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Abstract

I discuss some recent results on Gallager codes obtained through the statistical
mechanics approach. The results concern: A. The behavior of finite length codes:
I propose a characterization which is complementary to the one given by the error
exponent; B. The performance of local decoding algorithms: I show that they fail
above the threshold for belief propagation decoding. Point B lead me to conjec-
ture that any linear-time decoder fail above the threshold for belief propagation
decoding.

1 Introduction

In this paper I will present some recent investigations of Gallager codes [1] within the
statistical mechanics approach [2]. Although I will always refer to Gallager codes, the
results presented in this paper can be probably generalized to much larger classes of
codes. The basic requirement is that the code ensemble must have vanishing block error
probability in the infinite length limit. This is why I referred to good codes in the title
of this paper.

Before continuing it can be helpful to define the basic notations. I will denote by N
the block length of the code. For sake of simplicity I will refer to two particular models
for the noisy channel: the binary symmetric channel, mainly in Sec. 2, and the binary
erasure channel in Sec. 3. In both cases will denote the noise level by p. The precise
meaning (erasure probability or flipping probability) will be determined, when necessary,
by the context.

I will discuss the following topics:

A. In Section 2 I will discuss the finite size scaling of Gallager codes. Characterizing
the behavior of finite length codes is a problem of outmost practical relevance.
Coding theory focus on the N — oo limit at fixed noise level p and characterizes
it through the error exponent E(p). More explicitly the block error probability
vanishes as Py ~ e~ VF®)_ The error exponent vanishes at some critical noise p.
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near to the the threshold P+, this descriptiz)n is not accurate.

Finite size scaling describes a different asymptotics: namely p — p, and N — oo
at the same time,while a product of the form (p — p,)N'/¥ is kept fixed. We will
show, through numerical simulations, that this type of analysis can be pertinent
for Gallager codes.

B. In Section 3 I will describe the role of metastable states in the decoding dynamics of
Gallager codes. We will work in a simplified setting: the binary erasure channel [11].

In order to introduce the concept of metastable state it is convenient to use the
language of combinatorial optimization [3]. Decoding can be regarded as a combi-
natorial optimization problem. We receive a message £ containing some erasures
and we want to find a bit sequence z (compatible with the channel output z)
which maximize the number of satisfied parity checks. Metastable states are locally
optimal states of this optimization problem.

Recall that, for Gallager codes, the critical noise level under belief propagation
decoding (we shall call it pg) is, in general, different from the threshold under
maximum likelihood decoding (p.).

The concept of metastable state gives us an intrinsic (i.e. algorithm-independent)
characterization of p;. We will show that, at pg, an exponential (in N) number
of metastable states appears. This leads us to formulate the following conjecture:
Gallager codes cannot be decoded in linear time between pg and pe.

Apparently there is no connection between the two topics outlined above. However the
point B give us an intrinsic characterization of decoding failures. This could be the first
step for an analytical computation of finite-length effects in Gallager codes (point A).

The results presented in this paper have been obtained in the context of two col-
laborations. The first one [4] concerns the point A and involves F. Rosati (Rome) and
N. Sourlas (Paris). The second one [5] focus on point B and involves S. Franz, M. Leone,
F. Ricci-Tersenghi and R. Zecchina (Trieste).

2 Finite size scaling’

Finite size scaling is an ubiquitous phenomenon both in combinatorics and in statistical
physics systems.

In order to introduce it, we shall consider a very simple example, the link percolation
transition on the complete graph [6]. Suppose you have N sites ¢ = 1,..., N. Any of
the N (N — 1)/2 pairs of can be either connected or not by a link. Let us say that a link
is present with probability p/N and that two links between different pairs of sites are
independent. This defines our model.

The most striking phenomenon in this model is the percolation transition. Let us
define a cluster as a set of sites connected by links, and its size as the number of sites
which belong to it. For p < p. = 1 the clusters have a size at most of order log N. For
p > p. a single giant (i.e. with size of order N) cluster appears. Let us define its (average)
size to be G(p, N)N. In the N — oo limit the size is given by the following equation

1 -G =exp{—pG}. (1)

Tn collaboration with F. Rosati and N. Sourlas.
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Figure 1: The block error probability for a (6, 3) regular Gallager code for several block
lengths (see the legend). On the right the scaling plot (see text) for the same quantity.

In particular the size G(p, 00) of the giant cluster is given, near to the transition, by
G(p,o0) ~ 2(p — pc). This non-analytic behavior cannot hold for finite N. In fact it is
smoothened as follows:

G(p,N) = N?"G[(p — p)N'/"]. (2)

This equality is understood to hold asymptotically in the limit p — p., N — oo with
the product (p — p.) N /v kept fixed. The critical exponents f = 1 and v = 3 have been
exactly computed [7]. The function G is called a scaling function.

There are at least two reasons for thinking that the same scenario must hold for
Gallager codes. In the statistical mechanics approach [2], the transition between between
error-free communication and the high noise region is described by a phase transition.
This is exactly the context to which finite size scaling theory applies [8]. Moreover
Gallager codes share some similarities with the percolation example presented above.
For instance, on the binary erasure channel the transition at p; can be described as a
particular percolation transition on the hypergraph defining the code [9].

In order to check this hypothesis we simulated belief propagation decoding for the
(6, 3) regular Gallager code on the binary symmetric channel. We averaged the results
over 5000 codes of the ensemble and realizations of the channel noise. We varied the
number of iterations of belief propagation algorithm between 50 and 1000, checking that
the dependence upon this parameter was negligeable.

