability, let us mention that the existence of exponentially
numerous pure states (called clusters in this context) for some values of α and k, has been proved in [35, 36]. An
intrinsic limitation of these works was that clusters were defined by much stricter conditions than the one exposed
above (which thus implied limitations on α, k). The consequences of the existence of a distribution of cluster’s sizes
have also been investigated in a toy model in [37].

We should also emphasize that for the simpler CSP known as XORSAT [38, 39], a precise characterization of the
clusters has been achieved through rigorous methods. A good part of the phenomena studied in the present paper is
however absent of this simpler model. In particular all clusters of XORSAT have the same size because of the linear
structure of the constraints.

III. THE CAVITY METHOD APPLIED TO THE RANDOM k-SAT PROBLEM

A. Some definitions

In the application of the formalism to k-satisfiability, we use σi ∈ X = {−1,+1} to encode the Boolean variables.
A constraint a on k variables σ∂a is satisfied by all the 2k configurations except one, let us call it Ja = {Ja

i : i ∈ ∂a},
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j′

a

i

b

c

j

j′′

FIG. 1: An example of the factor graph representation of a satisfiability formula for k = 3. The values Ja
i are encoded by

drawing a solid (resp. dashed) edge between clause a and variable i if σi = +1 (resp. −1) satisfies clause a. The distances
between some of the variable nodes are di,j = di,j′ = di,j′′ = 1 and dj,j′ = 2. The neighborhoods are for instance ∂i = {a, b, c},
∂a = {i, j, j′′}, ∂+i = {a}, ∂−i = {b, c}, ∂+i(a) = ∅, ∂−i(a) = {b, c}, ∂+i(b) = {c}, ∂−i(b) = {a}.

in which all the literals of the clause are false. The weight factors are thus defined as wa(σ∂a) = I(σ∂a 6= Ja), the
indicator function of the event “clause a is satisfied.”

A formula is represented as a factor graph (cf. Fig. 1) whose edges are labeled by Ja
i . This suggests to refine the

definition of the neighborhoods. Given a variable node i, ∂+i (resp. ∂−i) will denote the set of clauses which are
satisfied by σi = +1 (resp. σi = −1). Further, given a clause a ∈ ∂i we call ∂+i(a) (resp. ∂−i(a)) the set of clauses in
∂i \ a which are satisfied by the same (resp. opposite) value of σi as is a.

For k-SAT formulas the general RS cavity equations (9), (10) can be written in a pretty explicit form. As the
variables take only two values the cavity probability messages ηa→i and ηi→a can be parametrized by a single real
number, that we shall call respectively ua→i and hi→a and define by

ηa→i(σi) =
1 − Ja

i σi tanhua→i

2
, ηi→a(σi) =

1 − Ja
i σi tanhhi→a

2
. (22)

With these conventions Eqs. (9), (10) take the form

ua→i = f({hj→a}j∈∂a\i) , f(h1, . . . , hk−1) = −1

2
log

(
1 −

k−1∏

i=1

1 − tanhhi

2

)
, (23)

hi→a =
∑

b∈∂+i(a)

ub→i −
∑

b∈∂−i(a)

ub→i . (24)

We are interested in the regime where the number M of uniformly chosen clauses and the number of variables N
both diverge at fixed ratio α = M/N . The random factor graphs thus generated enjoy properties reminiscent of the
Erdös-Rényi random graphs G(N,M) [40, 41]. In particular, for a uniformly random variable node i, the number of
clauses in ∂+i and ∂−i converges to two i.i.d Poisson random variables of mean αk/2. The same statement is true for
∂+i(a) and ∂−i(a) when (i, a) is an uniformly chosen edge of the factor graph. The degree distribution is a very local
description of a graph, looking at one node or edge only. It is however easy to show that any bounded neighborhood
of a uniformly random node i converges to a random (Galton-Watson) tree with the same degree distribution [41].

B. The RS description of the random formulae ensemble

The replica-symmetric treatment of the random k-SAT problem was first worked out using the replica formalism
in [8]. In the cavity formulation one interprets the BP equations (9,10,23,24) in a probabilistic way. More precisely,
we introduce the distributions of ua→i, hi→a (over the choice of the random formula) and denote them as P(0)(h) and
Q(0)(u). These distributions satisfy the distributional equations:

u
d
= f(h1, . . . , hk−1) , h

d
=

l+∑

i=1

u+
i −

l−∑

i=1

u−i . (25)
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In these expressions h, {hi} (resp. u, {u±i }) are independent copies of the random variable of distribution P(0)(h) (resp.
Q(0)(u)), the function f is defined in Eq. (23) and l± are two independent Poisson random variables of mean αk/2.

The symbol
d
= denotes identity in distribution7.

The RS prediction for the entropy reads

φ(0) = −αkE log z1(u, h) + αE log z2(h1, . . . , hk) + E log z3(u
+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

) , (26)

where the expectations are over i.i.d. copies of the random variables u and h, and l± are as above. The various
entropy shifts are obtained by rewriting the z’s in Eq. (12) in terms of u and h,

z1(u, h) = 1 + tanhh tanhu , (27)

z2(h1, . . . , hk) = 1 −
k∏

i=1

1 − tanhhi

2
, (28)

z3(u
+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

) =

l+∏

i=1

(1 + tanhu+
i )

l−∏

i=1

(1 − tanhu−i ) +

l+∏

i=1

(1 − tanhu+
i )

l−∏

i=1

(1 + tanhu−i ) . (29)

Similarly the RS overlap can be computed as

q0 = E[tanh2 h] . (30)

Several equivalent expressions of the RS entropy can be found in the literature; the choice we made in (26) has the
advantage of being variational. By this we mean that the stationarity conditions of the function φ(0)[P ,Q, α] with
respect to P and Q are nothing but the self-consistency equations (25). Note also that the rigorous results of [42, 43]
imply that8 the entropy density φ is upper-bounded by the RS φ(0) for any trial distribution P , as long as Q is linked
to P by the first equation in (25), for a regularized version of the model at finite temperature. Moreover the RS
description was proven to be valid for small values of α in [44].

The numerical resolution of the equation on the order parameter is relatively easy. The distributions P(0) and Q(0)

can indeed be represented by samples (or populations) of a large number N of representatives, {hi}Ni=1 and {ui}Ni=1.
The fixed point condition stated in (25) is looked for by an iterative population dynamics algorithm [25, 41, 45].

We turn now to the cavity formalism at the 1RSB level, which assumes the organization of pure states described
in Section II B.

C. The 1RSB description of the random formulae ensemble

As in the RS case, when the underlying formula is random, the messages Pi→a, Pa→i along a uniformly random
edge become random variables, whose distributions are denoted as P(1)[P ], Q(1)[Q]. These distributions satisfy a
couple of distributional equations, that are the probabilistic version of Eqs. (15,16),

Q(•) d
=

1

Z4[P1, . . . , Pk−1]

∫ k−1∏

i=1

dPi(hi) δ (• − f(h1, . . . , hk−1)) z4(h1, . . . , hk−1)
m , (31)

P (•) d
=

1

Z3[{Q+
i }, {Q−

i }]

∫ l+∏

i=1

dQ+
i (u+

i )

l−∏

i=1

dQ−
i (u−i ) δ


• −

l+∑

i=1

u+
i +

l−∑

i=1

u−i


 z3({u+

i }
l+
i=1, {u−i }

l−
i=1)

m , (32)

7 More explicitly, given two random variables X and Y we write X
d
= Y if the distributions of X and Y coincide. For instance, if X, X1, X2

are iid standard normal random variables, X
d
= (X1 + X2)/

√
2

8 In [42, 43] this claim is made for k even. However the proof holds verbatim for k odd as well. To the best of our knowledge, this was
observed first by Elitza Maneva in 2005.
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where the P ’s (resp. Q’s) are i.i.d. from P(1) (resp. Q(1)) and l± have the above stated Poissonian distribution. The
entropy shift z3 used in Eq. (32) was defined in Eq. (29), while z4 is given by

z4(h1, . . . , hk−1) = 2 −
k−1∏

i=1

1 − tanhhi

2
= 1 + e−2f(h1,...,hk−1) . (33)

Finally, the 1RSB potential is obtained by taking the expectation of Eq. (17). One gets

Φ(m) = −αkE logZ1[Q,P ] + αE logZ2[P1, . . . , Pk] + E logZ3[Q
+
1 , . . . , Q

+
l+
, Q−

1 , . . . , Q
−
l−

] , (34)

where the factors Zi are weighted averages of the corresponding entropy shifts,

Z1[Q,P ] =

∫
dP (h)dQ(u) z1(u, h)

m , (35)

Z2[P1, . . . , Pk] =

∫ k∏

i=1

dPi(hi) z2(h1, . . . , hk)m , (36)

Z3[Q
+
1 , . . . , Q

+
l+
, Q−

1 , . . . , Q
−
l−

] =

∫ l+∏

i=1

dQ+
i (u+

i )

l−∏

i=1

dQ−
i (u−i ) z3(u

+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

)m . (37)

The inter and intra-state overlaps are given, respectively, by

q0 = E

[(∫
dP (h) tanhh

)2
]
, q1 = E

[∫
dP (h) tanh2 h

]
. (38)

The variational property discussed at the RS level still applies to the 1RSB potential. This is of particular interest
for the computation of the internal entropy of the states, given by a derivative with respect to m. This derivation can
be applied to the explicit dependence only, and yields

φint(m) = − αkE

[∫
dP (h)dQ(u) z1(u, h)

m log z1(u, h)

Z1(Q,P )

]

+ αE

[∫ ∏k
i=1dPi(hi) z2({hi}k

i=1)
m log z2({hi}k

i=1)

Z2[{Pi}k
i=1]

]

+ E

[∫ ∏l+
i=1dQ

+
i (u+

i )
∏l−

i=1dQ
−
i (u−i ) z3({u+

i }
l+
i=1, {u−i }

l−
i=1)

m log z3({u+
i }

l+
i=1, {u−i }

l−
i=1)

Z3[{Q+
i }

l+
i=1, {Q−

i }
l−
i=1]

]
. (39)

The rigorous results of [42, 43] also imply φ ≤ Φ(m)/m for any value of m in (0, 1), and any trial order parameter P
(with Q defined by Eq. (31)).

The numerical resolution of the 1RSB equations (31,32) is in general much harder than the one of their RS
counterparts (compare with Eq. (25)). The population dynamics algorithm represents P(1) by a sample of distributions

{Pi}Ni=1, which themselves have to be encoded, for each i, by a finite set of cavity fields {hi,j}N
′

j=1. This drastically
limits the sizes N and N ′, and hence the precision of the numerical results. Moreover generating one element, say
Qi, from k − 1 Pi’s is by itself a non trivial task. The various fields representing Qi are weighted in a non uniform
way because of the factor zm

4 in Eq. (31), which forces the use of delicate resampling procedures.
These equations can be greatly simplified analytically for two particular values of m, namely 0 and 1. For the

sake of readability we postpone the discussion of these important simplifications until Section V, and proceed in the
next section with the presentation and the interpretation of the results obtained either at arbitrary m with the full
numerical procedure (whose implementation details are exposed in Appendix A) or in m = 0, 1 with the simplified,
more precise ones.

IV. TRANSITIONS IN THE SATISFIABLE REGIME OF RANDOM k-SAT

A. The dynamical, condensation and satisfiability transitions for k ≥ 4

Let us begin our discussion of the satisfiable regime of random k-SAT by studying the case k = 4, the values k ≥ 4
having the same qualitative behavior. On the other hand, the phenomenology of 3-SAT is different and we report on
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FIG. 2: The point-to-set correlation function for k = 4, from left to right α = 9.30, α = 9.33, α = 9.35 and α = 9.40
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FIG. 3: The complexity Σ and the internal entropy φint for the values m = 0, 1, and m = ms in the 1RSB regime, for k = 4.

it in Sec. IVD.
Following the program of Sec. II we first have to determine the value αd for the appearance of a non-trivial solution

of the 1RSB equations with m = 1. To this aim we compute the point-to-set correlation function Cℓ, that is the
average of the correlation function (19) between a randomly chosen variable i and the set B of variables at distance
ℓ from it. The plots of Fig. 2 show that for α ≤ αd ≈ 9.38 this correlation vanishes at large distance, while for
larger values of α a strictly positive long range correlation sets in discontinuously. To distinguish between the d1RSB

and 1RSB regime we then compute the complexity Σ(m = 1). As demonstrated in Fig. 3 this is strictly positive at
αd, then decreases continuously until it vanishes at αc ≈ 9.547. Finally the satisfiability transition αs is found from
the criterion of vanishing of Σ(m = 0), i.e. the maximum of the entropic complexity curve (see Fig. 3): the value
αs ≈ 9.931 is in agreement with [12] and we shall show in Sec. VB that this is indeed the same calculation.

To summarize, we find the three regimes RS, d1RSB, 1RSB described in Sec. II B occurring in this order, for the
values of α in [0, αd], [αd, αc] and [αc, αs]. We expect this pattern of transitions to be the same for all k ≥ 4. This
is supported by our numerical investigations for k = 4, 5, 6 (see Tab. I for a summary of the numerical values of the
thresholds), and by the large-k expansions presented in Sec. VI.

The entropy density (see Fig. 3) is given by the RS formula both in the RS and d1RSB regimes. In the latter case
it has to be understood as the sum of the complexity Σ(m = 1) and of the internal entropy of the associated states,
φint(m = 1). On the contrary for α ∈ [αc, αs] it is necessary to compute the whole function Σ(φ) by varying m. The
entropy density coincides with the one of dominant clusters, and is given by the point where Σ(φ) vanishes.
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k αd αc αs[12] αf

3 3.86 3.86 4.267 *

4 9.38 9.547 9.931 9.88

5 19.16 20.80 21.117 *

6 36.53 43.08 43.37 39.87 [46]

TABLE I: Numerical values of the various critical thresholds. For k = 3 we have formally αc = αd, see the text for details on
the nature of the difference between k = 3 and k ≥ 4.
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α = 9.8

α = 9.9

FIG. 4: The complexity Σ(φ) for k = 4 and several values of α: from top to bottom α = 9.3, 9.45, 9.6, 9.7, 9.8 and 9.9.

B. The entropic complexity curves

The curves Σ(φ) are shown in Fig. 4 for several values of α. The symbols are obtained in a parametric way, by
solving the 1RSB equations for various values of m and plotting the point (φint(m),Σ(m)). The lines in Fig. 4 are
numerical interpolations, obtained by fitting not directly Σ(φ), but instead the data for Φ(m) with a generic smooth
function9 and then analytically deriving the fitting function to obtain the curves in Fig. 4. The agreement of this
fitting procedure with the parametric plot is excellent. The three regimes are clearly illustrated on this figure:

• For α < αd a portion of the curve Σ(φ) can exist (for instance there is a solution of the 1RSB equation with
m = 0 for α ≥ 8.297 [12]), yet it has no point of slope −m = −1. The contribution of these clusters is negligible
compared to the dominant RS cluster.

• For α ∈ [αd, αc] (see e.g. α = 9.45 data in Fig. 4) the complexity Σ(m = 1) exists and is positive (it is marked
by a black circle in the figure).

• For α ∈ [αc, αs] (see e.g. α = 9.6, 9.7, 9.8, 9.9 in Fig. 4) the complexity Σ(m = 1) is negative and thus the Σ(φ)
curve vanishes at φ(ms) (marked with a black square), where the slope (in absolute value) is smaller than 1 and
equals ms(α). The measure is dominated by a subexponential number of clusters of entropy φ(ms), shown as a
function of α in Fig. 3.

9 We have tried different fitting functions and all provide equivalent and very good results thanks to the smoothness of Φ(m).
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FIG. 5: The value of the Parisi parameter ms in the thermodynamically relevant pure states of the 1RSB regime in random
4-SAT, and the freezing transition mf .