The results for the block error probability are shown in Fig. 1, left frame. It can be
noticed that, as NV increases, the transition at py becomes sharper and sharper. Indeed
the finite size scaling form (2) predicts the width of the transition to be of order N=1/¥.
More explicitly we can guess that, in the present case, the correct finite-size form is

Py(p, N) = Ful(p — pd)Nl/V] . (3)

Notice that in this case there is no prefactor as in Eq. (2). This is due to fact that,
in the N — oo limit, P,; — 1 above pg, and P, — 0 below pg. In order to check the
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Figure 2: The bit error probability for a (6, 3) regular Gallager code (on the left) and the
corresponding scaling plot (on the right).

Ansatz (3) we plot the same data versus (p —pg) N'/¥ in the left frame of Fig. 1. Here we
used pg ~ 0.0842 (which can be obtained either through density evolution [10] or in the
statistical mechanics approach [5]) and ¥ = 2. The good collapse of the data supports
the relevance of the Ansatz (3).

We can go further and study the bit error probability. In Fig. 2 we present the
corresponding data. The finite size scaling form is, in this case,

Pyit(p, N) = N™*Fi[(p — Pd)Nl/V] . (4)

In order to verify this prediction we plot on Fig. 2, right frame, N®Py;(p, N) versus
(p — pa)N**. We used py ~ 0.0842 and v = 2 as in Fig. 1 and a = 0.15. Once again
there is a good data collapse.

3 Metastable states?

In this Section we shall focus on the binary erasure channel. We shall treat decoding as a
combinatorial optimization problem within the space of bit sequences of length Ng (the
number of erased bits, the others being fixed by the received message). The function to
be minimized is the energy density

2
€= (number of violated parity checks), (5)

where we introduced the normalizing factor for future convenience. In Section 1 we
described metastable states as locally optimal states (bit sequences) of the decoding
problem. Now we must say what do we mean by locally.

Since we deal with a combinatorial optimization problem on bit sequences of length
Ng, there is a natural notion of distance to use: the Hamming distance. Let us denote

2In collaboration with S. Franz, M. Leone, F. Ricci-Tersenghi and R. Zecchina.
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Figure 3: The (6,3) Gallager code decoded by local search. We plot the number of
violated parity checks (multiplied by 2/N) as a function of the erasure probability p.

as dyg(z,,z,) the Hamming distance between the two sequences z, and z,. We can define
the k-neighborhood of a given sequence z as the set of sequences z such that dy(z, 2) < k.
Finally we call k-stable states the bit sequences which are optima of the decoding problem
within their k-neighborhood.

One can easily invent local search algorithms [3] for the decoding problem which use
the k-neighborhoods. The algorithm start from a random sequence and, at each step,
optimize it within its k-neighborhood. This algorithm is clearly suboptimal and halts
on k-stable states. Let us consider, for instance, a (6,3) regular code and decode it
by local search in 1-neighborhoods. We recall that such a code has p; ~ 0.429440 and
pe =~ 0.488151 [11]. In Fig. 3 we report the resulting energy density e after the local
search algorithm halts, as a function of the erasure probability p. We averaged over 100
different realizations of the noise and codes in the ensemble.

Let us now turn to metastable states. This are k-stable states for any k = o(INV)3.
Notice that this definition is slightly ambiguous: we do not know how to compare k-stable
states for different values of N. A possible approach for avoiding this ambiguity is the
following: work with k-stable states, take the N — oo limit and, at the end, the £ — oo
limit. It is quite clear that no local search algorithm can escape these states.

The replica method [12] allows to compute the number of metastable states with a
given energy density € [13,14]. In particular it yields

Nus(e) ~ exp{NZ(e)}. (6)

The function X(¢) is called the complexity. The computation of ¥(€) can be done within
a variational (approximate) scheme. We report in Fig. 4 the result of this computation
for three different values of the erasure probability p. As before we consider the (6,3)
code. The general picture is as follows. Below p,; there is no metastable state, excepting
the one corresponding to the correct codeword. Between p,; and p,. there is an exponential
number of metastable states with energy density belonging to the interval €S < € < €p.
Above p., egs = 0. The maximum of 3(e) is always at €p.

The above picture tell us that any local algorithm will run into difficulties above py.
In order to confirm this picture, we made some numerical computations using simulated

3T use the standard notation: fx = o(N) if imx_o fnv/N = 0.
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Figure 4: The complexity X(¢) for (from top to bottom) p = 0.45 (below p.), p = 0.5,
and p = 0.55 (above p,).
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Figure 5: The (6, 3) Gallager code decoded by simulated annealing. The circles give the
number of violated checks in the resulting sequence. The continuous line is the analytical
result for the typical energy density of metastable states.



together with the theoretical prediction for e¢p. The good agreement confirm our picture:
the algorithm gets stucked in metastable states, which have, in the great majority of
cases, energy density €p.

Both message passing and local search algorithms fail decode correctly between p; and
pe. This leads us to formulate the conjecture already mentioned in the Introduction: no
linear time algorithm can decode in this regime of noise. The (typical case) computational
complexity change from being linear below p, to superlinear above p,. In the case of the
binary erasure channel it remains polynomial between p; and p.. However it is plausible
that for a general channel it becomes non-polynomial.
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