The value thus estimated of the Parisi parameter ms(α) in the 1RSB regime is plotted in Fig. 5 (it is identical to 1
in the d1RSB region). The curve close to the ms data is not a fit, but instead an explicit approximate expression for
ms(α) which becomes exact in the large k limit (see Sec. VI for details). Indeed Eq. (81) (valid to leading order at
large k) can be equivalently rewritten as

αs − α

αs − αc
=

1 − 2m(1 −m log 2)

2 log 2 − 1
, (40)

and this gives an expression for ms(α) once values of αc and αs determined numerically for k = 4 are plugged into
Eq. (40). Note that the solution to Eq. (40) is such that (i) ms(αc) = 1, (ii) ms(αs) = 0 and (iii) ms vanishes as a
square root at αs. The finite k corrections to the expression (40) seem already small for k = 4, as can be inferred from
the good agreement with the numerical data displayed in Fig. 5. This fact was also noticed for the coloring problem
in [15].

Once we compute the optimal value ms for each value of α, we can plot in Fig. 6 the overlap q0 and q1 of the
dominating clusters as a function of α. Notice that the inter-state overlap q0 is an increasing function of α for any
fixed value of m, but becomes a decreasing function of α between αc and αs where we take m = ms(α).

We did not attempt a complete determination of the portion of the plane (α,m) where non-trivial solutions of
the 1RSB equations can be found. From our numerical investigations it seems that solutions with smaller values of
m appear at smaller values of α, i.e. the threshold αd(m) is an increasing function in the range of parameters we
considered. In particular, solutions with negativem appear at rather small values of α. The limit of very large negative
values of m is however difficult to study numerically, and more work could be done on this issue; the corresponding
pure states are tiny because their variables are overconstrained, which plagues the numerical resolution of the 1RSB
equations.

C. On the presence of frozen variables in clusters of solutions

Another characterization of the clusters of solutions, besides their internal entropy and self-overlap, is the presence
or not of frozen variables, that is variables that take the same value in all the solutions of the cluster. In technical
terms this corresponds to a non-vanishing weight on ±∞ in the 1RSB cavity field distributions P (h) (see Eq. (59)
below). Our data show that, given a value of α, there exists a threshold mf(α) such that clusters described by m < mf

do contain frozen variables, while those with m > mf do not. This is consistent with the intuition: the freezing of
variables is correlated with a smaller value of the internal entropy, hence of m. Numerical estimates for the line mf(α)
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FIG. 6: Intra and inter-state overlaps for k = 4.

are plotted in Fig. 5 for k = 4. The large error bars are due to the fact that we have checked the presence of frozen
variables only at m values which are multiples of 0.1 (and no interpolation can be done in between, since the property
is just true or false). The interpolating curve is a fit to the mf(α) data with the function A(x − 8.297)B (for m = 0
the critical value of α is αd(m = 0) ≈ 8.297 [12]). The freezing transition αf is defined by the appearance of frozen
variables in dominating clusters, that is ms(αf) = mf(αf). From the crossing of these two lines in Fig. 5 we estimated
the freezing threshold for k = 4 at αf ≈ 9.88.

The fact that the freezing transition occurs after the condensation one for k = 4 is not generic; for k ≥ 6 the
threshold mf(α) reaches 1 at αf ≤ αc [46], hence in a part of the d1RSB regime the dominating clusters do contain
frozen variables for these values of k.

Let us however emphasize that generally αd < αf , i.e. that in random k-satisfiability (and also in q-coloring [15])
clustering can occur without implying the freezing of variables. This fact has been obscured up to now because the
energetic cavity method [10, 34] focused precisely on the fraction of frozen variables in the m = 0 solution of the 1RSB
equations, and because in the simpler XORSAT model [38, 39] the freezing and clustering transitions coincide. We
refer the reader to [46] for a more extensive study of the freezing transition, in particular its interpretation in terms
of the divergence of the minimal rearrangements [47] it induces, and to [36] where it has been proven that frozen
variables exist in every cluster for k ≥ 9 and α large enough.

D. k = 3, a special case

We turn now to the description of our numerical results in the particular case k = 3, recently investigated also in [16].
The onset of long-range point to set correlations, displayed in Fig. 7 through the correlation function Cℓ, is qualitatively
different from k = 4 (compare with Fig. 2). The long range correlation limℓ→∞Cℓ grows indeed continuously from
0 at αd (in qualitative agreement with the variational approximation of [9]). In fact this transition coincides with
a local instability of the RS solution with respect to 1RSB perturbations (this is a generic fact for all models with
continuous dynamic transitions). A numerical procedure can be used to locate precisely this instability [48, 49, 50].
We get the estimate αd = αstab ≈ 3.86. Please note that for k ≥ 4 this local instability occurs after the discontinuous
transition, for instance at αstab ≈ 10.2 for k = 4.

For α > αd the complexity Σ(m = 1) decreases continuously from 0 (see lowest curve in Fig. 8): there is no d1RSB

regime for 3-SAT. We then turned to the resolution of the 1RSB equations for other values of m. In Fig. 8 we plotted
the complexity as a function of α, for various values of m. According to the interpretation of the 1RSB regime of
Sec. II B, for each value of α we can find the Parisi parameter ms such that Σ = 0, and obtain the 1RSB estimate of
the entropy as the internal entropy of these states. We plot this quantity in Fig. 9, together with the replica symmetric
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FIG. 7: The point-to-set correlation function for k = 3, from left to right α = 3.60, α = 3.84, α = 3.86, α = 3.88.
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FIG. 8: The complexity Σ for k = 3 and m from 0 (highest curve) to 1 (lowest curve). For 0 < m < 1 the domain of existence
of Σ may be slightly larger than the one shown in the plot (we have simulated only α values multiples of 0.05).

(RS) estimate and the value obtained from the m = 0 solution.
We also present in Fig. 10 the entropic complexity curves for a few values of α. Note that these curves can seem

incomplete; in fact for some values of (α,m) we found only inconsistent solutions of the 1RSB equations, as is explained
in more details in Appendix C. This might be related to an instability of the 1RSB solution toward higher levels of
replica symmetry breaking [50, 51, 52].

V. SIMPLIFICATIONS OF THE 1RSB EQUATIONS

The numerical analysis of the 1RSB equations (31), (32) is, in general, an extremely difficult task. Their analytical
control is even more challenging. In this section we explain how the 1RSB approach simplifies in the two cases m = 0
and m = 1, allowing for a precise numerical calculation of the complexity and internal entropy in these points.

Because of the special role played by the valuem = 1, see Section II, this enables to estimate precisely the dynamical
and condensation thresholds αd(k) and αc(k). The simplifications arising at m = 0 are on the other hand the reason
of the efficiency of the SP algorithm [10]. Here we will show how the states entropy can be computed at a small extra
cost with respect to the approach of [10].

For the sake of concreteness, we discuss these simplification in the case of random k-satisfiability. They have
however a much wider domain of validity. The same derivations do indeed hold for general mean-field models on
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FIG. 9: The 1RSB estimate for the entropy of random 3-SAT, compared to the replica symmetric (RS) estimate and to the
internal entropy of the m = 0 solution, corresponding to the maximum of the Σ(φ) curve.
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FIG. 10: The complexity Σ(φ) in random 3-SAT, for several values of α.

sparse random graphs.

A. m = 1 and tree reconstruction

There is a strong connection between the 1RSB formalism with Parisi parameter m = 1 and the tree reconstruction
problem (or computation of point-to-set correlation), as discussed in [26] and outlined in Sec. II C. We follow here a
somehow inverse perspective with respect to [26]: starting from the 1RSB equations we shall progressively simplify
them. At the end we shall comment on their interpretation in terms of the tree reconstruction problem.

Let us first define the averaging functional h[P ] (resp. u[Q]) which associates to the distribution P (resp. Q) of
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cavity fields a single real through the relations

tanhh[P ] =

∫
dP (h) tanhh , tanhu[Q] =

∫
dQ(u) tanhu . (41)

Consider now the right hand side of Eq. (32) for m = 1. The normalization factor can be expressed in terms of these
averaged fields,

Z3[Q
+
1 , . . . , Q

+
l+
, Q−

1 , . . . , Q
−
l−

] = z3[u[Q
+
1 ], . . . , u[Q+

l+
], u[Q−

1 ], . . . , u[Q−
l−

]] . (42)

Using this fact and denoting by G[Q+
1 , . . . , Q

+
l+
, Q−

1 , . . . , Q
−
l−

] the right hand side of Eq. (32) one can also show that

h[G[Q+
1 , . . . , Q

+
l+
, Q−

1 , . . . , Q
−
l−

]] =

l+∑

i=1

u[Q+
i ] −

l−∑

i=1

u[Q−
i ] . (43)

Treating similarly Eq. (31), whose r.h.s. shall be denoted F [P1, . . . , Pk−1], one obtains

Z4[P1, . . . , Pk−1] = z4(h[P1], . . . , h[Pk−1]) , u[F [P1, . . . , Pk−1]] = f(u[P1], . . . , u[Pk−1]) . (44)

h (resp. u) can be viewed as a random variable, induced by Eq. (41) with P (resp. Q) drawn from P(1) (resp. Q(1)).
The above remarks show that their distributions obey the RS self-consistency equation (25). Let us now define a
conditional average of P(1), focusing on the P ’s in the support of P(1) with a prescribed value of h[P ]:

P (h|h) =
1

P(0)(h)

∫
dP(1)[P ] P (h) δ(h− h[P ]) . (45)

The conditional distribution Q(u|u) is defined analogously, with P(1)[P ] replaced by Q(1)[Q].
Consider again the distributional equations (31), (32). Once the normalization factors have been expressed in terms

of the average fields h, u, the right-hand sides are multi-linear functions of the distributions P , Q. It is thus possible
to take the conditional average as in Eq. (45). This yields closed equations on P and Q:

Q(u|u)Q(0)(u) =

∫ k−1∏

i=1

dP(0)(hi) δ(u− f(h1, . . . , hk−1))

∫ k−1∏

i=1

dP (hi|hi) δ(u − f(h1, . . . , hk−1))
z4(h1, . . . , hk−1)

z4(h1, . . . , hk−1)
,

P (h|h)P(0)(h) =
∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i ) δ


h−

l+∑

i=1

u+
i +

l−∑

i=1

u−i




∫ l+∏

i=1

dQ(u+
i |u+

i )

l−∏

i=1

dQ(u−i |u−i ) δ


h−

l+∑

i=1

u+
i +

l−∑

i=1

u−i


 z3(u

+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

)

z3(u
+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

)
. (46)

These equations are definitely simpler than the original ones (31), (32). In particular P (h|h)P(0)(h) can be viewed as

a joint distribution of (h, h) and represented by a population of couples {(hi, hi)}Ni=1. The presence of the reweighting
factors still represents a difficulty that we shall now get rid of by a further simplification. Before proceeding, let us
emphasize the identities

∫
dP (h|h) tanhh = tanhh ,

∫
dQ(u|u) tanhu = tanhu , (47)

which follow directly from the definition (45) and which are indeed preserved by the equations (46). We define now,
for σ = ±1,

P σ(h|h) =
1 + σ tanhh

1 + σ tanhh
P (h|h) . (48)

Using property (47), one can check that for any h and any σ P σ(•|h) is well normalized, and that

P (h|h) =
∑

σ

1 + σ tanhh

2
Pσ(h|h) . (49)
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Similar definitions and properties hold for Qσ(u|u). Inserting these definitions in Eq. (46), one obtains

Qσ(u|u)Q(0)(u) =

∫ k−1∏

i=1

dP(0)(hi) δ(u − f(h1, . . . , hk−1))

∑

σ1,...,σk−1

µ(σ1, . . . , σk−1|σ, h1, . . . , hk−1)

∫ k−1∏

i=1

dP σi
(hi|hi) δ(u− f(h1, . . . , hk−1)) , (50)

where the summation runs over the 2k−1 configurations of the Ising spins σ1, . . . , σk−1 with probabilities given by

µ(σ1, . . . , σk−1|+, h1, . . . , hk−1) =

k−1∏

i=1

1 + σi tanhhi

2
, (51)

µ(σ1, . . . , σk−1|−, h1, . . . , hk−1) =
(1 − I(σ1 = · · · = σk−1 = −))

1 −∏k−1
i=1

1−tanhhi

2

k−1∏

i=1

1 + σi tanhhi

2
. (52)

The second of the equations in (46) yields

P σ(h|h)P(0)(h) =

∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i ) δ


h−

l+∑

i=1

u+
i +

l−∑

i=1

u−i




∫ l+∏

i=1

dQσ(u+
i |u+

i )

l−∏

i=1

dQ−σ(u−i |u−i ) δ


h−

l+∑

i=1

u+
i +

l−∑

i=1

u−i


 . (53)

The equations (50), (53) are particularly convenient for numerical resolution. This can be obtained through an
appropriate generalization of the population dynamics algorithm, that employs two population of triples {(hi, h

+
i , h

−
i ) :

i = 1, . . . ,N} and {(uj , u
+
j , u

−
j ) : j = 1, . . . ,N}. In the actual implementation it is actually more convenient to store

the hyperbolic tangent of these quantities, e.g. tanhhi, tanhh+
i , etc. These populations are updated recursively

according to the pseudocode below.

Population Dynamics m = 1 (Size N , Iterations tmax)

1: For all i ∈ {1, . . . ,N}:
2: Set h±i = ±∞ and draw hi from P(0);

3: For all t ∈ {1, . . . , tmax}:
4: For all j ∈ {1, . . . ,N} generate a new triple (uj , u

+
j , u

−
j ):

5: Choose k − 1 indices i1 . . . ik−1 uniformly in [N ];

6: Compute uj = f(hi1 , . . . , hik−1
);

7: Generate a configuration σ1 . . . σk−1 with the law µ(· · · |+, hi1 . . . hik−1
) in Eq. (51);

8: Compute u+
j = f(hσ1

i1
, . . . , h

σk−1

ik−1
);

9: Generate a second configuration of spins with the law (52);

10: Set u−j = f(hσ1

i1
, . . . , h

σk−1

ik−1
);

11: End-For;

12: For all i ∈ {1, . . . ,N} generate a new triple (hi, h
+
i , h

−
i ):

13: Draw two independent Poisson random variables l+ and l− of mean αk/2;

14: Draw l+ + l− iid indices i+1 , . . . , i
+
l+
, i−1 , . . . , i

−
l−

uniformly random in [N ];

15: Set hj =
∑l+

m=1 ui+m
−∑l−

m=1 ui−m
, h±j =

∑l+
m=1 u

±

i+m
−∑l−

m=1 u
∓

i−m
;

16: End-For;

The justification of the initialization will be given below. After a moment of thought one can convince oneself that
the above update rules are the correct discretization of Eqs. (50) and (53). More precisely, if the triples (hi, h

+
i , h

−
i ) are
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iid and the two pairs (hi, h
+
i ), (hi, h

−
i ) have distributions (respectively) P+(h+|h)P(0)(h) and P−(h−|h)P(0)(h), then

the pairs (uj, u
+
j ), (uj , u

−
j ) resulting from the above update have distributions Q+(u+|u)Q(0)(u), Q−(u−|u)Q(0)(u).

An analogous statement holds for the update from the triples (uj , u
+
j , u

−
j ) to (hi, h

+
i , h

−
i )10.

Most relevant observables can be written as expectations with respect to the distributions P±(h±|h)P(0)(h),

Q±(u±|u)Q(0)(u) and hence estimated from these population of triplets.
Notice that, by definition, the 1RSB potential computed at m = 1 is equal to the RS free-entropy, Φ(m = 1) = φ(0).

The internal entropy can be expressed in terms of P (h|h) and Q(u|u) by integrating over P(1), Q(1) in Eq. (39). These

conditional distributions can be further replaced by P σ and Qσ thanks to Eq. (49), yielding finally

φint(m = 1) = − αk

∫
dP(0)(h)dQ(0)(u)

∑

σ

1 + σ tanh(u+ h)

2

∫
dP σ(h|h)dQσ(u|u) log z1(u, h) (54)

+ α

∫ k∏

i=1

dP(0)(hi)
∑

σ1,...,σk

µ(σ1, . . . , σk|h1, . . . , hk)

∫ k∏

i=1

dP σi
(hi|hi) log z2(h1, . . . , hk)

+

∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

dQ(0)(u
+
i )

l−∏

i=1

dQ(0)(u
−
i )
∑

σ

1 + σ tanh
(∑l+

i=1 u
+
i −∑l−

i=1 u
−
i

)

2

∫ l+∏

i=1

dQσ(u+
i |u+

i )

l−∏

i=1

dQ−σ(u−i |u−i ) log z3(u
+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

) .

In the second term the distribution of the configuration (σ1, . . . , σk) reads

µ(σ1, . . . , σk|h1, . . . , hk) =
(1 − I(σ1 = · · · = σk = −))

1 −∏k
i=1

1−tanh hi

2

k∏

i=1

1 + σi tanhhi

2
. (55)

This expression of the internal free-entropy is readily evaluated by sampling from the population of triplets defined
above, the complexity of the m = 1 states is then finally expressed as Σ(m = 1) = Φ(m = 1) − φint(m = 1).

Consider now the definition of the overlaps given in Eq. (38). The inter-state one q0 is easily seen to be equal to
the RS one. Moreover q1 can be written as

q1 =

∫
dP(0)(h)

∫
dP (h|h) tanh2 h . (56)

To rewrite q1 in terms of the distribution Pσ, note that tanh2 h = (tanhh)
∑

σ σ(1 + σ tanhh)/2 and use (48) to
obtain

q1 =

∫
dP(0)(h)

∑

σ

σ
1 + σ tanhh

2

∫
dP σ(h|h) tanhh . (57)

These expressions allow to estimate q0, q1 from the population of triples {(hi, h
+
i , h

−
i )}.

In Figs. 2 and 7 we followed this approach to plot the difference q1(ℓ)−q0 for several values of α and k = 3, 4, whereby

the population {(hi, h
+
i , h

−
i )} is obtained after ℓ iterations of the above algorithm. For α < αd(k), q1(ℓ) − q0

ℓ→ 0,
while for α > αd(k) it is bounded away from 0. Let us emphasize the great simplification achieved: the equations
(50,53) are much simpler than the original 1RSB equations: they can be solved using a simple population of triples,
instead of a population of populations. Further, the initialization used in the pseudocode above is the correct one, in
the following sense. If the equations (50), (53) admit a non-trivial solution, then their iteration converges to a non
trivial solution under such an initialization.

10 Notice that it would be wrong to claim that (hi, h
+
i , h−

i ) is distributed according to P+(h+|h)P−(h−|h)P(0)(h) : the update rules used

in the algorithm induce correlations between (for instance) the fields h+ and h− inside the same triplet. These correlations do not spoil
our claim.
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The last statement follows from the interpretation of the order parameters in terms of tree reconstruction. Consider
an infinite tree k-satisfiability formula roted at variable node i. The tree is random with distribution defined by letting
each variable to be directly (resp. negated) in l+ (resp. l−) clauses, where l± are independent random Poisson random
variables with mean αk/2. One can define a (uniform) free boundary Gibbs measure µ over SAT assignments of such
a tree. Imagine now to generate a solution from this measure, conditional on the root value being σ, and denote by
σB the values of variables at distance at least ℓ from the root. Define the fields h, hσ

ℓ by

µ(σi) ≡
1 + σi tanhh

2
, µ(σi|σB) ≡ 1 + σi tanhhσ

ℓ

2
. (58)

Notice that both are random quantities, h because of the tree randomness and h±ℓ both because of the tree and of

the random configuration σB. Let P
ℓ

σ(h|h) be the conditional distribution of hσ
ℓ given h.

It is not hard to show that P
ℓ

σ(h|h) is the distribution obtained by iterating (50), (53) ℓ times with initial condition

P
ℓ

±(h|h) = P(0)(h)δ(h ∓ ∞). This corresponds indeed to the initialization we used in the population dynamics
algorithm. It follows from the arguments in [26] that this is the correct initialization, in the sense described above.
Further, under the usual assumptions of the cavity method and for α < αc(k), the quantity q1(ℓ) − q0 plotted in
Figs. 2 and 7 coincides with the correlation function (19) in the large N limit.

B. m = 0: Survey Propagation and the associated internal entropy

We turn now to the second particular case for which a simplified treatment of the 1RSB formalism is possible,
namely at m = 0.

To begin with, let us consider the structure of the distributions P (h) (resp. Q(u)) in the support of P(1) (resp.
Q(1)) for an arbitrary value of m. A moment of thought reveals the possibility of “hard fields” h = ±∞ that strictly
constrains a variable to take the same value in all configurations of a cluster of solutions. We can take care explicitly
of this possibility by denoting

P (h) = x−δ(h+ ∞) + x+δ(h−∞) + (1 − x− − x+)P̃ (h) , Q(u) = y δ(u−∞) + (1 − y)Q̃(u) , (59)

where P̃ and Q̃ have their support on finite values of the fields, that shall be called ‘soft’ or ‘evanescent’. Rewriting
the right hand side of (31) with these notations yields

Q(•) d
=

1

Z4[P1, . . . , Pk−1]

[(
k−1∏

i=1

x−i

)
δ(• −∞) + 2m

(
1 −

k−1∏

i=1

(1 − x+
i )

)
δ(•)

+
∑

|I|≥1

∏

i∈I

(1 − x+
i − x−i )

∏

i/∈I

x−i

∫ ∏

i∈I

dP̃i(hi)(1 + e−2•)mδ

(
• +

1

2
log

(
1 −

∏

i∈I

1 − tanhhi

2

))
 (60)

where the summation on I is over the non empty subsets of {1, . . . , k − 1}.
To achieve the same task for Eq. (32) it is advisable to introduce some more compact notations,

πσ =

lσ∏

i=1

(1 − yσ
i ) , Sσ =

lσ∏

i=1

(1 + tanhuσ
i ) , Tσ =

lσ∏

i=1

(1 − tanhuσ
i ) , (61)

in terms of which we have for instance z3 = S+T− + T+S−. We shall also denote E[•] the average over the u±i drawn

from the Q±
i , and Ẽ similarly using Q̃±

i . We then obtain

P (•) d
=

1

Z3[{Q+
i }, {Q−

i }]


π+Ẽ[Tm

+ ]
(
E[Sm

− ] − π−Ẽ[Sm
− ]
)
δ(• + ∞) + π−Ẽ[Tm

− ]
(
E[Sm

+ ] − π+Ẽ[Sm
+ ]
)
δ(• −∞)

+ π+π−

∫ l+∏

i=1

dQ̃+
i (u+

i )

l−∏

i=1

dQ̃−
i (u−i ) δ


• −

l+∑

i=1

u+
i +

l−∑

i=1

u−i


 (S+T− + T+S−)m


 (62)
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Analogously, the replicated free-entropy Φ(m) and its derivative can be rewritten by making explicit the distinction
between hard and soft fields.

Consider now the previous equations with m = 0. As we have explicitly removed all the contradictory terms which
had a strictly vanishing reweighting factor in the original relations (31,32), all the terms raised to the power m in
Eqs. (60,62) are strictly positive, hence these factors go to 1 when m vanishes. Two important consequences are to

be underlined : the normalization factors Z3 and Z4 do not depend on the evanescent distributions P̃ , Q̃. In fact
Z3 = π+ + π− − π+π− and Z4 = 1. Moreover the equations on the intensity of the hard fields peaks decouple from
the evanescent part when m goes to 0, (60,62) yielding for them

y
d
=

k−1∏

i=1

x−i , (x+, x−)
d
=

(
(1 − π+)π−

π+ + π− − π+π−
,

(1 − π−)π+

π+ + π− − π+π−

)
, (63)

which are nothing but the probabilistic form of the Survey Propagation equations [12]. For future use we denoteQSP(y)
and PSP(x+, x−) the distributions of these random variables. The complexity at m = 0 is Σ(m = 0) = Φ(m = 0) and
can then be expressed from Eq. (34) as

Σ(m = 0) = Φ(m = 0) = −αkE[log(1 − x−y)] + αE

[
log

(
1 −

k∏

i=1

x−i

)]
+ E[log(π+ + π− − π+π−)] , (64)

where the average is done with respect to PSP and QSP.
By focusing on the intensity of the hard fields this ’energetic’ version of the cavity method [10, 12] lost the information

contained in the evanescent field distributions P̃ , Q̃, which is necessary to obtain the internal entropy of the states,

Φ′(m = 0). This quantity can however be obtained in a rather simple way. We shall indeed define Q̃(u|y) as the
average of the evanescent part of Q drawn from Q(1), conditioned on the value of the hard field delta peak, and

similarly P̃ (h|x+, x−). As the right hand sides of (60,62) are linear functionals of these evanescent distributions when
m = 0, closed equations on this conditional averages can be obtained. We shall write them in terms of the joint

distributions Q̃(u, y) = Q̃(u|y)QSP(y) and P̃ (h, x+, x−) = P̃ (h|x+, x−)PSP(x+, x−),

Q̃(u, y) =

∫ k−1∏

i=1

dhidx
+
i dx−i P̃ (hi, x

+
i , x

−
i ) δ

(
y −

k−1∏

i=1

x−i

)[
1 −∏k−1

i=1 (1 − x+
i )

1 − y
δ(u)

+

∑k−1
p=1

(
k−1

p

)∏p
i=1(1 − x+

i − x−i )
∏k−1

i=p+1 x
−
i

1 − y
δ

(
u+

1

2
log

(
1 −

p∏

i=1

1 − tanhhi

2

))]
, (65)

P̃ (h, x+, x−) =

∞∑

l+,l−=0

e−αk(αk/2)l++l−

l+!l−!

∫ l+∏

i=1

du+
i dy+

i Q̃(u+
i , y

+
i )

l−∏

i=1

du−i dy−i Q̃(u−i , y
−
i )

δ

(
x+ − (1 − π+)π−

π+ + π− − π+π−

)
δ

(
x− − (1 − π−)π+

π+ + π− − π+π−

)
δ


h−

l+∑

i=1

u+
i +

l−∑

i=1

u−i


 . (66)

A solution of these equations can be obtained through a simple population dynamics algorithm, encoding Q̃(u, y) as

a population of couples {(ui, yi)}Ni=1 and P̃ (h, x+, x−) as {(hi, x
+
i , x

−
i )}Ni=1. The update rules of the algorithm can be

deduced from (65,66): a new element (h, x+, x−) is obtained drawing two Poisson random variables l± of mean αk/2,
l+ + l− elements of the population {(ui, yi)} and combining them according to (66). The translation of (65) is only
slightly more complicated. After extracting k− 1 elements at random from the population {(hi, x

+
i , x

−
i )} one obtains

y as the product of the k−1 elements x−. One then draws a configuration (s1, . . . , sk−1) ∈ {−1, 0,+1}k−1, each ‘spin’
si being ±1 with probability x±i and 0 with probability 1− x+

i − x−i , conditional on (s1, . . . , sk−1) 6= (−1, . . . ,−1). If
at least one of the si is equal to +1 the new value of u is taken to 0, otherwise u = − log(1 −∏(1 − tanhhi)/2)/2,
the product being taken on the indices i such that σi = 0.
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The internal entropy of the m = 0 pure states can be obtained from the solution of these equations, simplifying
Eq. (39) into

φint(m = 0) = − αkE

[
x+y log 2 + (1 − y)(x− log(1 − tanhu) + x+ log(1 + tanhu))

1 − x−y

]
(67)

− αkE

[
(1 − x+ − x−)(y log(1 + tanhh) + (1 − y) log(1 + tanhh tanhu))

1 − x−y

]
(68)

+ αE




k∑

p=1

(
k

p

) p∏

i=1

(1 − x+
i − x−i )

k∏

i=p+1

x−i log

(
1 −

p∏

i=1

1 − tanhhi

2

)
 (69)

+ E [π+π− log(S+T− + T+S−) + π−(1 − π+) log(S+T−) + π+(1 − π−) log(T+S−)] , (70)

where the expectation is over independent copies of elements drawn from P̃ (h, x+, x−) and Q̃(u, y), and in the last
line (where we used the shorthand notations defined in (61)) over the Poissonian random variables l±. This quantity
was plotted for k = 4 in Fig. 3.

Let us emphasize the great numerical simplification with respect to the general 1RSB equations: we have to deal
here with populations of couples (or triplet) of fields, not populations of populations. Yet we manage to extract not
only the complexity, which was the one computed in the probabilistic version of survey propagation, but also the
associated internal entropy.

VI. LARGE k RESULTS

To complement the numerical resolution of the 1RSB equations, we present in this Section analytic expansions of
the various thresholds and thermodynamic quantities for large k. Some technical details of these computations are
deferred to Appendix B.

A. Dynamical transition regime

A non-trivial solution of the 1RSB equations appears in the regime defined by

αd =
2k

k

[
log k + log log k + γ +O

(
log log k

log k

)]
, (71)

with γ finite as k → ∞. In this regime the 1RSB distributional order parameters P(1), Q(1) are supported on cavity

field distributions of the form (59) with P̃ ( · ), Q̃( · ) supported on finite fields. The weights of the hard fields are
deterministic to leading order, with

x± =
1

2
− δ(γ,m)

2k log k
+O

(
1

k(log k)2

)
, y =

1

2k
21−m

{
1 − δ(γ,m)

log k
+O

(
1

(log k)2

)}
. (72)

A set of coupled equations can also be written for the averages of P̃ , Q̃, in terms of which one computes a function
Λ(δ,m) that finally determines δ(γ,m) as a function of γ by solving the following equation:

γ = δ + log
1

2δ
+ Λ(δ,m) . (73)

Both the expressions for Λ(δ,m) and the equations for the averages of P̃ , Q̃ are quite involved and we report them in
Appendix B. In any case the right hand side of Eq.(73) diverges for δ → 0 and δ → ∞. As a consequence a pair of
solutions11 appears for γ ≥ γd(m), where γd(m) is obtained by minimizing the above expression over δ. For m = 0, 1

11 Consistency arguments imply that the one with smaller δ must be selected.
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the formulae simplify yielding Λ(δ,m = 0) = 0 and Λ(δ,m = 1) = log 2 independently of δ, whence the minimum
takes place at δ = 1 for these two values of m.

To summarize this yields the following estimate for the dynamical threshold

αd(k,m) =
2k

k

[
log k + log log k + γd(m) +O

(
log log k

log k

)]
, (74)

with γd(m = 1) = 1 and γd(m = 0) = 1 − log 2. Notice that the transition at m = 1 occurs slightly after the one at
m = 0 in agreement with what is found numerically for small values of k ≥ 4.

B. Intermediate regime

Consider now the limit k → ∞ with α = 2kα̂ for some fixed α̂ > 0. On this scale the SAT/UNSAT phase transition
occurs at α̂s = log 2 + O(2−k) [6, 12]. We shall therefore assume α̂ ∈ (0, log 2). In this regime it is convenient to use

again the decomposition (59), with at leading order P̃ (h) = δ(h) and x± = (1/2)(1− x̂±e−bαk). From this Ansatz one
finds that x̂± = 2m−1, then it follows that the 1RSB potential is asymptotically

Φ(m) = log 2 − α̂+ e−bαk(2m−1 − 1) +O(2−k) . (75)

By derivation of this expression one obtains the internal entropy,

φint(m) = e−bαk2m−1 log 2 +O(2−k) , (76)

and defining a reduced quantity σ by φint = e−bαk(log 2)σ, we get the complexity function explicitly,

Σ(σ) = log 2 − α̂+ e−bαkΣ̃(σ) +O(2−k) , Σ̃(σ) = σ(1 − log 2) − σ log σ − 1 . (77)

Notice that, for large k, the internal entropy of states is exponentially smaller (in k) than the complexity. Further, to
leading order, the complexity vanishes at α̂ = log 2, independently on m.

C. Condensation regime

In order to resolve the separation between the condensation and satisfiability phase transitions we must let k → ∞
with α ≃ 2k log 2. More precisely, we define α = 2k log 2− ζ, and take k → ∞ with ζ fixed. Again, we use the Ansatz

(59) with, at leading order P̃ (h) = δ(h) and x± = (1/2)(1 − x̂±2−k).
We then get the expansion of the potential,

Φ(m) =
1

2k
{ζ − ζs + (2m − 1)/2} +O(2−2k) , (78)

with ζs ≡ 1
2 (1 + log 2). The entropy can be determined by deriving the above with respect to m; defining the reduced

entropy density through φint = 2−k(log 2)σ, the complexity reads in this regime

Σ(σ) =
1

2k

{
ζ − ζs + σ(1 − log 2) − σ log σ − 1

2

}
+O(2−2k) . (79)

The condensation and satisfiability transition are located by determining ζ such that Σ(m) = 0 for (respectively)
m = 1 and m = 0. We get

αc(k) = 2k log 2 − 3 log 2

2
+O(2−k) , αs(k) = 2k log 2 − 1 + log 2

2
+O(2−k) . (80)

The thermodynamic value ms(ζ) of the Parisi parameter between these two thresholds is obtained by minimizing
Φ(m)/m. At the order of the expression of Φ(m) given above ms(ζ) is solution of

ζ − ζs = 2m−1(2−m − 1 +m log 2) . (81)
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FIG. 11: Condensation threshold in reduced units, 2−kαc(k). Symbols: numerical determination by population dynamics
algorithm, see Tab. I. Lines: analytical large k expansion, truncated at the three first orders, see Eq. (83).

In particular one finds close to the satisfiability transition

ms(ζ) ≃
2

log 2

√
ζ − ζs . (82)

A systematic expansion in powers of 2−k of the satisfiability threshold αs(k) has been performed up to seventh
order in [12]. The corresponding expansion for the condensation threshold αc(k) is slightly more difficult, because of
the necessary control of the corrections to the evanescent field distributions. We thus contented ourselves with the
computation of the next order in the expansion,

αc(k) = 2k log 2 − 3 log 2

2
(83)

−
[
6(log 2)(log 3) − 7(log 2)2

4
k2 +

5(log 2)2 − 3(log 2)(log 3)

2
k − 5 log 2

12

]
1

2k
+O

(
poly(k)

1

22k

)
.

This expression is compared in Fig. 11 with the numerical results for small k.

VII. CONCLUSION

The set of solutions of random k-satisfiability formulae exhibits a surprisingly rich structure, that has been explored
in a series of statistical mechanics studies [8, 9, 10]. Either implicitly or explicitly, these studies are based on defining
a probability distribution over the solutions, and then analyzing its properties. While the most natural choice is the
uniform measure, the authors of Ref. [10] achieved a great simplification (and a wealth of exact results) by implicitly
weighting each solution inversely to the size of the ‘cluster’ it belongs to. Since clusters sizes are exponential in the
number of variables, and have large deviations, this amounts to focusing on an exponentially small subset of solutions.

In this paper we resumed the (technically more challenging) task of studying the uniform measure and obtained
the first complete phase diagram (including replica symmetry breaking) in this setting. While we confirmed several
of the predictions in [10], our analysis unveiled a number of new phenomena:

1. There exists a critical value αd(k) of the clause density that can be characterized in several equivalent ways: (i)
Divergence of auto-correlation time under Glauber dynamics; (ii) Divergence of point-to-set correlation length;
(iii) Appearance of bottlenecks between ‘sizable’ subsets of solutions. The value of αd(k) is bigger than the
value obtained with the method of [10] (except for k = 3 where it is smaller).

2. While αd(k) does not correspond to an actual thermodynamic phase transition, such a phase transition takes
place at a second threshold αc(k) < αs(k) (αs(k) being the satisfiability threshold). This manifests in two-point
correlations, as well as in the overlap distribution.

3. The phase diagram is qualitatively different for k ≥ 4 and k = 3. The latter value has been most commonly
used in numerical simulations. This difference had not been recognized before because it does not show up in
the behavior of the maximal complexity Σ(m = 0) investigated up to now.
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A number of research directions are suggested by this refined understanding:

(a) We kept ourselves to 1RSB: it would be extremely interesting to investigate whether more complex hierarchical
(FRSB) structures can arise in the set of solutions. A first step in this direction would be to analyze the
stability [50, 51, 52] of the 1RSB Ansatz, in particular to clarify our numerical findings for k = 3. For k ≥ 4 we
believe that our determination of αd and αc is not affected by FRSB, yet it might be that the pure states, for
some values of their internal entropy, are to be described by a FRSB structure.

(b) The dynamical threshold αd(k) is expected to affect algorithms that satisfy detailed balance with respect to the
uniform measure over solutions (or its positive temperature version). Let us stress that it is likely not to have
any relation with more general local search algorithms [53, 54, 55]. It is an open problem to generalize the static
computations performed here to obtain meaningful predictions in those cases.

(c) Finally, the discovery of the condensation phase transition at αc(k) suggests that belief propagation might
be effective in computing marginals up to this threshold, as the average of the 1RSB equations with m = 1
corresponds to BP. The possible use of this information in constructing solutions is discussed in [56, 57, 58, 59].
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APPENDIX A: ON THE NUMERICAL RESOLUTION OF THE 1RSB CAVITY EQUATIONS

In this section we discuss some issues related to the numerical resolution of Eqs. (31), (32). As already mentioned,
the 1RSB order parameter P(1)[P ] is approximated by a sample of N populations, each composed of N ′ elements

hi,j , i ∈ [N ], j ∈ [N ′]. The numerical results presented in this work have been obtained with N = 104 and N ′ = 103.
The solution to the 1RSB cavity equations is found by an iterative procedure: starting from a “good” initial

guess for the fixed point solution, we iterate a sampled version of Eqs. (31), (32). After some iterations the sample

of populations converges to a stationary state with fluctuations of order O(1/
√
N , 1/

√
N ′). Convergence to the

stationary regime is usually fast and may take around 102 iterations in the worst cases we encountered. Once in the
stationary regime, we keep iterating for at least 104 steps. Meanwhile we take averages (over the populations and
over the time evolution) of the quantities of interest. This considerably reduces statistical errors.

Our actual numerical implementation makes use of two transformations with respect to Eqs. (31), (32). First, we
make a change of variables into

ϕ = e−2u , ψ =
1 + tanh(h)

2
, (A1)

both taking values in [0, 1] (note that the variable u is defined non-negative, see the definition of the function
f(h1, . . . , hk−1) in Eq.(23)). Moreover we exploit the fact that the reweighting term z4(h1, . . . , hk−1) in Eq. (31)
is a function of u = f(h1, . . . , hk−1) (cf. Eq. (33)). This allows to transfer all the effects of reweighting to the other

equation. Denoting Q̂(ϕ) and P̂ (ψ) the new distributions, these two transformations lead to

Q̂(•) d
=

∫ k−1∏

i=1

dP̂i(ψi) δ

[
• − 1 +

∏

i

(1 − ψi)

]
(A2)

P̂ (•) d
=

1

Z

∫ l+∏

i=1

dQ̂+
i (ϕ+

i )

l−∏

i=1

dQ̂−
i (ϕ−

i ) δ

[
• −

∏
i ϕ

−
i∏

i ϕ
+
i +

∏
i ϕ

−
i

](∏

i

ϕ+
i +

∏

i

ϕ−
i

)m

(A3)

where Z in the last equation is obtained by normalization.
One delicate issue in solving this kind of equation is how to represent faithfully the left hand side of Eq. (A3)

by a sample of N ′ representative elements of P̂ , because of the reweighting term (
∏

i ϕ
+
i +

∏
i ϕ

−
i )m. A possible

solution [25] consists in first generating a larger number, say 5N ′, of outgoing fields, store them along with the
associated weights, and then perform a resampling step to extract N ′ elements from this intermediate population.

This approach has the advantage of having complexity independent of the distributions Q̂i. Unhappily if the weights
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are strongly concentrated on a small subset of the 5N ′ fields, the resampled population will have many copies of these
elements. This leads to a deterioration of the sample.

We adopted a different strategy whose running time depends on how strong is the reweighting. For m ≥ 0, we
generate fields sequentially, and include them in the new population with probability proportional to the reweighting
factor (divided by the normalization factor 2m). This procedure becomes slower when m grows, but it ensures that
no repetitions appear in the new sample.

Solving the equations for m < 0 is instead much easier and no particular care is needed. For the sake of simplicity
we have used the same algorithm as for m ≥ 0 (which now produces many repetitions in the populations) and we
have simply checked the validity of our results by changing the number and size of populations.

As explained in Sec. V B the cavity field distributions can have a positive weight on “hard” fields, i.e. on fields
that constrain a variable to take either value +1 or −1 in all solutions of the cluster. This corresponds to ϕ = 0, or
ψ ∈ {0, 1}. This would show up into a positive fraction of the sample taking value, say, ϕ = 0, thus leading to an
inefficient representation.

In order to circumvent this problem, we kept track explicitly of the weights on ϕ = 0 and ψ ∈ {0, 1}, in analogy
with Eqs. (60), (62). This also allows to locate more precisely the appearance of a positive fraction of hard fields in
the distributions, as discussed in Sec. IVC. There is unfortunately one drawback to this approach. Consider Eq. (A3)

and suppose that all the distributions Q̂ of the right hand sides are supported on ϕ±
i ∈ (0, 1]. By definition the fields ψ

thus generated are also strictly positive. However the degrees l± are of order αk (i.e. around 40 for 4-SAT in the 1RSB
regime). As a consequence, it may happen that the product of the l− fields ϕ−

i is smaller than the smallest number
in the computer representation used (using 64 bits and the denormalized floating point notation this limit is roughly
ψmin ≈ 5 · 10−324). How should one treat such cases? We have adopted the solution of ignoring, that is not including
it in the population, any number below ψmin. This solution is equivalent to saying that we are describing with a finite

population of numbers the distribution P̂ (ψ) not on the domain ψ ∈ (0, 1], but on the domain ψ ∈ (ψmin, 1].
A different solution could be to convert all the numbers smaller than ψmin to zero. We have tried this procedure,

but it seems to be unstable, and to introduce systematic errors. In particular one obtains a positive weight for ψ = 0,
even for values of the parameters for which this is inconsistent.

The last point we would like to discuss is the problem of how to initialize the population dynamics algorithm. It
is clear that an iterative procedure does in general lead to different solutions depending on the starting point of the
iterations. For instance the RS solution, where the distributions P (h) in P(1) are concentrated on a single value of h, is
always a fixed point of the 1RSB equations. In the case m = 1, the interpretation in terms of tree reconstruction [26]
leads to a clear prescription for this initialization, as explained in more details in Sec. V A. One can follow the same
procedure for other values of m, namely initialize the populations with essentially only hard fields. This is crucial in
particular for k = 3, where softer initial conditions lead to an unphysical fixed point, cf. App. C.

APPENDIX B: LARGE k ANALYSIS: SOME TECHNICAL DETAILS

In this appendix we provide the complete formulae for the dynamical transition regime of Section VI A. To leading

order one can write a set of coupled equations for the average of P̃ ( · ), Q̃( · ) over the 1RSB order parameters P(1),

Q(1). With a slight abuse of notation we shall keep denoting by P̃ , Q̃ such averages. In terms of this quantities we
have

Λ(δ,m) = − log

{∫
dP̃ (h)

(
1 + tanhh

2

)m}
, (B1)

where the dependence on δ is through P̃ . Notice that Λ(δ,m = 0) = 0 independently of P̃ . For m = 1 one can use

the fact that by symmetry
∫

dP̃ (h) (tanh h) = 0, to deduce Λ(δ,m = 1) = log 2.

For m 6= 0, 1 one has to determine the distributions P̃ and Q̃. It turns out that

Q̃(u) =

(
1 − w

2k log k

)
δ(u) +

w

2k log k
Q̃′(u) , w ≡ 22−mδ

∫
dP̃ (h)

(
3 + tanhh

2

)m

. (B2)
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FIG. 12: Intra and inter-states overlap, q0 and q1, for k = 3 and some values of the Parisi parameter m. Data below (resp.
above) the RS line are for q0 (resp. q1). Full (resp. open) symbols refer to data measured while increasing (resp. decreasing) α.

The distributions P̃ , Q̃′ are solutions of the coupled equations

Q̃′(u) =
22−mδ

w

∫
dP̃ (h)

(
3 + tanhh

2

)m

δ

(
u− 1

2
log(1 + e−2h)

)
, (B3)

P̃ (h) =
1

Z
El±

∫ l+∏

i=1

dQ̃′(u+
i )

∫ l−∏

i=1

dQ̃′(u−i ) z3(u
+
1 , . . . , u

+
l+
, u−1 , . . . , u

−
l−

)m δ



h−
l+∑

i=1

u+
i +

l−∑

i=1

u−i



 , (B4)

where in the second equation Z is a normalizing factor and l± are two independent Poisson random variables of mean
w/2.

APPENDIX C: NON-UNIQUENESS OF SOLUTIONS OF THE 1RSB EQUATIONS FOR k = 3

This appendix provides further details on the numerical solution of the 1RSB equations for k = 3. A difficulty that
arises in this case is the presence, for some values of α and m, of at least two distinct non-trivial solutions of the
1RSB equations (this has been already noticed in [16] for α = 4.2, and in [15] for the related coloring problem). As
a consequence the initial conditions of the iterative resolution play an important role in selecting the fixed point that
shall be reached.

One can justify the existence of multiple solutions as follows. As mentioned in the main text, the continuous dynam-
ical transition at αd ≈ 3.86 corresponds to a local instability of the RS solution with respect to 1RSB perturbations. It
is important to underline that this instability condition is independent on the value of m, that is at αd a new solution
of the 1RSB equations should grow continuously away from the RS one, for all values of m. This is illustrated in
Fig. 12, where the overlaps q0 and q1 meet at αd for various values of m. By continuity these solutions do not contain
hard fields in the neighborhood of αd. On the contrary it is known since [10] that another solution of the m = 0
equations, with a finite weight on hard fields, arises discontinuously at α ≈ 3.92. For larger values of α these two
solutions thus coexist12. A natural conjecture is that two solutions also coexist for m 6= 0. The iterative population

12 Let us signal a peculiarity of the m = 0 ‘soft’ solution. It is easy to realize from Eqs. (60,62) that the average of the distributions P (h)
and Q(u) in this solution verify the RS equations. In consequence its intra-overlap q1 coincides with the RS overlap, its complexity
vanishes and its internal entropy equals the RS one.
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FIG. 14: The entropic complexity Σ(φ) for k = 3 and α = 4.2. The two different branches correspond to the consistent (full
line) and inconsistent solution (dashed line).

dynamics algorithm converges to one of them depending on the initialization (more precisely, on the fraction of hard
fields in the initial populations).

Our data suggest that the interval of α in which the two solution coexist shrinks when m grows from 0. For instance
in Fig. 12 one clearly see two branches for m = 0.2 at high enough values of α, whereas for m = 0.6 the two curves
obtained by increasing and decreasing α at fixed m are superimposed within numerical precision.

It remains to understand which, if any, of these solutions is the correct one. In principle one should test their
stability with respect to higher level of replica symmetry breaking [50, 51, 52], however it is an extremely demanding
numerical task that we did not undertake. A simpler consistency argument can be invoked by computing the internal
entropy of the pure states. This should be an increasing function of m. We can see on the curves of Fig. 13 that this
condition is not respected for all the values of α and m (full symbols refer to consistent solutions, while open symbol
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are for inconsistent ones). For values of α smaller than roughly 4.15 we are not able to find a consistent solution
in the whole range of m ∈ [0, 1] (a consistent solution exists only for m large enough). While for α roughly larger
than 4.15 two solutions coexist at small values of m and the consistent one is the one with more hard fields. We
also notice that this inconsistency is accompanied by the decreasing of the inter-overlap q0 with α: in other words we
empirically find that the quantities ∂mφ and ∂αq0 always have the same sign. This observation makes easier to locate
in Fig. 12 consistent solutions (those with q0 increasing with α). In order to make connection with previous studies
where consistent and inconsistent solutions were found [9, 15, 34] we plot in Fig. 14 the entropic complexity curve for
α = 4.2: the full (resp. dashed) curve corresponds to the consistent (resp. inconsistent) branch.
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